Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.
2015-12-01
Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.
James M. Vose; Jose Manuel Maass
1999-01-01
Long-term monitoring of ecological and hydrological processes is critical to understanding ecosystem function and responses to anthropogenic and natural disturbances. Much of the world's knowledge of ecosystem responses to disturbance comes from long-term studies on gaged watersheds. However, there are relatively few long-term sites due to the large cost and...
Harte, John; Saleska, Scott R; Levy, Charlotte
2015-06-01
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. © 2014 John Wiley & Sons Ltd.
Animals as indicators of ecosystem responses to air emissions
Newman, James R.; Schreiber, R. Kent
1984-01-01
With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.
USDA-ARS?s Scientific Manuscript database
Our objective was to assess ecosystem responses to long-term changes in precipitation and nitrogen availability in the Northern Chihuahuan Desert (NM, USA), using rainfall manipulations (80% reduced PPT, ambient, 80% increased) and fertilization additions (with and without ammonium nitrate) for five...
Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change
USDA-ARS?s Scientific Manuscript database
Climate change and its impact on ecosystems are usually assessed at decadal and century time scales. Ecological responses to climate change at those scales are strongly regulated by long-term processes, such as changes in species composition, carbon dynamics in soil and by big trees, and nutrient r...
Climate Variability and Ecosystem Response
David Greenland; Lloyd W. Swift; [Editors
1990-01-01
Nine papers describe studies of climate variability and ecosystem response. The studies were conducted at LTER (Long-Term Ecological Research) sites representing forest, agricultural, and aquatic ecosystems and systems in which extreme climates limit vegetational cover. An overview paper prepared by the LTER Climate Committee stresses the importance of (1) clear...
Coordinated approaches to quantify long-term ecosystem dynamics in response to global change
Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn
2011-01-01
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...
Wayne Swank; Jackson Webster
2014-01-01
Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...
RESILIENCE OF ECOSYSTEMS TO DISTURBANCES
Resilience, in an ecological context, is one of several terms that characterize the response of an ecosystem to disturbance. Other such terms include persistence, resistance and stability. Two definitions of resilience have become prominent in the literature, both of which derive...
Lara, Mark J.; Johnson, David R.; Andresen, Christian; ...
2016-08-27
To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara, Mark J.; Johnson, David R.; Andresen, Christian
To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.
Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams
2012-01-01
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...
Rogora, M; Frate, L; Carranza, M L; Freppaz, M; Stanisci, A; Bertani, I; Bottarin, R; Brambilla, A; Canullo, R; Carbognani, M; Cerrato, C; Chelli, S; Cremonese, E; Cutini, M; Di Musciano, M; Erschbamer, B; Godone, D; Iocchi, M; Isabellon, M; Magnani, A; Mazzola, L; Morra di Cella, U; Pauli, H; Petey, M; Petriccione, B; Porro, F; Psenner, R; Rossetti, G; Scotti, A; Sommaruga, R; Tappeiner, U; Theurillat, J-P; Tomaselli, M; Viglietti, D; Viterbi, R; Vittoz, P; Winkler, M; Matteucci, G
2018-05-15
Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
González-De Vega, S; De Las Heras, J; Moya, D
2016-12-15
In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems should be implemented. Copyright © 2016 Elsevier B.V. All rights reserved.
[Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].
Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu
2010-02-01
Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.
NASA Astrophysics Data System (ADS)
Song, Bing; Sun, Jian; Zhou, Qingping; Zong, Ning; Li, Linghao; Niu, Shuli
2017-09-01
Increases in nitrogen (N) deposition can greatly stimulate ecosystem net carbon (C) sequestration through positive N-induced effects on plant productivity. However, how net ecosystem CO2 exchange (NEE) and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 yr-1) in an alpine meadow on the Qinghai-Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER), and gross ecosystem production (GEP) all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (-7.77 ± 0.48 µmol m-2 s-1) occurring under an N addition rate of 8 gN m-2 yr-1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.
Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...
Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest
John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso
2007-01-01
Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.
Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica.
Gooseff, Michael N; Barrett, John E; Adams, Byron J; Doran, Peter T; Fountain, Andrew G; Lyons, W Berry; McKnight, Diane M; Priscu, John C; Sokol, Eric R; Takacs-Vesbach, Cristina; Vandegehuchte, Martijn L; Virginia, Ross A; Wall, Diana H
2017-09-01
Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt ('flood year')-a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.
CHARACTERIZE INTERACTIONS BETWEEN ECOSYSTEM FUNCTIONING AND CHANGES IN CLIMATE, UV, AND LAND USE
Assessments of the long-term impacts of global changes in climate, ultraviolet (UV) radiation and land use on ecosystems require scientific data, concepts and models that describe the responses of ecosystem health to stresses related to the changes as well as information and mode...
Spatially-explicit ecosystem service valuation (ESV) allows for the identification of the location and magnitude of services provided by natural ecosystems along with an economic measure of their value based upon benefit transfer. While this provides an important function in term...
Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.
2000-01-01
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.
CRITERIA FOR PRIORITIZATION OF ECOSYSTEM RESTORATION
Prioritization of ecosystem restoration measures is important for state and federal agencies, watershed coalitions, science advisory boards and other groups responsible for decision-making regarding restoration activities. Although widely utilized, the term "restoration prioriti...
Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston
2017-01-01
We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...
Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven
2016-01-01
Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.
J. Marty Kranabetter; Kendra K. McLauchlan; Sara K. Enders; Jennifer M. Fraterrigo; Philip E. Higuera; Jesse L. Morris; Edward B. Rastetter; Rebecca Barnes; Brian Buma; Daniel G. Gavin; Laci M. Gerhart; Lindsey Gillson; Peter Hietz; Michelle C. Mack; Brenden McNeil; Steven Perakis
2016-01-01
Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of...
Key ecological responses to nitrogen are altered by climate change
Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.
2016-01-01
Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.
Key ecological responses to nitrogen are altered by climate change
NASA Astrophysics Data System (ADS)
Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.
2016-09-01
Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.
Margaret M. Moore; W. Wallace Covington; Peter Z. Fule; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner
2008-01-01
In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.
Response diversity determines the resilience of ecosystems to environmental change.
Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro
2013-05-01
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Herrmann, R.
1997-01-01
Integrated watershed ecosystem studies in National Parks or equivalent reserves suggest that effects of external processes on 'protected' resources are subtle, chronic, and long-term. Ten years of data from National Park watersheds suggests that temperature and precipitation changes are linked to nitrogen levels in lakes and streams. We envision measurable biotic effects in these remote watersheds, if expected climate trends continue. The condition of natural resources within areas set aside for preservation are difficult to ascertain, but gaining this knowledge is the key to understanding ecosystem change and of processes operating among biotic and abiotic ecosystem components. There is increasing evidence that understanding the magnitude of variation within and between such processes can provide an early indication of environmental change and trends attributable to human-induced stress. The following four papers are case studies of how this concept has been implemented. These long-term studies have expanded our knowledge of ecosystem response to natural and human-induced stress. The existence of these sites with a commitment to gathering 'long-term' ecosystem-level data permits research activities aimed at testing more important hypotheses on ecosystem processes and structure.
NASA Astrophysics Data System (ADS)
Meir, P.; Rowland, L.; da Costa, A. C. L.; Mencuccini, M.; Oliveira, A.; Binks, O.; Christoffersen, B. O.; Eliane, M.; Vasconcelos, S.; Kruijt, B.; Ferreira, L.
2014-12-01
Our understanding of how forests respond to drought is especially constrained with respect to widespread tree mortality events. This limitation is particularly clear for tropical forests, despite the risk of drought to these ecosystems during the coming decades. We present new findings from the only current long-term 'ecosystem-scale' (1 ha) rainfall manipulation experiment in tropical rainforest, the Esecaflor experiment at Caxiuana National Forest, Para State, Brazil. Throughfall has been partially excluded from experimental forest at the Esecaflor experiment for more than a decade. We have previously demonstrated a capacity to model short-term physiological responses well, but longer term physiology and ecological dynamics remain challenging to understand and represent. In particular, high mortality and increased autotrophic respiration following extended drought are poorly understood phenomena, and their interaction with hydraulic responses and limitations needs to be characterised. We present initial data that for the first time combine carbon use and hydraulic metrics, comparing drought-vulnerable and non-vulnerable species that have experienced extended soil moisture deficit, as imposed in the experiment, also considering the response in soil respiration. We also discuss how these findings can be used to develop future empirical and modelling studies aimed at improving our capacity to predict the effects of drought on tropical forest ecosystems in Amazonia and in other tropical forest regions where species characteristics and environmental constraints may influence both short and long-term responses to drought.
Scaling ozone responses of forest trees to the ecosystem level in a changing climate
D.F. Karnosky; K.S. Pregitzer; D.R. Zak; M.E. Kubiske; G.R. Hendrey; D. Weinstein; M. Nosal; K.E. Percy
2005-01-01
Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3),...
Forest response to heat waves at the dry timberline
NASA Astrophysics Data System (ADS)
Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.
2012-04-01
Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (<300 mm annual rainfall) we observe adjustments that improve carbon-, nitrogen- and water- use efficiencies. An important aspect in the ecosystem sustainability is its ability to rapidly recover from extreme conditions, both at the short-term and the seasonal scale. A remarkable example is provided by the episodes (usually 2-4 days) of Easterly dry and hot air that are common in spring (so-called "Hamsin" events). During these events air temperature increases and relative humidity decreases within hours by 10˚C and 40%, respectively. Net ecosystem CO2 exchange (NEE) and photosynthesis (GPP) sharply decline, predominantly in response to the drastic increase in vapor pressure deficit (up to 6kPa), but then show full recovery to the pre-stress values within 24 h past the event. Similarly, following 5-6 months of seasonal drought, the forest resumes high photosynthetic activity within ~5 days following the first rain episode of about 10 mm in the fall. We show that these transient responses are useful in partitioning between the ecosystem responses to short-term atmosphere-driven stress and longer-term soil moisture stress. An ecosystem model (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.
Margaret M. Moore; Wallace Covington; Peter Z. Fulé; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner
2008-01-01
In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.
Lindsey E. Rustad
2006-01-01
Evidence continues to accumulate that humans are significantly increasing atmospheric CO2 concentrations, resulting in unprecedented changes in the global climate system. Experimental manipulations of terrestrial ecosystems and their components have greatly increased our understanding of short-term responses to these global perturbations and have...
The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem
Frank Day; Rachel Schroeder; Daniel Stover; Alisha Brown; John Butnor; John Dilustro; Bruce Hungate; Paul Dijkstra; Benjamin Duval; Troy Seiler; Bert Drake; Ross Hinkle
2013-01-01
Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11...
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Gestel, Natasja; Jan van Groenigen, Kees; Osenberg, Craig
This project examined the sensitivity of carbon in land ecosystems to environmental change, focusing on carbon contained in soil, and the role of carbon-nitrogen interactions in regulating ecosystem carbon storage. The project used a combination of empirical measurements, mathematical models, and statistics to partition effects of climate change on soil into processes enhancing soil carbon and processes through which it decomposes. By synthesizing results from experiments around the world, the work provided novel insight on ecological controls and responses across broad spatial and temporal scales. The project developed new approaches in meta-analysis using principles of element mass balance and largemore » datasets to derive metrics of ecosystem responses to environmental change. The project used meta-analysis to test how nutrients regulate responses of ecosystems to elevated CO2 and warming, in particular responses of nitrogen fixation, critical for regulating long-term C balance.« less
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610
SPRUCE Whole Ecosystems Warming (WEW) Environmental Data Beginning August 2015
Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Riggs, J. S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Krassovski, M. B. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set provides the environmental measurements collected during the implementation of operational methods to achieve both deep soil heating (0-3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem warming scenarios within which immediate and longer term (one decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes.
Global seabird responses to forage fish depletion - One-third for the birds
Cury, Philippe M.; Boyd, Ian L.; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J.M.; Furness, Robert W.; Mills, James A.; Murphy, Eugene J.; Österblom, Henrik; Paleczny, Michelle; Piatt, John F.; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J.
2011-01-01
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Global seabird response to forage fish depletion--one-third for the birds.
Cury, Philippe M; Boyd, Ian L; Bonhommeau, Sylvain; Anker-Nilssen, Tycho; Crawford, Robert J M; Furness, Robert W; Mills, James A; Murphy, Eugene J; Osterblom, Henrik; Paleczny, Michelle; Piatt, John F; Roux, Jean-Paul; Shannon, Lynne; Sydeman, William J
2011-12-23
Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.
Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA
Sultana Jefts; Ivan J. Fernandez; Lindwey E. Rustad; D. Bryan Dail
2004-01-01
Atmospheric nitrogen deposition to forested ecosystems is a concern because of both geochemical and biological consequences for ecosystem integrity. High levels of prolonged N deposition can lead to "N saturation" of the ecosystem. The Bear Brook Watershed in Maine is a long-term, paired forested watershed experiment with over a decade of experimental N...
Increased sensitivity to climate change in disturbed ecosystems.
Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep
2015-03-24
Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.
Ecosystem Reversals of Fortune in Response to Long-Term Experimental N Deposition.
NASA Astrophysics Data System (ADS)
Vourlitis, G. L.
2017-12-01
Anthropogenic nitrogen (N) deposition has the capacity to alter terrestrial ecosystem structure and function; however, short-term (months-years) responses may be fundamentally different than long-term (years-decades) responses. Here the results of a 14 year field N addition experiment are reported for two different Southern Californian semi-arid shrublands, a post-fire chaparral and a mature coastal sage scrub (CSS), that have been exposed to 50 kgN ha-1 yr-1 since 2003. Since >90% of the anthropogenic N in this region consists of dry deposition, N was added during the late-summer or early-fall each year to assess how dry N inputs alter ecosystem processes. Both shrublands experienced complete reversals in their response to experimental N input. For example, post-fire chaparral plots exposed to added N had significantly lower net primary production (NPP) than control plots over the first 3 years of the experiment, but thereafter, the NPP in N plots increased consistently each year and became significantly higher than in control plots after 7 years of N fertilization. In CSS, NPP and the abundance of Artemisia californica, a co-dominant shrub, increased significantly in N plots over the first 6 years, but thereafter, NPP and the abundance of A. californica and Salvia mellifera, the other co-dominant shrub, declined. Now the N plots have a lower NPP and are dominated by the invasive annual Brassica nigra. These transient responses, and interactions between N accumulation and other factors such as post-fire succession (chaparral) and chronic drought (CSS), would have been missed if the experiment was ended after the end of a typical funding cycle, and highlighting the importance of long-duration field experiments in assessing ecosystem responses to chronic N enrichment.
Salim Belyazid; Scott Bailey; Harald Sverdrup
2010-01-01
The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure
2001-09-30
mutualism utilized modified Lotka - Volterra (L-V) competition equations in which the sign of the interspecific interaction term was changed from...within complex communities and ecosystems. Prior to the current award, the PIs formulated and tested general dynamic energy budget models...Nisbet, 1998; chapter 7) make a convincing case that ecosystems do truly have dynamics that can be described by relatively simple, general , models
How long can fisheries management delay action in response to ecosystem and climate change?
Brown, Christopher J; Fulton, Elizabeth A; Possingham, Hugh P; Richardson, Anthony J
2012-01-01
Sustainable management of fisheries is often compromised by management delaying implementation of regulations that reduce harvest, in order to maintain higher catches in the short-term. Decreases or increases in fish population growth rate driven by environmental change, including ecosystem and climate change, affect the harvest that can be taken sustainably. If not acted on rapidly, environmental change could result in unsustainable fishing or missed opportunity for higher catches. Using simulation models of harvested fish populations influenced by environmental change, we explore how long fisheries managers can afford to wait before changing harvest regulations in response to changes in population growth. If environmental change causes population declines, delays greater than five years increase the probability of population collapse. Species with fast and highly variable population growth rates are more susceptible to collapse under delays and should be a priority for revised management where delays occur. Generally, the long-term cost of delay, in terms of lost fishing opportunity, exceeds the short-term benefits of overfishing. Lowering harvest limits and monitoring for environmental change can alleviate the impact of delays; however, these measures may be more costly than reducing delays. We recommend that management systems that allow rapid responses to population growth changes be enacted for fisheries management to adapt to ecosystem and climate change.
The importance of radiation for semiempirical water-use efficiency models
NASA Astrophysics Data System (ADS)
Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus
2017-06-01
Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.
Nielsen, Uffe N; Ball, Becky A
2015-04-01
Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model. © 2014 John Wiley & Sons Ltd.
Long-term resilience of above- and below ground ecosystem components among contrasting ecosystems.
Wardle, David A; Jonsson, Micael
2014-07-01
While several studies have explored how short-term ecological responses to disturbance vary among ecosystems, experimental studies of how contrasting ecosystems recover from disturbance in the longer term are few. We performed a simple long-term experiment on each of 30 contrasting forested islands in northern Sweden that vary in size; as size decreases, time since fire increases, soil fertility and ecosystem productivity declines, and plant species diversity increases. We predicted that resilience of understory plant community properties would be greatest on the larger, more productive islands, and that this would be paralleled by greater resilience of soil biotic and abiotic properties. For each island, we applied three disturbance treatments of increasing intensity to the forest understory once in 1998, i.e., light trimming, heavy trimming, and burning; a fourth treatment was an undisturbed control. We measured recovery of the understory vascular plant community annually over the following 14 years, and at that time also assessed recovery of mosses and several belowground variables. Consistent with our predictions, vascular plant whole-community variables (total cover, species richness, diversity [Shannon's H'], and community composition) recovered significantly more slowly on the smaller (least fertile) than the larger islands, but this difference was not substantial, and only noticeable in the most severely disturbed treatment. When an index of resilience was used, we were unable to detect effects of island size on the recovery of any property. We found that mosses and one shrub species (Empetrum hermaphroditum) recovered particularly slowly, and the higher abundance of this shrub on small islands was sufficient to explain any slower recovery of whole-ecosystem variables on those islands. Further, several belowground variables had not fully recovered from the most intense disturbance after 14 yr, and counter to our predictions, the degree of their recovery was never influenced by island size. While several studies have shown large variation among plant communities in their short-term response (notably resistance) to environmental perturbations, our results reveal that when perturbations are applied equally to highly contrasting ecosystems, differences in resilience among them in the longer term can be relatively minor, regardless of the severity of disturbance.
Fire intensity, fire severity and burn severity: A brief review and suggested usage
Keeley, J.E.
2009-01-01
Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly, the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire, and different metrics such as reaction intensity, fireline intensity, temperature, heating duration and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, have created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. However, empirical studies have defined fire severity operationally as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined so that it also includes ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonization, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, both on the ground and with remote sensing, yet ecosystem responses are of most interest to resource managers.
Reconstructing disturbances and their biogeochemical consequences over multiple timescales
McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.
2014-01-01
Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.
NASA Astrophysics Data System (ADS)
Zador, S.; Ormseth, O.; Renner, H.
2016-02-01
A comprehensive suite of ecosystem indicators, defined simply here as time-series of data that measure some component of an ecosystem, can provide a holistic and long-term view of ecosystem status and response to change. In Alaska, marine ecosystem indicators are tracked in the Gulf of Alaska, Aleutian Islands and eastern Bering Sea to inform annual ecosystem assessments for managers and scientists, and in particular, to inform ecosystem-based fisheries management. We will present the most recent indicator-based assessments of these three large marine ecosystems (LMEs) that integrate data from climate and oceanographic indicators through lower and upper-trophic biological indicators and highlight regional and species-specific apparent responses to the recent warm anomalies in the North Pacific. We will use comparisons among the three LMEs to illustrate how the effects of the anomalies may propagate through ecosystems and food webs. In general, we expect to see more changes in indicators' status that may be attributed to the Warm Blob in the Gulf of Alaska relative to the other LMEs, as a result of the proximity of the Gulf of Alaska to the areas where the temperature anomalies originated. In the eastern Bering Sea, which is separated from the North Pacific by the Aleutian Island chain, we expect to see more modulated responses. We will discuss the types of biological indicators that are expected to show direct responses to temperatures, such as changes in species distribution, compared to those that may show lagged effects.
USDA-ARS?s Scientific Manuscript database
We compiled six long-term datasets from western North America to test for ecosystem-dependent demographic responses for forbs and grasses. Based on these data, we characterized 123 survivorship curves for 109 species. Three demographic parameters were extracted from these survivorship curves: surviv...
Post-fire ecosystem recovery trajectories along burn severity gradients
NASA Astrophysics Data System (ADS)
Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A. G.; Henareh Khalyani, A.
2017-12-01
Burn severity is a term used to describe the longer-term, second-order effects of fire on ecosystems. Plant communities are assumed to recover more slowly at higher burn severities; however, this likely depends on plant community type and climate. We assessed vegetation recovery approximately a decade post-fire across North American forests (moist mixed conifer, dry mixed conifer, ponderosa pine) and shrublands (mountain big sagebrush and Wyoming big sagebrush) distributed across climate and burn severity gradients. We assessed vegetation recovery across these ecosystems as indicated by the differenced Normalized Burn Ratio derived from 1984-2016 Landsat time series imagery (LandTrendr). Additionally, we used field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. Ecosystem responses were related to climate predictors derived from downscaled 1993-2011 climate normals. We hypothesized that drier and hotter ecosystems would take longer to recover. We also predicted areas with higher burn severity to have slower recovery. We found post-fire recovery to be strongly predicted by precipitation with the slowest recovery in shrublands and ponderosa pine forest, the driest vegetation types considered. We conclude that climate and burn severity interact to determine ecosystem recovery trajectories after fire, with burn severity having larger influence in the short term, and climate having larger influence in the long term.
Modeling and dynamic monitoring of ecosystem performance in the Yukon River Basin
Wylie, Bruce K.; Zhang, L.; Ji, Lei; Tieszen, Larry L.; Bliss, N.B.
2008-01-01
Central Alaska is ecologically sensitive and experiencing stress in response to marked regional warming. Resource managers would benefit from an improved ability to monitor ecosystem processes in response to climate change, fire, insect damage, and management policies and to predict responses to future climate scenarios. We have developed a method for analyzing ecosystem performance as represented by the growing season integral of normalized difference vegetation index (NDVI), which is a measure of greenness that can be interpreted in terms of plant growth or photosynthetic activity (gross primary productivity). The approach illustrates the status and trends of ecosystem changes and separates the influences of climate and local site conditions from the influences of disturbances and land management.We emphasize the ability to quantify ecosystem processes, not simply changes in land cover, across the entire period of the remote sensing archive (Wylie and others, 2008). The method builds upon remotely sensed measures of vegetation greenness for each growing season. By itself, however, a time series of greenness often reflects annual climate variations in temperature and precipitation. Our method seeks to remove the influence of climate so that changes in underlying ecological conditions are identified and quantified. We define an "expected ecosystem performance" to represent the greenness response expected in a particular year given the climate of that year. We distinguish "performance anomalies" as cases where the ecosystem response is significantly different from the expected ecosystem performance. Maps of the performance anomalies (fig. 1) and trends in the anomalies give valuable information on the ecosystems for land managers and policy makers at a resolution of 1 km to 250 m.
Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L
2017-12-01
Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing
2017-01-01
Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.
Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R
2016-11-01
Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.
NASA Astrophysics Data System (ADS)
Pappas, C.
2017-12-01
Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.
Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A
2003-05-01
This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.
NASA Astrophysics Data System (ADS)
Jackson, C. R.; Webster, J. R.; Knoepp, J. D.; Elliott, K.; Emanuel, R. E.; Miniat, C.
2017-12-01
In the 1970s, the Coweeta Hydrologic Laboratory Watershed 7 was clearcut from ridge to ridge to observe how far the perturbation would move the ecosystem and how quickly the ecosystem would return to its pre-disturbance state. Nearly 40 years of observations of streamflow and DIN export demonstrate that this view of ecosystem resistance and resilience was too simplistic. Forest disturbance triggered a chain of ecological dynamics that are still evolving. For the first 12 years following watershed road building, forest harvest, and forest regeneration, streamflows and DIN concentrations temporarily increased and then appeared to return to pre-harvest behavior. Thereupon the ecosystem trajectory diverged from expectations. Unexpected successional changes in forest composition interacted with drought cycles, climate change effects, and forest changes due to pests and diseases to push the biogeochemical system into an alternate state featuring persistently high DIN concentrations and hydrological rather than biological control of DIN exports. Thirty years after harvest, these forest changes also increased evapotranspiration and reduced water yields. These ecosystem dynamics were only revealed because of long-term monitoring, and they inspired new research to elucidate mechanisms behind these dynamics. We conclude that long-term approaches are critical for understanding ecosystem dynamics and responses to disturbances.
Sensitivity of soil permafrost to winter warming: Modeled impacts of climate change.
NASA Astrophysics Data System (ADS)
Bouskill, N.; Riley, W. J.; Mekonnen, Z. A.; Grant, R.
2016-12-01
High-latitude tundra soils are warming at nearly twice the rate of temperate ecosystems. Changes in temperature and soil moisture can feedback on the processes controlling the carbon balance of tundra soils by altering plant community composition and productivity and microbial decomposition rates. Recent field manipulation experiments have shown that elevated soil and air temperatures can stimulate both gross primary productivity and ecosystem respiration. However, the observed soil carbon gains following summer time stimulation of plant productivity have been more than offset by elevated decomposition rates during the rest of the year, and particularly over winter. A critical uncertainty is whether these short-term responses also represent the long-term trajectory of tundra ecosystems under chronic disturbance. Herein we employ a mechanistic land-model (ecosys) that represents many of the key above- and belowground processes regulating the carbon balance of tundra soils to simulate a winter warming experiment at Eight Mile Lake, Alaska. Using this model we examined the short-term (5 - 10 year) influence of soil warming through the wintertime by mimicking the accumulation of a deeper snow pack. This deeper snow pack was removed to a height equal to that of the snow pack over control plots prior to snow melt. We benchmarked the model using physical and biological measurements made over the course of a six-year experiment at the site. The model accurately represented the effect of the experimental manipulation on thaw depth, N mineralization, winter respiration, and ecosystem gross and net primary production. After establishing confidence in the modeled short-term responses, we extend the same chronic disturbance to 2050 to examine the long-term response of the plant and microbial communities to warming. We discuss our results in reference to the long-term trajectory of the carbon and nutrient cycles of high-latitude permafrost regions.
Susan H. Julius; Jordan M. West; Geoffrey M. Blate; Jill S. Baron; Brad Griffith; Linda A. Joyce; Peter Kareiva; Brian D. Keller; Margaret A. Palmer; Charles H. Peterson; J. Michael Scott
2008-01-01
This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term âadaptationâ in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or...
Glacier Lakes Ecosystem Experiment Site: an "Experimental" wilderness
Douglas G. Fox; Anna W. Schoettle; Frank A. Vertucci
1987-01-01
This site, selected to be representative of high-mountain wilderness ecosystems, is being used to study the effects of air pollution and atmospheric deposition In alpine and subalpine, terrestrial and aquatic biotic communities. The research program includes (a) short-term experiments designed to quantify the response of system components hypothesized to be most...
Long-term aspen exclosures in the Yellowstone ecosystem
Charles E. Kay
2001-01-01
Aspen has been declining in the Yellowstone Ecosystem for more than 80 years. Some authors have suggested that aspen is a marginal plant community in Yellowstone and that recent climatic variation has adversely affected aspen, while others contend that excessive browsing by native ungulates is primarily responsible for aspen's widespread decline. To test these...
Impacts of 120 years of fertilizer addition on a temperate grassland ecosystem
Kidd, Jonathan; Manning, Peter; Simkin, Janet; Peacock, Simon; Stockdale, Elizabeth
2017-01-01
The widespread application of fertilizers has greatly influenced many processes and properties of agroecosystems, and agricultural fertilization is expected to increase even further in the future. To date, most research on fertilizer impacts has used short-term studies, which may be unrepresentative of long-term responses, thus hindering our capacity to predict long-term impacts. Here, we examined the effects of long-term fertilizer addition on key ecosystem properties in a long-term grassland experiment (Palace Leas Hay Meadow) in which farmyard manure (FYM) and inorganic fertilizer treatments have been applied consistently for 120 years in order to characterize the experimental site more fully and compare ecosystem responses with those observed at other long-term and short-term experiments. FYM inputs increased soil organic carbon (SOC) stocks, hay yield, nutrient availability and acted as a buffer against soil acidification (>pH 5). In contrast, N-containing inorganic fertilizers strongly acidified the soil (
Quality assurance report - Loch Vale Watershed, 1999-2002
Botte, Jorin A.; Baron, Jill S.
2004-01-01
The National Park Service initiated the Loch Vale Watershed (LVWS) project in 1980 with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Long-term ecological research and monitoring address watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Monitoring of meteorological, hydrologic, precipitation chemistry, and surface water quality parameters enable us to use long-term trends to distinguish natural from human-caused disturbances. Research into snow distribution, hydrologic flowpaths, vegetation responses to N deposition, isotopic transformations of N by forest and soil processes, trace metals, and aquatic ecological responses to disturbance enable us to understand processes that influence high elevation ecosystems.
The importance of radiation for semiempirical water-use efficiency models
Boese, Sven; Jung, Martin; Carvalhais, Nuno; ...
2017-06-22
Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that thismore » intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39–47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.« less
NASA Astrophysics Data System (ADS)
Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John
2010-05-01
Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was manipulated for only a single year. And when similar short-term experimental manipulations of precipitation variability were conducted in more arid grasslands, responses in ANPP were opposite those in mesic grassland. This suggests that grassland responses to alterations in precipitation inputs may vary dramatically depending on the long-term hydrologic regime.
Fort Collins Science Center: Ecosystem Dynamics
Bowen, Zack
2004-01-01
Current studies fall into five general areas. Herbivore-Ecosystem Interactions examines the efficacy of multiple controls on selected herbivore populations and cascading effects through predator-herbivore-plant-soil linkages. Riparian Ecology is concerned with interactions among streamflow, fluvial geomorphology, and riparian vegetation. Integrated Fire Science focuses on the effects of fire on plant and animal communities at multiple scales, and on the interactions between post-fire plant, runoff, and erosion processes. Reference Ecosystems comprises long-term, place-based studies of ecosystem biogeochemistry. Finally, Integrated Assessments is investigating how to synthesize multiple ecosystem stressors and responses over complex landscapes in ways that are useful for management and planning.
Wayne T. Swank; Jackson Webster
2014-01-01
This volume is a synthesis of a long-term interdisciplinary study of watershed ecosystem responses to a forest-management disturbance. Specifically, a commercial clearcut cable logging experiment was initiated on Watershed 7 (WS 7) at the Coweeta Hydrologic Laboratory in 1975 to elucidate ecosystem structure and function by testing hypotheses associated with the...
USDA-ARS?s Scientific Manuscript database
Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166
Keville, Megan P; Reed, Sasha C; Cleveland, Cory C
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Using Probiotics and Prebiotics to Manage the Gastrointestinal Tract Ecosystem
NASA Astrophysics Data System (ADS)
Buddington, Randal
Natural and man-made ecosystems are routinely managed to increase productivity and provide desired characteristics. The management approaches most commonly used include the addition of desired organisms, provision of fertilizers or feeds to encourage desired species, alteration of the physical or chemical features of the environment, and the selective removal of undesirable species. The selection of specific management strategies and their success are dependent on a thorough understanding of existing ecosystem characteristics and the short and long-term responses to the management strategy.
Majumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D; Prasath, Arun; Shanthappa, Basavaraja U; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K; Shenoy, Ashok M; Kuriakose, Moni A; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K
2015-02-27
Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.
A new framework for evaluating the impacts of drought on net primary productivity of grassland.
Lei, Tianjie; Wu, Jianjun; Li, Xiaohan; Geng, Guangpo; Shao, Changliang; Zhou, Hongkui; Wang, Qianfeng; Liu, Leizhen
2015-12-01
This paper presented a valuable framework for evaluating the impacts of droughts (single factor) on grassland ecosystems. This framework was defined as the quantitative magnitude of drought impact that unacceptable short-term and long-term effects on ecosystems may experience relative to the reference standard. Long-term effects on ecosystems may occur relative to the reference standard. Net primary productivity (NPP) was selected as the response indicator of drought to assess the quantitative impact of drought on Inner Mongolia grassland based on the Standardized Precipitation Index (SPI) and BIOME-BGC model. The framework consists of six main steps: 1) clearly defining drought scenarios, such as moderate, severe and extreme drought; 2) selecting an appropriate indicator of drought impact; 3) selecting an appropriate ecosystem model and verifying its capabilities, calibrating the bias and assessing the uncertainty; 4) assigning a level of unacceptable impact of drought on the indicator; 5) determining the response of the indicator to drought and normal weather state under global-change; and 6) investigating the unacceptable impact of drought at different spatial scales. We found NPP losses assessed using the new framework were more sensitive to drought and had higher precision than the long-term average method. Moreover, the total and average losses of NPP are different in different grassland types during the drought years from 1961-2009. NPP loss was significantly increased along a gradient of increasing drought levels. Meanwhile, NPP loss variation under the same drought level was different in different grassland types. The operational framework was particularly suited for integrative assessing the effects of different drought events and long-term droughts at multiple spatial scales, which provided essential insights for sciences and societies that must develop coping strategies for ecosystems for such events. Copyright © 2015 Elsevier B.V. All rights reserved.
The dilemma of controlling cultural eutrophication of lakes
Schindler, David W.
2012-01-01
The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades. PMID:22915669
Long-term dataset on aquatic responses to concurrent climate change and recovery from acidification
NASA Astrophysics Data System (ADS)
Leach, Taylor H.; Winslow, Luke A.; Acker, Frank W.; Bloomfield, Jay A.; Boylen, Charles W.; Bukaveckas, Paul A.; Charles, Donald F.; Daniels, Robert A.; Driscoll, Charles T.; Eichler, Lawrence W.; Farrell, Jeremy L.; Funk, Clara S.; Goodrich, Christine A.; Michelena, Toby M.; Nierzwicki-Bauer, Sandra A.; Roy, Karen M.; Shaw, William H.; Sutherland, James W.; Swinton, Mark W.; Winkler, David A.; Rose, Kevin C.
2018-04-01
Concurrent regional and global environmental changes are affecting freshwater ecosystems. Decadal-scale data on lake ecosystems that can describe processes affected by these changes are important as multiple stressors often interact to alter the trajectory of key ecological phenomena in complex ways. Due to the practical challenges associated with long-term data collections, the majority of existing long-term data sets focus on only a small number of lakes or few response variables. Here we present physical, chemical, and biological data from 28 lakes in the Adirondack Mountains of northern New York State. These data span the period from 1994-2012 and harmonize multiple open and as-yet unpublished data sources. The dataset creation is reproducible and transparent; R code and all original files used to create the dataset are provided in an appendix. This dataset will be useful for examining ecological change in lakes undergoing multiple stressors.
Andrew D. Richardson; David Y. Hollinger; John D. Aber; Scott V. Ollinger; Bobby H. Braswell
2007-01-01
Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year-to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem...
Natural areas as a basis for assessing ecosystem vulnerability to climate change
Margaret H. Massie; Todd M. Wilson; Anita T. Morzillo; Emilie B. Henderson
2016-01-01
There are more than 580 natural areas in Oregon and Washington managed by 20 federal, state, local, and private agencies and organizations. This natural areas network is unparalleled in its representation of the diverse ecosystems found in the Pacific Northwest, and could prove useful for monitoring long-term ecological responses to climate change. Our objectives were...
NASA Astrophysics Data System (ADS)
Felton, A. J.; Smith, M. D.
2016-12-01
Heightened climatic variability due to atmospheric warming is forecast to increase the frequency and severity of climate extremes. In particular, changes to interannual variability in precipitation, characterized by increases in extreme wet and dry years, are likely to impact virtually all terrestrial ecosystem processes. However, to date experimental approaches have yet to explicitly test how ecosystem processes respond to multiple levels of climatic extremity, limiting our understanding of how ecosystems will respond to forecast increases in the magnitude of climate extremes. Here we report the results of a replicated regression experimental approach, in which we imposed 9 and 11 levels of growing season precipitation amount and extremity in mesic grassland during 2015 and 2016, respectively. Each level corresponded to a specific percentile of the long-term record, which produced a large gradient of soil moisture conditions that ranged from extreme wet to extreme dry. In both 2015 and 2016, asymptotic responses to water availability were observed for soil respiration. This asymmetry was driven in part by transitions between soil moisture versus temperature constraints on respiration as conditions became increasingly dry versus increasingly wet. In 2015, aboveground net primary production (ANPP) exhibited asymmetric responses to precipitation that largely mirrored those of soil respiration. In total, our results suggest that in this mesic ecosystem, these two carbon cycle processes were more sensitive to extreme drought than to extreme wet years. Future work will assess ANPP responses for 2016, soil nutrient supply and physiological responses of the dominant plant species. Future efforts are needed to compare our findings across a diverse array of ecosystem types, and in particular how the timing and magnitude of precipitation events may modify the response of ecosystem processes to increasing magnitudes of precipitation extremes.
Resilience: Concepts and Measures. Chapter 2
NASA Technical Reports Server (NTRS)
Westman, Walter E.
1986-01-01
Inertia, the resistance of an ecosystem property to change under stress, is distinguished from resilience, which refers to the degree, manner. and pace of change or recovery in ecosystem properties following disturbance. In turn, these two terms are differentiated from 'stability'. which is used here to refer to the pattern of natural fluctuation in ecosystem properties in the absence of major exogenous disturbance. Four component attributes of resilience are reviewed in the context of Mediterranean-climate examples. The elasticity component concerns the rate of recovery of an ecosystem property following disturbance; amplitude, the threshold of stress beyond which recovery to the initial state does not occur; hysteresis, the degree to which the pattern of recovery after stress differs from that of deterioration under chronic stress, and malleability the ease with which the ecosystem can become permanently altered. Each ecosystem property will typically reveal a different level of resilience to a given stress and stressor. The degree of recovery should not be expected to be complete in any event, due to sample variability and stochastic events. In cyclicallystable ecosystems, the pattern of recovery should be measured in light of this periodicity, and short-term (within-cycle) recovery distinguished from long-term (between-cycle) recovery. The prediction of resilience properties of ecosystems can be approached through a knowledge of the modular structure of foodwebs, through knowledge of the autecological adaptations of key species to the stressor, or through cumulative experience of the response to disturbance at the community level. At present there is much room for investigation of each of these approaches in Mediterranean-climate ecosystems.
Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem
O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay
2015-01-01
Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.
Sharkhuu, Anarmaa; Plante, Alain F; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B; Boldgiv, Bazartseren; Petraitis, Peter S
2016-05-01
Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change.
Sharkhuu, Anarmaa; Plante, Alain F.; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B.; Boldgiv, Bazartseren; Petraitis, Peter S.
2017-01-01
Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change. PMID:28239190
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.
USDA-ARS?s Scientific Manuscript database
Drylands will experience more intense and frequent droughts and floods. Ten-year field experiments manipulating the amount and variability of precipitation suggest that we cannot predict responses of drylands to climate change based on pulse experimentation. Long-term drought experiments showed no e...
Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra
NASA Astrophysics Data System (ADS)
Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth
2017-02-01
Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003-2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming, underlying ecosystem processes are beginning to change. In addition, even short bouts of intense herbivory can have long-term consequences for some species in these communities.
NASA Astrophysics Data System (ADS)
Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.
2013-12-01
Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.
NASA Astrophysics Data System (ADS)
El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Kolle, O.; Carrara, A.; Moreno, G.; Reichstein, M.
2017-12-01
Rain pulses play a major role for the carbon cycle in semiarid ecosystems, as they can release large amounts of stored carbon. Physical and biological processes, triggered by the availability of water start to develop on various time scales and are dependent on the amount of available water. Especially, in savanna type ecosystems with an herbaceous understory and sparsely distributed trees the response time of the two plant functional types to rain pulses might be different. We present results from an ongoing large-scale nutrient manipulation experiment (MANIP) in a Mediterranean savanna type ecosystem and its response to rain pulses. Within MANIP the footprint areas from two out of three ecosystem eddy co-variance (EC) sites were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT), the third served as the control (CT). The analysis combines EC data to determine the net ecosystem exchange, PhenoCam data to define the senescence and re-greening period, SAP-flow measurements to evaluate the response of trees to rain pulses, high frequency (1 Hz) CO2-concentration measurements to estimate the response time to of the ecosystem to rain pulses, and meteorological measurements to quantify the intensity of the rain pulses. Additionally, at NT canopy reflectance and SIF are measured continuously for trees and grasses. The combination of SIF and SAP-flow measurements allows to separate the contribution of trees to ecosystem fluxes and can be utilized to partition NEE into ecosystem respiration and gross primary productivity during the senescence period. The analyses focus on three topics; (i) utilizing high frequency dynamics of CO2 concentration to disentangle physical and biological responses to water availability; (ii) fertilization effect of respiration pulses on ecosystem fluxes; (iii) response of tree transpiration to rain pulses. CO2 concentrations show an instantaneous reaction to rain fall. Within minutes concentrations increase strongly and follow distinct patterns. The fertilization effect is not clear in terms of respiration magnitude triggered by the rain pulse but the fertilized areas show slightly more carbon uptake during daytime after a precipitation pulse. Sap-flow measurements indicate a response of the trees to the rain pulses which effect nocturnal and daytime sap velocities.
Grimm, N. B.; Chacon, A.; Dahm, Clifford N.; Hostetler, S.W.; Lind, O.T.; Starkweather, P.L.; Wurtsbaugh, W.W.
1997-01-01
Variability and unpredictability are characteristics of the aquatic ecosystems, hydrological patterns and climate of the largely dryland region that encompasses the Basin and Range, American Southwest and western Mexico. Neither hydrological nor climatological models for the region are sufficiently developed to describe the magnitude or direction of change in response to increased carbon dioxide; thus, an attempt to predict specific responses of aquatic ecosystems is premature. Instead, we focus on the sensitivity of rivers, streams, springs, wetlands, reservoirs, and lakes of the region to potential changes in climate, especially those inducing a change in hydrological patterns such as amount, timing and predictability of stream flow. The major sensitivities of aquatic ecosystems are their permanence and even existence in the face of potential reduced net basin supply of water, stability of geomorphological structure and riparian ecotones with alterations in disturbance regimes, and water quality changes resulting from a modified water balance. In all of these respects, aquatic ecosystems of the region are also sensitive to the extensive modifications imposed by human use of water resources, which underscores the difficulty of separating this type of anthropogenic change from climate change. We advocate a focus in future research on reconstruction and analysis of past climates and associated ecosystem characteristics, long-term studies to discriminate directional change vs. year to year variability (including evidence of aquatic ecosystem responses or sensitivity to extremes), and studies of ecosystems affected by human activity. ?? 1997 by John Wiley & Sons, Ltd.
Estuaries of the Greater Everglades Ecosystem: Laboratories of Long-term Change
Wingard, G.L.; Hudley, J.W.; Marshall, F.E.
2010-01-01
Restoring the greater Everglades ecosystem of south Florida is arguably the largest ecosystem restoration effort to date. A critical goal is to return more natural patterns of flow through south Florida wetlands and into the estuaries, but development of realistic targets requires acknowledgement that ecosystems are constantly evolving and changing in response to a variety of natural and human-driven stressors. Examination of ecosystems over long periods of time requires analysis of sedimentary records, such as those deposited in the wetlands and estuaries of south Florida. As sediment accumulates, it preserves information about the animals and plants that lived in the environment and the physical, chemical, and climatic conditions present. One of the methods used to interpret this information is paleoecology-the study of the ecology of previously living organisms. Paleoecologic investigations of south Florida estuaries provide quantitative data on historical variability of salinity and trends that may be applied to statistical models to estimate historical freshwater flow. These data provide a unique context to estimate future ecosystem response to changes related to restoration activities and predicted changes in sea level and temperature, thus increasing the likelihood of successful and sustainable ecosystem restoration.
Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins
Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.
2014-01-01
The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.
Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins
NASA Astrophysics Data System (ADS)
Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.
2015-01-01
The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.
Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.
NASA Astrophysics Data System (ADS)
Goodale, C. L.
2014-12-01
Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.
Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A
2015-03-01
Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
USDA-ARS?s Scientific Manuscript database
Plant community responses to livestock grazing lack conformity across studies, even those conducted within similar ecosystems. Variability in outcomes is often related to the strong influences of short-term weather patterns, mid-term climatic cycles, differences in the timing and intensity of grazin...
Microbial Community Activity is Insensitive to Passive Warming in a Semiarid Ecosystem
NASA Astrophysics Data System (ADS)
Espinosa, N. J.; Gallery, R. E.; Fehmi, J. S.
2016-12-01
Soil microorganisms drive ecosystem nutrient cycling through the production of extracellular enzymes, which facilitate organic matter decomposition, and the flux of large amounts of carbon dioxide to the atmosphere. Although aird and semiarid ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Semiarid ecosystems have added complexity due to the widespread biological adaptations to infrequent and discreet precipitation pulses, which enable biological activity to persist throughout dry periods and thrive following seasonal precipitation events. Additionally, the intricacies of plant-microbe interactions and the response of these interactions to a warmer climate and increased precipitation variability in semiarid ecosystems present a continued challenge for climate change research. In this study, we used a passive warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions to two common semiarid soils. The response of soil respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that microbial activity would increase with temperature manipulations when soil moisture limitation was alleviated by summer precipitation. The passive warming treatment was most pronounced during periods of daily and seasonal temperature maxima. For all seven hydrolytic enzymes examined, there was no significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. Surprisingly, soil respiration responded positively to warming for certain carbon additions and seasons, which did not correspond with a similar response in plant biomass. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the soil microbial community activity of semiarid ecosystems is potentially resilient to a warmer environment.
NASA Astrophysics Data System (ADS)
Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong
2017-08-01
Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.
W.B. Sutton; Y. Wang; C.J. Schweitzer; D.A. Steen
2014-01-01
Understanding the impacts of disturbances in forest ecosystems is essential for long-term biodiversity conservation. Many studies have evaluated wildlife responses to various disturbances but most generally do not use changes in microclimate features or crohabitat structure to explain these responses. We examined lizard responses to two common forest management...
Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses
NASA Astrophysics Data System (ADS)
Goodwell, A. E.; Kumar, P.
2017-12-01
Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.
Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian
2014-01-01
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m(-2) s(-1)) was higher than in ER (0.80 µ mol m(-2) s(-1)), resulting in an increase in NEE (0.70 µ mol m(-2) s(-1)). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m(-2) in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.
Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian
2014-01-01
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem. PMID:25291187
Vasseur, Liette; Horning, Darwin; Thornbush, Mary; Cohen-Shacham, Emmanuelle; Andrade, Angela; Barrow, Ed; Edwards, Steve R; Wit, Piet; Jones, Mike
2017-11-01
Sustainable development aims at addressing economic, social, and environmental concerns, but the current lack of responsive environmental governance hinders progress. Short-term economic development has led to limited actions, unsustainable resource management, and degraded ecosystems. The UN Sustainable Development Goals (SDGs) may continue to fall short of achieving significant progress without a better understanding of how ecosystems contribute to achieving sustainability for all people. Ecosystem governance is an approach that integrates the social and ecological components for improved sustainability and includes principles such as adaptive ecosystem co-management, subsidiarity, and telecoupling framework, as well as principles of democracy and accountability. We explain the importance of ecosystem governance in achieving the SDGs, and suggest some ways to ensure that ecosystem services are meaningfully considered. This paper reflects on how integration of these approaches into policies can enhance the current agenda of sustainability.
Plant responses, climate pivot points, and trade-offs in water-limited ecosystems
NASA Astrophysics Data System (ADS)
Munson, S. M.; Bunting, E.
2017-12-01
Ecosystem transitions and thresholds are conceptually well-defined and have become a framework to address vegetation response to climate change and land-use intensification, yet there are few approaches to define the environmental conditions which can lead to them. We demonstrate a novel climate pivot point approach using long-term monitoring data from a broad network of permanent plots, satellite imagery, and experimental treatments across the southwestern U.S. The climate pivot point identifies conditions that lead to decreased plant performance and serves as an early warning sign of increased vulnerability of crossing a threshold into an altered ecosystem state. Plant responses and climate pivot points aligned with the lifespan and structural characteristics of species, were modified by soil and landscape attributes of a site, and had non-linear dynamics in some cases. Species with strong increases in abundance when water was available were most susceptible to losses during water shortages, reinforcing plant energetic and physiological tradeoffs. Future research to uncover the heterogeneity of plant responses and climate pivot points at multiple scales can lead to greater understanding of shifts in ecosystem productivity and vulnerability to climate change.
Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss
Rastetter, Edward B.; Perakis, Steven S.; Shaver, Gaius R.; Agren, Goran I.
2005-01-01
We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short‐term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long‐term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.
Short-term soil responses to late-seeded cover crops in a semi-arid environment
USDA-ARS?s Scientific Manuscript database
Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...
Zong, Ning; Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi
2013-01-01
Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.
Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi
2013-01-01
Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432
NASA Astrophysics Data System (ADS)
Brown, R. F.; Collins, S. L.
2017-12-01
Climate is becoming increasingly more variable due to global environmental change, which is evidenced by fewer, but more extreme precipitation events, changes in precipitation seasonality, and longer, higher severity droughts. These changes, combined with a rising incidence of wildfire, have the potential to strongly impact net primary production (NPP) and key biogeochemical cycles, particularly in dryland ecosystems where NPP is sequentially limited by water and nutrient availability. Here we utilize a ten-year dataset from an ongoing long-term field experiment established in 2007 in which we experimentally altered monsoon rainfall variability to examine how our manipulations, along with naturally occurring events, affect NPP and associated biogeochemical cycles in a semi-arid grassland in central New Mexico, USA. Using long-term regional averages, we identified extremely wet monsoon years (242.8 mm, 2013), and extremely dry monsoon years (86.0 mm, 2011; 80.0 mm, 2015) and water years (117.0 mm, 2011). We examined how changes in precipitation variability and extreme events affected ecosystem processes and function particularly in the context of ecosystem recovery following a 2009 wildfire. Response variables included above- and below-ground plant biomass (ANPP & BNPP) and abundance, soil nitrogen availability, and soil CO2 efflux. Mean ANPP ranged from 3.6 g m-2 in 2011 to 254.5 g m-2 in 2013, while BNPP ranged from 23.5 g m-2 in 2015 to 194.2 g m-2 in 2013, demonstrating NPP in our semi-arid grassland is directly linked to extremes in both seasonal and annual precipitation. We also show increased nitrogen deposition positively affects NPP in unburned grassland, but has no significant impact on NPP post-fire except during extremely wet monsoon years. While soil respiration rates reflect lower ANPP post-fire, patterns in CO2 efflux have not been shown to change significantly in that efflux is greatest following large precipitation events preceded by longer drying periods. Current land surface models poorly represent dryland ecosystems, which frequently undergo extreme weather events. Our long-term experiment provides key insights into ecosystem processes and function, thereby providing capacity for model improvement particularly in the context of future environmental change.
Epidemiology today: Mitigating threats to an ecosystem.
Kreiger, Nancy
2016-06-27
Ecosystems comprise all the living and non-living things in a particular area (e.g., rain forest, desert), which interact and maintain equilibrium. Loss of equilibrium (e.g., clear-cutting trees in a rain forest) can mean the decline of the ecosystem, unless it is able to adapt to the new circumstances. The term "knowledge ecosystem" describes an approach to managing knowledge in a particular field; the components of this system include the people, the technological skills and resources, and information or data. Epidemiology can be thought of as a knowledge ecosystem and, like ecological systems, its existence can be threatened, from both internal and external forces that may alter its equilibrium. This paper describes some threats to the epidemiology knowledge ecosystem, how these threats came about, and what responses we can make that may serve to mitigate those threats.
Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis
NASA Astrophysics Data System (ADS)
Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J. L.; Juutinen, S.; Larmola, T.
2014-07-01
Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to analyze impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behavior. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to high tolerance of Sphagnum to N deposition in the model. Model performance regarding the 8 year response of GEP and NEE to N was improved by introducing an N content threshold shifting the response of photosynthesis capacity to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modeling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.
Dry, drier, driest: An Australian story of extreme years and potential ecosystem collapse
NASA Astrophysics Data System (ADS)
Wardle, G. M.; Dickman, C. R.; Greenville, A. C.
2016-12-01
Ecosystems are expected to undergo large changes due to an increase in the frequency and intensity of extreme events. We can expect droughts to be longer, flooding to be more intense, and heatwaves and fires to increase. Importantly, at the regional scale these projections which are based on global climate models come with additional uncertainties that challenge how we can plan and evaluate options for adaptation. For many ecosystems, the understanding of the interdependencies and function is still limited, and particularly so for areas such as inland Australia that already exhibit unpredictable rainfall and lack strong seasonality. These drylands are water-limited and operate differently in dry, or wet years, when episodic pulses of resources drive increases in productivity. Increased extremes have the potential to disrupt the function of these highly dynamic and complex systems through feedbacks, synergies and through memory or delayed responses to change. Using our long-term work in the Simpson Desert as a case study, we explore the trends in productivity, the responses of flora and fauna to these opportunities and the spatial connectedness and heterogeneities that support the persistence of the ecosystem through dry times. Theory tells us that ecosystems may shift states abruptly when they cross critical thresholds. For example, arid grasslands may no longer have the capacity to return to a productive state following good rains. This happens under desertification, where plant cover and growth is limited — with flow on consequences for the entire ecosystem. Forecasting such changes is crucial but the fundamental knowledge relies on information that spans both long time scales and large spatial scales. We examine the knowledge gaps in quantifying ecosystem collapse using our IUCN ecosystem risk assessment of the Georgina gidgee woodlands. We conclude by arguing that without long-term data on trends and integration across the biophysical and and biological components at large spatial scales we cannot hope to anticipate ecosystem collapse and take appropriate action. The Terrestrial Ecosystem Research Network is leading the way for Australia to contribute to this important global ecosystem capability.
Sharp, Elizabeth D; Sullivan, Patrick F; Steltzer, Heidi; Csank, Adam Z; Welker, Jeffrey M
2013-06-01
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain. © 2013 Blackwell Publishing Ltd.
Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F
2016-07-01
Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.
NASA Astrophysics Data System (ADS)
Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.
2014-12-01
Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.
The Hubbard Brook Long Term Ecological Research site has produced some of the most extensive and long-running databases on the hydrology, biology and chemistry of forest ecosystem responses to climate and forest harvest. We used these long-term databases to calibrate and apply G...
Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.
2014-01-01
Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic levels due to a combination of direct and indirect effects in diverse multitrophic ecosystems. PMID:24416246
NASA Astrophysics Data System (ADS)
Renchon, A.; Pendall, E.
2017-12-01
Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These findings underscore the value of continuous measurements of RS in flux tower footprints. Findings are also relevant to recent research on light inhibition of leaf respiration and contribute to improved understanding of ecosystem carbon cycle - climate feedback processes.
NASA Astrophysics Data System (ADS)
Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian
2014-07-01
Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.
A role for high frequency hydrochemical sampling in long term ecosystem studies
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2007-12-01
Monitoring of surface waters for major chemical constituents is needed to assess long-term trends and responses to ecological disturbance. However, the typical fixed-interval (weekly, monthly, or quarterly) sampling schemes of most long-term ecosystem studies may not capture the full range of stream chemical variation and do not always provide enough information to discern the landscape processes that control surface water chemistry and solute loadings. To expand upon traditional hydrochemical monitoring, we collected high frequency event-based surface water samples at an upland, forested basin of the Sleepers River Research Watershed (Vermont, USA), one of five intensively studied sites in the Water, Energy, and Biogeochemical Budgets (WEBB) program of the US Geological Survey. We present several examples that highlight the importance of linking long-term weekly data with intensive, high frequency sampling. We used end-member mixing analysis and isotopic approaches to trace sources of stream nutrients (e.g. nitrate, dissolved organic carbon) and quantified how atmospheric pollutants (e.g. nitrogen, sulfate, and mercury) affect stream chemistry. High frequency sampling generates large numbers of samples and is both labor and resource intensive but yields insights into ecosystem functions that are not readily discerned from less-frequent sampling. As the ecological community contemplates the scope and foci of environmental observatories as benchmarks for deciphering the effects of natural and anthropogenic change, incorporating high frequency hydrochemical sampling will further our understanding of ecosystem functions across a range of ecosystem types and disturbance effects.
Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L
2013-01-01
Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224
Fort Collins Science Center Ecosystem Dynamics Branch
Wilson, Jim; Melcher, C.; Bowen, Z.
2009-01-01
Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.
Field evidence for pervasive indirect effects of fishing on prey foraging behavior.
Madin, Elizabeth M P; Gaines, Steven D; Warner, Robert R
2010-12-01
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.
NASA Astrophysics Data System (ADS)
Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.
2016-09-01
Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.
Matyssek, R; Kozovits, A R; Wieser, G; King, J; Rennenberg, H
2017-06-01
Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC-AP. Integrated research on C and nutrient cycling, O3-vegetation interactions and water relations must target mechanisms' ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.
2015-12-01
Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.
Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei
2012-01-01
Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848
Troxler, Tiffany G.; Gaiser, Evelyn; Barr, Jordan; Fuentes, Jose D.; Jaffe, Rudolf; Childers, Daniel L.; Collado-Vides, Ligia; Rivera-Monroy, Victor H.; Castañeda-Moya, Edward; Anderson, William; Chambers, Randy; Chen, Meilian; Coronado-Molina, Carlos; Davis, Stephen E.; Engel, Victor C.; Fitz, Carl; Fourqurean, James; Frankovich, Tom; Kominoski, John; Madden, Chris; Malone, Sparkle L.; Oberbauer, Steve F.; Olivas, Paulo; Richards, Jennifer; Saunders, Colin; Schedlbauer, Jessica; Scinto, Leonard J.; Sklar, Fred; Smith, Thomas J.; Smoak, Joseph M.; Starr, Gregory; Twilley, Robert; Whelan, Kevin
2013-01-01
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines
D. J. Isaak; S. Wollrab; D. Horan; G. Chandler
2011-01-01
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earthâs temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term...
Wang, Wen; Liao, Yuncheng; Wen, Xiaoxia; Guo, Qiang
2013-09-01
Chinese Loess Plateau plays an important role in carbon balance of terrestrial ecosystems. Continuous measurement of CO2 fluxes in cropland ecosystem is of great significance to accurately evaluate the carbon sequestration potential and to better explain the carbon cycle process in this region. By using the eddy covariance system we conducted a long-term (from Sep 2009 to Jun 2010) CO2 fluxes measurement in the rain-fed winter wheat field of the Chinese Loess Plateau and elaborated the responses of CO2 fluxes to environmental factors. The results show that the winter wheat ecosystem has distinct seasonal dynamics of CO2 fluxes. The total net ecosystem CO2 exchange (NEE) of -218.9±11.5 gC m(-2) in the growing season, however, after considering the harvested grain, the agro-ecosystem turned into a weak carbon sink (-36.2 gC m(-2)). On the other hand, the responses of CO2 fluxes to environmental factors depended on different growth stages of winter wheat and different ranges of environmental variables, suggesting that the variations in CO2 exchange were sensitive to the changes in controlling factors. Particularly, we found the pulse response of ecosystem respiration (Reco) to a large rainfall event, and the strong fluctuations of CO2 fluxes usually appeared after effective rainfall events (daily precipitation > 5 mm) during middle growing season. Such phenomenon also occurred in the case of the drastic changes in air temperature and within 5 days after field management (e.g. tillage and plough). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Godbold, Jasmin A.; Solan, Martin
2013-01-01
Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete (Alitta virens) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing. PMID:23980249
Global patterns of phytoplankton dynamics in coastal ecosystems
Paerl, H.; Yin, Kedong; Cloern, J.
2011-01-01
Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".
Mallory, Mark L; Gilchrist, H Grant; Braune, Birgit M; Gaston, Anthony J
2006-02-01
Marine birds are sensitive indicators of the condition of marine ecosystems in the Arctic, partly because they feed at the top of the arctic food chain. The Northern Ecosystem Initiative (NEI) recently supported four separate studies that investigated aspects of Arctic marine bird science which simultaneously addressed goals of the NEI to better understand northern ecosystems and their response to environmental stressors. The projects used both scientific and traditional knowledge to examine the relationship between sea-ice, contaminants, and the ecology of marine birds, and to transfer environmental knowledge to students. Results from these investigations confirm that changes are occurring in Arctic environments, and that these are captured through marine bird research. Collectively these studies provided new data that supported NEI objectives of monitoring the health of the Arctic ecosystem, and contributed to Canada's international obligations for Arctic science.
Integrating water and carbon fluxes at the ecosystem scale across African ecosystems
NASA Astrophysics Data System (ADS)
Merbold, Lutz; Brümmer, Christian; Archibald, Sally; Ardö, Jonas; Arneth, Almut; Brüggemann, Nicolas; de Grandcourt, Agnes; Kergoat, Laurent; Moffat, Antje M.; Mougin, Eric; Nouvellon, Yann; Saint-Andre, Laurent; Saunders, Matthew; Scholes, Robert J.; Veenendaal, Elmar; Kutsch, Werner L.
2013-04-01
In this study we report on water and carbon dioxide fluxes, measured using the eddy covariance (EC) technology, from different ecosystems in Sub-Saharan Africa. These sites differed in ecosystem type (C3 plant dominated woodlands to C4 plant dominated grass savannas) and covered the very dry regions of the Sahel (250 mm rainfall, Sudan), the tropical areas in Central Africa (1650 mm in Uganda) further south to the subtropical areas in Botswana, Zambia and South Africa (400-900 mm in precipitation). The link between water and carbon dioxide fluxes were evaluated for time periods (see also the corresponding abstract by Bruemmer et al.) without water limitation during the peak growing season. Our results show that plant stomata control ecosystem scale water and carbon dioxide fluxes and mediate between plant growth and plant survival. On continental scale, this switch between maximizing carbon uptake and minimizing water losses, from here on called the "Carbon-Water-Tipping Point" was positively correlated to the mean annual growing season temperature at each site. Even though similar responses of plants were shown at the individual leaf-level scale this has to our knowledge not yet been shown at the ecosystem scale further suggesting a long-term adaptation of the complete ecosystems to certain climatic regions. It remains unclear how this adaption will influence the ecosystem response to ongoing climate change and according temperature increases and changes in precipitation.
"And DPSIR begat DAPSI(W)R(M)!" - A unifying framework for marine environmental management.
Elliott, M; Burdon, D; Atkins, J P; Borja, A; Cormier, R; de Jonge, V N; Turner, R K
2017-05-15
The marine environment is a complex system formed by interactions between ecological structure and functioning, physico-chemical processes and socio-economic systems. An increase in competing marine uses and users requires a holistic approach to marine management which considers the environmental, economic and societal impacts of all activities. If managed sustainably, the marine environment will deliver a range of ecosystem services which lead to benefits for society. In order to understand the complexity of the system, the DPSIR (Driver-Pressure-State-Impact-Response) approach has long been a valuable problem-structuring framework used to assess the causes, consequences and responses to change in a holistic way. Despite DPSIR being used for a long time, there is still confusion over the definition of its terms and so to be appropriate for current marine management, we contend that this confusion needs to be addressed. Our viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures. The Pressures are the mechanisms of State change on the natural system which then leads to Impacts (on human Welfare). Those then require Responses (as Measures). Furthermore, because of the complexity of any managed sea area in terms of multiple Activities, there is the need for a linked-DAPSI(W)R(M) framework, and then the connectivity between marine ecosystems and ecosystems in the catchment and further at sea, requires an interlinked, nested-DAPSI(W)R(M) framework to reflect the continuum between adjacent ecosystems. Finally, the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits. Hence, DAPSI(W)R(M) links the socio-ecological system of the effects of changes to the natural system on the human uses and benefits of the marine system. However, to deliver these sustainably in the light of human activities requires a Risk Assessment and Risk Management framework; the ISO-compliant Bow-Tie method is used here as an example. Finally, to secure ecosystem health and economic benefits such as Blue Growth, successful, adaptive and sustainable marine management Responses (as Measures) are delivered using the 10-tenets, a set of facets covering all management disciplines and approaches. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Long-term resistance to simulated climate change in an infertile grassland.
Grime, J Philip; Fridley, Jason D; Askew, Andrew P; Thompson, Ken; Hodgson, John G; Bennett, Chris R
2008-07-22
Climate shifts over this century are widely expected to alter the structure and functioning of temperate plant communities. However, long-term climate experiments in natural vegetation are rare and largely confined to systems with the capacity for rapid compositional change. In unproductive, grazed grassland at Buxton in northern England (U.K.), one of the longest running experimental manipulations of temperature and rainfall reveals vegetation highly resistant to climate shifts maintained over 13 yr. Here we document this resistance in the form of: (i) constancy in the relative abundance of growth forms and maintained dominance by long-lived, slow-growing grasses, sedges, and small forbs; (ii) immediate but minor shifts in the abundance of several species that have remained stable over the course of the experiment; (iii) no change in productivity in response to climate treatments with the exception of reduction from chronic summer drought; and (iv) only minor species losses in response to drought and winter heating. Overall, compositional changes induced by 13-yr exposure to climate regime change were less than short-term fluctuations in species abundances driven by interannual climate fluctuations. The lack of progressive compositional change, coupled with the long-term historical persistence of unproductive grasslands in northern England, suggests the community at Buxton possesses a stabilizing capacity that leads to long-term persistence of dominant species. Unproductive ecosystems provide a refuge for many threatened plants and animals and perform a diversity of ecosystem services. Our results support the view that changing land use and overexploitation rather than climate change per se constitute the primary threats to these fragile ecosystems.
NASA Astrophysics Data System (ADS)
Leblans, Niki; Sigurdsson, Bjarni D.; Janssens, Ivan A.
2014-05-01
Phenology has been defined as the study of the timing of recurring biological events and the causes of their timing with regard to abiotic and biotic factors. Ecosystem phenology, including the onset of the growing season and its senescence in autumn, plays an important role in the carbon, water and energy exchange between biosphere and atmosphere at higher latitudes. Factors that influence ecosystem phenology can therefore induce important climate-controlling feedback mechanisms. Global surface temperatures have been predicted to increase in the coming decades. Hence, a better understanding of the effect of temperature on ecosystem phenology is essential. Natural geothermal soil temperature gradients in Iceland offer a unique opportunity to study the soil temperature (Ts) dependence of ecosystem phenology and distinguish short-term (transient) warming effects (in recently established Ts gradients) from long-term (permanent) effects (in centuries-old Ts gradients). This research was performed in the framework of an international research project (ForHot; www.forhot.is). ForHot includes two natural grassland areas with gradients in Ts, dominated by Festuca sp., Agrostis sp.. The first warmed area was created in 2008, when an earthquake in S-Iceland caused geothermal systems to be shifted to previously cold soils. The second area is located about 3 km away from this newly warmed grassland. For this area, there are proofs that the natural soil warming has been continuous for at least 300 year. In the present study we focus on Ts elevation gradients of +0 to +10°C. The experiment consists of five transects with five temperature levels (+0,+1,+3,+5 and +10°C) in the two aforementioned grassland ecosystems (n=25 in each grassland). From April until November 2013, weekly measurements of the normalized difference vegetation index (NDVI) were taken. In the short-term warmed grassland, the greening of the vegetation was 36 days advanced at +10°C Ts and the date of 50% greening was advanced by 23 days at +5°C and by 32 days at +10°C Ts. However, no difference in the date of maximum greening or in the onset of senescence occurred. In contrast, in the long-term warmed grassland, the start of the growing season was not affected by Ts and the 50% greening point occurred only 10 days earlier at +5°C and 15 days earlier at +10°C Ts. However, the timing of maximum greening was advanced by 19 days at +5°C and even by 32 days at +10°C Ts. Again, the onset of senescence did not change with Ts. Significant Ts effects on ecosystem phenology of subarctic grasslands only occurred at warming of 5°C or higher. This study also demonstrates that short-term Ts effects on ecosystem phenology are not necessarily good predictors for long-term changes in sub-arctic grasslands. In the short-term (5 years warming), soil warming induced an early onset of the growing season, which was later compensated by faster greening on colder soils, so that maximum greenness was reached simultaneously irrespective of Ts. In contrast, the long-term Ts warming did not induce earlier onset of the growing season, but it led to faster greening on warm soils, which again led to an advance in timing of maximum greenness. This difference between short- and long-term responses in phenology might be caused by either phenotypic plasticity (acclimation) or by a genetic selection (evolution) of the grass populations where the warming has been ongoing for centuries. Such processes are at present not included in modelling predictions of climate change responses of natural ecosystems, but may offer important negative feedback mechanisms to warming which will reduce its effects.
Russell, Bayden D.; Connell, Sean D.; Findlay, Helen S.; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova
2013-01-01
Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term. PMID:23980241
Russell, Bayden D; Connell, Sean D; Findlay, Helen S; Tait, Karen; Widdicombe, Stephen; Mieszkowska, Nova
2013-01-01
Climate change may cause ecosystems to become trophically restructured as a result of primary producers and consumers responding differently to increasing CO2 and temperature. This study used an integrative approach using a controlled microcosm experiment to investigate the combined effects of CO2 and temperature on key components of the intertidal system in the UK, biofilms and their consumers (Littorina littorea). In addition, to identify whether pre-exposure to experimental conditions can alter experimental outcomes we explicitly tested for differential effects on L. littorea pre-exposed to experimental conditions for two weeks and five months. In contrast to predictions based on metabolic theory, the combination of elevated temperature and CO2 over a five-week period caused a decrease in the amount of primary productivity consumed by grazers, while the abundance of biofilms increased. However, long-term pre-exposure to experimental conditions (five months) altered this effect, with grazing rates in these animals being greater than in animals exposed only for two weeks. We suggest that the structure of future ecosystems may not be predictable using short-term laboratory experiments alone owing to potentially confounding effects of exposure time and effects of being held in an artificial environment over prolonged time periods. A combination of laboratory (physiology responses) and large, long-term experiments (ecosystem responses) may therefore be necessary to adequately predict the complex and interactive effects of climate change as organisms may acclimate to conditions over the longer term.
Long-term nitrogen regulation of forest carbon sequestration
NASA Astrophysics Data System (ADS)
Yang, Y.; Luo, Y.
2009-12-01
It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.
Off-stage ecosystem service burdens: A blind spot for global sustainability
NASA Astrophysics Data System (ADS)
Pascual, Unai; Palomo, Ignacio; Adams, William M.; Chan, Kai M. A.; Daw, Tim M.; Garmendia, Eneko; Gómez-Baggethun, Erik; de Groot, Rudolf S.; Mace, Georgina M.; Martín-López, Berta; Phelps, Jacob
2017-07-01
The connected nature of social-ecological systems has never been more apparent than in today’s globalized world. The ecosystem service framework and associated ecosystem assessments aim to better inform the science-policy response to sustainability challenges. Such assessments, however, often overlook distant, diffuse and delayed impacts that are critical for global sustainability. Ecosystem-services science must better recognise the off-stage impacts on biodiversity and ecosystem services of place-based ecosystem management, which we term ‘ecosystem service burdens’. These are particularly important since they are often negative, and have a potentially significant effect on ecosystem management decisions. Ecosystem-services research can better recognise these off-stage burdens through integration with other analytical approaches, such as life cycle analysis and risk-based approaches that better account for the uncertainties involved. We argue that off-stage ecosystem service burdens should be incorporated in ecosystem assessments such as those led by the Intergovernmental Platform on Biodiversity and Ecosystem Services and the Intergovernmental Panel on Climate Change. Taking better account of these off-stage burdens is essential to achieve a more comprehensive understanding of cross-scale interactions, a pre-requisite for any sustainability transition.
David W. Peterson; Erich Dodson
2016-01-01
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...
Hydrological responses to changes in forest cover on uplands and peatlands. Chapter 13.
Stephen D. Sebestyen; Elon S. Verry; Kenneth N. Brooks
2011-01-01
Long-term data are used to quantify how ecosystem disturbances such as vegetation management, insect defoliation, wildfires, and extreme meteorological events affect hydrological processes in forested watersheds. The long-term, paired-watershed approach has been used at many sites to measure the effects of vegetation manipulations (e.g., harvesting and cover-type...
Harnessing long-term flux records to better understand ecosystem response to drought
NASA Astrophysics Data System (ADS)
Novick, K. A.; Ficklin, D. L.; Stoy, P. C.; Williams, C. A.; Bohrer, G.; Oishi, A. C.; Papuga, S. A.; Blanken, P.; Noormets, A.; Scott, R. L.; Wang, L.; Roman, D. T.; Yi, K.; Sulman, B. N.; Phillips, R.
2016-12-01
While ongoing climate change affects a number of meteorological drivers relevant to plant functioning, the predicted increase in the frequency and severity of droughts may ultimately have the biggest impact on ecosystem carbon cycling. Because it is difficult to experimentally manipulate all of the meteorological drivers that change during drought (including precipitation, light, temperature, and humidity), our understanding of the mechanisms by which plants respond to drought is generally limited to an understanding of how plants respond to variable soil moisture. As flux tower records grow in length and number, they permit us to harness natural spatial and temporal variability in hydrologic condition to better understand how ecosystems respond to the full suite of meteorological drivers that change during drought stress. Here, a series of case studies are presented that illustrate how long term flux data can be used to disentangle limitations to ecosystem functioning imposed by declining soil moisture as compared to rising atmospheric demand for water during drought. At the site-level, we pair observations from the Morgan-Monroe State Forest Ameriflux tower (active since 1999) with eco-physiological datasets collected during the severe 2012 Midwestern drought. We show that vapor pressure deficit (VPD) limits ecosystem carbon uptake and transpiration as much as soil moisture, but that individual species vary in their sensitivity to these drivers. We then present results from two cross-site Ameriflux syntheses that quantify how VPD as compared to soil moisture limitations to carbon and water cycling vary across broad climate gradients spanning semi-arid to mesic biomes. Informed by these results, we end by highlighting ways that flux network data may be leveraged together with other eco-physiological networks and databases to further expand our understanding of the mechanisms determining ecosystem response to drought.
NASA Astrophysics Data System (ADS)
Beers, A.
2016-12-01
As a response to ongoing climate change, many species have started to shift their ranges poleward and toward higher elevations and mountain environments are predicted to experience especially rapid climatic changes. Because of this, there is likely a greater risk of habitat loss and local extinctions for species at high elevations compared to species at lower elevations. Among those potentially threatened habitat specialists is the American pika (Ochotona princeps), a climate sensitive indicator of climate change effects which may already be experiencing climate driven extirpations. Pikas are considered sentinels, indicators of greater ecosystem change. Changes in their distribution speaks to changes in availability of resources they require and shifts in the environment. Pika presence is closely tied to sub-surface ice features that act as a temperature buffer and water source. Those sub-surface ice features are critical in water cycling and long-term water storage and drive downstream hydrological and ecological processes. Understanding how this species responds to climate change therefore provides a model to inform landscape level conservation and management decisions. Pikas may be particularly vulnerable in parts of Colorado, including Rocky Mountain National Park (ROMO) and the Niwot Ridge LTER (NWT), where they may face population collapse as habitat suitability and connectivity both decline in response to various possible climate change scenarios, in large part because of cold stress and declining functional connectivity. Because of their potential role as an ecosystem indicator, their risk for decline, and how limitations to their survival likely vary across their range, management groups can use place based models of habitat suitability for pikas or other sentinel species in designing long term monitoring protocols to detect ecosystem responses to climate change. In this project we used remotely sensed data, occupancy surveys, and a random tessellation stratification to design a protocol for ROMO and NWT that best suits those environments. We also demonstrate the efficacy of habitat models based on remote sensing and their potential application toward tracking ecosystem change and species range shifts.
Space-for-Time Substitution Works in Everglades Ecological Forecasting Models
Banet, Amanda I.; Trexler, Joel C.
2013-01-01
Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable. PMID:24278368
The up-scaling of ecosystem functions in a heterogeneous world
NASA Astrophysics Data System (ADS)
Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper
2015-05-01
Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings.
The up-scaling of ecosystem functions in a heterogeneous world
Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Kraan, Casper
2015-01-01
Earth is in the midst of a biodiversity crisis that is impacting the functioning of ecosystems and the delivery of valued goods and services. However, the implications of large scale species losses are often inferred from small scale ecosystem functioning experiments with little knowledge of how the dominant drivers of functioning shift across scales. Here, by integrating observational and manipulative experimental field data, we reveal scale-dependent influences on primary productivity in shallow marine habitats, thus demonstrating the scalability of complex ecological relationships contributing to coastal marine ecosystem functioning. Positive effects of key consumers (burrowing urchins, Echinocardium cordatum) on seafloor net primary productivity (NPP) elucidated by short-term, single-site experiments persisted across multiple sites and years. Additional experimentation illustrated how these effects amplified over time, resulting in greater primary producer biomass sediment chlorophyll a content (Chla) in the longer term, depending on climatic context and habitat factors affecting the strengths of mutually reinforcing feedbacks. The remarkable coherence of results from small and large scales is evidence of real-world ecosystem function scalability and ecological self-organisation. This discovery provides greater insights into the range of responses to broad-scale anthropogenic stressors in naturally heterogeneous environmental settings. PMID:25993477
Modeling multiple resource limitation in tropical dry forests
NASA Astrophysics Data System (ADS)
Medvigy, D.; Xu, X.; Zarakas, C.
2015-12-01
Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.
Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska
NASA Astrophysics Data System (ADS)
Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.
2016-12-01
High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.
Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, L.; Harte, J.
2005-08-23
Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxesmore » were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oechel, Walter C
2002-08-15
This research incorporated an integrated hierarchical approach in space, time, and levels of biological/ecological organization to help understand and predict ecosystem response to elevated CO{sub 2} and concomitant environmental change. The research utilized a number of different approaches, and collaboration of both PER and non-PER investigators to arrive at a comprehensive, integrative understanding. Central to the work were the CO{sub 2}-controlled, ambient Lit, Temperature controlled (CO{sub 2}LT) null-balance chambers originally developed in the arctic tundra, which were re-engineered for the chaparral with treatment CO{sub 2} concentrations of from 250 to 750 ppm CO{sub 2} in 100 ppm increments, replicated twicemore » to allow for a regression analysis. Each chamber was 2 meters on a side and 2 meters tall, which were installed over an individual shrub reprouting after a fire. This manipulation allowed study of the response of native chaparral to varying levels of CO{sub 2}, while regenerating from an experimental burn. Results from these highly-controlled manipulations were compared against Free Air CO{sub 2} Enrichment (FACE) manipulations, in an area adjacent to the CO{sub 2}LT null balance greenhouses. These relatively short-term results (5-7 years) were compared to long-term results from Mediterranean-type ecosystems (MTEs) surrounding natural CO{sub 2} springs in northern Italy, near Laiatico, Italy. The springs lack the controlled experimental rigor of our CO{sub 2}LT and FACE manipulation, but provide invaluable validation of our long-term predictions.« less
Liu, Daijun; Estiarte, Marc; Ogaya, Romà; Yang, Xiaohong; Peñuelas, Josep
2017-10-01
Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long-term (17 years) nocturnal-warming (+0.6°C) and drought (-40% rainfall) experiments in an early-successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter-spring and/or summer, indicating sensitivity to water limitation in this early-successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long-term nocturnal-warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Ren, Wei
2017-09-01
Central Asia covers a large land area of 5 × 106 km2 and has unique temperate dryland ecosystems, with over 80% of the world's temperate deserts, which has been experiencing dramatic warming and drought in the recent decades. How the temperate dryland responds to complex climate change, however, is still far from clear. This study quantitatively investigates terrestrial net primary productivity (NPP) in responses to temperature, precipitation, and atmospheric CO2 during 1980-2014, by using the Arid Ecosystem Model, which can realistically predict ecosystems' responses to changes in climate and atmospheric CO2 according to model evaluation against 28 field experiments/observations. The simulation results show that unlike other middle-/high-latitude regions, NPP in central Asia declined by 10% (0.12 × 1015 g C) since the 1980s in response to a warmer and drier climate. The dryland's response to warming was weak, while its cropland was sensitive to the CO2 fertilization effect (CFE). However, the CFE was inhibited by the long-term drought from 1998 to 2008 and the positive effect of warming on photosynthesis was largely offset by the enhanced water deficit. The complex interactive effects among climate drivers, unique responses from diverse ecosystem types, and intensive and heterogeneous climatic changes led to highly complex NPP changing patterns in central Asia, of which 69% was dominated by precipitation variation and 20% and 9% was dominated by CO2 and temperature, respectively. The Turgay Plateau in northern Kazakhstan and southern Xinjiang in China are hot spots of NPP degradation in response to climate change during the past three decades and in the future.
NASA Astrophysics Data System (ADS)
Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.
2010-12-01
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.
NASA Astrophysics Data System (ADS)
Holland, Elisabeth A.; Neff, Jason C.; Townsend, Alan R.; McKeown, Becky
2000-12-01
Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Niño/La Niña argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr-1 less carbon compared to the systems with the highest sensitivity.
Plant responses to soil heterogeneity and global environmental change
García-Palacios, Pablo; Maestre, Fernando T.; Bardgett, Richard D.; de Kroon, Hans
2015-01-01
Summary Recent evidence suggests that soil nutrient heterogeneity, a ubiquitous feature of terrestrial ecosystems, modulates plant responses to ongoing global change (GC). However, we know little about the overall trends of such responses, the GC drivers involved, and the plant attributes affected. We synthesized literature to answer the question: Does soil heterogeneity significantly affect plant responses to main GC drivers, such as elevated atmospheric carbon dioxide concentration (CO2), nitrogen (N) enrichment and changes in rainfall regime? Overall, most studies have addressed short-term effects of N enrichment on the performance of model plant communities using experiments conducted under controlled conditions. The role of soil heterogeneity as a modulator of plant responses to elevated CO2 may depend on the plasticity in nutrient uptake patterns. Soil heterogeneity does interact with N enrichment to determine plant growth and nutrient status, but the outcome of this interaction has been found to be both synergistic and inhibitory. The very few studies published on interactive effects of soil heterogeneity and changes in rainfall regime prevented us from identifying any general pattern. We identify the long-term consequences of soil heterogeneity on plant community dynamics in the field, and the ecosystem level responses of the soil heterogeneity × GC driver interaction, as the main knowledge gaps in this area of research. In order to fill these gaps and take soil heterogeneity and GC research a step forward, we propose the following research guidelines: 1) combining morphological and physiological plant responses to soil heterogeneity with field observations of community composition and predictions from simulation models; and 2) incorporating soil heterogeneity into a trait-based response-effect framework, where plant resource-use traits are used as both response variables to this heterogeneity and GC, and predictors of ecosystem functioning. Synthesis. There is enough evidence to affirm that soil heterogeneity modulates plant responses to elevated atmospheric CO2 and N enrichment. Our synthesis indicates that we must explicitly consider soil heterogeneity to accurately predict plant responses to GC drivers. PMID:25914423
Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A
2014-04-01
Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after 100 years, their low-intensity but long-term land use at settlement sites has triggered a rejuvenation of the ecosystem that is still present. Our data demonstrates that aboveground-belowground interactions strongly control ecosystem responses to historical human land use and that medium- to long-term consequences of even low-intensity human activities must be better accounted for if we are to predict and manage ecosystems succession following land-use abandonment.
G. Sun; S.G. McNulty; D.M. Amatya; R.W. Skaggs; L.W. Swift; J.P. Shepard; H. Riekerk
2002-01-01
Hydrology plays a critical roie in wetland development and ecosystem structure and functions. Hydrologic responses to forest management and climate change are diverse in the Southern United States due to topographic and climatic differences. This paper presents a comparison study on long-term hydrologic characteristics (long-term seasonal runoff patterns, water...
Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu
2016-09-01
Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.
Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests
NASA Astrophysics Data System (ADS)
Cavaleri, M. A.; Wood, T. E.; Reed, S.
2013-12-01
Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full-scale ecosystem warming experiments are imperative.
NASA Astrophysics Data System (ADS)
Weitzman, J. N.; Groffman, P.
2017-12-01
Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the same forest, when N transformations appeared to change more in response to disturbance (i.e. there seemed to be a decrease in plant uptake of inorganic N in response to canopy loss).
NASA Astrophysics Data System (ADS)
Wiley, E.; King, C.; Richardson, A. D.; Landhäusser, S.
2016-12-01
Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the same forest, when N transformations appeared to change more in response to disturbance (i.e. there seemed to be a decrease in plant uptake of inorganic N in response to canopy loss).
Levels and limits in artificial selection of communities.
Blouin, Manuel; Karimi, Battle; Mathieu, Jérôme; Lerch, Thomas Z
2015-10-01
Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could contribute to a theory of natural selection at several organisation levels. Here, we were not interested in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a specific structure of interaction network emerges under ecosystem artificial selection. We also investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 generations (n = 7560), we found a very high heritability of community phenotype (52%). Artificial selection was responsible for simpler interaction networks with lower interaction richness. Phenotype variance and heritability both decreased across generations, suggesting that selection was more likely limited by sampling effects than by stochastic ecosystem dynamics. © 2015 John Wiley & Sons Ltd/CNRS.
Devising a Coral Reef Ocean Acidification Monitoring Portfolio
NASA Astrophysics Data System (ADS)
Gledhill, D. K.; Jewett, L.
2012-12-01
Coral reef monitoring has frequently been based only on descriptive science with limited capacity to assign specific attribution to agents of change. There is a requirement to engineer a diagnostic monitoring approach that can test predictions regarding the response of coral reef ecosystems to ocean acidification, and to identify potential areas of refugia or areas of particular concern. The approach should provide the means to detect not only changes in water chemistry but also changes in coral reef community structure and function which can be anticipated based upon our current understanding of paleo-OA events, experimental findings, process investigations, and modeling projections In August, 2012 a Coral Reef Ocean Acidification Monitoring Portfolio Workshop was hosted by the NOAA Ocean Acidification Program and the National Coral Reef Institute at the Nova Southeastern University Oceanographic Center. The workshop convened researchers and project managers from around the world engaged in coral reef ecosystems ocean acidification monitoring and research. The workshop sought to define a suite of metrics to include as part of long-term coral reef monitoring efforts that can contribute to discerning specific attribution of changes in coral reef ecosystems in response to ocean acidification. This portfolio of observations should leverage existing and proposed monitoring initiatives and would be derived from a suite of chemical, biogeochemical and ecological measurements. This talk will report out on the key findings from the workshop which should include identifying the most valuable that should be integrated into long-term coral reef ecosystem monitoring that will aid in discerning changes in coral reef ecosystems in response to ocean acidification. The outcomes should provide: recommendations of the most efficient and robust ways to monitor these metrics; identified augmentations that would be required to current ocean acidification monitoring necessary to achieve these metrics; identify opportunities for immediate collaborations using existing resources that can serve to reduce the identified gaps; and help to clarify expectations for ocean acidification monitoring.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Shugar, D. H.; Leonard, G. J.; Haritashya, U. K.; Harrison, S.; Shrestha, A. B.; Mool, P. K.; Karki, A.; Regmi, D.
2016-12-01
Glacier response dynamics—involving a host of processes—produce a sequence of short- to long-term delayed responses to any step-wise, oscillating, or continuous trending climatic perturbation. We present analysis of Imja Lake, Nepal and examine its thinning and retreat and a sequence of the detachment of tributaries; the inception and growth of Imja Lake and concomitant glacier retreat, thinning, and stagnation, and relationships to lake dynamics; the response dynamics of the ice-cored moraine; the development of the local ecosystem; prediction of short-term dynamical responses to lake lowering (glacier lake outburst flood—GLOF—mitigation); and prospects for coming decades. The evolution of this glacier system provides a case study by which the global record of GLOFs can be assessed in terms of climate change attribution. We define three response times: glacier dynamical response time (for glacier retreat, thinning, and slowing of ice flow), limnological response time (lake growth), and GLOF trigger time (for a variety of hazardous trigger events). Lake lowering (to be completed in August 2016; see AGU abstract by D. Regmi et al.) will reduce hazards, but we expect that the elongation of the lake and retreat of the glacier will continue for decades after a pause in 2016-2017. The narrowing of the moraine dam due to thaw degradation of the ice-cored end moraine means that the hazard due to Imja Lake will soon again increase. We examine both long-term response dynamics, and two aspects of Himalayan glaciers that have very rapid responses: the area of Imja Lake fluctuates seasonally and even with subseasonal weather variations in response to changes in lake temperature and glacier meltback; and as known from other studies, glacier flow speed can vary between years and even on shorter timescales. The long-term development and stabilization of glacial moraines and small lacustrine plains in drained lake basins impacts the development of local ecosystems; satellite imaging reveals details of vegetational primary succession; and we will present an observations-constrained model of bird habitat in relationship to glacial geomorphology.
NASA Astrophysics Data System (ADS)
Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J.; Juutinen, S.; Larmola, T.
2015-01-01
Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.
Conifer radial growth response to recent seasonal warming and drought from the southwestern USA
Charles Truettner; William R. L. Anderegg; Franco Biondi; George W. Koch; Kiona Ogle; Christopher Schwalm; Marcy E. Litvak; John D. Shaw; Emanuele Ziaco
2018-01-01
Future droughts are expected to become more severe and frequent under future climate change scenarios, likely causing widespread tree mortality in the western USA. Coping with an uncertain future requires an understanding of long-term ecosystem responses in areas where prolonged drought is projected to increase. Tree-ring records are ideally suited for this task. We...
M.A. Callaham; J.M. Blair; T.C. Todd; D.J. Kitchen; M.R. Whiles
2003-01-01
The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups. and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station. we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term...
Timothy D. Schowalter; Michael R. Willig; Steven J. Presley
2014-01-01
We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...
Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen
2015-12-01
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.
2017-12-01
Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil microbial community activity in semiarid ecosystems are complex and are potentially regulated more by pulse events than small changes in conditions such as a warmer environment.
Response of seafloor ecosystems to abrupt global climate change
Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.
2015-01-01
Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727
Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria
2012-08-01
Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.
Response of seafloor ecosystems to abrupt global climate change
NASA Astrophysics Data System (ADS)
Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.
2015-04-01
Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.
Disturbance regimes and ecological responses across sites
USDA-ARS?s Scientific Manuscript database
Disturbances affect ecosystems in almost limitless ways. The effects of disturbances extend beyond the initial impacts that are usually visible to the human eye. Therefore, for many disturbances long-term data are needed to unravel their effects. This chapter first presents characteristics of distu...
Decision Support Framework (DSF) (Formerly Decision Support Platform)
The Science Advisory Board (SAB) provided several comments on the draft Ecosystem Services Research Program's (ESRP's) Multi-Year Plan (MYP). This presentation provides a response to comments related to the decision support framework (DSF) part of Long-Term Goal 1. The comments...
MODELING LONG-TERM DYNAMICS OF LITTER ACCUMULATION IN RESPONSE TO STATIC AND VARIABLE HYDROPERIODS
Accumulated litter from emergent species like the cattail hybrid (Typha glauca Godr.) can influence local abiotic conditions, other biota, and ecosystem processes. Litter accumulation results from high production coupled with slow breakdown rates. Wetland managers regularly mani...
Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site
John E. Hobbie; Gaius R. Shaver; Edward B. Rastetter; Jessica E. Cherry; Scott J. Goetz; Kevin C. Guay; William A. Gould; George W. Kling
2017-01-01
Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-...
Long-Term Soil Responses to Site Preparation Burning in the Southern Appalachians
Jennifer D. Knoepp; James M. Vose; Wayne T. Swank
2004-01-01
The mixed oak-pine ecosystems in the southern Appalachians are in decline because of a combination of drought and southern pine-beetle infestation. A commonly applied prescription for restoration of these degraded sites has been to fell all vegetation, allow it to dry, and conduct a site-preparation burn. However, there is little information on the mid- and long-term...
Wayne T. Swank; James M. Vose
2001-01-01
We analyzed long-term (23 years) data of inorganic N deposition and loss for an extensive network of mature mixed hardwood covered watersheds in the southern Appalachians of North Carolina to assess trends and dynamics of N in baseline ecosystems. We also assessed watershed N saturation in the context of altered N cycles and stream inorganic N responses associated with...
Tara L. Keyser; Chad E. Keyser
2013-01-01
In April 2008, the Upland Hardwoods Ecology and Management Research Work Unit of the U.S. Forest Service, Southern Research Station began a long-term cooperative study to describe forest ecosystem response to three oak (Quercus spp.) shelterwood regeneration treatments in the central hardwoods region of the United States. Pretreatment inventory data...
NASA Astrophysics Data System (ADS)
François, Louis; Henrot, Alexandra-Jane; Dury, Marie; Jacquemin, Ingrid; Munhoven, Guy; Friend, Andrew; Rademacher, Tim T.; Hacket Pain, Andrew J.; Hickler, Thomas; Tian, Hanqin; Morfopoulos, Catherine; Ostberg, Sebastian; Chang, Jinfeng; Rafique, Rashid; Nishina, Kazuya
2016-04-01
According to the projections of climate models, extreme events such as droughts and heat waves are expected to become more frequent and more severe in the future. Such events are known to severely impact the productivity of both natural and agricultural ecosystems, and hence to affect ecosystem services such as crop yield and ecosystem carbon sequestration potential. Dynamic vegetation models are conventional tools to evaluate the productivity and carbon sequestration of ecosystems and their response to climate change. However, how far are these models able to correctly represent the sensitivity of ecosystems to droughts and heat waves? How do the responses of natural and agricultural ecosystems compare to each other, in terms of drought-induced changes in productivity and carbon sequestration? In this contribution, we use ISI-MIP2 model historical simulations from the biome sector to tentatively answer these questions. Nine dynamic vegetation models have participated in the biome sector intercomparison of ISI-MIP2: CARAIB, DLEM, HYBRID, JULES, LPJ-GUESS, LPJml, ORCHIDEE, VEGAS and VISIT. We focus the analysis on well-marked droughts or heat waves that occured in Europe after 1970, such as the 1976, 2003 and 2010 events. For most recent studied events, the model results are compared to the response observed at several eddy covariance sites in Europe, and, at a larger scale, to the changes in crop productivities reported in national statistics or to the drought impacts on gross primary productivity derived from satellite data (Terra MODIS instrument). The sensitivity of the models to the climatological dataset used in the simulations, as well as to the inclusion or not of anthropogenic land use, is also analysed within the studied events. Indeed, the ISI-MIP simulations have been run with four different historical climatic forcings, as well as for several land use/land cover configurations (natural vegetation, fixed land use and variable land use).
Effects of acid deposition on ecosystems: Advances in the state of the science
Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.
2011-01-01
Chapter 2 focused on the environmental results of the ARP, presenting data from national monitoring networks on SO2 and NOx emissions, air quality, atmospheric deposition, surface water chemistry, and visibility. This chapter expands on this information by examining the most recent research into how ecosystems respond to acid deposition, especially the processes that control the recovery of ecosystems as acid deposition decreases. In Chapter 2, two general trends were discussed regarding the current recovery status of affected ecosystems: (1) these ecosystems are trending generally towards recovery, but improvements in ecosystem condition shown by surface water chemistry monitoring data thus far have been less than the improvements in deposition; and (2) ecosystem impacts and trends vary widely by geographic region, but the evidence of improvement is strongest and most evident in the Northeast. These trends are not uniform across the United States, however, and in some regions (e.g., central Appalachian Mountain region), trends in improved water quality are generally not evident. Despite the strong link in many areas between reduced emissions and reduced acidity of atmospheric deposition, the link is less clear between reduced acidity and recovery of the biological communities that live in aquatic and terrestrial ecosystems that have experienced deleterious effects from acid deposition. The recovery of these communities is proceeding at a slower pace than, for example, the improvements in stream and lake ANC would indicate. The goal of this chapter is to synthesize the science in a weightof-evidence manner to provide policy makers with tangible evidence and likely causative factors regarding ecosystem status and recovery patterns to date. This chapter serves as an update to the 2005 NAPAP RTC (NSTC, 2005), with an emphasis on scientific studies and monitoring since 2003, which was the last year for consideration of research results in the 2005 report. Several issues pertinent to ecosystem response to emission controls and acid deposition are receiving increasing attention in the scientific literature and will be discussed in this chapter, including the (1) observed delay in ecosystem recovery in the eastern United States, even with decreases in emissions and deposition over the past 30 years; (2) emerging ecosystem impacts of nitrogen deposition in the western United States; (3) the application of critical deposition loads as a tool for scientists to better inform air quality policies; (4) the role of changes in climate and the carbon cycle as factors that affect the response of ecosystems to acid deposition; and (5) the interaction of multiple pollutants in ecosystems. Throughout this chapter, the value of long-term environmental monitoring data in informing air quality policy will be highlighted, including the limitations of assessing the current status of some ecosystem indicators for which continuous, long-term data are lacking.
Moore, Jonathan W; Olden, Julian D
2017-05-01
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.
2013-12-01
Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was simply a function of forest structure, or structure and NPP. Self-thinning assumptions altered equilibrium C sequestration and were extremely important for the immediate transient response and near-term prediction of C sequestration.
Deep time ocean hypoxia: The impact on Jurassic marine ecosystems
NASA Astrophysics Data System (ADS)
Caswell, B. A.; Frid, C. L. J.
2016-02-01
In order to understand how the environment will change over the next 100-1000 years and how this will impact the biosphere we need long-term data from a range of scenarios. This long-term perspective can be achieved by looking at periods of comparable environmental change in Earth history. Two past periods of ocean deoxygenation, 150 and 183 million years ago, are compared: (1) a period of global climate change, analogous to that occurring today, and (2) a period of regional hypoxia associated with changing circulation and nutrient supply. Palaeoecological changes in populations, communities, and seafloor functioning were investigated using data spanning millions of years at high resolution (100s-1000s years). Large shifts in biodiversity, body-size and the population-size of the dominant benthic taxa occurred in response to ocean anoxia. Ecological change spanned multiple trophic levels and suggest that changes in primary productivity impacted macrobenthos and their pelagic predators resulting in biogeographic range shifts. Quantitative analyses of changes in biological traits and core ecosystem functions show changes in nutrient regeneration, food web dynamics, and benthic-pelagic coupling. During ocean deoxygenation Jurassic ecosystems showed functional resilience and redundancy, but ultimately functioning collapsed. Quantification of the relationships between ecological change and various proxies for palaeoenvironmental change show that both hypoxia and primary productivity were important drivers. Environmental thresholds for local ecosystem change are identified. The patterns of Jurassic ecosystem change share many similarities with present-day hypoxic systems. Critically, the recovery from global anoxia was very slow and connectivity, with potential sources of new recruits, was an important contributor to ecosystem recovery. This emphasises the risks of relying on patterns of short-term and small-scale resilience when managing modern marine systems.
The resilience and functional role of moss in boreal and arctic ecosystems.
Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S
2012-10-01
Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
The resilience and functional role of moss in boreal and arctic ecosystems
Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.
2012-01-01
Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.
NASA Astrophysics Data System (ADS)
Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.
2017-12-01
The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.
Effects of changing climate on European stream invertebrate communities: A long-term data analysis.
Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter
2018-04-15
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.
The provision of ecosystem services in response to global change: Evidences and applications.
Lafortezza, Raffaele; Chen, Jiquan
2016-05-01
As a consequence of the global increase in economic and societal prosperity, ecosystems and natural resources have been substantially exploited, degraded, or even destroyed in the last century. To prevent further deprivation of the quality of ecosystems, the ecosystem services concept has become a central issue in environmental studies. A growing number of environmental agencies and organizations worldwide are now embracing integrated approaches to plan and manage ecosystems, sharing a goal to maintain the long-term provision of ecosystem services for sustainability. A daunting challenge in this process is to move from general pronouncements about the tremendous benefits that ecosystems provide to society to defensible assessments of their services. In other words, we must move beyond the scientific evidences of the ecosystem services concept to its practical applications. In this work, we discuss the theoretical foundations and applications of ecosystem services with a focus on the assessment of ecosystem service trade-offs and synergies at various spatial and temporal scales. Here, we offer examples of the main factors related to land use management that may affect the provision of ecosystem services and provide direction for future research on ecosystem services and related nature-based solutions. We also provide a briefing on the major topics covered in this Special Issue, which focuses on the provision of ecosystem services in the context of global change. Copyright © 2016 Elsevier Inc. All rights reserved.
Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau.
Zong, Ning; Shi, Peili; Song, Minghua; Zhang, Xianzhou; Jiang, Jing; Chai, Xi
2016-03-01
Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha(-1) year(-1)) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha(-1) year(-1) (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha(-1) year(-1) treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach
NASA Astrophysics Data System (ADS)
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach.
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of Science TM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies
Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.
2012-01-01
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.
Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.
Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R
2012-08-01
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.
Ecotoxicology of tropical marine ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, E.C.; Gassman, N.J.; Firman, J.C.
1997-01-01
The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metalsmore » have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.« less
Water controls on nitrogen transformations and stocks in an arid ecosystem
USDA-ARS?s Scientific Manuscript database
Our objective was to assess nitrogen responses to long-term changes in precipitation and nitrogen availability in the Northern Chihuahuan Desert (NM, USA), using rainfall manipulations (80% reduced PPT, ambient, 80% increased) and fertilization additions (with and without ammonium nitrate). We measu...
Volcano ecology: Disturbance characteristics and assembly of biological communities
USDA-ARS?s Scientific Manuscript database
Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...
Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.; ...
2017-04-21
Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less
Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.
Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less
Susan Will-Wolf; Peter Neitlich
2010-01-01
Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...
Thermal effect of climate change on groundwater-fed ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Erick R.; Zhu, Yonghui; Zhan, Hongbin
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, uppermore » basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.« less
Thermal effect of climate change on groundwater-fed ecosystems
Burns, Erick R.; Zhu, Yonghui; Zhan, Hongbin; ...
2017-04-24
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, uppermore » basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.« less
Thermal effect of climate change on groundwater-fed ecosystems
NASA Astrophysics Data System (ADS)
Burns, Erick R.; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason B.
2017-04-01
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Thermal effect of climate change on groundwater-fed ecosystems
Burns, Erick; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason B.
2017-01-01
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.
Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem
NASA Astrophysics Data System (ADS)
Queiros, A. M.
2016-02-01
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem.
Queirós, Ana M; Fernandes, José A; Faulwetter, Sarah; Nunes, Joana; Rastrick, Samuel P S; Mieszkowska, Nova; Artioli, Yuri; Yool, Andrew; Calosi, Piero; Arvanitidis, Christos; Findlay, Helen S; Barange, Manuel; Cheung, William W L; Widdicombe, Stephen
2015-01-01
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual-level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual-level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local-environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual-level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multiscale responses to multiple stressors, in an ecosystem context. © 2014 John Wiley & Sons Ltd.
Influence of Vegetation Cover on Rain Pulse Responses in Semi-Arid Savannas in Central Texas
NASA Astrophysics Data System (ADS)
Litvak, M.; Heilman, J.; McInnes, K.; Thijs, A.; Kjelgaard, J.
2007-12-01
Savannas in central Texas are dominated by live oak (Quercus virginiana) and Ashe juniper (Juniperus asheii) underlain by perennial, C3/C4 grasslands, and are increasingly becoming juniper and mesquite dominated due to overgrazing and suppression of wildfires. Since 2004, we have been investigating how carbon, water and energy exchange in these rain-limited savannas respond to rainfall variability and this observed vegetation change. In semi-arid regions, rainfall pulses provide inputs of soil moisture and trigger biotic activity in the form of plant gas exchange and microbial metabolism as well as water dependent physical processes in the soil. Each of these components has a different characteristic response curve to soil moisture and integrates soil water content over a different range of depths. Here we focus on examining how the observed increase of woody species in central Texas savannas alters the response of net ecosystem exchange and its components, ecosystem respiration and gross ecosystem exchange, to rain pulses. Using data we have collected over the last three years from three Ameriflux tower sites at Freeman Ranch near San Marcos, TX (C3/C4 grassland, juniper/mesquite savanna with 50 percent woody cover, and oak/juniper woodland), we quantify the responses of both ecosystem respiration and daily carbon uptake to rainfall pulses throughout the year. Specifically, we look at the enhancement and persistence of ecosystem respiration and carbon uptake responses following a pulse, and isolate the main controlling factors on the observed response: seasonality, antecedent soil moisture and temperature, or previous pulses. In all three land covers, the general response to precipitation pulses is a respiration pulse followed by an increase in total carbon uptake. Differences in pulse responses observed at the savanna site compared to the grassland and woodland sites can be explained, in part, by the observed differences in rooting structure and photosynthetic capacity due to differences in plant functional groups and leaf area index. The woodland site is most sensitive to winter pulses in terms of enhanced sink strength following pulses and is dependent on both temperature and pulse size. Both the grassland and shrubland sites show greater sink strength following summer pulses, rather than winter pulses. Both the ecosystem respiration and net uptake responses in all three sites are dependent upon whether there was shallow versus deep soil moisture recharge following pulses. Implications for the influence of future climate change on carbon dynamics in these savanna ecosystems will be discussed.
Elevation alters ecosystem properties across temperate treelines globally
NASA Astrophysics Data System (ADS)
Mayor, Jordan R.; Sanders, Nathan J.; Classen, Aimée T.; Bardgett, Richard D.; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K.; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'Ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L.; Wardle, David A.
2017-01-01
Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
Elevation alters ecosystem properties across temperate treelines globally.
Mayor, Jordan R; Sanders, Nathan J; Classen, Aimée T; Bardgett, Richard D; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L; Wardle, David A
2017-02-02
Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
Jessica Sherman; Ivan J. Fernandez; Stephen A. Norton; Tsutomu Ohno; Lindsey E. Rustad
2006-01-01
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear BrookWatershed in Maine (BBWM) is a long-term paired...
Trueman, C. N.; Johnston, G.; O'Hea, B.; MacKenzie, K. M.
2014-01-01
Biological transfer of nutrients and materials between linked ecosystems influences global carbon budgets and ecosystem structure and function. Identifying the organisms or functional groups that are responsible for nutrient transfer, and quantifying their influence on ecosystem structure and carbon capture is an essential step for informed management of ecosystems in physically distant, but ecologically linked areas. Here, we combine natural abundance stable isotope tracers and survey data to show that mid-water and bentho-pelagic-feeding demersal fishes play an important role in the ocean carbon cycle, bypassing the detrital particle flux and transferring carbon to deep long-term storage. Global peaks in biomass and diversity of fishes at mid-slope depths are explained by competitive release of the demersal fish predators of mid-water organisms, which in turn support benthic fish production. Over 50% of the biomass of the demersal fish community at depths between 500 and 1800 m is supported by biological rather than detrital nutrient flux processes, and we estimate that bentho-pelagic fishes from the UK–Irish continental slope capture and store a volume of carbon equivalent to over 1 million tonnes of CO2 every year. PMID:24898373
NASA Astrophysics Data System (ADS)
Sarker, Subrata; Lemke, Peter; Wiltshire, Karen H.
2018-05-01
Explaining species diversity as a function of ecosystem variability is a long-term discussion in community-ecology research. Here, we aimed to establish a causal relationship between ecosystem variability and phytoplankton diversity in a shallow-sea ecosystem. We used long-term data on biotic and abiotic factors from Helgoland Roads, along with climate data to assess the effect of ecosystem variability on phytoplankton diversity. A point cumulative semi-variogram method was used to estimate the long-term ecosystem variability. A Markov chain model was used to estimate dynamical processes of species i.e. occurrence, absence and outcompete probability. We identified that the 1980s was a period of high ecosystem variability while the last two decades were comparatively less variable. Ecosystem variability was found as an important predictor of phytoplankton diversity at Helgoland Roads. High diversity was related to low ecosystem variability due to non-significant relationship between probability of a species occurrence and absence, significant negative relationship between probability of a species occurrence and probability of a species to be outcompeted by others, and high species occurrence at low ecosystem variability. Using an exceptional marine long-term data set, this study established a causal relationship between ecosystem variability and phytoplankton diversity.
NASA Astrophysics Data System (ADS)
Horemans, Joanna; Roland, Marilyn; Janssens, Ivan; Ceulemans, Reinhart
2017-04-01
Because of their ecological and recreational value, the health of forest ecosystems and their response to global change and pollution are of high importance. At a number of EuroFlux and ICOS ecosystem sites in Europe - as the Brasschaat forest site - the measurements of ecosystem fluxes of carbon and other gases are combined with vertical profiles of air pollution within the framework of the ICP-Forest monitoring program. The Brasschaat forest is dominated by 80-year old Scots pines (Pinus sylvestris L.), and has a total area of about 150 ha. It is situated near an urban area in the Campine region of Flanders, Belgium and is characterized by a mean annual temperature of 9.8 °C and an annual rainfall of 830 mm. In this contribution we report on a long-term analysis (1996-2016) of the ecosystem carbon and water fluxes, the energy exchanges and the pollutant concentrations (ozone, NOx, NH3, SO2). Particular interest goes to the inter-annual variation of the carbon fluxes and the carbon allocation patterns. The impact of the long-term (aggregated) and the short-term variability in both the meteorological drivers and in the main tropospheric pollutants on the carbon fluxes is examined, as well as their mutual interactive effects and their potential memory effect. The effect of variability in the drivers during the phenological phases (seasonality) on the inter-annual variability of the fluxes is also examined. Basic statistical techniques as well as spectral analyses and data mining techniques are being used.
Unraveling the Relationships between Ecosystems and Human Wellbeing in Spain
Santos-Martín, Fernando; Martín-López, Berta; García-Llorente, Marina; Aguado, Mateo; Benayas, Javier; Montes, Carlos
2013-01-01
National ecosystem assessments provide evidence on the status and trends of biodiversity, ecosystem conditions, and the delivery of ecosystem services to society. I this study, we analyze the complex relationships established between ecosystems and human systems in Spain through the combination of Driver-Pressure-State-Impact-Response framework and structural equation models. Firstly, to operationalize the framework, we selected 53 national scale indicators that provide accurate, long-term information on each of the components. Secondly, structural equation models were performed to understand the relationships among the components of the framework. Trend indicators have shown an overall progressive biodiversity loss, trade-offs between provisioning and cultural services associated with urban areas vs. regulating and cultural services associated with rural areas, a decoupling effect between material and non-material dimensions of human wellbeing, a rapid growing trend of conservation responses in recent years and a constant growing linear trend of direct or indirect drivers of change. Results also show that all the components analyzed in the model are strongly related. On one hand, the model shows that biodiversity erosion negatively affect the supply of regulating services, while it is positively related with the increase of provisioning service delivery. On the other hand, the most important relationship found in the model is the effect of pressures on biodiversity loss, indicating that response options for conserving nature cannot counteract the effect of the drivers of change. These results suggest that there is an insufficient institutional response to address the underlying causes (indirect drivers of change) of biodiversity loos in Spain. We conclude that more structural changes are required in the Spanish institutional framework to reach 2020 biodiversity conservation international targets. PMID:24039894
Unraveling the relationships between ecosystems and human wellbeing in Spain.
Santos-Martín, Fernando; Martín-López, Berta; García-Llorente, Marina; Aguado, Mateo; Benayas, Javier; Montes, Carlos
2013-01-01
National ecosystem assessments provide evidence on the status and trends of biodiversity, ecosystem conditions, and the delivery of ecosystem services to society. I this study, we analyze the complex relationships established between ecosystems and human systems in Spain through the combination of Driver-Pressure-State-Impact-Response framework and structural equation models. Firstly, to operationalize the framework, we selected 53 national scale indicators that provide accurate, long-term information on each of the components. Secondly, structural equation models were performed to understand the relationships among the components of the framework. Trend indicators have shown an overall progressive biodiversity loss, trade-offs between provisioning and cultural services associated with urban areas vs. regulating and cultural services associated with rural areas, a decoupling effect between material and non-material dimensions of human wellbeing, a rapid growing trend of conservation responses in recent years and a constant growing linear trend of direct or indirect drivers of change. Results also show that all the components analyzed in the model are strongly related. On one hand, the model shows that biodiversity erosion negatively affect the supply of regulating services, while it is positively related with the increase of provisioning service delivery. On the other hand, the most important relationship found in the model is the effect of pressures on biodiversity loss, indicating that response options for conserving nature cannot counteract the effect of the drivers of change. These results suggest that there is an insufficient institutional response to address the underlying causes (indirect drivers of change) of biodiversity loos in Spain. We conclude that more structural changes are required in the Spanish institutional framework to reach 2020 biodiversity conservation international targets.
Predicting climate-driven regime shifts versus rebound potential in coral reefs.
Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K
2015-02-05
Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.
NASA Astrophysics Data System (ADS)
Dury, M.; Henrot, A. J.; Francois, L. M.; Munhoven, G.; Jacquemin, I.; Friend, A. D.; Rademacher, T. T.; Hacket Pain, A. J.; Hickler, T.
2015-12-01
With unprecedented speed and extent, the future climate change can be expected to severely impact terrestrial ecosystems due to more frequent extreme events, such as droughts or heat waves. What will be the impacts of these extreme events on ecosystem functioning and structure? How far will net primary production be reduced by such events? What will be the impact on plant mortality? Could such events trigger changes in the abundance of plant species, thus leading to biome shifts? In this contribution, we propose to use ISI-MIP2 model historical simulations from the biome sector to analyse the response of ecosystems to droughts or heat waves, trying to understand the differences between several vegetation models (e.g. CARAIB, HYBRID, LPJ). The analysis will focus on Europe. It will compare and assess the model responses for a series of well-marked drought or heat wave events in the simulated historical period, such as those that occurred in 1976, 2003 or 2010. This analysis will be performed in terms of several important environmental variables, like soil water and hydric stress, runoff, PFT abundance, net primary productivity and biomass, fire frequency, turnover of soil organic matter, etc. Whenever possible, the response of the model will be compared to available data for the most recent well-marked events. Examples of data to be used are eddy covariance, satellite data (including leaf area and fire occurrence) or tree rings.
Abele, D; Vazquez, S; Buma, A G J; Hernandez, E; Quiroga, C; Held, C; Frickenhaus, S; Harms, L; Lopez, J L; Helmke, E; Mac Cormack, W P
2017-06-01
Molecular technologies are more frequently applied in Antarctic ecosystem research and the growing amount of sequence-based information available in databases adds a new dimension to understanding the response of Antarctic organisms and communities to environmental change. We apply molecular techniques, including fingerprinting, and amplicon and metagenome sequencing, to understand biodiversity and phylogeography to resolve adaptive processes in an Antarctic coastal ecosystem from microbial to macrobenthic organisms and communities. Interpretation of the molecular data is not only achieved by their combination with classical methods (pigment analyses or microscopy), but furthermore by combining molecular with environmental data (e.g., sediment characteristics, biogeochemistry or oceanography) in space and over time. The studies form part of a long-term ecosystem investigation in Potter Cove on King-George Island, Antarctica, in which we follow the effects of rapid retreat of the local glacier on the cove ecosystem. We formulate and encourage new approaches to integrate molecular tools into Antarctic ecosystem research, environmental conservation actions, and polar ocean observatories. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Tree response to experimental watershed acidification
N.K. Jensen; E.J. Holzmueller; P.J. Edwards; M. Thomas-Van Gundy; D.R. DeWalle; K.W.J. Williard
2014-01-01
Forest ecosystems in the Eastern USA are threatened by acid deposition rates that have increased dramatically since industrialization. We utilized two watersheds at the Fernow Experimental Forest in West Virginia to examine long-term effects of acidification on ecological processes. One watershed has been treated with ammonium sulfate (approximately twice the ambient...
Long-term Changes in Water Quality and Productivity in the Patuxent River Estuary: 1985 to 2003
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and non-point nutrient inputs to the Patuxent River estuary. We analyzed a 19-year data set o...
Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...
Ecosystem Matters: Activity and Resource Guide for Environmental Educators.
ERIC Educational Resources Information Center
Adams, Mary; And Others
An ecological approach involved making conscious decisions which result in actions that responsibly contribute to the long-term stewardship of natural resources. This activity and resource guide was designed for use by both educators and resource managers to supplement existing courses and programs concerning ecological matters. These…
Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan
2013-01-01
Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature. PMID:23536854
Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan
2013-01-01
Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.
Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)
NASA Astrophysics Data System (ADS)
Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.
2013-12-01
Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Long-term disturbance dynamics and resilience of tropical peat swamp forests
Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J
2015-01-01
1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem. PMID:26120202
Long-term disturbance dynamics and resilience of tropical peat swamp forests.
Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J
2015-01-01
1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c . 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.
Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.
2013-01-01
Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response. PMID:23308297
Holmquist, Jeffrey G; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A
2013-01-01
Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response.
NASA Astrophysics Data System (ADS)
Fu, X.; Dai, X.; Wang, H.
2015-12-01
Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics in the achievement of a complete understanding of the overall belowground carbon cycling in a forest ecosystem, particularly ecosystems in which the understory fine root highly contributes to the belowground biomass.
NASA Astrophysics Data System (ADS)
Parolari, A.; Goulden, M.
2017-12-01
A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative curvature at low rainfall. Therefore, a combination of rooting depth, soil texture, and climate seasonality contribute to ANPP response curvature and its contribution to overall observed asymmetry.
Functional traits predict relationship between plant abundance dynamic and long-term climate warming
Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.
2013-01-01
Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400
Modelling the process-based controls of long term CO2 exchange in High Arctic heath ecosystems
NASA Astrophysics Data System (ADS)
Zhang, W.; Jansson, P. E.; Elberling, B.
2016-12-01
Frozen organic carbon (C) stored in northern permafrost soils may become vulnerable due to the rapid warming of the Arctic. The loss of C as greenhouse gases may imply a critical warming potential, resulting in positive feedbacks to global climate change. However, how permafrost ecosystems C dynamics is associated with changes in hydrothermal conditions (e.g. extent and duration of snow, soil water content and active layer depth) and changes in the responses of ecosystem biogeochemistry to climate (e.g. carbon assimilation of the entire growing season, falling rates of plants' litter, and turnover rates of different soil carbon pools) is still unclear and needs to be distinguished from site to site. Here, we use a process-oriented model (CoupModel) that couples heat and mass transfer within the high resolution soil-plant-atmosphere profile to simulate the high Arctic Cassiope tetragona Heath ecosystems in Northeast Greenland. The 15 years of net ecosystem exchange (NEE) flux (2000-2014) measured during the growing season indicate that the ecosystems may be at a transition from a C sink to a C source. We calibrated the model with the NEE flux transformed from hourly data to daily, yearly and total cumulative data to identify ensembles of parameters that best described the various patterns in the observed C fluxes. Only the ensembles of yearly and total cumulative transformation described reasonably well for seasonal variability, inter-annual variability and long term trends of measurements. The correlations between parameters and simulation performance described the relative importance of physical or biological parameters that contributes to the short- and long-term variation of C flux from biogeochemical processes of such ecosystems. The estimated C budget including internal fluxes and redistribution between various pools showed that the ecosystem functioned as a C source in the first-half period and a week C sink in the second-half period. The respiration outside the growing season was mainly from the autotropic respiration of plants, occupying a considerable portion of the total yearly respiration. The dynamics of soil C fluxes were associated with the variations of air temperature, snow fall and soil moisture of the shoulder seasons.
NASA Astrophysics Data System (ADS)
Holderied, K.; Neher, T. H.; McCammon, M.; Hoffman, K.; Hopcroft, R. R.; Lindeberg, M.; Ballachey, B.; Coletti, H.; Esler, D.; Weingartner, T.
2016-02-01
The response of nearshore and coastal pelagic ecosystems in the northern Gulf of Alaska to the 2014-2015 Pacific Ocean warm anomaly is being assessed with multi-disciplinary observations of the Gulf Watch Alaska long-term ecosystem monitoring program. Gulf Watch Alaska is an integrated, multi-agency program, funded by the Exxon Valdez oil spill Trustee Council to track populations of nearshore and pelagic species injured by the 1989 oil spill, as well as the marine conditions that affect those species. While the primary program goals are to support management and sustained recovery of species injured directly and indirectly by the spill, the integration of oceanographic observations with monitoring of nearshore and pelagic food webs also facilitates detection and assessment of ecosystem changes. The initial 5-year phase of the Gulf Watch Alaska program was started in 2012 and has provided marine ecosystem observations through the transition in late 2013 from anomalously cool to anomalously warm ocean conditions in the Gulf of Alaska. We review results from and linkages between oceanographic, whale, seabird, intertidal, and plankton monitoring projects in Prince William Sound, Cook Inlet and the northern Gulf of Alaska shelf. We also assess the different ecosystem responses observed between the summers of 2014 and 2015, with the region experiencing unusual amounts of seabird and marine mammal mortalities and harmful algal bloom events in 2015.
NASA Astrophysics Data System (ADS)
McDowell, W. H.; Potter, J.; López-Lloreda, C.
2017-12-01
High intensity hurricanes have been shown to alter topical forest productivity and stream chemistry for years to decades in the montane rain forest of Puerto Rico, but much less is known about the immediate ecosystem response to these extreme events. Here we report the short-term impacts of Hurricanes Irma and Maria on the chemistry of Quebrada Sonadora immediately before and after the storms. We place the results from our 15-minute sensor record in the context of long-term weekly sampling that spans 34 years and includes two earlier major hurricanes (Hugo and Geoges). As expected, turbidity during Maria was the highest in our sensor record (> 1000 NTU). Contrary to our expectations, we found that solute-flow behavior changed with the advent of the storms. Specific conductance showed a dilution response to flow before the storms, but then changed to an enrichment response during and after Maria. This switch in system behavior is likely due to the deposition of marine aerosols during the hurricane. Nitrate concentrations showed very little response to discharge prior to the recent hurricanes, but large increase in concentration occurred at high flow both during and after the hurricanes. Baseflow nitrate concentrations decreased immediately after Irma to below the long-term background concentrations, which we attribute to the immobilization of N on organic debris choking the stream channel. Within three weeks of Hurricane Maria, baseflow nitrate concentrations began to rise. This is likely due to mineralization of N from decomposing canopy vegetation on the forest floor, and reduced N uptake by hurricane-damaged vegetation. The high frequency sensors are providing new insights into the response of this ecosystem in the days and weeks following two major disturbance events. The flipping of nitrate response to storms, from source limited to transport limited, suggests that these two severe hurricanes have fundamentally altered the nitrogen cycle at the site in ways that would not be evident without sensors.
Fungal role in post-fire ecosystem recovery in Sierra Nevada National Park (Spain)
NASA Astrophysics Data System (ADS)
Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Beneyto, Jorge; Martín Sánchez, Ines
2016-04-01
Fire effect on soil microorganisms has been studies for decades in several ecosystems and different microbial response can be found in the bibliography depending on numerous intrinsic and extrinsic soil factors. These factors will determine preliminary soil microbial community composition, subsequent pos-fire initial colonizers and even post-fire growth media characteristics that microbial community will find to start recolonisation. Fire-induced soil bacterial proliferation is a common pattern found after fire, usually related to pH and C availability increased. But when original soil pH is not altered by fire in acid soils, microbial response can be different and fungal response can be crucial to ecosystem recovery. In this study we have compile data related to high mountain soil from Sierra Nevada National park which was affected by a wildfire in 2006 and data obtained by laboratory heating experiment, trying to elucidate the ecological role of fungi in this fragile ecosystem. On the one hand we can observe fire-induced fungal abundance proliferation estimated by plate count method 8 and 32 months after wildfire and even in a short-term (21 d) after laboratory heating at 300 °C. Six years after fire, fungal abundance was similar between samples collected in burnt and unburnt-control area but we found higher proportion of species capable to degrade PAHs (lacase activity) in burnt soil than I the unburnt one. This finding evidences the crucial role of fungal enzymatic capacities to detoxify burnt soils when fire-induced recalcitrant and even toxic carbon compounds could be partially limiting total ecosystem recovery.
Lagged processes and critical timescales in boreal forest response to climate
NASA Astrophysics Data System (ADS)
Wofsy, S. C.; Dunn, A. L.; Amiro, B. D.; Barr, A.; Rocha, A. V.; Goulden, M. L.
2006-12-01
Long-term eddy covariance datasets have recorded the response of boreal ecosystems to climate on timescales up to decadal (Dunn et al. 2006, Barr et al. 2006). Carbon balances in these forests are very dynamic, responding to climatic anomalies on timescales of months to years. A boreal black spruce forest in central Manitoba, Canada, was a source of carbon to the atmosphere in the mid-1990s (55 g C m^{- 2} y-1, 1995-1997), but switched to a sink in recent years (-25 g C m-2 y-1, 2003-2005). The short-term carbon exchange at this site was strongly controlled by temperature, but on long timescales the water balance was more important (Dunn et al. 2006). In a boreal aspen forest in central Saskatchewan, Canada, temperature was the main driver of phenology and canopy duration, but drought status, and especially the persistence of drought over multiple years, was a critical control on ecosystem respiration and resultant carbon balance (Barr et al. 2006). Lagged processes are especially important in the boreal forest: Dunn et al. (2006) found that carbon balances, and especially ecosystem respiration, were strongly controlled by the integrated water balance over preceding years, suggesting that the effects of climatic anomalies are expressed slowly in these forests. Rocha et al. (2006) found similar evidence in tree-ring cores from the NOBS site, which showed a strong correlation with lagged water balances, suggesting that wood growth in these forests is a process integrating over prior years. In a tree-ring analysis across aspen stands in western Canada, Hogg et al. (2005) found that current and lagged (up to four years) moisture status were critical factors regulating ecosystem carbon balance. These results from long-term boreal datasets suggest that the vulnerability of these forests to climate change will be strongly dependent on the future balance between precipitation and temperature. Persistent perturbations to the local climate will likely shift overall biome carbon balance.
Reliability of flipper-banded penguins as indicators of climate change.
Saraux, Claire; Le Bohec, Céline; Durant, Joël M; Viblanc, Vincent A; Gauthier-Clerc, Michel; Beaune, David; Park, Young-Hyang; Yoccoz, Nigel G; Stenseth, Nils C; Le Maho, Yvon
2011-01-13
In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 41% [corrected] fewer chicks and had a survival rate 16 percentage points [corrected] lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10 years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper-band data should be reconsidered.
NASA Astrophysics Data System (ADS)
Landry, Jean-Sébastien; Parrott, Lael; Price, David T.; Ramankutty, Navin; Damon Matthews, H.
2016-09-01
The ongoing major outbreak of mountain pine beetle (MPB) in forests of western North America has led to considerable research efforts. However, many questions remain unaddressed regarding its long-term impacts, especially when accounting for the range of possible responses from the non-target vegetation (i.e., deciduous trees and lower-canopy shrubs and grasses). We used the Integrated BIosphere Simulator (IBIS) process-based ecosystem model along with the recently incorporated Marauding Insect Module (MIM) to quantify, over 240 years, the impacts of various MPB outbreak regimes on lodgepole pine merchantable biomass, ecosystem carbon, surface albedo, and the net radiative forcing on global climate caused by the changes in ecosystem carbon and albedo. We performed simulations for three locations in British Columbia, Canada, with different climatic conditions, and four scenarios of various coexisting vegetation types with variable growth release responses. The impacts of MPB outbreaks on merchantable biomass (decrease) and surface albedo (increase) were similar across the 12 combinations of locations and vegetation coexistence scenarios. The impacts on ecosystem carbon and radiative forcing, however, varied substantially in magnitude and sign, depending upon the presence and response of the non-target vegetation, particularly for the two locations not subjected to growing-season soil moisture stress; this variability represents the main finding from our study. Despite major uncertainty in the value of the resulting radiative forcing, a simple analysis also suggested that the MPB outbreak in British Columbia will have a smaller impact on global temperature over the coming decades and centuries than a single month of global anthropogenic CO2 emissions from fossil fuel combustion and cement production. Moreover, we found that (1) outbreak severity (i.e., per-event mortality) had a stronger effect than outbreak return interval on the variables studied, (2) MPB-induced changes in carbon dynamics had a stronger effect than concurrent changes in albedo on net radiative forcing, and (3) the physical presence of MPB-killed dead standing trees was potentially beneficial to tree regrowth. Given that the variability of pre-outbreak vegetation characteristics can lead to very different regeneration pathways, the four vegetation coexistence scenarios we simulated probably only sampled the range of possible responses.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.
2013-12-01
Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing species? Will the response of nitrogen-fixing species to climate change be sensitive to local disturbance histories?
NASA Astrophysics Data System (ADS)
Yang, Yuting; Donohue, Randall; McVicar, Tim; Roderick, Michael; Beck, Hylke
2016-04-01
Tropical rainforests contribute to ~52% of the terrestrial biomass carbon and more than one-third of global terrestrial net primary production. Thus, understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water and energy budgets under future climate change. While the Free-air CO2 enrichment (FACE) technique has greatly advanced our understanding of how boreal and temperate ecosystems respond to eCO2, there are currently no FACE sites available in tropical rainforest ecosystems. Here we firstly examine the trend in long-term (1982-2010) satellite-observed leaf area index and fraction of vegetation light absorption and find only minor changes in these variables in tropical rainforests over years, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf-level. Following that, we investigate the long-term physiological response (i.e., leaf-level) of tropical rainforests to eCO2 from three different perspectives by: (1) analyzing long-term runoff and precipitation records in 18 unimpaired tropical rainforest catchments to provide observational evidence on the eCO2 effect from an eco-hydrological perspective; (2) developing an analytical model using gas-exchange theory to predict the effect of eCO2 from a top-down perspective; and (3) interpreting outputs from 10 process-oriented ecosystem models to examine the effect of eCO2 from a bottom-up perspective. Our results show that the observed runoff coefficient (the ratio of runoff over precipitation) and ecosystem evapotranspiration (calculated from catchment water balance) remain relatively constant in 18 unimpaired tropical catchments over 1982-2010, implying an unchanged hydrological partitioning and thus conserved transpiration under eCO2. For the same period, using 'top-down' model based on gas-exchange theory, we predict an increase in plant assimilation (A) driven directly by an enhanced light use efficiency (ɛ) at the leaf-level in response to eCO2, the magnitude of which is about the same as that of eCO2 (i.e., ~12% over 1982-2010). Simulations from ten state-of-the-art 'bottom-up' ecosystem models also confirm that in tropical rainforests, direct effect of eCO2 mainly increases A and ɛ but does not change E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests and provide important scientific guidance for future ecophysiology / ecohydrology modelling and field activities conducted in the area.
A framework for monitoring social process and outcomes in environmental programs.
Chapman, Sarah
2014-12-01
When environmental programs frame their activities as being in the service of human wellbeing, social variables need to be integrated into monitoring and evaluation (M&E) frameworks. This article draws upon ecosystem services theory to develop a framework to guide the M&E of collaborative environmental programs with anticipated social benefits. The framework has six components: program need, program activities, pathway process variables, moderating process variables, outcomes, and program value. Needs are defined in terms of ecosystem services, as well as other human needs that must be addressed to achieve outcomes. The pathway variable relates to the development of natural resource governance capacity in the target community. Moderating processes can be externalities such as the inherent capacity of the natural system to service ecosystem needs, local demand for natural resources, policy or socio-economic drivers. Internal program-specific processes relate to program service delivery, targeting and participant responsiveness. Ecological outcomes are expressed in terms of changes in landscape structure and function, which in turn influence ecosystem service provision. Social benefits derived from the program are expressed in terms of the value of the eco-social service to user-specified goals. The article provides suggestions from the literature for identifying indicators and measures for components and component variables, and concludes with an example of how the framework was used to inform the M&E of an adaptive co-management program in western Kenya. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exploring the co-evolution of marine ecology and environment in silico
NASA Astrophysics Data System (ADS)
Ridgwell, A.
2015-12-01
Species do not live in isolation, but adapt and ultimately, evolve, in relationship with other species as well as with their chemical and physical environment. In the marine environment, this interaction is intimately two-way - the surface biogeochemical environment modulates the makeup of the pelagic ecosystem, yet at the same time, the ecosystem assemblage, by setting the strength of the biological pump and ultimately, in regulating the carbon and nutrient inventory of the ocean and atmospheric pCO2, influences the surface geochemical environment. Feedbacks, both negative and positive, must therefore exist between plankton ecology and global biogeochemical cycles. This has implications for understanding the geological record and particularly the response and recovery of marine ecosystems following major environmental perturbation, but also complicates making projections of future ocean changes. To address a coupled system such as this, new numerical tools are needed as traditional 'functional type' marine ecosystem models are generally incapable of accounting for short-term adaptation, let alone long-term evolution. What is needed is the combination of a plankton model able to simulate a highly diverse ecology plus 'genetic' mutation (changes in trait value(s)) and extinction, *and* an Earth system model capable of simulating long-term evolution of the climatology and geochemistry of the ocean. The Earth system model 'cGENIE' - http://mycgenie.seao2.org generally fills the second criteria, so for this presentation I will focus on the structure of the ecosystem model, the associated methodology, and numerical techniques for dealing with what will turn out to be an exceptionally large number of ocean tracers. If you are really lucky, there may even be some preliminary results :)
NASA Astrophysics Data System (ADS)
Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.
2017-04-01
Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman
2014-01-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...
Anthony W. D' Amato; John B. Bradford; Shawn Fraver; Brian J. Palik
2013-01-01
Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 years) replicated thinning experiment to determine if density reductions conferred greater...
NASA Astrophysics Data System (ADS)
Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.
2007-12-01
Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.
Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus
2004-11-01
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.
Seagrass meadows in a globally changing environment.
Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G
2014-06-30
Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trueman, C N; Johnston, G; O'Hea, B; MacKenzie, K M
2014-07-22
Biological transfer of nutrients and materials between linked ecosystems influences global carbon budgets and ecosystem structure and function. Identifying the organisms or functional groups that are responsible for nutrient transfer, and quantifying their influence on ecosystem structure and carbon capture is an essential step for informed management of ecosystems in physically distant, but ecologically linked areas. Here, we combine natural abundance stable isotope tracers and survey data to show that mid-water and bentho-pelagic-feeding demersal fishes play an important role in the ocean carbon cycle, bypassing the detrital particle flux and transferring carbon to deep long-term storage. Global peaks in biomass and diversity of fishes at mid-slope depths are explained by competitive release of the demersal fish predators of mid-water organisms, which in turn support benthic fish production. Over 50% of the biomass of the demersal fish community at depths between 500 and 1800 m is supported by biological rather than detrital nutrient flux processes, and we estimate that bentho-pelagic fishes from the UK-Irish continental slope capture and store a volume of carbon equivalent to over 1 million tonnes of CO2 every year. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Heskel, M.; Tang, J.
2017-12-01
Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.
McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.
2016-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Huang, Ling; He, Bin; Han, Le; Liu, Junjie; Wang, Haiyan; Chen, Ziyue
2017-12-01
Ecosystem water-use efficiency (WUE) plays an important role in carbon and water cycles. Currently, the response of WUE to drought disturbance remains controversial. Based on the global ecosystem gross primary productivity (GPP) product and the evapotranspiration product (ET), both of which were retrieved from the moderate resolution imaging spectroradiometer (MODIS), as well as the drought index, this study comprehensively examined the relationship between ecosystem WUE (WUE=GPP/ET) and drought at the global scale. The response of WUE to drought showed large differences in various regions and biomes. WUE for arid ecosystems typically showed a negative response to drought, whereas WUE for humid ecosystems showed both positive and negative response to drought. Legacy effects of drought on ecosystem WUE were observed. Furthermore, ecosystems showed a sensitive response to abrupt changes in hydrological climatic conditions. The transition from wet to dry years should increase ecosystem WUE, and the opposite change in WUE should occur when an ecosystem experiences a transition from dry to wet years. This indicates the resilience of ecosystems to drought disturbance. Knowledge from this study should provide an in-depth understanding of ecosystem strategies for coping with drought. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr
Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less
Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification.
Guilini, Katja; Weber, Miriam; de Beer, Dirk; Schneider, Matthias; Molari, Massimiliano; Lott, Christian; Bodnar, Wanda; Mascart, Thibaud; De Troch, Marleen; Vanreusel, Ann
2017-01-01
The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanica shoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters.
Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification
Weber, Miriam; de Beer, Dirk; Schneider, Matthias; Molari, Massimiliano; Lott, Christian; Bodnar, Wanda; Mascart, Thibaud; De Troch, Marleen; Vanreusel, Ann
2017-01-01
The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the structure of its epibiont communities at a Mediterranean volcanic CO2 vent off Panarea Island (Italy) and performed a laboratory experiment to test the effect of OA on P. oceanica photosynthesis and its potential buffering capacity. At the study site east of Basiluzzo Islet, venting of CO2 gas was controlled by tides, resulting in an average pH difference of 0.1 between the vent and reference site. P. oceanica shoot and leaf density was unaffected by these levels of OA, although shorter leaves at the vent site suggest increased susceptibility to erosion, potentially by herbivores. The community of sessile epibionts differed in composition and was characterized by a higher species richness at the vent site, though net epiphytic calcium carbonate concentration was similar. These findings suggest a higher ecosystem complexity at the vent site, which may have facilitated the higher diversity of copepods in the otherwise unaffected motile epibiont community. In the laboratory experiment, P. oceanica photosynthesis increased with decreasing pHT (7.6, 6.6, 5.5), which induced an elevated pH at the leaf surfaces of up to 0.5 units compared to the ambient seawater pHT of 6.6. This suggests a temporary pH buffering in the diffusive boundary layer of leaves, which could be favorable for epibiont organisms. The results of this multispecies study contribute to understanding community-level responses and underlying processes in long-term acidified conditions. Increased replication and monitoring of physico-chemical parameters on an annual scale are, however, recommended to assure that the biological responses observed during a short period reflect long-term dynamics of these parameters. PMID:28792960
CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.
2013-12-01
Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.
Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs
Fan, Zhaosheng; Liang, Chao
2015-01-01
Soil organic carbon (SOC) plays an important role in the global carbon cycle. However, it remains largely unknown how plant litter inputs impact magnitude, composition and source configuration of the SOC stocks over long term through microbial catabolism and anabolism, mostly due to uncoupled research on litter decomposition and SOC formation. This limits our ability to predict soil system responses to changes in land-use and climate. Here, we examine how microbes act as a valve controlling carbon sequestrated from plant litters versus released to the atmosphere in natural ecosystems amended with plant litters varying in quantity and quality. We find that litter quality – not quantity – regulates long-term SOC dynamics under different plausible scenarios. Long-term changes in bulk SOC stock occur only when the quality of carbon inputs causes asynchronous change in a microbial physiological trait, defined as “microbial biosynthesis acceleration” (MBA). This is the first theoretical demonstration that the response of the SOC stocks to litter inputs is critically determined by the microbial physiology. Our work suggests that total SOC at an equilibrium state may be an intrinsic property of a given ecosystem, which ultimately is controlled by the asynchronous MBA between microbial functional groups. PMID:25849864
Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs
Fan, Zhaosheng; Liang, Chao
2015-04-02
Soil organic carbon (SOC) plays an important role in the global carbon cycle. However, it remains largely unknown how plant litter inputs impact magnitude, composition and source configuration of the SOC stocks over long term through microbial catabolism and anabolism, mostly due to uncoupled research on litter decomposition and SOC formation. This limits our ability to predict soil system responses to changes in land-use and climate. Here, we examine how microbes act as a valve controlling carbon sequestrated from plant litters versus released to the atmosphere in natural ecosystems amended with plant litters varying in quantity and quality. We findmore » that litter quality – not quantity – regulates long-term SOC dynamics under different plausible scenarios. Long-term changes in bulk SOC stock occur only when the quality of carbon inputs causes asynchronous change in a microbial physiological trait, defined as ‘‘microbial biosynthesis acceleration’’ (MBA). This is the first theoretical demonstration that the response of the SOC stocks to litter inputs is critically determined by the microbial physiology. Our work suggests that total SOC at an equilibrium state may be an intrinsic property of a given ecosystem, which ultimately is controlled by the asynchronous MBA between microbial functional groups.« less
Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response
NASA Astrophysics Data System (ADS)
Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.
2015-12-01
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.
Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.
2008-01-01
Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.
Titus, Benjamin M; Daly, Marymegan; Exton, Dan A
2015-01-01
Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.
Wingard, G. Lynn; Bernhardt, Christopher E.; Wachnicka, Anna
2017-01-01
Resource managers around the world are challenged to develop feasible plans for sustainable conservation and/or restoration of the lands, waters, and wildlife they administer—a challenge made greater by anticipated climate change and associated effects over the next century. Increasingly, paleoecologic and geologic archives are being used to extend the period of record of observed data and provide information on centennial to millennial scale responses to long-term drivers of ecosystem change. The development of paleoecology from an emerging field investigating past environments to a highly relevant applied science is reviewed and general examples of the application of paleoecologic research to resource management questions in diverse habitats and regions are provided. Specific examples of the application of paleoecologic research to the restoration of the Greater Everglades Ecosystem of south Florida (U.S.A) are presented. Conducting valuable scientific research that would benefit resource management decisions, however, is not enough. Scientists and resource managers need to be engaged in collaborative discussions from the beginning of the research process to ensure that management questions are being addressed and that the science reaches the people who will benefit from the information. Paleoecology and related disciplines provide an understanding of how ecosystems and individual species function and change over time in response to both natural and anthropogenic drivers. Information on pre-anthropogenic baseline conditions is provided by paleoecologic research, but it is the detection of long-term trends and cycles that allow resource managers to set realistic goals and targets by moving away from the fixed-point baseline concept to one of dynamic landscapes that anticipates and incorporates an expectation of change into decision-making.
NASA Astrophysics Data System (ADS)
Scott, R. L.; Biederman, J.; Barron-Gafford, G.; Hamerlynck, E. P.
2015-12-01
Global-scale studies indicate that semiarid ecosystems strongly regulate the long-term trend and interannual variability of the terrestrial carbon sink, possibly due to changes in vegetation and an inherent sensitivity to changes in water availability. However, we lack understanding of how climate shifts, such as the ongoing decadal-scale drought in the Southwest US, impact carbon sink functioning in semiarid ecosystems with differing structure. Therefore, we investigated the response of net ecosystem production of carbon dioxide (NEP) to changes in annual water availability in four Southwest US ecosystems varying in relative shrub, tree and grass abundance. Using eddy covariance carbon dioxide and water vapor flux measurements collected over the last drought-impacted decade, we identified a precipitation "pivot point" in the annual carbon balance for each ecosystem type where annual NEP switched from negative to positive. At the three sites with larger amounts of grass, rather than woody plant, cover, pivot points were closer to the drought-period mean annual precipitation (MAP) than MAP over the preceding 30 years, suggesting the carbon pools of these grassier ecosystems have more quickly adjusted to the decadal-scale drought. Current-year water availability, as quantified by evapotranspiration (ET) overwhelmingly drove the response of gross ecosystem photosynthesis (GEP) and respiration (Reco) fluxes. Ecosystem water use efficiency (GEP/ET) increased with water availability and leaf area index, resulting in a more efficient photosynthetic use of water in wetter years and at wetter sites. Grasslands supported a higher leaf area than shrublands at a given water availability, and thus had higher GEP/ET. Differences in GEP/ET were also related to the relative proportion of abiotic evaporation, estimated from the ET intercept in a linear regression of ET and GEP, to total ET at a site, highlighting the importance of ET partitioning for understanding how semiarid rainfall drives plant productivity.
Evidence for a Drought-driven (pre-industrial) Regime Shift in an Australian Shallow Lake
NASA Astrophysics Data System (ADS)
Mills, K.; Gell, P.; Doan, P.; Kershaw, P.; McKenzie, M.; Lewis, T.; Tyler, J. J.
2015-12-01
We present a 750-year record of ecosystem response to long-term drought history from Lake Colac, Victoria. Using multiple lines of evidence, we test the sensitivity and resilience of Lake Colac to independently reconstructed drought history. The sedimentary archive shows that Lake Colac appears to be sensitive to periods of drought. Following drought conditions c. CE 1390, the lake ecosystem indicates signs of recovery. A succession of droughts in the early 1500s initiates a change in the diatom flora, with freshwater species declining and replaced by saline tolerant species, though there is little interpretable change in aquatic palynomorphs. An inferred drought, around CE 1720 appears to precede a major switch in the lake's ecosystem. The lake became increasingly turbid and saline and there is a distinct switch from a macrophyte-dominated system to an algal-dominated system. The arrival of Europeans in Victoria (CE1840) appears to have little effect on the lake's ecosystem, but the terrestrial vegetation indicates regionally established changes including declines in native trees, especially Casuarina, and arrival and expansion of exotic shade or plantation trees Pinus and Cupressus as well as native and introduced weeds. As European impact in the catchment increases, nutrients appear to play a role in the modification of the lake's ecosystem. A long-term drying trend from c. CE 1975 is evident, culminating in the Millennium Drought, which suggests unprecedented conditions in the ecological history of the Lake.
Ecosystem functioning is enveloped by hydrometeorological variability.
Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris
2017-09-01
Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.
A conceptual framework: redefining forest soil's critical acid loads under a changing climate.
McNulty, Steven G; Boggs, Johnny L
2010-06-01
Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response. Published by Elsevier Ltd.
Grassland responses to increased rainfall depend on the timescale of forcing.
Sullivan, Martin J P; Thomsen, Meredith A; Suttle, K B
2016-04-01
Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short-term responses to climate variability and longer-term trajectories that emerge under directional climatic change. In a decade-long experiment, we compare effects of short-term and long-term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long-term extension of the rainy season were consistent with short-term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long-term trajectories from short-term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses. © 2016 John Wiley & Sons Ltd.
Evidence-based evaluation of the cumulative effects of ecosystem restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.
Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less
Evidence-based evaluation of the cumulative effects of ecosystem restoration
Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; ...
2016-03-18
Evaluating the cumulative effects of large-scale ecological restoration programs is necessary to inform adaptive ecosystem management and provide society with resilient and sustainable services. However, complex linkages between restorative actions and ecosystem responses make evaluations problematic. Despite long-term federal investments in restoring aquatic ecosystems, no standard evaluation method has been adopted and most programs focus on monitoring and analysis, not synthesis and evaluation. In this paper, we demonstrate a new transdisciplinary approach integrating techniques from evidence-based medicine, critical thinking, and cumulative effects assessment. Tiered hypotheses are identified using an ecosystem conceptual model. The systematic literature review at the core ofmore » evidence-based assessment becomes one of many lines of evidence assessed collectively, using critical thinking strategies and causal criteria from a cumulative effects perspective. As a demonstration, we analyzed data from 166 locations on the Columbia River and estuary representing 12 indicators of habitat and fish response to floodplain restoration actions intended to benefit threatened and endangered salmon. Synthesis of seven lines of evidence showed that hydrologic reconnection promoted macrodetritis export, prey availability, and fish access and feeding. The evidence was sufficient to infer cross-boundary, indirect, compounding and delayed cumulative effects, and suggestive of nonlinear, landscape-scale, and spatial density effects. On the basis of causal inferences regarding food web functions, we concluded that the restoration program has a cumulative beneficial effect on juvenile salmon. As a result, this evidence-based approach will enable the evaluation of restoration in complex coastal and riverine ecosystems where data have accumulated without sufficient synthesis.« less
NASA Astrophysics Data System (ADS)
Doyle, M. W.; Rigby, J.
2011-12-01
The basic premise of the term "anthropocene" is that human practices are becoming a primary force in shaping ecosystems even at the global scale. Ecohydrologists and hydroecologists often consider human effects to be a collective term that is culturally and politically invariant. "Anthropogenic change" is often cited regardless of whether these changes occur in liberal democracies or totalitarian autocracies. Yet there is potential for socio-politically driven variation in basic human impacts on the environment. Analyzing the anthropocene requires considering the rise in global population convolved with dramatically shifting political and economic conditions. How humans affect the environment, and how environmental change feedbacks operate, are likely highly dependent on cultural and political contexts. We posed the question, "Does capitalism leave a distinct signature on the hydroecological landscape?" We analyzed emerging designer ecosystems markets using Mankiw-Whinston free-entry equilibria model coupled with simple species-area curves and tested it with an extensive database of ecosystem service trades in North Carolina. Free-entry leads to a diffusion of small restored ecosystems whereas restricted entry leads to fewer, large sites; the difference in site locations and sizes in turn impact regional species distribution and water quality. We next analyzed the effect of deregulating electricity markets on river flow regimes in North Carolina; market deregulation increases potential profits derived from rapid power production in response to price changes on the spot market to which hydropower is uniquely able to respond. Results showed the potential for increased flow variability associated with price volatility in purely market-driven cases, but additional constraints required of infrastructure (e.g., flood control) restrict purely market-driven flow regimes. Changes in macro-economic conditions may also leave distinct signatures, often reflecting political responses. For instance, US river flow regimes experienced greatest change in mainstemrivers following centralization of water resource functions in the mid-20th century associated with political response to the Great Depression. More recently in China, emerging data show that the internal migration toward urban, manufacturing centers has changed the national distribution of vegetation, and that reversal of such changes may occur in response to recent economic downturn. Other data on water quality from China's experiment with capitalism within Special Economic Zones, such as Shenzen, indicate hydroecological responses to the global economic recession and/or a classic Kuznet's Curve response to growing affluence. If it is true that particular political structures and/or economies leave environmental fingerprints, then understanding ongoing and future hydroecological changes will require a greater scope in research agenda. Further case studies of particular fingerprints of different political and economic institutions are needed to substantiate our hypothesis. Second, greater collaboration is needed between hydrologists and political scientists to understand broader motivations and trends in political structures and economic conditions.
Erica A. H. Smithwick; Daniel M. Kashian; Michael G. Ryan; Monica G. Turner
2009-01-01
Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N...
Vulnerability of the global terrestrial ecosystems to climate change.
Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng
2018-05-27
Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.
Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Xu, Xiaomei; McGeehin, John P.
2016-07-28
Boreal soils play an important role in the global carbon cycle owing to the large amount of carbon stored within this northern region. To understand how carbon and nitrogen storage varied among different ecosystems, a vegetation gradient was established in the Bonanza Creek Long Term Ecological Research (LTER) site, located in interior Alaska. The ecosystems represented are a black spruce (Picea mariana)–feather moss (for example, Hylocomium sp.) forest ecosystem, a shrub-dominated ecosystem, a tussock-grass-dominated ecosystem, a sedge-dominated ecosystem, and a rich fen ecosystem. Here, we report the physical, chemical, and descriptive properties for the soil cores collected at these sites. These data have been used to calculate carbon and nitrogen accumulation rates on a long-term (decadal and century) basis (Manies and others, in press).
NASA Astrophysics Data System (ADS)
Knox, Ryan Gary
A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region, and to see if those changes are significant enough to produce an ecological response. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes human deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant differences in hydrometeorology. Locations that show compelling differences are taken as case studies. The seasonal biases in precipitation at these locations are then used to create perturbations to long-term climate datasets. These perturbations then drive long-term simulations of dynamic vegetation to see if the climate consistent with a potential regional vegetation could elicit a change in the vegetation equilibrium at the site. Results show that South American land conversion has had consistent impacts on the regional patterning of precipitation. At some locations, changes in precipitation are persistent and constitute a significant fraction of total precipitation. Land-conversion has decreased mean continental evaporation and increased mean moisture convergence. Case study simulations of long term vegetation dynamic indicate that a hydrologic climate consistent with regional potential vegetation can indeed have significant influence on ecosystem structure and composition, particularly in water limited growth conditions. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
USDA-ARS?s Scientific Manuscript database
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Fu...
Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban gro...
Katherine J. Elliott; Lindsay R. Boring; Wayne T. Swank
2002-01-01
In 1975, we initiated a long-term interdisciplinary study of forest watershed ecosystem response to clear- cutting and cable logging in watershed 7 at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains of North Carolina. This paper describes ~20 years of change in species composition, aboveground biomass, leaf area index (LAI),...
Steven T. Overby
2009-01-01
Soil microbial communities process plant detritus and returns nutrients needed for plant growth. Increased knowledge of this intimate linkage between plant and soil microbial communities will provide a better understanding of ecosystem response to changing abiotic and biotic conditions. This dissertation consists of three studies to determine soil microbial community...
Future wildfire trends, impacts, and mitigation options in the Southern United States
Yongqiang Liu; Jeffrey P. Prestemon; Scott L. Goodrick; Thomas P. Holmes; John A. Stanturf; James M. Vose; Ge Sun
2014-01-01
Wildfire is among the most common forest disturbances, affecting the structure, composition, and functions of many ecosystems. The complex role that wildfire plays in shaping forests has been described in terms of vegetation responses, which are characterized as dependent on, sensitive to, independent of, or influenced by fire (Myers 2006). Fire is essential in areas...
E. Carol Adair; William J. Parton; Steven J. Del Grosso; Shendee L. Silver; Mark E. Harmon; Sonia A. Hall; Ingrid C. Burke; Stephen C. Hart
2008-01-01
As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a...
Long-term vegetation changes in a temperate forest impacted by climate change
Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo
2014-01-01
Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...
ERIC Educational Resources Information Center
Hain-Jamall, Doe A. S.
2013-01-01
According to this author, the Earth is in trouble. Decades of mining, over-fishing, and the pumping of toxic chemicals into the atmosphere have taken an enormous toll on an otherwise robust and healthy planetary ecosystem. Those responsible have prioritized financial gain over sustainability, over life--plant, animal, and human. Short-term profit…
Clein, Joy S.; McGuire, A.D.; Zhang, X.; Kicklighter, D.W.; Melillo, J.M.; Wofsy, S.C.; Jarvis, P.G.; Massheder, J.M.
2002-01-01
The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C-N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R2= 0.77, 0.88 for GPP and RESP; uncoupled: R2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and simulated NEP (R2 = 0.36, 0.20 for coupled and uncoupled simulations, respectively) was similar to the correlations at the northern site. To evaluate the role of N dynamics in C balance of black spruce ecosystems across North America, we simulated historical and projected C dynamics from 1900 to 2100 with a global-based climatology at 0.5?? resolution (latitude ?? longitude) with both the coupled and uncoupled parameterizations of TEM. From analyses at the northern site, several consistent patterns emerge. There was greater inter-annual variability in net primary production (NPP) simulated by the uncoupled parameterization as compared to the coupled parameterization, which led to substantial differences in inter-annual variability in NEP between the parameterizations. The divergence between NPP and heterotrophic respiration was greater in the uncoupled simulation, resulting in more C sequestration during the projected period. These responses were the result of fundamentally different responses of the coupled and uncoupled parameterizations to changes in CO2 and climate. Across North American black spruce ecosystems, the range of simulated decadal changes in C storage was substantially greater for the uncoupled parameterization than for the coupled parameterization. Analysis of the spatial variability in decadal responses of C dynamics revealed that C fluxes simulated by the coupled and uncoupled parameterizations have different sensitivities to climate and that the climate sensitivities of the fluxes change over the temporal scope of the simulations. The results of this study suggest that uncertainties can be reduced through (1) factorial studies focused on elucidating the role of C and N interactions in the response of mature black spruce ecosystems to manipulations of atmospheric CO2 and climate, (2) establishment of a network of continuous, long-term measurements of C dynamics across the range of mature black spruce ecosystems in North America, and (3) ancillary measureme
Hanley, Torrance C; Kimbro, David L; Hughes, Anne Randall
2017-07-01
Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments. However, stress effects on the marsh community were generally less pronounced 6 months after the wrack perturbation, indicating capacity for recovery. Our results demonstrate that individual perturbation components can determine the degree to which its effects on the community elicit primarily stress- and/or subsidy-based responses. Further, the nature and extent of stress-subsidy effects can change over time, depending on species' relative ability to tolerate and/or recover from perturbation. © 2017 by the Ecological Society of America.
Effects of long-term use by big game and livestock in the Blue Mountains forest ecosystems.
Larry L. Irwin; John G. Cook; Robert A. Riggs; Jon M. Skovlin
1994-01-01
The effects on eastside forest ecosystems from long-term grazing by large mammals are assessed, because long-term herbivory can reduce or increase ecosystem productivity. The assessment emphasizes elk and cattle in the Blue Mountains of northeast Oregon and southeast Washington. Histories of populations of large mammals and their effects in the Blue Mountains are...
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew; Bosworth, Andrew
2017-01-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
McAbee, Kathryn; Reinhardt, Keith; Germino, Matthew J; Bosworth, Andrew
2017-03-01
Semi-arid rangelands are important carbon (C) pools at global scales. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, C storage in cold-desert ecosystems could increase with boosts in wintertime precipitation, in which climate models predict, due to increases in wintertime soil water storage that enhance summertime productivity. However, there are few long-term, manipulative field-based studies investigating how rangelands will respond to altered precipitation amount or timing. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over a single growing season in plots that had 200 mm of supplemental precipitation added in either winter or summer for the past 21 years, in shrub- and exotic-bunchgrass-dominated garden plots. At our cold-desert site (298 mm precipitation during the study year), we hypothesized that increased winter precipitation would stimulate the aboveground C uptake and storage relative to ambient conditions, especially in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in the aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, and moreso in shrub- compared to grass-dominated communities.
Plant community responses to experimental warming across the tundra biome
Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.
2006-01-01
Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292
Time scales of biogeochemical and organismal responses to individual precipitation events
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Angert, A. L.; Augustine, D. J.; Brown, C.; Dijkstra, F. A.; Derner, J. D.; Hufbauer, R. A.; Fierer, N.; Milchunas, D. G.; Moore, J. C.; Steltzer, H.; Wallenstein, M. D.
2010-12-01
In temperate grasslands, spatial and intra-annual variability in the activity of plants and microbes are structured by patterns in the precipitation regime. While the effects of total annual precipitation have been well-explored, the ecological dynamics associated with individual precipitation events have not. Rainfall events induce a short-term pulse of soil respiration that may or may not be followed by stimulation of plant photosynthetic activity and growth. Because the underlying heterotrophic and autotrophic responses are interactive, respond over unique timescales and are sensitive to precipitation magnitude, it remains difficult to predict the hydrologic effects on net CO2 exchange. To develop a better mechanistic understanding of these processes, we conducted a synthetic, multi-investigator experiment to characterize the ecosystem responses to rainfall events of different sizes. Our work was conducted on the Shortgrass Steppe (SGS) LTER site over 7 days in June 2009, using 1cm and 2cm rainfall events, with controls and each treatment replicated 5 times in 2m x 2m plots. Our observations revealed both expected responses of plant activity and soil respiration, and surprising patterns in microbial enzyme activity and soil fauna population densities. Coupled with observed dynamics in 15N partitioning and kinetics, our findings provide empirical timescales for the complex ecological interactions that underlie the ecosystem responses to rainfall events. These results can be used to inform a new generation of ecosystem simulation models to more explicitly consider the time lags and interactions of different functional groups.
Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Turetsky, Merritt
2016-01-01
Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m−2 yr−1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m−2 yr−1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m−2 yr−1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m−2 yr−1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m−2 yr−1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.
NASA Astrophysics Data System (ADS)
Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.
2015-12-01
Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated uncertainties, and 2) for predicting abrupt changes in vegetation composition, we need to better implement processes of dynamic turnover and fire in current ecosystem models.
Melis, Theodore S.; Walters, Carl; Korman, Josh
2015-01-01
With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.
Differential sensitivity to regional-scale drought in six central US grasslands.
Knapp, Alan K; Carroll, Charles J W; Denton, Elsie M; La Pierre, Kimberly J; Collins, Scott L; Smith, Melinda D
2015-04-01
Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.
A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes
NASA Astrophysics Data System (ADS)
Mcgregor, Glenn B.; Marshall, Jonathan C.; Lobegeiger, Jaye S.; Holloway, Dean; Menke, Norbert; Coysh, Julie
2018-03-01
For several decades there has been recognition that water resource development alters river flow regimes and impacts ecosystem values. Determining strategies to protect or restore flow regimes to achieve ecological outcomes is a focus of water policy and legislation in many parts of the world. However, consideration of existing environmental flow assessment approaches for application in Queensland identified deficiencies precluding their adoption. Firstly, in managing flows and using ecosystem condition as an indicator of effectiveness, many approaches ignore the fact that river ecosystems are subjected to threatening processes other than flow regime alteration. Secondly, many focus on providing flows for responses without considering how often they are necessary to sustain ecological values in the long-term. Finally, few consider requirements at spatial-scales relevant to the desired outcomes, with frequent focus on individual places rather than the regions supporting sustainability. Consequently, we developed a risk-based ecohydrological approach that identifies ecosystem values linked to desired ecological outcomes, is sensitive to flow alteration and uses indicators of broader ecosystem requirements. Monitoring and research is undertaken to quantify flow-dependencies and ecological modelling is used to quantify flow-related ecological responses over an historical flow period. The relative risk from different flow management scenarios can be evaluated at relevant spatial-scales. This overcomes the deficiencies identified above and provides a robust and useful foundation upon which to build the information needed to support water planning decisions. Application of the risk assessment approach is illustrated here by two case studies.
Human-polar bear interactions in a changing Arctic: Existing and emerging concerns
Atwood, Todd C.; Simac, Kristin; Breck, Stewart; York, Geoff; Wilder, James
2017-01-01
The behavior and sociality of polar bears (Ursus maritimus) have been shaped by evolved preferences for sea ice habitat and preying on marine mammals. However, human behavior is causing changes to the Arctic marine ecosystem through the influence of greenhouse gas emissions that drive long-term change in ecosystem processes and via the presence of in situ stressors associated with increasing human activities. These changes are making it more difficult for polar bears to reliably use their traditional habitats and maintain fitness. Here, we provide an overview of how human activities in the Arctic are likely to change a polar bear’s behavior and to influence their resilience to environmental change. Developing a more thorough understanding of polar bear behavior and their capacity for flexibility in response to anthropogenic disturbances and subsequent mitigations may lead to successful near-term management interventions.
Recent variations in Amazon carbon balance driven by climate anomalies
NASA Astrophysics Data System (ADS)
Miller, J. B.
2015-12-01
Understanding tropical rainforest response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net ecosystem exchange of CO2 with the atmosphere (NEE), a metric that represents the total integrated signal of carbon fluxes into and out of ecosystems. Sub-annual and sub-basin NEE estimates have previously been derived from process-based biosphere models, despite often disagreeing with plot-scale observations. Our analysis of airborne CO2 and CO measurements reveals monthly, sub-Basin scale (~106 km2) NEE variations in a framework that is largely independent of bottom-up estimates. As such, our approach provides new insights about tropical forest response to climate. We find acute sensitivity of NEE to daily and monthly climate extremes. In particular, increased central-Amazon NEE was associated with wet-season heat and dry-season drought in 2010. We analyze satellite proxies for photosynthesis and find that suppression of photosynthesis may have contributed to increased carbon loss in the 2010 drought, consistent with recent analysis of plot-scale measurements. In the eastern Amazon, pulses of increased NEE (i.e. net respiration) persisted through 2011, suggesting legacy effects of the drought that occurred in 2010. Regional differences in post-drought recovery in 2011 and 2012 appear related to long-term water availability. These results provide novel evidence of the vulnerability of Amazon carbon stocks to short-term temperature and moisture extremes.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.
2005-01-01
Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2) Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3) The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4) Some ecosystem properties are initially insensitive to species loss because (a) ecosystems may have multiple species that carry out similar functional roles, (b) some species may contribute relatively little to ecosystem properties, or (c) properties may be primarily controlled by abiotic environmental conditions.5) More species are needed to insure a stable supply of ecosystem goods and services as spatial and temporal variability increases, which typically occurs as longer time periods and larger areas are considered.We have high confidence in the following conclusions:1) Certain combinations of species are complementary in their patterns of resource use and can increase average rates of productivity and nutrient retention. At the same time, environmental conditions can influence the importance of complementarity in structuring communities. Identification of which and how many species act in a complementary way in complex communities is just beginning.2) Susceptibility to invasion by exotic species is strongly influenced by species composition and, under similar environmental conditions, generally decreases with increasing species richness. However, several other factors, such as propagule pressure, disturbance regime, and resource availability also strongly influence invasion success and often override effects of species richness in comparisons across different sites or ecosystems.3) Having a range of species that respond differently to different environmental perturbations can stabilize ecosystem process rates in response to disturbances and variation in abiotic conditions. Using practices that maintain a diversity of organisms of different functional effect and functional response types will help preserve a range of management options.Uncertainties remain and further research is necessary in the following areas:1) Further resolution of the relationships among taxonomic diversity, functional diversity, and community structure is important for identifying mechanisms of biodiversity effects.2) Multiple trophic levels are common to ecosystems but have been understudied in biodiversity/ecosystem functioning research. The response of ecosystem properties to varying composition and diversity of consumer organisms is much more complex than responses seen in experiments that vary only the diversity of primary producers.3) Theoretical work on stability has outpaced experimental work, especially field research. We need long-term experiments to be able to assess temporal stability, as well as experimental perturbations to assess response to and recovery from a variety of disturbances. Design and analysis of such experiments must account for several factors that covary with species diversity.4) Because biodiversity both responds to and influences ecosystem properties, understanding the feedbacks involved is necessary to integrate results from experimental communities with patterns seen at broader scales. Likely patterns of extinction and invasion need to be linked to different drivers of global change, the forces that structure communities, and controls on ecosystem properties for the development of effective management and conservation strategies.5) This paper focuses primarily on terrestrial systems, with some coverage of freshwater systems, because that is where most empirical and theoretical study has focused. While the fundamental principles described here should apply to marine systems, further study of that realm is necessary.Despite some uncertainties about the mechanisms and circumstances under which diversity influences ecosystem properties, incorporating diversity effects into policy and management is essential, especially in making decisions involving large temporal and spatial scales. Sacrificing those aspects of ecosystems that are difficult or impossible to reconstruct, such as diversity, simply because we are not yet certain about the extent and mechanisms by which they affect ecosystem properties, will restrict future management options even further. It is incumbent upon ecologists to communicate this need, and the values that can derive from such a perspective, to those charged with economic and policy decision-making.
Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep
2013-10-01
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long-term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species-specific responses to drought, what may eventually lead to a partial community shift favoring the more drought-resistant species. However, we also report a dampening of the treatment effect on the two drought-sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sparks, A. M.; Smith, A. M.; Kolden, C.; Apostol, K. G.; Boschetti, L.
2014-12-01
Fire is a common disturbance in forested ecosystems in the western U.S. and can be responsible for long-term impacts on vegetation and soil. An improved understanding of how ecosystems recover after fire is necessary so that land managers can plan for and mitigate the effects of these disturbances. Although several studies have attempted to link fire intensity with severity, direct links between spectral indices of severity and key physiological changes in vegetation are not well understood. We conducted an assessment of how two western conifer species respond to four fire radiative energy treatments, with spectra acquired pre- and up to a month post-burn. After transforming the spectral data into Landsat 8 equivalent reflectance, burn severity indices commonly used in the remote sensing community were compared to concurrent physiological measurements including gas exchange and photosynthetic rate. Preliminary results indicate significant relationships between several fire severity indices and physiological responses measured in the conifer seedlings.
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-06-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.
Park, Soojin; Park, Sungyong; Park, Young B
2018-02-12
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes.
Park, Young B.
2018-01-01
With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes. PMID:29439540
Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration.
Wrege, Peter H; Rowland, Elizabeth D; Thompson, Bruce G; Batruch, Nikolas
2010-12-01
Most evaluations of the effects of human activities on wild animals have focused on estimating changes in abundance and distribution of threatened species; however, ecosystem disturbances also affect aspects of animal behavior such as short-term movement, activity budgets, and reproduction. It may take a long time for changes in behavior to manifest as changes in abundance or distribution. Therefore, it is important to have methods with which to detect short-term behavioral responses to human activity. We used continuous acoustic and seismic monitoring to evaluate the short-term effects of seismic prospecting for oil on forest elephants (Loxodonta cyclotis) in Gabon, Central Africa. We monitored changes in elephant abundance and activity as a function of the frequency and intensity of acoustic and seismic signals from dynamite detonation and human activity. Elephants did not flee the area being explored; the relative number of elephants increased in a seasonal pattern typical of elsewhere in the ecosystem. In the exploration area, however, they became more nocturnal. Neither the intensity nor the frequency of dynamite blasts affected the frequency of calling or the daily pattern of elephant activity. Nevertheless, the shift of activity to nocturnal hours became more pronounced as human activity neared each monitored area of forest. This change in activity pattern and its likely causes would not have been detected through standard monitoring methods, which are not sensitive to behavioral changes over short time scales (e.g., dung transects, point counts) or cover a limited area (e.g., camera traps). Simultaneous acoustic monitoring of animal communication, human, and environmental sounds allows the documentation of short-term behavioral changes in response to human disturbance. © 2010 Society for Conservation Biology.
Ko, Chia-Ying; Lai, Chao-Chen; Hsu, Huang-Hsiung; Shiah, Fuh-Kwo
2017-02-01
Information of the decadal timescale effects of episodic climatic disturbances (i.e., typhoons) on phytoplankton in freshwater ecosystems have received less attention and fewer seasonal evaluations partly due to the lack of long-term time-series monitoring data in typhoon prevailing areas. Through field observations of a total 36 typhoon cases in a subtropical deep freshwater ecosystem in the period of 2005-2014, we quantified phytoplankton biomass, production and growth rate in response to meteorological and hydrological changes in the weeks before, during and after typhoons between summer and autumn, and also investigated the effects of typhoon characteristics on the aforementioned phytoplankton responses. The results showed that phytoplankton exposed to typhoon disturbances generally exhibited an increasing trend over the weeks before, during and after typhoons in summer but varied in autumn. The correlations and multivariate regressions showed different contributions of meteorological and hydrological variables to individual phytoplankton responses before, during and after typhoons between seasons. The post-typhoon weeks (i.e., within two weeks after a typhoon had passed) were especially important for the timeline of phytoplankton increases and with a detectable seasonal variation that the chlorophyll a concentration significantly increased in autumn whereas both primary production and growth rate were associated with significant changes in summer. Additionally, phytoplankton responses during the post-typhoon weeks were significantly different between discrete or continuous types of typhoon events. Our work illustrated the fact that typhoons did influence phytoplankton responses in the subtropical deep freshwater ecosystem and typhoon passages in summer and autumn affected the phytoplankton dynamics differently. Nevertheless, sustained and systematic monitoring in order to advance our understanding of the role of typhoons between seasons in the modulation of phytoplankton productivity and functioning is required because such episodic climatic disturbances are projected to have intense magnitude and inconsistent frequency under 21st century climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B
2017-05-01
Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cozzoli, Francesco; Smolders, Sven; Eelkema, Menno; Ysebaert, Tom; Escaravage, Vincent; Temmerman, Stijn; Meire, Patrick; Herman, Peter M. J.; Bouma, Tjeerd J.
2017-01-01
The natural coastal hydrodynamics and morphology worldwide is altered by human interventions such as embankments, shipping and dredging, which may have consequences for ecosystem functionality. To ensure long-term ecological sustainability, requires capability to predict long-term large-scale ecological effects of altered hydromorphology. As empirical data sets at relevant scales are missing, there is need for integrating ecological modeling with physical modeling. This paper presents a case study showing the long-term, large-scale macrozoobenthic community response to two contrasting human alterations of the hydromorphological habitat: deepening of estuarine channels to enhance navigability (Westerschelde) vs. realization of a storm surge barrier to enhance coastal safety (Oosterschelde). A multidisciplinary integration of empirical data and modeling of estuarine morphology, hydrodynamics and benthic ecology was used to reconstruct the hydrological evolution and resulting long-term (50 years) large-scale ecological trends for both estuaries over the last. Our model indicated that hydrodynamic alterations following the deepening of the Westerschelde had negative implications for benthic life, while the realization of the Oosterschelde storm surge barriers had mixed and habitat-dependent responses, that also include unexpected improvement of environmental quality. Our analysis illustrates long-term trends in the natural community caused by opposing management strategies. The divergent human pressures on the Oosterschelde and Westerschelde are examples of what could happen in a near future for many global coastal ecosystems. The comparative analysis of the two basins is a valuable source of information to understand (and communicate) the future ecological consequences of human coastal development.
Rich, Paul M; Breshears, David D; White, Amanda B
2008-02-01
Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody-herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale piñon pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.
Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P
2016-08-01
Predators affect ecosystems not only through direct mortality of prey, but also through risk effects on prey behavior, which can exert strong influences on ecosystem function and prey fitness. However, how functionally different prey species respond to predation risk and how prey strategies vary across ecosystems and in response to predator reintroduction are poorly understood. We investigated the spatial distributions of six African herbivores varying in foraging strategy and body size in response to environmental factors and direct predation risk by recently reintroduced lions in the thicket biome of the Addo Elephant National Park, South Africa, using camera trap surveys, GPS telemetry, kill site locations and Light Detection and Ranging. Spatial distributions of all species, apart from buffalo, were driven primarily by environmental factors, with limited responses to direct predation risk. Responses to predation risk were instead indirect, with species distributions driven by environmental factors, and diel patterns being particularly pronounced. Grazers were more responsive to the measured variables than browsers, with more observations in open areas. Terrain ruggedness was a stronger predictor of browser distributions than was vegetation density. Buffalo was the only species to respond to predator encounter risk, avoiding areas with higher lion utilization. Buffalo therefore behaved in similar ways to when lions were absent from the study area. Our results suggest that direct predation risk effects are relatively weak when predator densities are low and the time since reintroduction is short and emphasize the need for robust, long-term monitoring of predator reintroductions to place such events in the broader context of predation risk effects.
Marine pelagic ecosystems: the West Antarctic Peninsula
Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William
2006-01-01
The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response. PMID:17405208
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.
2017-12-01
The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of collaboration through an expanded knowledge base, provision of key datasets to a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance.
Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa
2016-01-01
The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.
Trends and Controls of inter-annual Variability in the Carbon Budget of Terrestrial Ecosystems
NASA Astrophysics Data System (ADS)
Cescatti, A.; Marcolla, B.
2014-12-01
The climate sensitivity of the terrestrial carbon budget will substantially affect the sign and strength of the land-climate feedbacks and the future climate trajectories. Current trends in the inter-annual variability of terrestrial carbon fluxes (IAV) may contribute to clarify the relative role of physical and biological controls of ecosystem responses to climate change. For this purpose we investigated how recent climate variability has impacted the carbon fluxes at long-term FLUXNET sites. Using a novel method, the IAV has been factored out in climate induced variability (physical control), variability due to changes in ecosystem functioning (biological control) and the interaction of the two terms. The relative control of the main climatic drivers (temperature, water availability) on the physical and biological sources of IAV has been investigated using both site level fluxes and global gridded products generated from the up-scaling of flux data. Results of this analysis highlight the fundamental role of precipitation trends on the pattern of IAV in the last 30 years. Our findings on the spatial/temporal trends of IAV have been finally confirmed using the signal derived from the global network of atmospheric CO2 concentrations measurements.
How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?
Tang, Xuguang; Li, Hengpeng; Desai, Ankur R; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilegaard, Kim; Köstner, Barbara; Ammann, Christof
2014-12-15
A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.
Ecosystem resilience and threshold response in the Galápagos coastal zone.
Seddon, Alistair W R; Froyd, Cynthia A; Leng, Melanie J; Milne, Glenn A; Willis, Katherine J
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1) at the end of the 21(st) century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13)C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.
Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone
Seddon, Alistair W. R.; Froyd, Cynthia A.; Leng, Melanie J.; Milne, Glenn A.; Willis, Katherine J.
2011-01-01
Background The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? Methodology/Principal Findings Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. Conclusions/Significance Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience. PMID:21811594
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Thorsten Zeppenfeld; Miroslav Svoboda; R. Justin DeRose; Marco Heurich; Jorg Muller; Pavla Cizkova; Martin Stary; Radek Bace; Daniel C. Donato
2015-01-01
Large, severe disturbances drive many forest ecosystems over the long term, but pose management uncertainties when human experience with them is limited. Recent continent-scale outbreaks of bark beetles across the temperate Northern Hemisphere have raised major concerns as to whether coniferous forests will regenerate back towards pre-outbreak condition and...
Kurt S. Pregitzer; Andrew J. Burton; John S. King; Donald R. Zak
2008-01-01
The Rhinelander free-air CO2 enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO2) and elevated tropospheric ozone (+O3). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to...
Stream nitrogen responses to fire in the Southeastern U.S.
James M. Vose; Stephanie H. Laseter; Steve G. McNulty
2005-01-01
Fire can play a significant role in runoff, sediment yield, and nitrate transport in aquatic and terrestrial ecosystems in the southeast US. The typical impact of fire is an immediate change in the physical properties of the soil and forest floor surface, followed by mid- and long-term changes in biological pools and cycling processes. Depending upon the severity of...
Erik A. Lilleskov
2017-01-01
Fungal respiration contributes substantially to ecosystem respiration, yet its field temperature response is poorly characterized. I hypothesized that at diurnal time scales, temperature-respiration relationships would be better described by unimodal than exponential models, and at longer time scales both Q10 and mass-specific respiration at 10 °...
The long term response of stream flow to climatic warming in headwater streams of interior Alaska
Jeremy B. Jones; Amanda J. Rinehart
2010-01-01
Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...
Stand-level bird response to experimental forest management in the Missouri Ozarks
Sarah W. Kendrick; Paul A. Porneluzi; Frank R. Thompson; Dana L. Morris; Janet M. Haslerig; John Faaborg
2015-01-01
Long-term landscape-scale experiments allow for the detection of effects of silviculture on bird abundance. Manipulative studies allow for strong inference on effects and confirmation of patterns from observational studies.We estimated bird-territory density within forest stands (2.89-62 ha) for 19 years of the Missouri Ozark Forest Ecosystem Project (MOFEP), a 100-...
G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien
2015-01-01
Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...
Short Term Soil Respiration Response to Fire in a Semi-arid Ecosystem
NASA Astrophysics Data System (ADS)
Rozin, A. G.
2015-12-01
In the Intermountain West (USA), fire is an important driver of carbon cycling in the environment. Increasing frequency and severity of fires, either through management actions or wildfires, is expected with changing climates in the Western United States. When burning is used as a management tool, it may be beneficial and control the growth of nuisance vegetation, promote the regeneration of grasses and forage species, and reduce hazardous fuel loads to minimize the risk of future wildfires. However, high intensity wildfires often have a negative effect, resulting in a loss of carbon storage and a shift of vegetation communities. This delays recovery of the ecosystem for years or decades and alters the historic fire regime. A 2000 acre prescribed burn in the Reynolds Creek Critical Zone Observatory provided the opportunity to quantify pre and post-burn soil carbon stores and soil carbon losses by heterotrophic respiration. Pre and post-burn soil samples were collected for physical and biogeochemical characterization to quantify substrate availability and possible limitations for heterotrophic respiration. CO2 fluxes were continuously monitored in situ before and immediately after the fire to understand the short-term response of soil respiration to varying burn severities.
NASA Astrophysics Data System (ADS)
Millar, C. I.; Fagre, D. B.
2004-12-01
Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329
Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems
NASA Astrophysics Data System (ADS)
Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.
2017-12-01
One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long-term structure of the aquatic ecosystems.
Albert, Loren P; Keenan, Trevor F; Burns, Sean P; Huxman, Travis E; Monson, Russell K
2017-05-01
Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.
Climate-driven range shifts of the king penguin in a fragmented ecosystem
NASA Astrophysics Data System (ADS)
Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano
2018-03-01
Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.
Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters
NASA Astrophysics Data System (ADS)
Lehahn, Yoav; Koren, Ilan; Sharoni, Shlomit; D'Ovidio, Francesco; Vardi, Assaf; Boss, Emmanuel
2017-03-01
Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (~1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.
CLASSIFICATION FRAMEWORK FOR COASTAL ECOSYSTEM RESPONSES TO AQUATIC STRESSORS
Many classification schemes have been developed to group ecosystems based on similar characteristics. To date, however, no single scheme has addressed coastal ecosystem responses to multiple stressors. We developed a classification framework for coastal ecosystems to improve the ...
NASA Astrophysics Data System (ADS)
Vina, A.; Tuanmu, M.; Yang, W.; Liu, J.
2012-12-01
Human activities continue to induce the degradation of natural ecosystems, thus threatening not only the long-term survival of many wildlife species around the world, but also the resilience of natural ecosystems to global environmental changes. In response, many conservation efforts are emerging as adaptive strategies for coping with the degradation of natural ecosystems. Among them, the establishment of nature reserves is considered to be the most effective. However the effectiveness of nature reserves depends on the type and intensity of human activities occurring within their boundaries. But many of these activities constitute important livelihood systems for local human populations. Therefore, to enhance the effectiveness of conservation actions without significantly affecting local livelihood systems, it is essential to understand the complexity of human-nature interactions and their effects on the spatio-temporal dynamics of natural ecosystems. In this study, we evaluated the relation between giant panda habitat dynamics, conservation efforts and human activities in Wolong Nature Reserve for Giant Pandas, Sichuan Province, China. This reserve supports ca. 10% of the entire wild giant panda population but is also home to ca. 4,900 local residents. The spatio-temporal dynamics of giant panda habitat over the last four decades were analyzed using a time series of remotely sensed imagery acquired by different satellite sensor systems, including the Landsat Multi-Spectral Scanner, the Landsat Thematic Mapper and the Moderate Resolution Imaging Spectroradiometer (MODIS). Our assessment suggests that when local residents were actively involved in conservation efforts (through a payment for ecosystem services scheme established since around 2000) panda habitat started to recover, thus enhancing the resilience capacity of natural ecosystems in the Reserve. This reversed a long-term (> 30 years) trend of panda habitat degradation. The study not only has direct implications for wildlife habitat conservation but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of natural ecosystems.
NASA Astrophysics Data System (ADS)
Waddington, J. M.; Kettridge, N.; Sherwood, J.; Thompson, D.; Morris, P. J.
2012-12-01
Peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize their net carbon sink function, producing a globally significant carbon store that is often resilient to disturbances such as drainage and wildfire. However, the effects of these disturbances on peatland ecohydrological function have only been considered previously in isolation. We capitalize on a unique long-term experiment to examine the response of a peatland in boreal western Canada to the compound disturbance of drying and wildfire. We show that the compound effect of such disturbances can reduce the ecohydrological resilience of these ecosystems leaving them vulnerable to irreversible shifts in their ecological, hydrological and biogeochemical function. Peatland ecosystems have a hydrology characterized generally by a long water residence times and a high water table position. Less-dense near-surface peat acts as a hydrological buffer, regulating water-table position and near-surface moisture content. This buffer is lost through combustion and compaction, increasing the flashiness of the peatland hydrology, increasing the vulnerability of the ecosystem to drought conditions. This greatly reduces the recolonization success of keystone Sphagnum moss species. As a result the peatland followed a previously unobserved development trajectory leading to the loss of globally important ecosystem services and the development of a novel 'peat forest' ecosystem. This ecosystem shift is self-reinforcing, as the establishment of invasive species reduces available light essential for Sphagnum establishment.
Howard, B J; Beresford, N A; Nisbet, A; Cox, G; Oughton, D H; Hunt, J; Alvarez, B; Andersson, K G; Liland, A; Voigt, G
2005-01-01
The STRATEGY project (Sustainable Restoration and Long-Term Management of Contaminated Rural, Urban and Industrial Ecosystems) aimed to provide a holistic decision framework for the selection of optimal restoration strategies for the long-term sustainable management of contaminated areas in Western Europe. A critical evaluation was carried out of countermeasures and waste disposal options, from which compendia of state-of-the-art restoration methods were compiled. A decision support system capable of optimising spatially varying restoration strategies, that considered the level of averted dose, costs (including those of waste disposal) and environmental side effects was developed. Appropriate methods of estimating indirect costs associated with side effects and of communicating with stakeholders were identified. The importance of stakeholder consultation at a local level and of ensuring that any response is site and scenario specific were emphasised. A value matrix approach was suggested as a method of addressing social and ethical issues within the decision-making process, and was designed to be compatible with both the countermeasure compendia and the decision support system. The applicability and usefulness of STRATEGY outputs for food production systems in the medium to long term is assessed.
USGS: Building on leadership in mapping oceans and coasts
Myers, M.D.
2008-01-01
The US Geological Survey (USGS) offers continuously improving technologies for mapping oceans and coasts providing unique opportunity for characterizing the marine environment and to expand the understanding of coastal and ocean processes, resources, and hazards. USGS, which has been designated as a leader for mapping the Exclusive Economic Zone, has made an advanced strategic plan, Facing Tomorrow's Challenges- US Geological Survey Science in the Decade 2007 to 2017. This plan focuses on innovative and transformational themes that serve key clients and customers, expand partnerships, and have long-term national impact. The plan includes several key science directions, including Understanding Ecosystems and Predicting Ecosystem Change, Energy and Minerals for America's Future, and A National Hazards, Risk, and Resilience Assessment Program. USGS has also collaborated with diverse partners to incorporate mapping and monitoring within interdisciplinary research programs, addressing the system-scale response of coastal and marine ecosystems.
Morris, Rebecca J.
2010-01-01
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318
Process-based upscaling of surface-atmosphere exchange
NASA Astrophysics Data System (ADS)
Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.
2015-12-01
Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.
Predicting ecosystem stability from community composition and biodiversity.
de Mazancourt, Claire; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B; Haegeman, Bart; Wayne Polley, H; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J; Loreau, Michel
2013-05-01
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. © 2013 Blackwell Publishing Ltd/CNRS.
Predicting ecosystem stability from community composition and biodiversity
Mazancourt, Claire de; Isbell, Forest; Larocque, Allen; Berendse, Frank; De Luca, Enrica; Grace, James B.; Haegeman, Bart; Polley, H. Wayne; Roscher, Christiane; Schmid, Bernhard; Tilman, David; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian J.; Loreau, Michel
2013-01-01
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.
Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.
Medina, Matías H; Correa, Juan A; Barata, Carlos
2007-05-01
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.
Differential Sensitivity to Drought in Central U.S. Grasslands Arrayed Along an Aridity Gradient
NASA Astrophysics Data System (ADS)
Knapp, Alan; Collins, Scott; Luo, Yiqi; Smith, Melinda
2015-04-01
Responses to drought often vary dramatically among terrestrial ecosystems, but the reasons why are unclear. With climate change forecasts for more frequent, severe and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central U.S. experienced the 4th largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a natural drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity would be inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 yrs) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per mm reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than 2-fold among the six grasslands, despite all sites experiencing similar relative reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. Results from this natural drought will be compared with responses to an experimentally imposed drought to determine if patterns of sensitivity are consistent between experimental and observational approaches.
High and Dry? Stomatal Regulation and the Water Use Efficiency of Vegetation
NASA Astrophysics Data System (ADS)
Seibt, U.; Maseyk, K. S.; Sun, W.; Lett, C.; Pivovaroff, A. L.
2016-12-01
The water use efficiency (WUE, ratio of carbon assimilated to water transpired) of vegetation plays an important role in determining the exchange of water between ecosystems and the atmosphere and thus affects the global water cycle. It also shapes the water-energy balance of ecosystems as a decrease in water fluxes may lead to an increase in surface temperature. A large number of studies have reported systematic changes in WUE from the stand to landscape scale, however, there is no general agreement on the sign and magnitude of the observed trends. The divergent responses reflect that the WUE of vegetation is shaped by a complex interplay of factors acting on a wide range of temporal scales: On diurnal to seasonal time scales, if evaporative demand is altered by atmospheric moisture or temperature, plants respond by adjusting stomatal conductance with associated changes in both transpiration and photosynthetic carbon uptake. On seasonal to interannual time scales, leaf size, structure and activity may adapt to water stress. This can alter boundary layer and mesophyll conductances, radiation profiles, and the surface energy balance. On longer time scales, the carbon-water balance of ecosystems is additionally affected by the ongoing global rise in CO2 and temperatures. Stomatal regulation is a central factor across all scales. We present new results on leaf and stand scale WUE from a range of ecosystems (arctic, boreal, semi-arid, tropical), and discuss the role of stomatal regulation on diurnal and seasonal changes in WUE in response to water stress and on potential long-term trends in WUE in response to climate change.
NASA Astrophysics Data System (ADS)
Sachs, T.; Koebsch, F.; Boettcher, M. E.; Glatzel, S.; Liebner, S.; Matthias, W.; Koch, M.; Westphal, J.; Jurasinski, G.
2016-12-01
Rewetting is considered as common measure to stop aerobic peat decomposition and to re-establish the net natural C sink function of peatlands. In this long-term study, we accompanied the development of a degraded brackish peatland from drainage to year-round flooding. Based on eddy covariance measurements of CH4 and CO2 fluxes, remote sensing monitoring of vegetation succession and insights into major dissimilatory pathways, we develop a more differentiated perspective on the greenhouse gas (GHG) effect of rewetting measures conducted in brackish peatlands. Contrary to the common assumption that CH4 production is inhibited in coastal ecosystems, CH4 emissions increased remarkably after rewetting. Despite few local exceptions, sulfate - the major electron acceptor in marine environments - was completely converted to stable organic and metal sulfides. Sulfate depletion in concert with high substrate supply derived from a destabilized peat C pool and the extensive die-back of vegetation fuel CH4 emissions especially in the initial rewetting phase. CH4 fluxes are further interpreted in light of climate variables and vegetation data to differentiate between short-term response to climate variation and long-term trends based on ecosystem succession after flooding. High CH4 emissions in the initial rewetting phase are considered to be (at least partially) compensated as CO2 release by aerobic respiration decreases. However, our results indicate that flooding does not only cease CO2 release by ecosystem respiration, but that also CO2 uptake by canopy photosynthesis is affected to the same degree when vegetation cannot cope with the rapid rise in water level. Our study highlights the importance of a multi-year monitoring to cover the dynamic ecosystem development within the drainage-rewetting sequence. We further emphasize the relevance of interdisciplinary approaches to understand the complex interactions between ecosystem compartments as basic controls for GHG exchange.
Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2
NASA Astrophysics Data System (ADS)
Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone
2016-05-01
Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.
When micro meets macro: microbial lipid analysis and ecosystem ecology
NASA Astrophysics Data System (ADS)
Balser, T.; Gutknecht, J.
2008-12-01
There is growing interest in linking soil microbial community composition and activity with large-scale field studies of nutrient cycling or plant community response to disturbances. And while analysis of microbial communities has moved rapidly in the past decade from culture-based to non-culture based techniques, still it must be asked what have we gained from the move? How well does the necessarily micro-scale of microbial analysis allow us to address questions of interest at the macro-scale? Several challenges exist in bridging the scales, and foremost is the question of methodological feasibility. Past microbiological methodologies have not been readily adaptable to the large sample sizes necessary for ecosystem-scale research. As a result, it has been difficult to generate compatible microbial and ecosystem data sets. We describe the use of a modified lipid extraction method to generate microbial community data sets that allow us to match landscape-scale or long-term ecological studies with microbial community data. We briefly discuss the challenges and advantages associated with lipid analysis as an approach to addressing ecosystem ecological studies, and provide examples from our research in ecosystem restoration and recovery following disturbance and climate change.
Jeremias, Guilherme; Barbosa, João; Marques, Sérgio M; Asselman, Jana; Gonçalves, Fernando J M; Pereira, Joana L
2018-07-01
Freshwater ecosystems are amongst the most threatened ecosystems on Earth. Currently, climate change is one of the most important drivers of freshwater transformation and its effects include changes in the composition, biodiversity and functioning of freshwater ecosystems. Understanding the capacity of freshwater species to tolerate the environmental fluctuations induced by climate change is critical to the development of effective conservation strategies. In the last few years, epigenetic mechanisms were increasingly put forward in this context because of their pivotal role in gene-environment interactions. In addition, the evolutionary role of epigenetically inherited phenotypes is a relatively recent but promising field. Here, we examine and synthesize the impacts of climate change on freshwater ecosystems, exploring the potential role of epigenetic mechanisms in both short- and long-term adaptation of species. Following this wrapping-up of current evidence, we particularly focused on bringing together the most promising future research avenues towards a better understanding of the effects of climate change on freshwater biodiversity, specifically highlighting potential molecular targets and the most suitable freshwater species for future epigenetic studies in this context. © 2018 John Wiley & Sons Ltd.
Obscuring ecosystem function with application of the ecosystem services concept.
Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai
2010-02-01
Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also enables the social and political changes required to ensure valuation of ecosystem functions and related biodiversity in ways beyond their measurement on an economic scale.
Differential Sensitivity to Drought in Six Central U.S. Grasslands
NASA Astrophysics Data System (ADS)
Knapp, A.; Carroll, C. J. W.; Denton, E. M.; La Pierre, K. J.; Wilcox, K. R.; Collins, S. L.; Smith, M.
2014-12-01
Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons why are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central U.S. experienced the 4th largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 yrs) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per mm reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than 2-fold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity.
NASA Astrophysics Data System (ADS)
Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.
2013-11-01
Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.
Holocene evolution of Apalachicola Bay, Florida
Osterman, Lisa E.; Twichell, David C.
2011-01-01
A program of geophysical mapping and vibracoring was conducted in 2007 to better understand the geologic evolution of Apalachicola Bay and its response to sea-level rise. A detailed geologic history could help better understand how this bay may respond to both short-term (for example, storm surge) and long-term sea-level rise. The results of this study were published (Osterman and others, 2009) as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.
Northern Gulf of Mexico: USGS science contributions to a resilient coast, 2006-2011
,
2007-01-01
The devastating hurricane season of 2005 challenged U.S. Geological Survey (USGS) to develop a science base for resource managers and policy makers that could provide an understanding of the multiple stressors and influence affecting the northern Gulf of Mexico coast and to rack changes in linked coastal systems. The complexity of the Gulf Coast requires a science strategy for data collection and data reporting that is consistent across regional ecosystems and that can be applied to both short-term and long-term responses to stressors.
Schaefer, Mark; Goldman, Erica; Bartuska, Ann M; Sutton-Grier, Ariana; Lubchenco, Jane
2015-06-16
The concept of nature as capital is gaining visibility in policies and practices in both the public and private sectors. This change is due to an improved ability to assess and value ecosystem services, as well as to a growing recognition of the potential of an ecosystem services approach to make tradeoffs in decision making more transparent, inform efficient use of resources, enhance resilience and sustainability, and avoid unintended negative consequences of policy actions. Globally, governments, financial institutions, and corporations have begun to incorporate natural capital accounting in their policies and practices. In the United States, universities, nongovernmental organizations, and federal agencies are actively collaborating to develop and apply ecosystem services concepts to further national environmental and economic objectives. Numerous federal agencies have begun incorporating these concepts into land use planning, water resources management, and preparations for, and responses to, climate change. Going forward, well-defined policy direction will be necessary to institutionalize ecosystem services approaches in federal agencies, as well as to guide intersector and interdisciplinary collaborative research and development efforts. In addition, a new generation of decision support tools are needed to further the practical application of ecosystem services principles in policymaking and commercial activities. Improved performance metrics are needed, as are mechanisms to monitor the status of ecosystem services and assess the environmental and economic impacts of policies and programs. A greater national and international financial commitment to advancing ecosystem services and natural capital accounting would likely have broad, long-term economic and environmental benefits.
Gonzalez-Meler, Miquel A; Rucks, Jessica S; Aubanell, Gerard
2014-09-01
Scaling up leaf processes to canopy/ecosystem level fluxes is critical for examining feedbacks between vegetation and climate. Collectively, studies from Biosphere 2 Laboratory have provided important insight of leaf-to-ecosystem investigations of multiple environmental parameters that were not before possible in enclosed or field studies. B2L has been a testing lab for the applicability of new technologies such as spectral approaches to detect spatial and temporal changes in photosynthesis within canopies, or for the development of cavity ring-down isotope applications for ecosystem evapotranspiration. Short and long term changes in atmospheric CO2, drought or temperature allowed for intensive investigation of the interactions between photosynthesis and leaf, soil and ecosystem respiration. Experiments conducted in the rainforest biome have provided some of the most comprehensive dataset to date on the effects of climate change variables on tropical ecosystems. Results from these studies have been later corroborated in natural rainforest ecosystems and have improved the predictive capabilities of models that now show increased resilience of tropics to climate change. Studies of temperature and CO2 effects on ecosystem respiration and its leaf and soil components have helped reconsider the use of simple first-order kinetics for characterizing respiration in models. The B2L also provided opportunities to quantify the rhizosphere priming effect, or establish the relationships between net primary productivity, atmospheric CO2 and isoprene emissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E
2016-01-01
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.
Integrating plant ecological responses to climate extremes from individual to ecosystem levels.
Felton, Andrew J; Smith, Melinda D
2017-06-19
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Karaoz, Ulas; Couradeau, Estelle; da Rocha, Ulisses Nunes; Lim, Hsiao-Chien; Northen, Trent; Garcia-Pichel, Ferran; Brodie, Eoin L
2018-03-06
Biological soil crusts (biocrusts) account for a substantial portion of primary production in dryland ecosystems. They successionally mature to deliver a suite of ecosystem services, such as carbon sequestration, water retention and nutrient cycling, and climate regulation. Biocrust assemblages are extremely well adapted to survive desiccation and to rapidly take advantage of the periodic precipitation events typical of arid ecosystems. Here we focus on the wetting response of incipient cyanobacterial crusts as they mature from "light" to "dark." We sampled a cyanobacterial biocrust chronosequence before (dry) and temporally following a controlled wetting event and used high-throughput 16S rRNA and rRNA gene sequencing to monitor the dynamics of microbial response. Overall, shorter-term changes in phylogenetic beta diversity attributable to periodic wetting were as large as those attributable to biocrust successional stage. Notably, more mature crusts showed significantly higher resistance to precipitation disturbance. A large bloom of a few taxa within the Firmicutes , primarily in the order Bacillales , emerged 18 h after wetting, while filamentous crust-forming cyanobacteria showed variable responses to wet-up across the successional gradient, with populations collapsing in less-developed light crusts but increasing in later-successional-stage dark crusts. Overall, the consistent Bacillales bloom accompanied by the variable collapse of pioneer cyanobacteria of the Oscillatoriales order across the successional gradient suggests that the strong response of few organisms to a hydration pulse with the mortality of the autotroph might have important implications for carbon (C) balance in semiarid ecosystems. IMPORTANCE Desert biological soil crusts are terrestrial topsoil microbial communities common to arid regions that comprise 40% of Earth's terrestrial surface. They successionally develop over years to decades to deliver a suite of ecosystem services of local and global significance. Ecosystem succession toward maturity has been associated with both resistance and resilience to disturbance. Recent work has shown that the impacts of both climate change and physical disturbance on biocrusts increase the potential for successional resetting. A larger proportion of biocrusts are expected to be at an early developmental stage, hence increasing susceptibility to changes in precipitation frequencies. Therefore, it is essential to characterize how biocrusts respond to wetting across early developmental stages. In this study, we document the wetting response of microbial communities from a biocrust chronosequence. Overall, our results suggest that the cumulative effects of altered precipitation frequencies on the stability of biocrusts will depend on biocrust maturity. Copyright © 2018 Karaoz et al.
Systems biology approach to bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.
2012-06-01
Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potentialmore » for making bioremediation breakthroughs and illuminating the ‘black box’.« less
Long term records of lake clarity as an indicator for final ecosystem goods and services of lakes
We reviewed available long-term records of lake clarity (via secchi disc readings) as an indicator of final ecosystem goods and services of lakes. Lake water quality assessments are often based on biophysical indicators not explicitly or quantifiably linked to the ecosystem servi...
Ryan, Michael G
2013-11-01
Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.
Lake Ontario: Food web dynamics in a changing ecosystem (1970-2000)
Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.
2003-01-01
We examined stressors that have led to profound ecological changes in the Lake Ontario ecosystem and its fish community since 1970. The most notable changes have been reductions in phosphorus loading, invasion by Dreissena spp., fisheries management through stocking of exotic salmonids and control of sea lamprey (Petromyzon marinus), and fish harvest by anglers and double-crested cormorants (Phalacrocorax auritus). The response to these stressors has led to (i) declines in both algal photosynthesis and epilimnetic zooplankton production, (ii) decreases in alewife (Alosa pseudoharengus) abundance, (iii) declines in native Diporeia and lake whitefish (Coregonus clupeaformis), (iv) behavioral shifts in alewife spatial distribution benefitting native lake trout (Salvelinus namaycush), threespine stickleback (Gasterosteus aculeatus), and emerald shiner (Notropis atherinoides) populations, (v) dramatic increases in water clarity, (vi) predation impacts by cormorants on select fish species, and (vii) lake trout recruitment bottlenecks associated with alewife-induced thiamine deficiency. We expect stressor responses associated with anthropogenic forces like exotic species invasions and global climate warming to continue to impact the Lake Ontario ecosystem in the future and recommend continuous long-term ecological studies to enhance scientific understanding and management of this important resource.
Short-term cropland responses to temperature extreme events during late winter
NASA Astrophysics Data System (ADS)
De Simon, G.; Alberti, G.; Delle Vedove, G.; Peressotti, A.; Zaldei, A.; Miglietta, F.
2013-04-01
In recent years, several studies have focused on terrestrial ecosystem response to extreme events. Most of this research has been conducted in natural ecosystems, but few have considered agro-ecosystems. In this study, we investigated the impact of a manipulated warmer or cooler late winter-early spring on the carbon budget and final harvest of a soybean crop (Glycine max (L.) Merr.). Soil temperature was altered by manipulating soil albedo by covering the soil surface with a layer of inert silica gravel. We tested three treatments: cooling (Co), warming (W), mix (M) and control (C). An automated system continuously measured soil heterotrophic respiration (Rh), soil temperature profiles, and soil water content across the entire year in each plot. Phenological phases were periodically assessed and final harvest was measured in each plot. Results showed that treatments had only a transient effect on daily Rh rates which did not result in a total annual carbon budget significantly different from control, even though cooling showed a significant reduction in final harvest. We also observed anticipation in seed germination in both W and M treatments and a delay in germination for Co. Moreover, plant density and growth increased in W and M and decreased in Co.
Divergence of species responses to climate change
Fei, Songlin; Desprez, Johanna M.; Potter, Kevin M.; Jo, Insu; Knott, Jonathan A.; Oswalt, Christopher M.
2017-01-01
Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impacts are less understood. We analyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more tree species have experienced a westward shift (73%) than a poleward shift (62%) in their abundance, a trend that is stronger for saplings than adult trees. The observed shifts are primarily due to the changes of subpopulation abundances in the leading edges and are significantly associated with changes in moisture availability and successional processes. These spatial shifts are associated with species that have similar traits (drought tolerance, wood density, and seed weight) and evolutionary histories (most angiosperms shifted westward and most gymnosperms shifted poleward). Our results indicate that changes in moisture availability have stronger near-term impacts on vegetation dynamics than changes in temperature. The divergent responses to climate change by trait- and phylogenetic-specific groups could lead to changes in composition of forest ecosystems, putting the resilience and sustainability of various forest ecosystems in question. PMID:28560343
Synchronous environmental and cultural change in the prehistory of the northeastern United States.
Munoz, Samuel E; Gajewski, Konrad; Peros, Matthew C
2010-12-21
Climatic changes during the late Quaternary have resulted in substantial, often abrupt, rearrangements of terrestrial ecosystems, but the relationship between these environmental changes and prehistoric human culture and population size remains unclear. Using a database of archaeological radiocarbon dates alongside a network of paleoecological records (sedimentary pollen and charcoal) and paleoclimatic reconstructions, we show that periods of cultural and demographic change in the northeastern United States occurred at the same times as the major environmental-climatic transitions of that region. At 11.6, 8.2, 5.4, and 3.0 kyr BP (10(3) calendar years before present), changes in forest composition altered the distribution, availability, and predictability of food resources which triggered technological adjustments manifested in the archaeological record. Human population level has varied in response to these external changes in ecosystems, but the adoption of maize agriculture during the late Holocene also resulted in a substantial population increase. This study demonstrates the long-term interconnectedness of prehistoric human cultures and the ecosystems they inhabited, and provides a consolidated environmental-cultural framework from which more interdisciplinary research and discussion can develop. Moreover, it emphasizes the complex nature of human responses to environmental change in a temperate region.
Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems
NASA Astrophysics Data System (ADS)
Brazier, Richard E.
2015-04-01
Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. degrade these critical ecosystems further. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments.
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15 N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15 N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15 N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15 N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15 N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15 N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems. PMID:29375589
Barbeta, Adrià; Mejía-Chang, Monica; Ogaya, Romà; Voltas, Jordi; Dawson, Todd E; Peñuelas, Josep
2015-03-01
Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions. © 2014 John Wiley & Sons Ltd.
Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling
NASA Astrophysics Data System (ADS)
Jenerette, D.
2011-12-01
Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic activity is higher. Scenario analyses of precipitation regimes suggested increased uptake with increasing total precipitation while more complex NEE responses to increasing number of events and interval between events. Pulse dynamics provides a general framework for understanding ecosystem responses to intermittent wetting projected to occur more frequently in future climates. Pulse dynamics also provides an opportunity to evaluate processes spanning cellular upregulation to global change.
Nelson, Craig E.; Carlson, Craig A.
2011-01-01
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes. PMID:21483836
NASA Astrophysics Data System (ADS)
Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; Cella, Umberto Morra
2013-12-01
is well established that warming leads to longer growing seasons in seasonally cold ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO2) uptake is much more controversial. We studied the effects of warming on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end, we used a simple empirical model of the net ecosystem CO2 exchange, calibrated, and forced with multiyear empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO2. This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.
Effects of repetitive droughts on carbon, nutrient and water cycles of heathland ecosystem
NASA Astrophysics Data System (ADS)
Rineau, Francois; Beenaerts, Natalie; Nijs, Ivan; De Boeck, Hans; Vangronsveld, Jaco
2017-04-01
A large body of research is now focusing on the understanding of mechanisms regulating ecosystem functioning, predictions on their activity in the long-term, and the management practices to keep them running. For this purpose, Hasselt University decided to invest in the construction of a high technological research infrastructure: the "Ecotron Hasselt University", where twelve large ecosystem replicates can be continuously monitored and controlled. The ecotrons will be fed with real-time climatic data from a nearby ICOS tower located on top of a heathland landscape. The research performed there will focus on understanding the response of heathland ecosystem services (ES) to yearly repeated droughts of different intensities. We aim to perform as well an economical valuation of these ES. From a biological point of view, we will measure soil processes that drive the three most valuable ES: water, C and nutrient cycles, and especially how soil organisms affect them, through which mechanisms and at different drought intensities. Species interactions and their influence on C sequestration and organic matter degradation will be also incorporated into a state-of-the art soil C cycling model.
Wohlfahrt, Georg; Cremonese, Edoardo; Hammerle, Albin; Hörtnagl, Lukas; Galvagno, Marta; Gianelle, Damiano; Marcolla, Barbara; di Cella, Umberto Morra
2013-12-16
It is well established that warming leads to longer growing seasons in seasonally cold ecosystems. Whether this goes along with an increase in the net ecosystem carbon dioxide (CO 2 ) uptake is much more controversial. We studied the effects of warming on the start of the carbon uptake period (CUP) of three mountain grasslands situated along an elevational gradient in the Alps. To this end we used a simple empirical model of the net ecosystem CO 2 exchange, calibrated and forced with multi-year empirical data from each site. We show that reductions in the quantity and duration of daylight associated with earlier snowmelts were responsible for diminishing returns, in terms of carbon gain, from longer growing seasons caused by reductions in daytime photosynthetic uptake and increases in nighttime losses of CO 2 . This effect was less pronounced at high, compared to low, elevations, where the start of the CUP occurred closer to the summer solstice when changes in day length and incident radiation are minimal.
Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization
Blake R. Hossack; Paul Stephen Corn
2007-01-01
Wildland fires are expected to become more frequent and severe in many ecosystems, potentially posing a threat to many sensitive species. We evaluated the effects of a large, stand-replacement wildfire on three species of pond-breeding amphibians by estimating changes in occupancy of breeding sites during the three years before and after the fire burned 42 of 83...
Amber C. Churchill; Merritt R. Turetsky; A. David McGuire; Teresa N. Hollingsworth
2015-01-01
Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on...
M.R. Turetsky; C.C. Treat; M. Waldrop; J.M. Waddington; J.W. Harden; A.D. McGuire
2008-01-01
Growing season CH4 fluxes were monitored over a two year period following the start of ecosystem-scale manipulations of water table position and surface soil temperatures in a moderate rich fen in interior Alaska. The largest CH4 fluxes occurred in plots that received both flooding (raised water table position) and soil...
Sue L. Eggert; J. Bruce Wallace; Judy L. Meyer; Jackson R. Webster
2012-01-01
Riparian habitats provide organic matter inputs that influence stream biota and ecosystem processes in forested watersheds. Over a 13-yr period, we examined the effects of litter exclusion, small- and large-wood removal, and the addition of leaf species of varying detrital quality on organic matter standing crop and export of organic and inorganic particles in a high-...
Thomas E. Lisle; Mary Beth Adams; Leslie M. Reid; Kelly Elder
2010-01-01
The importance of forests in providing reliable sources of clean water cannot be underestimated. Therefore, there is a pressing need to understand how hydrologic systems function in forested ecosystems, in response to a variety of traditional and novel stressors and environments. Long-term watershed research on Experimental Forests and Ranges (EFRs) of the Forest...
T. D. Schowalter; M. R. Willig; S. J. Presley
2017-01-01
We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991â2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses...
Debby K. Frantz; Rochelle B. Renken
2002-01-01
We conducted a capture-recapture study on the northeast-facing slopes of the MOFEP sites in south central Missouri to determine the initial effects of even- and uneven-aged forest management on species composition, species richness, and relative abundance of the small mammal communities. We compared changes between pre-treatment (1994-1995) and post-treatment (1998-...
Long term monitoring system integrated in an elevational gradient in NW Argentina
NASA Astrophysics Data System (ADS)
Carilla, J.; Malizia, A.; Osinaga, O.; Blundo, C.; Grau, R.; Malizia, L.; Aráoz, E.
2013-05-01
Ecological trends and ranges of variability are poorly known in the tropical and subtropical Andes. Long term studies are powerful tools to detect the response of vegetation dynamics, biodiversity and hydrological cycle to these trends. We present a long term monitoring system in NW Argentinean mountains, including forest permanent plots at different elevations and high elevation grasslands, encompassing more than 3.000 m elevation range. Long term studies include: 1) 66 ha of mountain forest permanent plots along the Yungas elevational gradient from c. 400 to 2500 masl , and latitudinal gradient (22-28S) with 45 plots in mature forests and 28 in secondary forests originated in grazing, agriculture and selective logging. Some of these permanent plots have achieved 20 years of monitoring and all of them are included in the "Red de Bosques Andinos" a network created recently, together with c. 10 institutions and more than 130 (c. 120 ha) forest permanent plots from Argentina to Colombia Andes. 2) Two GLORIA (Global Observation Research Initiative in Alpine Environments) sites, above 4000 masl with more than 170 species recorded, including one re-measurement. This system is included in GLORIA network (www.gloria.ac.at) and in GLORIA Andes (http://www.condesan.org/gloria), and 3) more than 15 satellite monitored high Andean lakes and a wide extension of vegas (75800 ha in Argentinean puna). A digital database is being implemented to organize and provide access to the information generated by these three systems coordinated by the Instituto de Ecología Regional (http://www.iecologia.com.ar). These monitoring data are analyzed together with instrumental and dendrochronological data to describe the dynamics of these ecosystems over an area of 20 million hectares distributed between 22 and 28°S. Some of the most significant results to date include: 1) secondary mountain forests are expanding over grasslands and agriculture lands, and tend to converge toward mature forest composition over time, despite different previous land use. Floristic changes are also reflected in structural changes, showing an increasing trend in biomass in the last 15 years for most of the plots. Exotic tree species are expanding their distribution (e.g. Ligustrum lucidum) and have a strong influence on the structure and dynamics of some secondary forests. 2) High Andean vegetation diversity decrease with altitude, while several functional groups cover increase with temperature. 3) There is a clear association between lake fluctuations, ecosystem productivity and regional climatic patterns. The long term record provided by dendrochronology showed that plant productivity of the last decades is the lowest in the last 180 years, with a consistent drying trend in the last years. We are generating longer temporal series of meteorological data and biological ecosystems measurements; this will help to differentiate between the effect of climate change, land use change and natural ecosystems variability, to understand the way vegetation and ecosystems response to these changes.
Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?
NASA Astrophysics Data System (ADS)
Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.
2015-12-01
Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.
Ecomarkets for conservation and sustainable development in the coastal zone.
Fujita, Rod; Lynham, John; Micheli, Fiorenza; Feinberg, Pasha G; Bourillón, Luis; Sáenz-Arroyo, Andrea; Markham, Alexander C
2013-05-01
Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio-ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe 'ecomarkets' - markets and financial tools - that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch-share systems generate meaningful conservation and economic outcomes, it is possible to imagine other market mechanisms that do the same with respect to a variety of other coastal ecosystem goods and services. Rather than solely relying on extracting goods, these approaches could allow communities to diversify ecosystem uses and focus on long-term stewardship and conservation, while meeting development, food security, and human welfare goals. The creation of ecomarkets will be difficult in many cases, because rights and responsibilities must be devolved, new social contracts will be required, accountability systems must be created and enforced, and long-term patterns of behaviour must change. We argue that efforts to overcome these obstacles are justified, because these deep changes will strongly complement policies and tools such as Marine Protected Areas, coastal spatial management, and regulation, thereby helping to bring coastal conservation to scale. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...
2016-03-02
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less
Madenjian, Charles P.; Edsall, T.; Munawar, M.
2005-01-01
With this study, the role of this lake-wide prey fish survey in both understanding the dynamics of the Lake Michigan ecosystem and managing Lake Michigan fisheries was documented. The complexity of ecosystems is such that long-term study is required before the dynamics of the ecosystem can be understoond. Furthermore, long-term observation is needed before important or meaningful questions about ecosystem dynamics can be asked. My approach is to first illustrate, by example, the usefulness of the survey results in providing insights into the dynamics of the Lake Michigan ecosystem. Then, examples of direct application of the survey results toward Lake Michigan fisheries management are presented.
The need to disentangle key concepts from ecosystem-approach jargon.
Waylen, K A; Hastings, E J; Banks, E A; Holstead, K L; Irvine, R J; Blackstock, K L
2014-10-01
The ecosystem approach--as endorsed by the Convention on Biological Diversity (CDB) in 2000-is a strategy for holistic, sustainable, and equitable natural resource management, to be implemented via the 12 Malawi Principles. These principles describe the need to manage nature in terms of dynamic ecosystems, while fully engaging with local peoples. It is an ambitious concept. Today, the term is common throughout the research and policy literature on environmental management. However, multiple meanings have been attached to the term, resulting in confusion. We reviewed references to the ecosystem approach from 1957 to 2012 and identified 3 primary uses: as an alternative to ecosystem management or ecosystem-based management; in reference to an integrated and equitable approach to resource management as per the CBD; and as a term signifying a focus on understanding and valuing ecosystem services. Although uses of this term and its variants may overlap in meaning, typically, they do not entirely reflect the ethos of the ecosystem approach as defined by the CBD. For example, there is presently an increasing emphasis on ecosystem services, but focusing on these alone does not promote decentralization of management or use of all forms of knowledge, both of which are integral to the CBD's concept. We highlight that the Malawi Principles are at risk of being forgotten. To better understand these principles, more effort to implement them is required. Such efforts should be evaluated, ideally with comparative approaches, before allowing the CBD's concept of holistic and socially engaged management to be abandoned or superseded. It is possible that attempts to implement all 12 principles together will face many challenges, but they may also offer a unique way to promote holistic and equitable governance of natural resources. Therefore, we believe that the CBD's concept of the ecosystem approach demands more attention. © 2014 Society for Conservation Biology.
Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...
NASA Astrophysics Data System (ADS)
Forman Asgharzadeh, Deonna; Oveis Torabi, Seyed; Safaai, Sadaf
2017-04-01
The application of DPSIR in Restoring Urban Rivers (Case Study: Darakeh and Farahzad River Restoration, Tehran-Iran) Seyed Oveis Torabi ، Deonna Forman Asgharzadeh , Sadaf Safaai3 Urban river ecosystems, depending on their form, may serve the sprightliness of a city as a beating heart, breathing lungs or main vessels. In other words, sustaining the ecosystem of an urban river and its riparian land can lead to enhancing life quality indices in a city. The Concept of river ecosystem restoration, born out of sustainable development, underpins restoring the health of an urban environment that circles around its river ecosystem. Darakeh and Farahzad are two connecting rivers that originate from the steep, large valleys of Alborz Mountains and flow a total 60km route through the densely populated city of Tehran. Their original basin was 220 km2; however, it has been tremendously altered during the past 50 years. Alongside with urban development and landuse changes, a large flood deviation canal has detached the northern and southern parts of the basin. In addition, river valleys have suffered from land degradation, occurring at the same time severe damages to the river and its riparian ecosystem. In this study, a novel application of DPSIR framework in urban river restoration is introduced. For restoring an ecosystem in a sustainable manner, it is necessary to identify and analyze the social and economic drivers (D) that provide the root cause of ecosystem damages; their consequent pressures directly harming the river and land (P); the degraded state of land and river ecosystem (S) and its impacts on the environment (I). Such approach will enable a precise selection of interrelated technical, economic, social and environmental actions. Thorough multidisciplinary study of Tehran's recent 400 years history revealed that three factors of "safety against flood", "urbanization" and "land commodity" were the main drivers triggering unsustainable development of Tehran, leading to numerous damages of Darakeh and Farahzad Rivers. Accordingly, pressures (P), degraded state (S) and its impacts (I) were determined. Eventually, restoration actions were extracted as appropriate responses (R) to drivers, pressures, state and impacts. Regarding the planning timeline, short-term actions correspond to impacts, mid-term actions address the pressure and state factors and finally, long-term actions comply with the drivers. The application of DPSIR proved as a successful approach to holistic, comprehensive and systematic interpretation of the complicated issues for restoration of Darakeh and Farahzad rivers.
NASA Astrophysics Data System (ADS)
Goodman, K. J.; Lunch, C. K.; Baxter, C.; Hall, R.; Holtgrieve, G. W.; Roberts, B. J.; Marcarelli, A. M.; Tank, J. L.
2013-12-01
Recent advances in dissolved oxygen sensing and modeling have made continuous measurements of whole-stream metabolism relatively easy to make, allowing ecologists to quantify and evaluate stream ecosystem health at expanded temporal and spatial scales. Long-term monitoring of continuous stream metabolism will enable a better understanding of the integrated and complex effects of anthropogenic change (e.g., land-use, climate, atmospheric deposition, invasive species, etc.) on stream ecosystem function. In addition to their value in the particular streams measured, information derived from long-term data will improve the ability to extrapolate from shorter-term data. With the need to better understand drivers and responses of whole-stream metabolism come difficulties in interpreting the results. Long-term trends will encompass physical changes in stream morphology and flow regime (e.g., variable flow conditions and changes in channel structure) combined with changes in biota. Additionally long-term data sets will require an organized database structure, careful quantification of errors and uncertainties, as well as propagation of error as a result of the calculation of metabolism metrics. Parsing of continuous data and the choice of modeling approaches can also have a large influence on results and on error estimation. The two main modeling challenges include 1) obtaining unbiased, low-error daily estimates of gross primary production (GPP) and ecosystem respiration (ER), and 2) interpreting GPP and ER measurements over extended time periods. The National Ecological Observatory Network (NEON), in partnership with academic and government scientists, has begun to tackle several of these challenges as it prepares for the collection and calculation of 30 years of continuous whole-stream metabolism data. NEON is a national-scale research platform that will use consistent procedures and protocols to standardize measurements across the United States, providing long-term, high-quality, open-access data from a connected network to address large-scale change. NEON infrastructure will support 36 aquatic sites across 19 ecoclimatic domains. Sites include core sites, which remain for 30 years, and relocatable sites, which move to capture regional gradients. NEON will measure continuous whole-stream metabolism in conjunction with aquatic, terrestrial and airborne observations, allowing researchers to link stream ecosystem function with landscape and climatic drivers encompassing short to long time periods (i.e., decades).
Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.
2011-01-01
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.
Biodiversity and Resilience of Ecosystem Functions.
Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M
2015-11-01
Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Allowing variance may enlarge the safe operating space for exploited ecosystems.
Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten
2015-11-17
Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.
Allowing variance may enlarge the safe operating space for exploited ecosystems
Carpenter, Stephen R.; Brock, William A.; Folke, Carl; van Nes, Egbert H.; Scheffer, Marten
2015-01-01
Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2–4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them. PMID:26438857
Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China
NASA Astrophysics Data System (ADS)
Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping
2015-06-01
Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.
Jenkins, Kurt; Woodward, Andrea; Schreiner, Ed
2003-01-01
This report is the result of a five-year collaboration between scientists of the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Olympic Field Station, and the natural resources staff of Olympic National Park to develop a comprehensive strategy for monitoring natural resources of Olympic National Park. Olympic National Park is the National Park Serviceʼs prototype monitoring park, representing parks in the coniferous forest biome. Under the umbrella of the National Park Serviceʼs prototype parks program, U.S. Geological Survey and Olympic National Park staffs are obligated to:develop strategies and designs for monitoring the long-term health and integrity of national park ecosystems with a significant coniferous forest component.design exportable monitoring protocols that can be used by other parks within the coniferous forest biome (i.e., parks having similar environments), andcreate a demonstration area and ʻcenter of excellenceʼ for assisting other parks in developing ecological monitoring programs.Olympic National Park is part of the North Coast and Cascades Network, a network of seven Pacific Northwestern park units created recently by the National Park Serviceʼs Inventory and Monitoring Program to extend the monitoring of ʻvital signsʼ of park health to all National Park Service units. It is our intent and hope that the monitoring strategies and conceptual models described here will meet the overall purpose of the prototype parks monitoring program in proving useful not only to Olympic National Park, but also to parks within the North Coast and Cascades Network and elsewhere. Part I contains the conceptual design and sampling framework for the prototype long-term monitoring program in Olympic National Park. In this section, we explore key elements of monitoring design that help to ensure the spatial, ecological, and temporal integration of monitoring program elements and discuss approaches used to design an ecosystem-based monitoring program. Basic monitoring components include ecosystem drivers, (e.g., climate, atmospheric inputs, human pressures), indicators of ecosystem integrity (e.g., biogeochemical indicators), known threats (e.g., impacts of introduced mountain goats), and focal or ʻkeyʼ species (e.g., rare or listed species, Roosevelt elk). Monitoring system drivers and key indicators of ecosystem integrity provide the long-term baseline needed to judge what constitutes ʻunnaturalʼ variation in park resources and provide the earliest possible warning of unacceptable change. Monitoring effects of known threats and the status of focal species will provide information useful to park managers for dealing with current park issues. In Part I we describe the process of identifying potential indicators of ecological condition and present conceptual models of park ecosystems. In addition we report results from several workshops held in conjunction with Olympic National Park aimed at identifying potential indicators of change in the parkʼs ecosystem. First, we describe the responses of Olympic National Park staff to the generic question, “What is the most important resource to monitor in Olympic National Park and why?” followed by the responses from resource and land managers from areas adjoining the park. We also catalogue the responses of various expert groups that we asked to help identify the most appropriate system drivers and indicators of change in the Olympic National Park ecosystems. Results of the workshops provided the justification for selecting basic indicators of ecosystem integrity, effects of current threats to park resources, and focal resources of parks to detect both the currently evident and unforeseeable changes in park resources. We conclude Part I by exploring several generic statistical issues relevant to monitoring natural resources in Olympic National Park. Specifically we discuss trade-offs associated with sampling extensively versus sampling intensively in smaller geographic regions and describe a conceptual framework to guide development of a generic sampling frame for monitoring. We recommend partitioning Olympic National Park into three zones of decreasing accessibility to maximize monitoring efficiency. We present examples of how the generic sampling frame could be used to help ensure spatial integration of individual monitoring projects. Part II of the report is a record of the potential monitoring questions and indicators identified to date in our workshops. The presentation is organized according to the major system drivers, components, and processes identified in the intermediate-level working model of the Olympic National Park ecosystem. For each component of the park system, we develop the need and justification for monitoring, articulate park management issues, and describe key resources and ecosystem functions. We also present a pictorial conceptual model of each ecological subsystem, identify monitoring questions, and list potential indicators for each monitoring question. We conclude each section by identifying linkages of indicators to other ecological subsystems in our general ecosystem model, spatial and temporal contexts for monitoring (where and how often to monitor), and research and development needs. Part II represents the most current detailed listing of potential indicators—the material for subsequent discussions of monitoring priorities and selection of indicators for protocol development.Collectively, the sections of this report contain a comprehensive list of the important monitoring questions and potential indicators as well as recommendations for designing an integrated monitoring program. In Part I, Chapter 6 we provide recommendations on how to proceed with the important next steps in the design process: establishing priorities among the many possible monitoring questions and indicators, and beginning to research and design effective long-term monitoring protocols.
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.
2017-01-01
Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.
Successional change in species composition alters climate sensitivity of grassland productivity.
Shi, Zheng; Lin, Yang; Wilcox, Kevin R; Souza, Lara; Jiang, Lifen; Jiang, Jiang; Jung, Chang Gyo; Xu, Xia; Yuan, Mengting; Guo, Xue; Wu, Liyou; Zhou, Jizhong; Luo, Yiqi
2018-05-31
Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C 3 -dominant plant community to a perennial C 4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change. © 2018 John Wiley & Sons Ltd.
Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.
Guzman, Christine; Conaco, Cecilia
2016-01-01
Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.
Disturbance dynamics and ecosystem-based forest management
Kalev Jogiste; W. Keith Moser; Malle Mandre
2005-01-01
Ecosystem-based management is intended to balance ecological, social and economic values of sustainable resource management. The desired future state of forest ecosystem is usually defined through productivity, biodiversity, stability or other terms. However, ecosystem-based management may produce an unbalanced emphasis on different components. Although ecosystem-based...
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2016-12-01
Biogeochemical cycling of water, carbon, and nitrogen in alpine tundra ecosystems are closely related to the water and nutrient supply and ecosystem function of watersheds. While studies on the response of alpine tundra to climate change have largely focused on ecosystem structure, research on response of ecosystem function and element cycling are less well established. Using downscaled future climate scenarios under Representative Concentration Pathways (RCP) and revised algorithm of the ecosystem model, PnET-BGC, we investigated water, carbon, and nitrogen cycling of an alpine tundra ecosystem under different projections of future climate change at Saddle site of Niwot Ridge, Colorado. Simulations from this study suggest that future water supply from the alpine tundra was well predicted by the Budyko curve, which contrasts with findings from several previous studies. Although foliar display is projected to decrease due to summer water stress, an extend growing season and increasing atmospheric CO2 concentrations reverse its effects on carbon fixation by allowing longer period of photosynthesis and greater photosynthetic rate per leaf area. As a result of the increasing carbon sequestration, large increases in carbon storage are projected in living and dead biomass. Decomposition of soil organic carbon and mineralization of soil organic nitrogen increase with temperature and soil moisture, but also related to the period of snow cover which likely enhances microbial activity and associated soil decomposition and N immobilization. Future increase in winter precipitation leads to increasing snow water content which increases spring soil moisture and decomposition. Shorter future snow cover period and decreased summer soil moisture caused lower decomposition in both seasons, therefore negligible long-term pattern is projected. Future net N mineralization generally followed the pattern of organic carbon decomposition, but slightly increased because of decreasing winter immobilization due to projected shorter snow cover period. Nitrogen uptake is projected to be higher under radiative forcing scenarios of higher primary production and greater net N mineralization.
Mammal invaders on islands: impact, control and control impact.
Courchamp, Franck; Chapuis, Jean-Louis; Pascal, Michel
2003-08-01
The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring ofthe post-eradication ecosystem is crucial to assess success and prevent reinvasion.
Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems
NASA Astrophysics Data System (ADS)
Brazier, Richard E.
2015-04-01
Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.
C. Thiel-Egenter; A. C. Risch; M. F. Jurgensen; D. S. Page-Dumroese; B. O. Krusi; M. Schutz
2007-01-01
Interactions between grassland ecosystems and vertebrate herbivores are critical for a better understanding of ecosystem processes, but diverge widely in different ecosystems. In this study, we examined plant responses to simulated red deer (Cervus elaphus L.) grazing using clip-plot experiments in a subalpine grassland ecosystem of the Central...
Advancing the long view of ecological change in tundra systems
Post, Eric; Høye, Toke T.
2013-01-01
Despite uncertainties related to sustained funding, ideological rivalries and the turnover of research personnel, long-term studies and studies espousing a long-term perspective in ecology have a history of contributing landmark insights into fundamental topics, such as population- and community dynamics, species interactions and ecosystem function. They also have the potential to reveal surprises related to unforeseen events and non-stationary dynamics that unfold over the course of ongoing observation and experimentation. The unprecedented rate and magnitude of current and expected abiotic changes in tundra environments calls for a synthetic overview of the scope of ecological responses these changes have elicited. In this special issue, we present a series of contributions that advance the long view of ecological change in tundra systems, either through sustained long-term research, or through retrospective or prospective modelling. Beyond highlighting the value of long-term research in tundra systems, the insights derived herein should also find application to the study of ecological responses to environmental change in other biomes as well. PMID:23836784
Advancing the long view of ecological change in tundra systems. Introduction.
Post, Eric; Høye, Toke T
2013-08-19
Despite uncertainties related to sustained funding, ideological rivalries and the turnover of research personnel, long-term studies and studies espousing a long-term perspective in ecology have a history of contributing landmark insights into fundamental topics, such as population- and community dynamics, species interactions and ecosystem function. They also have the potential to reveal surprises related to unforeseen events and non-stationary dynamics that unfold over the course of ongoing observation and experimentation. The unprecedented rate and magnitude of current and expected abiotic changes in tundra environments calls for a synthetic overview of the scope of ecological responses these changes have elicited. In this special issue, we present a series of contributions that advance the long view of ecological change in tundra systems, either through sustained long-term research, or through retrospective or prospective modelling. Beyond highlighting the value of long-term research in tundra systems, the insights derived herein should also find application to the study of ecological responses to environmental change in other biomes as well.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
Potential effects of climate change on aquatic ecosystems of the Great Plains of North America
Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.
1997-01-01
The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.
Transpiration Dominates Ecosystem Water-Use Efficiency in Response to Warming in an Alpine Meadow
NASA Astrophysics Data System (ADS)
Quan, Quan; Zhang, Fangyue; Tian, Dashuan; Zhou, Qingping; Wang, Lixin; Niu, Shuli
2018-02-01
As a key linkage of C and water cycles, water-use efficiency (WUE) quantifies how much water an ecosystem uses for carbon gain. Although ecosystem C and water fluxes have been intensively studied, yet it remains unclear how ecosystem WUE responds to climate warming and which processes dominate the response of WUE. To answer these questions, we examined canopy WUE (WUEc), ecosystem WUE (WUEe) and their components including gross ecosystem productivity, ecosystem evapotranspiration (ET), soil evaporation (E), and plant canopy transpiration (T), in response to warming in an alpine meadow by using a manipulative warming experiment in 2015 and 2016. As expected, low- and high-level warming treatments increased soil temperature (Tsoil) at 10 cm on average by 1.65 and 2.77°C, but decreased soil moisture (Msoil) by 2.52 and 7.6 vol %, respectively, across the two years. Low- and high-level warming increased WUEe by 7.7 and 9.3% over the two years, but rarely changed WUEc in either year. T/ET ratio determined the differential responses of WUEc and WUEe. Larger T/ET led to less difference between WUEc and WUEe. By partitioning WUEc and WUEe into different carbon and water fluxes, we found that T rather than gross ecosystem productivity or E dominated the responses of WUEc and WUEe to warming. This study provides empirical insights into how ecosystem WUE responds to warming and illustrates the importance of plant transpiration in regulating ecosystem WUE under future climate change.
The role of recurrent disturbances for ecosystem multifunctionality.
Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf
2013-10-01
Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.
Biederman, Joel A; Scott, Russell L; Goulden, Michael L; Vargas, Rodrigo; Litvak, Marcy E; Kolb, Thomas E; Yepez, Enrico A; Oechel, Walter C; Blanken, Peter D; Bell, Tom W; Garatuza-Payan, Jaime; Maurer, Gregory E; Dore, Sabina; Burns, Sean P
2016-05-01
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change. © 2016 John Wiley & Sons Ltd.
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.; ...
2017-11-22
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
The Longterm Effects of Climate Change in European Shrubland Ecosystems
NASA Astrophysics Data System (ADS)
Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team
2011-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-10-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.
Schaefer, Mark; Goldman, Erica; Bartuska, Ann M.; Sutton-Grier, Ariana; Lubchenco, Jane
2015-01-01
The concept of nature as capital is gaining visibility in policies and practices in both the public and private sectors. This change is due to an improved ability to assess and value ecosystem services, as well as to a growing recognition of the potential of an ecosystem services approach to make tradeoffs in decision making more transparent, inform efficient use of resources, enhance resilience and sustainability, and avoid unintended negative consequences of policy actions. Globally, governments, financial institutions, and corporations have begun to incorporate natural capital accounting in their policies and practices. In the United States, universities, nongovernmental organizations, and federal agencies are actively collaborating to develop and apply ecosystem services concepts to further national environmental and economic objectives. Numerous federal agencies have begun incorporating these concepts into land use planning, water resources management, and preparations for, and responses to, climate change. Going forward, well-defined policy direction will be necessary to institutionalize ecosystem services approaches in federal agencies, as well as to guide intersector and interdisciplinary collaborative research and development efforts. In addition, a new generation of decision support tools are needed to further the practical application of ecosystem services principles in policymaking and commercial activities. Improved performance metrics are needed, as are mechanisms to monitor the status of ecosystem services and assess the environmental and economic impacts of policies and programs. A greater national and international financial commitment to advancing ecosystem services and natural capital accounting would likely have broad, long-term economic and environmental benefits. PMID:26082544
Global Analysis of Ecosystem Evapotranspiration Response to Precipitation Deficits
NASA Astrophysics Data System (ADS)
He, Bin; Wang, Haiyan; Guo, Lanlan; Liu, Junjie
2017-12-01
Changes in ecosystem evapotranspiration (ET) due to precipitation deficits (PD) can relieve or aggravate soil moisture shortages, thus impacting drought severity. Previous findings have conflicted with regard to response of ET to PD. The present study relies on a global land ET synthesis data set (ETsyn) and observations from eddy-covariance towers (ETobs) to thoroughly examine the sensitivity of ET to PD, which is represented by the standardized precipitation index. There was a contrast in the response to PD between arid and humid ecosystems. ETsyn of arid ecosystems was typically reduced promptly in response to a reduction of precipitation, while ETsyn in humid ecosystems experienced a two-staged change: First, there was an enhancement, and then a reduction associated with persisting PD. Compared with ETsyn, ETobs suggests the occurrence of a more significant ET transition in response to PD. In arid ecosystems, ET typically negatively correlated with low PD, but this was limited by a large PD. Findings from this study are crucial for understanding the role of ET in drought evolution.
Specimen banking of marine organisms in the United States: Current status and long-term prospective
Becker, P.R.; Wise, S.A.; Thorsteinson, L.; Koster, B.J.; Rowles, T.
1997-01-01
A major part of the activities conducted over the last decade by the National Biomonitoring Specimen Bank (NBSB) has involved the archival of marine specimens collected by ongoing environmental monitoring programs. These archived specimens include bivalves, marine sediments, and fish tissues collected by the National Status and Trends and the Exxon Valdez Oil Spill Damage Assessment programs, and marine mammal tissues collected by the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project. In addition to supporting these programs, the specimens have been used to investigate circumpolar patterns of chlorinated hydrocarbon concentrations, genetic separation of marine animal stocks, baseline levels of essential and nonessential elements in marine mammals, and the potential risk to human consumers in the Arctic from anthropogenic contaminants found in local subsistence foods. The NBSB specimens represent a resource that has the potential for addressing future issues of marine environmental quality and ecosystem changes through retrospective analysis; however, an ecosystem-based food web approach would maximize this potential. The current status of the NBSB activities related to the banking of marine organisms is presented and discussed, the long-term prospective of these activities is presented, and the importance of an ecosystem-based food web monitoring approach to the value of specimen banking is discussed.
Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang
2017-07-12
Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.
Liao, Mengna; Yu, Ge; Guo, Ya
2017-01-01
Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake’s trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems. PMID:28046083
Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y
2006-06-01
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
NASA Astrophysics Data System (ADS)
Schade, J. D.; Kuhn, M. A.; Mann, P. J.; Holmes, R. M.; Natali, S.; Ludwig, S.; Wagner, S.
2016-12-01
Northern latitudes are experiencing rapid changes in climate that are profoundly altering permafrost-dominated ecosystems. Increased permafrost thaw and fire frequency and severity are changing the structure and function of these ecosystems in ways likely to alter greenhouse gas (GHG) emission, leading to feedbacks on climate that may accelerate warming. Our objective was to investigate changes in GHG emissions and carbon and nitrogen dynamics in aquatic ecosystems in response to recent fires in the Yukon-Kuskokwim river delta in western Alaska. In summer 2015, more area in the YK Delta burned then in the previous 74 years combined (726 km2 in 2015 vs. 477 km2 during 1940-2014). In June of 2016, we sampled water and dissolved gases from a variety of aquatic ecosystems, including small upland ponds and wetlands and streams lower in the landscape, in recently burned and control sites near the Kuka Creek 2015 burn scar in the Yukon Delta National Wildlife Refuge. We measured a range of physical parameters, including water temperature, conductivity, dissolved oxygen, and pH. We also estimated fluxes of CO2 and CH4 from surface waters using a floating chamber connected to a Los Gatos Ultraportable gas analyzer. Water samples were analyzed for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). Results show reduced DOC concentrations in small upland ponds in burned sites and evidence for loss of DOC downslope in control sites. In contrast, TDN concentration was higher in streams draining burned sites, suggesting fire mobilized N in soils, which was then transported to downslope ecosystems. Furthermore, fire generally increased pH, particularly in small ponds. Finally, we observed 3-4 fold higher CO2 and CH4 fluxes from aquatic ecosystems in burned sites as compared with control sites. We hypothesize that this is due to increased thaw depth and increased pH, which combine to increase resource availability and release methane-producing microbes from the constraints of low pH. These results suggest a strong positive feedback on climate from short-term responses of aquatic ecosystems to fire in the Arctic.
NASA Astrophysics Data System (ADS)
Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu
2018-06-01
Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.
MONITORING ECOSYSTEMS FROM SPACE: THE GLOBAL FIDUCIALS PROGRAM
Images from satellites provide valuable insights to changes in land-cover and ecosystems. Long- term monitoring of ecosystem change using historical satellite imagery can provide quantitative measures of ecological processes and allows for estimation of future ecosystem condition...
Todd, Timothy C.; Blair, John M.; Herman, Michael A.
2013-01-01
Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems. PMID:23840782
Short-term Responses of Posidonia australis to Changes in Light Quality
Strydom, Simone; McMahon, Kathryn M.; Kendrick, Gary A.; Statton, John; Lavery, Paul S.
2018-01-01
Seagrass meadows are highly productive ecosystems that provide ecosystem services to the coastal zone but are declining globally, particularly due to anthropogenic activities that reduce the quantity of light reaching seagrasses, such as dredging, river discharge and eutrophication. Light quality (the spectral composition of the light) is also altered by these anthropogenic stressors as the differential attenuation of wavelengths of light is caused by materials within the water column. This study addressed the effect of altered light quality on different life-history stages of the seagrass Posidonia australis, a persistent, habitat-forming species in Australia. Aquarium-based experiments were conducted to determine how adult shoots and seedlings respond to blue (peak λ = 451 nm); green (peak λ = 522 nm); yellow (peak λ = 596 nm) and red (peak λ = 673 nm) wavelengths with a control of full-spectrum light (λ = 400 – 700 nm, at 200 μmol photons m-2 s-1). Posidonia australis adults did not respond to changes in light quality relative to full-spectrum light, demonstrating a capacity to obtain enough photons from a range of wavelengths across the visible spectrum to maintain short-term growth at high irradiances. Posidonia australis seedlings (<4 months old) grown in blue light showed a significant increase in xanthophyll concentrations when compared to plants grown in full-spectrum, demonstrating a pigment acclimation response to blue light. These results differed significantly from negative responses to changes in light quality recently described for Halophila ovalis, a colonizing seagrass species. Persistent seagrasses such as P. australis, appear to be better at tolerating short-term changes in light quality compared to colonizing species when sufficient PPFD is present. PMID:29387070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graumlich, L.J.; Brubaker, L.B.
1995-07-01
The specter of human-induced alteration of atmospheric composition, and the associated changes in climate, have focused attention on how species, communities, and ecosystems respond to climate change. One source of information concerning this is the paleoecological record. Paleoecology offers insights in the nature of climate-vegetation interactions that derive from the well-documented response of plant communities to environmental changes of the past. The spatial and temporal resolution of paleoecological data sets has increased in recent decades, so that relatively detailed histories of conifer forests are available for much of North America and Europe. In addition, comparisons of records of past vegetationmore » dynamics to paleoclimatic simulations by general circulation models have improved the understanding of the role of climate in governing past vegetation change. Several major findings of paleoresearch have importance to investigations of the effects of future climate change on the Earth`s biota. These include the findings (1) that changing seasonality may result in unexpected vegetation patterns, (2) that climatic and vegetation changes can be rapid, with ecosystem-wide implications, and (3) that short-term, extreme events can have long-term effects on tree population structures. In this chapter, we discuss patterns of coniferous forest response to climatic variation at two temporal scales: the Late Quaternary and the last millennium. Our examples illustrate the wide range of potential responses of coniferous forests to climatic variation, and emphasize opportunities for applying paleoecological findings to questions of ecophysiological research. Although we rely largely on examples from North America, our conclusions are well-supported by parallel research results in Europe and Asia.« less
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
Safeguarding biodiversity and ecosystem services in the Little Karoo, South Africa.
Egoh, Benis N; Reyers, Belinda; Carwardine, Josie; Bode, Michael; O'Farrell, Patrick J; Wilson, Kerrie A; Possingham, Hugh P; Rouget, Mathieu; de Lange, Willem; Richardson, David M; Cowling, Richard M
2010-08-01
Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade-offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade-offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services--carbon storage, water recharge, and fodder provision--and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade-offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.
Piovia-Scott, Jonah; Spiller, David A; Takimoto, Gaku; Yang, Louie H; Wright, Amber N; Schoener, Thomas W
2013-08-01
Flows of energy and materials link ecosystems worldwide and have important consequences for the structure of ecological communities. While these resource subsidies typically enter recipient food webs through multiple channels, most previous studies focussed on a single pathway of resource input. We used path analysis to evaluate multiple pathways connecting chronic marine resource inputs (in the form of seaweed deposits) and herbivory in a shoreline terrestrial ecosystem. We found statistical support for a fertilization effect (seaweed increased foliar nitrogen content, leading to greater herbivory) and a lizard numerical response effect (seaweed increased lizard densities, leading to reduced herbivory), but not for a lizard diet-shift effect (seaweed increased the proportion of marine-derived prey in lizard diets, but lizard diet was not strongly associated with herbivory). Greater seaweed abundance was associated with greater herbivory, and the fertilization effect was larger than the combined lizard effects. Thus, the bottom-up, plant-mediated effect of fertilization on herbivory overshadowed the top-down effects of lizard predators. These results, from unmanipulated shoreline plots with persistent differences in chronic seaweed deposition, differ from those of a previous experimental study of the short-term effects of a pulse of seaweed deposition: while the increase in herbivory in response to chronic seaweed deposition was due to the fertilization effect, the short-term increase in herbivory in response to a pulse of seaweed deposition was due to the lizard diet-shift effect. This contrast highlights the importance of the temporal pattern of resource inputs in determining the mechanism of community response to resource subsidies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer
Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less
Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer; ...
2017-06-22
Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less
Xiang, Xingjia; Gibbons, Sean M; He, Jin-Sheng; Wang, Chao; He, Dan; Li, Qian; Ni, Yingying; Chu, Haiyan
2016-01-01
The Qinghai-Tibet Plateau (QTP) is home to the vast grassland in China. The QTP grassland ecosystem has been seriously degraded by human land use practices and climate change. Fertilization is used in this region to increase vegetation yields for grazers. The impact of long-term fertilization on plant and microbial communities has been studied extensively. However, the influence of short-term fertilization on arbuscular mycorrhizal fungal (AMF) communities in the QTP is largely unknown, despite their important functional role in grassland ecosystems. We investigated AMF community responses to three years of N and/or P addition at an experimental field site on the QTP, using the Illumina MiSeq platform (PE 300). Fertilization resulted in a dramatic shift in AMF community composition and NP addition significantly increased AMF species richness and phylogenetic diversity. Aboveground biomass, available phosphorus, and NO3 (-) were significantly correlated with changes in AMF community structure. Changes in these factors were driven by fertilization treatments. Thus, fertilization had a large impact on AMF communities, mediated by changes in aboveground productivity and soil chemistry. Prior work has shown how plants often lower their reliance on AMF symbioses following fertilization, leading to decrease AMF abundance and diversity. However, our study reports a rise in AMF diversity with fertilization treatment. Because AMF can provide stress tolerance to their hosts, we suggest that extreme weather on the QTP may help drive a positive relationship between fertilizer amendment and AMF diversity.
M.W. Griswold; R.T. Winn; T.L. Crisman; W.R. White
2006-01-01
Streamside Management Zones (SMZs) are meant to protect riparian habitat and the stream ecosystem. Benthic macroinvertebrates are recognized bioindicators of water quality in streams, typically occupying multiple trophic levels in these systems and providing food for vertebrates. Thus, it is important to understand the effects of harvest within and adjacent to the SMZ...
The response of tropical rainforests to drought-lessons from recent research and future prospects.
Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno
We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.
Review of the ecosystem service implications of mangrove encroachment into salt marshes.
Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil
2017-10-01
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.
Resilience in ecotoxicology: Toward a multiple equilibrium concept
Bundschuh, Mirco; Schulz, Ralf; Allen, Craig R.; Angeler, David G.
2017-01-01
The term resilience describes stress–response patterns across scientific disciplines. In ecology, advances have been made to clearly define resilience based on underlying mechanistic assumptions. Engineering resilience (rebound) is used to describe the ability of organisms to recover from adverse conditions (disturbances), which is termed the rate of recovery. By contrast, the ecological resilience definition considers a systemic change, that is, when ecosystems reorganize into a new regime following disturbance. Under this new regime, structural and functional aspects change considerably relative to the previous regime, without recovery. In this context, resilience is an emergent property of complex systems. In the present study, we argue that both definitions and uses are appropriate in ecotoxicology, and although the differences are subtle, the implications and uses are profoundly different. We discuss resilience concepts in ecotoxicology, where the prevailing view of resilience is engineering resilience from chemical stress. Ecological resilience may also be useful for describing systemic ecological changes because of chemical stress. We present quantitative methods that allow ecotoxicologists and risk managers to assess whether an ecosystem faces an impending regime shift or whether it has already undergone such a shift. We contend that engineering and ecological resilience help to distinguish ecotoxicological responses to chemical stressors mechanistically and thus have implications for theory, policy, and application.
Tropical rainforests dominate multi-decadal variability of the global carbon cycle
NASA Astrophysics Data System (ADS)
Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.
2017-12-01
Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.
Vegetation Health and Productivity Indicators for Sustained National Climate Assessments
NASA Astrophysics Data System (ADS)
Jones, M. O.; Running, S. W.
2014-12-01
The National Climate Assessment process is developing a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public. Implementing a 14 year record of Gross and Net Primary Productivity (GPP/NPP) derived from the NASA EOS MODIS satellite sensor we demonstrate how these products can serve as Ecosystem Productivity and Vegetation Health National Climate Indicators for implementation in sustained National Climate Assessments. The NPP product combines MODIS vegetation data with daily global meteorology to calculate annual growth of all plant material at 1 sq. km resolution. NPP anomalies identify regions with above or below average plant growth that may result from climate fluctuations and can inform carbon source/sink dynamics, agricultural and forestry yield measures, and response to wildfire or drought conditions. The GPP product provides a high temporal resolution (8-day) metric of vegetation growth which can be used to monitor short-term vegetation response to extreme events and implemented to derive vegetation phenology metrics; growing season start, end, and length, which can elucidate land cover and regionally specific vegetation responses to a changing climate. The high spatial resolution GPP and NPP indicators can also inform and clarify responses seen from other proposed Pilot Indicators such as forest growth/productivity, land cover, crop production, and phenology. The GPP and NPP data are in continuous production and will be sustained into the future with the next generation satellite missions. The long-term Ecosystem Productivity and Vegetation Health Indicators are ideal for use in sustained National Climate Assessments, providing regionally specific responses to a changing climate and complete coverage at the national scale.
Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J; Classen, Aimée T; Reich, Peter B; He, Jin-Sheng
2018-04-17
The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity.
Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions
Nagelkerken, Ivan; Connell, Sean D.
2015-01-01
Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052
NASA Astrophysics Data System (ADS)
Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong
2017-03-01
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.
Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis
NASA Astrophysics Data System (ADS)
Xu, W.; Yuan, W.
2017-12-01
Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (<1°C); however, at high warming magnitude (>2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.
O. Badea; S. Neagu; Andrzej Bytnerowicz; D. Silaghi; I. Barbu; C. Iacoban; F. Popescu; M. Andrei; E. Preda; C. Iacob; I. Dumitru; H. Iuncu; C. Vezeanu; V. Huber
2011-01-01
The monitoring studies carried out in the southern Romanian Carpathians (Retezat and Bucegi - Piatra Craiului Mts) provide a scientific support for long term ecosystem research (LTER). Their general objective is to characterize the air pollution and its potential effects upon forest ecosystems' status and biodiversity in close connection with climatic changes. Two...
Drake, John E; Macdonald, Catriona A; Tjoelker, Mark G; Crous, Kristine Y; Gimeno, Teresa E; Singh, Brajesh K; Reich, Peter B; Anderson, Ian C; Ellsworth, David S
2016-01-01
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2 ) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short-term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil ) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2 ) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light-saturated photosynthesis of canopy leaves (Asat ) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2 . The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huang, Y.; Jiang, J.; Stacy, M.; Ricciuto, D. M.; Hanson, P. J.; Sundi, N.; Luo, Y.
2016-12-01
Ecological forecasting is critical in various aspects of our coupled human-nature systems, such as disaster risk reduction, natural resource management and climate change mitigation. Novel advancements are in urgent need to deepen our understandings of ecosystem dynamics, boost the predictive capacity of ecology, and provide timely and effective information for decision-makers in a rapidly changing world. Our Ecological Platform for Assimilation of Data (EcoPAD) facilitates the integration of current best knowledge from models, manipulative experimentations, observations and other modern techniques and provides both near real-time and long-term forecasting of ecosystem dynamics. As a case study, the web-based EcoPAD platform synchronizes real- or near real-time field measurements from the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE), a whole ecosystem warming and CO2 enrichment treatment experiment, assimilates multiple data streams into process based models, enhances timely feedback between modelers and experimenters, and ultimately improves ecosystem forecasting and makes best utilization of current knowledge. In addition to enable users to (i) estimate model parameters or state variables, (ii) quantify uncertainty of estimated parameters and projected states of ecosystems, (iii) evaluate model structures, (iv) assess sampling strategies, and (v) conduct ecological forecasting, EcoPAD-SPRUCE automated the workflow from real-time data acquisition, model simulation to result visualization. EcoPAD-SPRUCE promotes seamless feedback between modelers and experimenters, hand in hand to make better forecasting of future changes. The framework of EcoPAD-SPRUCE (with flexible API, Application Programming Interface) is easily portable and will benefit scientific communities, policy makers as well as the general public.
Murphy, Shannon M.; Wimp, Gina M.; Lewis, Danny
2012-01-01
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems. PMID:22952814
NASA Astrophysics Data System (ADS)
Wu, Donghai; Ciais, Philippe; Viovy, Nicolas; Knapp, Alan K.; Wilcox, Kevin; Bahn, Michael; Smith, Melinda D.; Vicca, Sara; Fatichi, Simone; Zscheischler, Jakob; He, Yue; Li, Xiangyi; Ito, Akihiko; Arneth, Almut; Harper, Anna; Ukkola, Anna; Paschalis, Athanasios; Poulter, Benjamin; Peng, Changhui; Ricciuto, Daniel; Reinthaler, David; Chen, Guangsheng; Tian, Hanqin; Genet, Hélène; Mao, Jiafu; Ingrisch, Johannes; Nabel, Julia E. S. M.; Pongratz, Julia; Boysen, Lena R.; Kautz, Markus; Schmitt, Michael; Meir, Patrick; Zhu, Qiuan; Hasibeder, Roland; Sippel, Sebastian; Dangal, Shree R. S.; Sitch, Stephen; Shi, Xiaoying; Wang, Yingping; Luo, Yiqi; Liu, Yongwen; Piao, Shilong
2018-06-01
Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon-water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.
Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...
2015-04-27
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less
Impact of Hypoxia on Startle Response (C-start) of Fish in a Tropical Urban Estuary
NASA Astrophysics Data System (ADS)
Sánchez-García, M.; Zottoli, S. J.; Roberson, L.
2016-02-01
Hypoxic zones have become more prevalent in marine ecosystems as a result of physical changes to the coastal zone, pollution and eutrophication, and are expected to increase in prevalence with climate change. While some studies have examined the behavioral effects of hypoxia on coastal fishes in temperate and sub-tropical zones, none have focused on tropical coastal zones. Behavioral changes may affect fish survival, predator-prey interactions and ultimately ecosystem structure. Through behavioral endpoints we evaluated the effects of non-lethal levels of hypoxia on estuarine fish collected from the tropical Condado Lagoon, San Juan P.R, in a laboratory setting. Two groups of 10 fishes were placed individually in a sound test chamber and oxygen concentrations were modulated from a pre-treatment at 100% oxygen to increasing levels of hypoxia (80, 70, & 60%), followed by a reversal treatment (100%) to test for recovery of pretreatment behavior. An abrupt sound stimulus was used to elicit a startle response, a quantifiable biological endpoint, while recording with a high speed camera. This approach can lend valuable insight into changes in the central nervous system and effects of anthropogenic inputs on tropical ecosystems at the individual- and population-level. We found that hypoxic conditions significantly decrease fish responsiveness; fish startled only half the time at 80% O2 and dropped as much as 61% at 60% O2. Additionally, responsiveness in reversal tests were significantly lower than under pre-treatment conditions. These results indicate that hypoxia may have long-term or possibly permanent effects, even under relatively mild hypoxia conditions common to tropical estuaries. Future work will aim to understand if the startle response can be regained after a hypoxic event.
Impacts and responses to environmental change in coastal livelihoods of south-west Bangladesh.
Hossain, Mostafa A R; Ahmed, Munir; Ojea, Elena; Fernandes, Jose A
2018-05-12
Aquatic ecosystems are of global importance for maintaining high levels of biodiversity and ecosystem services, and for the number of livelihoods dependent on them. In Bangladesh, coastal and delta communities rely on these systems for a livelihood, and the sustainability of the productivity is seriously threatened by both climate change and unsustainable management. These multiple drivers of change shape the livelihood dependence and adaptation responses, where a better understanding is needed to achieve sustainable management in these systems, while maintaining and improving dependent livelihoods. This need has been addressed in this study in the region of Satkhira, in the southwest coast of Bangladesh, where livelihoods are highly dependent on aquatic systems for food supply and income. Traditional wild fish harvest in the rivers and aquaculture systems, including ghers, ponds, and crab points have been changing in terms of the uses and intensity of management, and suffering from climate change impacts as well. By means of six focus groups with 50 participants total, and validated by expert consultations, we conduct an analysis to understand the main perceived impacts from climate and human activities; and the adaptation responses from the aquatic system livelihoods. We find that biodiversity has decreased drastically, while farmed species have increased and shrimp gher farming turned more intensive becoming the main source of income. All these changes have important implications for food supply in the region and environmental sustainability. Dramatic responses taken in the communities include exit the fisheries and migration, and more adaptive responses include species diversification, crab fattening and working more on the pond and gher infrastructure. This study evidences the results of the combination of multiple stressors in productive systems and the barriers to adaptation in aquatic ecosystem dependent communities. Copyright © 2017 Elsevier B.V. All rights reserved.
Mustonen, Kaisa-Riikka; Mykrä, Heikki; Louhi, Pauliina; Markkola, Annamari; Tolkkinen, Mikko; Huusko, Ari; Alioravainen, Nico; Lehtinen, Sirkku; Muotka, Timo
2016-10-01
Stream ecosystems are affected by multiple abiotic stressors, and species responses to simultaneous stressors may differ from those predicted based on single-stressor responses. Using 12 semi-natural stream channels, we examined the individual and interactive effects of flow level (low or high flow) and addition of fine sediments (grain size <2 mm) on key ecosystem processes (leaf breakdown, algal biomass accrual) and benthic macroinvertebrate and fungal communities. Both stressors had mostly independent effects on biological responses, with sand addition being the more influential of the two. Sand addition decreased algal biomass and microbe-mediated leaf breakdown significantly, whereas invertebrate shredder-mediated breakdown only responded to flow level. Macroinvertebrate community composition responded significantly to both stressors. Fungal biomass decreased and shredder abundance increased when sand was added; thus, organisms at different trophic levels can exhibit highly variable responses to the same stressor. Terrestrial endophytic fungi were abundant in low-flow flumes where leaf mass loss was also highest, indicating that terrestrial endophytes may contribute importantly to leaf decomposition in the aquatic environment. Leaf breakdown rates depended on the identity and abundance of the dominant decomposer species, suggesting that the effects of anthropogenic activities on ecosystem processes may be driven by changes in the abundance of a few key species. The few observed interactive effects were all antagonistic (i.e., less than the sum of the individual effects); for example, increased flow stimulated algal biomass accumulation but this effect was largely cancelled by sand. While our finding that sand and stream flow did not have strong synergistic effects can be considered reassuring for management, future experiments should manipulate these and other human stressors in experiments that run for much longer periods, thus focusing on the long-term impacts of multiple simultaneously operating stressors. © 2016 by the Ecological Society of America.
Rousk, Johannes; Smith, Andrew R; Jones, Davey L
2013-12-01
We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil. © 2013 John Wiley & Sons Ltd.
Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems
Nathaly R. Guerrero-Ramírez; Dylan Craven; Peter B. Reich; John J. Ewel; Forest Isbell; Julia Koricheva; John A. Parrotta; Harald Auge; Heather E. Erickson; David I. Forrester; Andy Hector; Jasmin Joshi; Florencia Montagnini; Cecilia Palmborg; Daniel Piotto; Catherine Potvin; Christiane Roscher; Jasper van Ruijven; David Tilman; Brian Wilsey; Nico Eisenhauer
2017-01-01
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversityâecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests...
Calcification, Storm Damage and Population Resilience of Tabular Corals under Climate Change
Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.
2012-01-01
Two facets of climate change–increased tropical storm intensity and ocean acidification–are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms’ short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs. PMID:23056379
NASA Astrophysics Data System (ADS)
Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin
2018-04-01
The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity
. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.
NASA Astrophysics Data System (ADS)
von Buttlar, Jannis; Zscheischler, Jakob; Rammig, Anja; Sippel, Sebastian; Reichstein, Markus; Knohl, Alexander; Jung, Martin; Menzer, Olaf; Altaf Arain, M.; Buchmann, Nina; Cescatti, Alessandro; Gianelle, Damiano; Kiely, Gerard; Law, Beverly E.; Magliulo, Vincenzo; Margolis, Hank; McCaughey, Harry; Merbold, Lutz; Migliavacca, Mirco; Montagnani, Leonardo; Oechel, Walter; Pavelka, Marian; Peichl, Matthias; Rambal, Serge; Raschi, Antonio; Scott, Russell L.; Vaccari, Francesco P.; van Gorsel, Eva; Varlagin, Andrej; Wohlfahrt, Georg; Mahecha, Miguel D.
2018-03-01
Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies but as a novelty generalizes these findings on the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
Microbial community controls on decomposition and soil carbon storage
NASA Astrophysics Data System (ADS)
Frey, S. D.
2016-12-01
Soil is one of the most diverse habitats on Earth and one of the least characterized in terms of the identification and ecological roles of soil organisms. Soils also contain the largest repository of organic C in the terrestrial biosphere and the activities of heterotrophic soil organisms are responsible for one of the largest annual fluxes of CO2 to the atmosphere. A fundamental controversy in ecosystem ecology is the degree to which identification of microbial taxa informs our ability to understand and model ecosystem-scale processes, such as soil carbon storage and fluxes. We have evidence that microbial identity does matter, particularly in a global change context where soil microorganisms experience selective pressures to adapt to changing environments. In particular, our work at the Harvard Forest Long-term Ecological Research (LTER) site demonstrates that the microbial community is fundamentally altered by global change stressors (climate warming, nitrogen deposition, biotic invasion) and that microbial taxa exposed to long-term environmental change exhibit an altered capacity to decompose organic matter. This talk will discuss the relative importance of changes in microbial community structure versus microbial physiology for soil organic matter degradation and stabilization.
Ecosystem Services in the Gulf of Maine
The primary goal of ecosystem-based management (EBM) is to sustain the long-term capacity of the natural world to provide ecosystem services. A technical workshop was held with the object of moving toward identifying, mapping, quantifying, and valuing ecosystem services in the G...
Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure
Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.
2016-01-01
High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.
Resource footprints and their ecosystem consequences
Verones, Francesca; Moran, Daniel; Stadler, Konstantin; Kanemoto, Keiichiro; Wood, Richard
2017-01-01
A meaningful environmental impact analysis should go beyond the accounting of pressures from resource use and actually assess how resource demand affects ecosystems. The various currently available footprints of nations report the environmental pressures e.g. water use or pollutant emissions, driven by consumption. However, there have been limited attempts to assess the environmental consequences of these pressures. Ultimately, consequences, not pressures, should guide environmental policymaking. The newly released LC-Impact method demonstrates progress on the path to providing this missing link. Here we present “ecosystem impact footprints” in terms of the consequences for biodiversity and assess the differences in impact footprint results from MRIO-based pressure footprints. The new perspective reveals major changes in the relative contribution of nations to global footprints. Wealthy countries have high pressure footprints in lower-income countries but their impact footprints often have their origin in higher-income countries. This shift in perspective provides a different insight on where to focus policy responses to preserve biodiversity. PMID:28112168
Characterizing local biological hotspots in the Gulf of Maine using remote sensing data
NASA Astrophysics Data System (ADS)
Ribera, Marta M.
Researchers increasingly advocate the use of ecosystem-based management (EBM) for managing complex marine ecosystems. This approach requires managers to focus on processes and cross-scale interactions, rather than individual components. However, they often lack appropriate tools and data sources to pursue this change in management approach. One method that has been proposed to understand the ecological complexity inherent in marine ecosystems is the study of biological hotspots. Biological hotspots are locations where organisms from different trophic levels aggregate to feed on abundant supplies, and they are considered a first step toward understanding the processes driving spatial and temporal heterogeneity in marine systems. Biological hotspots are supported by phytoplankton aggregations, which are characterized by high spatial and temporal variability. As a result, methods developed to locate biological hotspots in relatively stable terrestrial systems are not well suited for more dynamic marine ecosystems. The main objective of this thesis is thus to identify and characterize local-scale biological hotspots in the western side of the Gulf of Maine. The first chapter describes a new methodological framework with the steps needed to locate these types of hotspots in marine ecosystems using remote sensing datasets. Then, in the second chapter these hotspots are characterized using a novel metric that uses time series information and spatial statistics to account for both the temporal variability and spatial structure of these marine aggregations. This metric redefines biological hotspots as areas with a high probability of exhibiting positive anomalies of productivity compared to the expected regional seasonal pattern. Finally, the third chapter compares the resulting biological hotspots to fishery-dependent abundance indices of surface and benthic predators to determine the effect of the location and magnitude of phytoplankton aggregations on the rest of the ecosystem. Analyses indicate that the spatial scale and magnitude of biological hotspots in the Gulf of Maine depend on the location and time of the year. Results also show that these hotspots change over time in response to both short-term oceanographic processes and long-term climatic cycles. Finally, the new metric presented here facilitates the spatial comparison between different trophic levels, thus allowing interdisciplinary ecosystem-wide studies.
River Food Web Response to Large-Scale Riparian Zone Manipulations
Wootton, J. Timothy
2012-01-01
Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786
Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.
Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L
2006-03-22
Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.
Thermal adaptation of net ecosystem exchange
Yuan, W.; Luo, Y.; Liang, S.; ...
2011-06-06
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
Thermal adaptation of net ecosystem exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, W.; Luo, Y.; Liang, S.
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). Here in this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (T b) at which ecosystem transfer from carbon source to sinkmore » and optimal temperature (T o) at which carbon uptake is maximized. T b was strongly correlated with annual mean air temperature. T o was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration.« less
Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.
2009-01-01
Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape.
Trawl disturbance on benthic communities: chronic effects and experimental predictions.
Hinz, Hilmar; Prieto, Virginia; Kaiser, Michel J
2009-04-01
Bottom trawling has widespread impacts on benthic communities and habitats. While the direct impacts of trawl disturbances on benthic communities have been extensively studied, the consequences from long-term chronic disturbances are less well understood. The response of benthic macrofauna to chronic otter-trawl disturbance from a Nephrops norvegicus (Norway lobster) fishery was investigated along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Chronic otter trawling had a significant, negative effect on benthic infauna abundance, biomass, and species richness. Benthic epifauna abundance and species richness also showed a significant, negative response, while no such effect was evident for epibenthic biomass. Furthermore, chronic trawl disturbance led to clear changes in community composition of benthic infauna and epifauna. The results presented indicate that otter-trawl impacts are cumulative and can lead to profound changes in benthic communities, which may have far-reaching implications for the integrity of marine food webs. Studies investigating the short-term effects of fishing manipulations previously concluded that otter trawling on muddy substrates had only modest effects on the benthic biota. Hence, the results presented by this study highlight that data from experimental studies can not be readily extrapolated to an ecosystem level and that subtle cumulative effects may only become apparent when fishing disturbances are examined over larger spatial and temporal scales. Furthermore, this study shows that data on chronic effects of bottom trawling on the benthos will be vital in informing the recently advocated move toward an ecosystem approach in fisheries management. As bottom-trawl fisheries are expanding into ever deeper muddy habitats, the results presented here are an important step toward understanding the global ecosystem effects of bottom trawling.
Assessment of Vegetation Responses and Sensitivity to the Millennium Drought in Australia
NASA Astrophysics Data System (ADS)
Jiao, T.; Williams, C. A.
2017-12-01
During the period from 1997 to 2009, Australia experienced one of the most severe and persistent drought known as the Millennium Drought (MD). Major water shortages were reported across the Australian continent as well as a great many tree mortality during and post this drought event. Given the projection of hotter and drier conditions for much of the continent (Hughes 2003), it is critical to analyze the impacts of climate extremes like MD as an indicator of possible impacts of future trends. A few drought assessments have been performed for the MD but their utilization of single-source Remote sensing data like vegetation indices makes it difficult to produce a comprehensive understanding of drought responses for diverse ecosystems in Australia. Furthermore, methods adopted in past drought assessments did not distinguish vegetation responses to drought events with different intensity, duration and sequence, which are critically important in determining the magnitude of vegetation responses to drought. Here, multi-source remote sensing datasets and an event-based drought assessment method were employed to assess the impacts of MD on vegetation in Australia in terms of the magnitude and sensitivity. Vegetation variables examined include fraction of photosynthetically absorbed radiation (Fpar), vegetation optical depth (VOD) and aboveground biomass (AGB). Drought indicators were calculated based on precipitation and potential evapotranspiration. Results show that most of Eastern Australia experienced abnormal water deficit during the MD and drought intensity was greatest in humid regions. The decline in aboveground biomass (ABC) demonstrates consistent variation with drought intensity across aridity levels. Drought impacts on Fpar and VOD were greatest at intermediate dryness and for woodier ecosystems, with impacts appearing in Fpar before VOD. Drought sensitivity was also greatest at intermediate dryness and for woodier ecosystems. The small difference in drought sensitivity, in terms of Fpar and VOD, across biomes suggests that trees, shrubs, and herbaceous are equally vulnerable to canopy dieback while the high drought sensitivity of trees as shown in ABC implies that a large amount of carbon could be released to the atmosphere if intense and long-duration drought occurs in forested areas.
Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu
2018-01-01
Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China. PMID:29529082
Zhang, Xiaolin; Zhai, Penghui; Huang, Jianhui; Zhao, Xiang; Dong, Kuanhu
2018-01-01
Water use efficiency (WUE) is an important indicator of ecosystem functioning but how ecosystem WUE responds to climate change including precipitation and nitrogen (N) deposition increases is still unknown. To investigate such responses, an experiment with a randomized block design with water (spring snowfall or summer water addition) and nitrogen addition was conducted in a temperate steppe of northern China. We investigated net ecosystem CO2 production (NEP), gross ecosystem production (GEP) and evapotranspiration (ET) to calculate ecosystem WUE (WUEnep = NEP/ET or WUEgep = GEP/ET) under spring snow and summer water addition with or without N addition from 2011 to 2013. The results showed that spring snow addition only had significant effect on ecosystem WUE in 2013 and summer water addition showed positive effect on ecosystem WUE in 2011 and 2013, as their effects on NEP and GEP is stronger than ET. N addition increased ecosystem WUE in 2012 and 2013 both in spring snow addition and summer water addition for its increasing effects on NEP and GEP but no effect on ET. Summer water addition had less but N addition had greater increasing effects on ecosystem WUE as natural precipitation increase indicating that natural precipitation regulates ecosystem WUE responses to water and N addition. Moreover, WUE was tightly related with atmospheric vapor-pressure deficit (VPD), photosynthetic active radiation (PAR), precipitation and soil moisture indicating the regulation of climate drivers on ecosystem WUE. In addition, it also was affected by aboveground net primary production (ANPP). The study suggests that ecosystem WUE responses to water and N addition is determined by the change in carbon process rather than that in water process, which are regulated by climate change in the temperate steppe of northern China.
Paul T. Rygiewicz; Vicente J. Monleon; Elaine R. Ingham; Kendall J. Martin; Mark G. Johnson
2010-01-01
Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems. That is, the sensitivity of analyzing ecosystem processes in a reconstructed system is...
Linking an ecosystem model and a landscape model to study forest species response to climate warming
Hong S. He; David J. Mladenoff; Thomas R. Crow
1999-01-01
No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...
NASA Astrophysics Data System (ADS)
Wang, Shaoqiang
2014-05-01
Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.
Remembrance of ecohydrologic extremes past
NASA Astrophysics Data System (ADS)
Band, L. E.; Hwang, T.
2013-12-01
Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter period, intra and interannual shifts of canopy structure and phenology are discernable, along with long term canopy adjustment. We use a combination of field observations, long term remote sensing records and distributed ecohydrological modeling to investigate transient behavior, apparent memory and mechanisms of ecosystem adjustment to hydroclimate variability and change over the range of biomes in the watershed.
Azarbad, Hamed; van Gestel, Cornelis A. M.; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F. M.; van Straalen, Nico M.
2016-01-01
Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors. PMID:27314330
Ocean acidification and its potential effects on marine ecosystems.
Guinotte, John M; Fabry, Victoria J
2008-01-01
Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.
NASA Astrophysics Data System (ADS)
Campbell, D. H.; Mast, M. A.; Clow, D. W.; Ingersoll, G. P.; Nanus, L.
2004-12-01
Wilderness areas and national parks of the West are largely protected from acute changes in land use such as urbanization and natural resource development. However, the ecosystems in these areas are sensitive to both climate variability and atmospheric deposition of acids, nitrogen (N), and toxic contaminants, and these stressors interact in ways that we are just beginning to understand. Here we examine some examples of the interactions between climate variability and nitrogen and mercury cycling in high elevation watersheds. During the recent drought, which began in 2000, streamwater nitrate concentrations nearly doubled in the Loch Vale watershed in Rocky Mountain National Park, exceeding 60 μ M during early snowmelt. Much of the elevated nitrate resulted from an increased percentage contribution to streamwater of nitrate-rich shallow groundwater. In a nearby pond used for breeding by a threatened amphibian species, nitrate concentrations were negligible but ammonium concentrations were extremely high (850 μ M) during the drought. In this case, organic N in pond sediments was likely mineralized and released during cycles of drying and rewetting of pond sediments. Even after 2 years of near-average precipitation, water levels remained below normal and ammonium concentrations remained elevated, indicating that the hydrologic response of this small system has a timescale of many years. Mercury (Hg) deposition at high elevations of the Rocky Mountains is comparable to that of the Midwest and Northeast, but the processes that control Hg cycling in alpine/subalpine ecosystems are not well understood. Methylation and bioaccumulation of Hg must occur before Hg reaches levels harmful to the ecosystem or human health, and both climate and nutrient cycling affect these processes. Fluctuating water levels caused by climate variability can mobilize Hg from lake and pond sediments, increasing reactivity and bioavailability of Hg in the ecosystem. Increased nutrient release from the terrestrial ecosystem (eg. from N saturation) may increase productivity and accumulation of organic matter, altering Hg cycling in the aquatic system. Long durations of ice cover and thick snowpacks are likely to cause elevated methyl Hg in aquatic ecosystems. Snow and ice cover on lakes promotes hypoxia in lake water, favoring production and accumulation of methyl Hg- the percentage of methyl-Hg in lake water under snow and ice was as much as 6 times greater than the percentage measured during late summer in a northwestern Colorado lake. Analysis of long-term trends indicates that climate variability is increasing in the Mountain West. Climatic extremes appear to exacerbate adverse impacts of atmospheric deposition, as well as stressing ecosystems directly. A better understanding of these interactions is needed in order to predict the response of mountain ecosystems to future changes in climate and atmospheric deposition.
Forestry, ecosystems, and wildlife: The differences are in the details
Linda Joyce
2008-01-01
Climate affects all terrestrial and aquatic ecosystems in Colorado, and over the long term, plants and animals adapt. In the short term, fires, increased attacks by insects and invasive plant species, and higher temperatures are changing familiar landscapes.
Limited temperature response to the very large AD 1258 volcanic eruption
NASA Astrophysics Data System (ADS)
Timmreck, Claudia; Lorenz, Stephan J.; Crowley, Thomas J.; Kinne, Stefan; Raddatz, Thomas J.; Thomas, Manu A.; Jungclaus, Johann H.
2009-11-01
The large AD 1258 eruption had a stratospheric sulfate load approximately ten times greater than the 1991 Pinatubo eruption. Yet surface cooling was not substantially larger than for Pinatubo (˜0.4 K). We apply a comprehensive Earth System Model to demonstrate that the size of the aerosol particles needs to be included in simulations, especially to explain the climate response to large eruptions. The temperature response weakens because increased density of particles increases collision rate and therefore aerosol growth. Only aerosol particle sizes substantially larger than observed after the Pinatubo eruption yield temperature changes consistent with terrestrial Northern Hemisphere summer temperature reconstructions. These results challenge an oft-held assumption of volcanic impacts not only with respect to the immediate or longer-term temperature response, but also any ecosystem response, including extinctions.
NASA Astrophysics Data System (ADS)
Gooseff, M. N.; Adams, B.; Barrett, J. E.; Doran, P. T.; Fountain, A. G.; Lyons, W. B.; McKnight, D. M.; Takacs-Vesbach, C. D.; Priscu, J. C.; Sokol, E.; Virginia, R. A.; Wall, D. H.
2015-12-01
The McMurdo Dry Valleys of Antarctica represent the largest ice-free area of the continent. The landscape is dominated by glaciers, exposed soils, streams, and ice-covered lakes, and hosts an incredible ecosystem that is largely driven by microbes and some invertebrates. Given the low air temperatures (-18C annual mean), little precipitation (<10 cm water equivalent/yr), and lack of vegetation cover, the Dry Valleys ecosystem is strongly influenced by physical processes. In the past two decades, summer conditions have been observed to fluctuate significantly. From 1986-2001, the area experienced a cooling trend and the ecosystem responded with decreasing soil invertebrate populations, decreased streamflow, decreased primary productivity in lakes, and decreased algal biomass in streams. Since 2001, 3 very high glacial melt years have occurred producing record stream flows and extensive wetted soils. During this most recent decade, the levels of closed-basin lakes have risen substantially, with increasing heat contents, and we have observed increased permafrost degradation along streambanks. Here we assess the ecosystem responses of the cooling 'press' that occurred from 1986-2001 and the more most recent decade that has had several strong pulses of energy driving the system to develop expectations for the future state and function of this polar desert ecosystem. We propose that the future trajectory of climate and energy input to the region will likely be more inconsistent than the cooling period was. Hence, the ecosystem will be consistently responding to pulses of change over varying time periods. We also expect that recovery of the ozone layer over Antarctica may play an important role in modifying both regional climate and the Dry Valleys ecosystem.
Effect of interannual climate variability on carbon storage in Amazonian ecosystems
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.
1998-01-01
The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.
Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.
2014-05-01
In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.
NASA Astrophysics Data System (ADS)
Hina, A.
2016-12-01
The Research takes into account Block II Mining and Power Plant Project of Thar Coal field in Pakistan by carrying out ecosystem service assessment of the region to identify the impact on important ecosystem service losses and the contribution of mining companies to mitigate the socio-economic problems as a part of their Corporate Social Responsibility (CSR). The study area includes 7 rural settlements, around 921 households and 7000 individuals, dependent on agriculture and livestock for their livelihoods. Currently, the project has adopted the methods of strip mining (also called open-cut mining, open-cast mining, and stripping), undergoing removing the overburden in strips to enable excavation of the coal seams. Since the consequences of mine development can easily spill across community and ecological boundaries, the rising scarcity of some ecosystem services makes the case to examine both project impact and dependence on ecosystem services. A preliminary Ecosystem Service review of Thar Coal Field identifies key ecosystems services owing to both high significance of project impact and high project dependence are highlighted as: the hydrogeological study results indicate the presence of at least three aquifer zones: one above the coal zone (the top aquifer), one within the coal and the third below the coal zone. Hence, Water is identified as a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed.
NASA Astrophysics Data System (ADS)
Li, Y.; Guan, K.; Gentine, P.; Konings, A. G.; Bhattacharya, A.; Meinzer, F. C.; Kimball, J. S.; Xu, X.; Anderegg, W.; McDowell, N. G.; Martínez-Vilalta, J.; Long, D. G.; Good, S. P.
2017-12-01
The concept of iso/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict stomatal closure to anisohydric with greater stomatal conductance under drying conditions. Though some species-level measures of iso/anisohydry exist at limited locations, ecosystem scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band Vegetation Optical Depth [VOD] from AMSR-E) microwave satellite data to estimate global ecosystem iso/anisohydry. The two independent estimates from radar backscatter and VOD show good agreement at low and mid-latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in-situ species iso/anisohydry estimates indicates that the VOD estimates have much better agreement than the backscatter in terms of their iso/anisohydry metrics. The indirect validation suggests that both estimates are consistent with prior knowledge that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. The ecosystem level iso/anisohydry can be applied to reveal new insights into spatio-temporal ecosystem response to droughts. We conducted a case study to demonstrate the potential application of iso/anisohydry. We find that during the 2011 drought in US, over the drought affected region in the southern US, isohydric ecosystems experienced larger decline in productivity (NDVI and GPP) than anisohydric ones. However, during the 2012 drought in central US, both isohydric and anisohydric ecosystems exhibited similar decline in productivity.
Valuing ecosystem services in terms of ecological risks and returns.
Abson, David J; Termansen, Mette
2011-04-01
The economic valuation of ecosystem services is a key policy tool in stemming losses of biological diversity. It is proposed that the loss of ecosystem function and the biological resources within ecosystems is due in part to the failure of markets to recognize the benefits humans derive from ecosystems. Placing monetary values on ecosystem services is often suggested as a necessary step in correcting such market failures. We consider the effects of valuing different types of ecosystem services within an economic framework. We argue that provisioning and regulating ecosystem services are generally produced and consumed in ways that make them amenable to economic valuation. The values associated with cultural ecosystem services lie outside the domain of economic valuation, but their worth may be expressed through noneconomic, deliberative forms of valuation. We argue that supporting ecosystem services are not of direct value and that the losses of such services can be expressed in terms of the effects of their loss on the risk to the provision of the directly valued ecosystem services they support. We propose a heuristic framework that considers the relations between ecological risks and returns in the provision of ecosystem services. The proposed ecosystem-service valuation framework, which allows the expression of the value of all types of ecosystem services, calls for a shift from static, purely monetary valuation toward the consideration of trade-offs between the current flow of benefits from ecosystems and the ability of those ecosystems to provide future flows. ©2010 Society for Conservation Biology.