Sample records for term increased expression

  1. Long-term academic stress enhances early processing of facial expressions.

    PubMed

    Zhang, Liang; Qin, Shaozheng; Yao, Zhuxi; Zhang, Kan; Wu, Jianhui

    2016-11-01

    Exposure to long-term stress can lead to a variety of emotional and behavioral problems. Although widely investigated, the neural basis of how long-term stress impacts emotional processing in humans remains largely elusive. Using event-related brain potentials (ERPs), we investigated the effects of long-term stress on the neural dynamics of emotionally facial expression processing. Thirty-nine male college students undergoing preparation for a major examination and twenty-one matched controls performed a gender discrimination task for faces displaying angry, happy, and neutral expressions. The results of the Perceived Stress Scale showed that participants in the stress group perceived higher levels of long-term stress relative to the control group. ERP analyses revealed differential effects of long-term stress on two early stages of facial expression processing: 1) long-term stress generally augmented posterior P1 amplitudes to facial stimuli irrespective of expression valence, suggesting that stress can increase sensitization to visual inputs in general, and 2) long-term stress selectively augmented fronto-central P2 amplitudes for angry but not for neutral or positive facial expressions, suggesting that stress may lead to increased attentional prioritization to processing negative emotional stimuli. Together, our findings suggest that long-term stress has profound impacts on the early stages of facial expression processing, with an increase at the very early stage of general information inputs and a subsequent attentional bias toward processing emotionally negative stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

    PubMed

    Wu, Yiming; Peng, Jun; Campbell, Kenneth B; Labeit, Siegfried; Granzier, Henk

    2007-01-01

    Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin expression was determined by transcript analysis, gel electrophoresis and immunoelectron microscopy. Diastolic function was measured at the isolated heart, skinned muscle, and cardiac myocyte levels. We found that hypothyroidism resulted in expression of a large titin isoform, the abundance of which gradually increased with time to become the most dominant isoform in long-term hypothyroid rats. This isoform co-migrates on high-resolution gels with fetal cardiac titin. Transcript analysis on myocardium of long-term PTU rats, provided evidence for expression of additional PEVK and Ig domain exons, similar to what has been described in fetal myocardium. Consistent with the expression of a large titin isoform, titin-based restoring and passive forces were significantly reduced in single cardiac myocytes and muscle strips of long-term hypothyroid rats. Overall muscle stiffness and LV diastolic wall stiffness were increased, however, due to increased collagen-based stiffness. We conclude that long term hypothyroidism triggers expression of a large cardiac titin isoform and that the ensuing reduction in titin-based passive stiffness functions as a compensatory mechanism to reduce LV wall stiffness.

  3. Altered gene expression in human placenta after suspected preterm labour.

    PubMed

    Oros, D; Strunk, M; Breton, P; Paules, C; Benito, R; Moreno, E; Garcés, M; Godino, J; Schoorlemmer, J

    2017-07-01

    Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFNγ, and TNFα) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFα expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFα and IL6 and decreased expression of IFNγ. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  5. Estradiol increases urethral tone through the local inhibition of neuronal nitric oxide synthase expression.

    PubMed

    Gamé, Xavier; Allard, Julien; Escourrou, Ghislaine; Gourdy, Pierre; Tack, Ivan; Rischmann, Pascal; Arnal, Jean-François; Malavaud, Bernard

    2008-03-01

    Estrogens are known to modulate lower urinary tract (LUT) trophicity and neuronal nitric oxide synthase (nNOS) expression in several organs. The aim of this study was to explore the effects of endogenous and supraestrus levels of 17beta-estradiol (E2) on LUT and urethral nNOS expression and function. LUT function and histology and urethral nNOS expression were studied in adult female mice subjected either to sham surgery, surgical castration, or castration plus chronic E2 supplementation (80 microg.kg(-1).day(-1), i.e., pregnancy level). The micturition pattern was profoundly altered by long-term supraestrus levels of E2 with decreased frequency paralleled by increased residual volumes higher than those of ovariectomized mice. Urethral resistance was increased twofold in E2-treated mice, with no structural changes in urethra, supporting a pure tonic mechanism. Acute nNOS inhibition by 7-nitroindazole decreased frequency and increased residual volumes in ovariectomized mice but had no additive effect on the micturition pattern of long-term supraestrus mice, showing that long-term supraestrus E2 levels and acute inhibition of nNOS activity had similar functional effects. Finally, E2 decreased urethral nNOS expression in ovariectomized mice. Long-term supraestrus levels of E2 increased urethral tone through inhibition of nNOS expression, whereas physiological levels of E2 had no effect.

  6. Prevalence and outcomes of breast milk expressing in women with healthy term infants: a systematic review.

    PubMed

    Johns, Helene M; Forster, Della A; Amir, Lisa H; McLachlan, Helen L

    2013-11-19

    Expressing breast milk has become increasingly prevalent, particularly in some developed countries. Concurrently, breast pumps have evolved to be more sophisticated and aesthetically appealing, adapted for domestic use, and have become more readily available. In the past, expressed breast milk feeding was predominantly for those infants who were premature, small or unwell; however it has become increasingly common for healthy term infants. The aim of this paper is to systematically explore the literature related to breast milk expressing by women who have healthy term infants, including the prevalence of breast milk expressing, reported reasons for, methods of, and outcomes related to, expressing. Databases (Medline, CINAHL, JSTOR, ProQuest Central, PsycINFO, PubMed and the Cochrane library) were searched using the keywords milk expression, breast milk expression, breast milk pumping, prevalence, outcomes, statistics and data, with no limit on year of publication. Reference lists of identified papers were also examined. A hand-search was conducted at the Australian Breastfeeding Association Lactation Resource Centre. Only English language papers were included. All papers about expressing breast milk for healthy term infants were considered for inclusion, with a focus on the prevalence, methods, reasons for and outcomes of breast milk expression. A total of twenty two papers were relevant to breast milk expression, but only seven papers reported the prevalence and/or outcomes of expressing amongst mothers of well term infants; all of the identified papers were published between 1999 and 2012. Many were descriptive rather than analytical and some were commentaries which included calls for more research, more dialogue and clearer definitions of breastfeeding. While some studies found an association between expressing and the success and duration of breastfeeding, others found the opposite. In some cases these inconsistencies were compounded by imprecise definitions of breastfeeding and breast milk feeding. There is limited evidence about the prevalence and outcomes of expressing breast milk amongst mothers of healthy term infants. The practice of expressing breast milk has increased along with the commercial availability of a range of infant feeding equipment. The reasons for expressing have become more complex while the outcomes, when they have been examined, are contradictory.

  7. Role of calcitonin gene-related peptide in cardioprotection of short-term and long-term exercise preconditioning.

    PubMed

    Sun, Xiao-Juan; Pan, Shan-Shan

    2014-07-01

    To examine the role of calcitonin gene-related peptide (CGRP) in cardioprotection of short-term and long-term exercise preconditioning (EP). Male Sprague-Dawley rats were, respectively, subjected to continuous intermittent treadmill training 3 days or 3 weeks as short-term or long-term EP protocols. The myocardial injury induced by isoproterenol (ISO) was performed 24 hours after short-term and long-term EP. The myocardial injury was evaluated in terms of the serum cardiac troponin levels and the hematoxylin-basic fuchsin-picric acid staining. Additionally, serum CGRP levels, CGRP expression in the dorsal root ganglion (DRG), and heart were analyzed as possible mechanisms to explain short-term and long-term EP-induced cardioprotection. Both short-term and long-term EP markedly attenuated the isoproterenol-induced myocardial ischemia with lower serum cardiac troponin levels. Short-term EP does not alter serum CGRP levels and CGRP expression in the DRG and heart. Long-term EP significantly increases serum CGRP levels and CGRP expression in the DRG and heart. The results indicate that short-term EP does not increase the synthesis and release of CGRP. Therefore, the cardioprotective effect of short-term EP does not involve CGRP adaptation. Furthermore, long-term EP increases CGRP synthesis in the DRG and promotes CGRP release in the blood and heart. Hence, CGRP may play an important role in the cardioprotective effect of long-term EP.

  8. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  9. Aging and a long-term diabetes mellitus increase expression of 1 α-hydroxylase and vitamin D receptors in the rat liver.

    PubMed

    Vuica, Ana; Ferhatović Hamzić, Lejla; Vukojević, Katarina; Jerić, Milka; Puljak, Livia; Grković, Ivica; Filipović, Natalija

    2015-12-01

    Diabetes mellitus (DM) is a metabolic disorder associated with serious liver complications. As a metabolic chronic disease, DM is very common in the elderly. Recent studies suggest ameliorating effects of vitamin D on metabolic and oxidative stress in the liver tissue in an experimental model of DM. The aim of this study was to investigate the expression of vitamin D receptors (VDRs) and 1α-hydroxylase, the key enzyme for the production of active vitamin D form (calcitriol) in the liver during long-term diabetes mellitus type 1 (DM1) in aging rats. We performed immunohistochemical analysis of liver expression of 1α-hydroxylase and VDRs during aging in long-term streptozotocin-induced DM1. 1α-Hydroxylase was identified in the monocyte/macrophage system of the liver. In addition to the nuclear expression, we also observed the expression of VDR in membranes of lipid droplets within hepatocytes. Aging and long-term DM1 resulted in significant increases in the number of 1α-hydroxylase immunoreactive cells, as well as the percentage of strongly positive VDR hepatocytes. In conclusion, the liver has the capacity for active vitamin D synthesis in its monocyte/macrophage system that is substantially increased in aging and long-term diabetes mellitus. These conditions are also characterized by significant increases in vitamin D receptor expression in hepatocytes. The present study suggests that VDR signaling system could be a potential target in prevention of liver complications caused by diabetes and aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Prevalence and outcomes of breast milk expressing in women with healthy term infants: a systematic review

    PubMed Central

    2013-01-01

    Background Expressing breast milk has become increasingly prevalent, particularly in some developed countries. Concurrently, breast pumps have evolved to be more sophisticated and aesthetically appealing, adapted for domestic use, and have become more readily available. In the past, expressed breast milk feeding was predominantly for those infants who were premature, small or unwell; however it has become increasingly common for healthy term infants. The aim of this paper is to systematically explore the literature related to breast milk expressing by women who have healthy term infants, including the prevalence of breast milk expressing, reported reasons for, methods of, and outcomes related to, expressing. Methods Databases (Medline, CINAHL, JSTOR, ProQuest Central, PsycINFO, PubMed and the Cochrane library) were searched using the keywords milk expression, breast milk expression, breast milk pumping, prevalence, outcomes, statistics and data, with no limit on year of publication. Reference lists of identified papers were also examined. A hand-search was conducted at the Australian Breastfeeding Association Lactation Resource Centre. Only English language papers were included. All papers about expressing breast milk for healthy term infants were considered for inclusion, with a focus on the prevalence, methods, reasons for and outcomes of breast milk expression. Results A total of twenty two papers were relevant to breast milk expression, but only seven papers reported the prevalence and/or outcomes of expressing amongst mothers of well term infants; all of the identified papers were published between 1999 and 2012. Many were descriptive rather than analytical and some were commentaries which included calls for more research, more dialogue and clearer definitions of breastfeeding. While some studies found an association between expressing and the success and duration of breastfeeding, others found the opposite. In some cases these inconsistencies were compounded by imprecise definitions of breastfeeding and breast milk feeding. Conclusions There is limited evidence about the prevalence and outcomes of expressing breast milk amongst mothers of healthy term infants. The practice of expressing breast milk has increased along with the commercial availability of a range of infant feeding equipment. The reasons for expressing have become more complex while the outcomes, when they have been examined, are contradictory. PMID:24246046

  11. Supplemental vitamin D3 and zilpaterol hydrochloride. II. Effect on calcium concentration, muscle fiber type, and calpain gene expression of feedlot steers.

    PubMed

    Korn, K T; Lemenager, R P; Claeys, M C; Waddell, J N; Engstrom, M; Schoonmaker, J P

    2013-07-01

    Two hundred and ten Angus × Simmental steers (initial BW 314 ± 11 kg) were separated into heavy and light BW blocks and allotted evenly by BW to 6 treatments (3 heavy and 2 light pens per treatment) to determine the effect of supplemental vitamin D3: 0 IU (no D), 250,000 IU for 165 d (long-term D), or 5 × 10(6) IU for 10 d (short-term D) on plasma and muscle calcium concentrations and gene expression in steers fed either 0 (NZ) or 8.38 mg/kg (ZH) zilpaterol hydrochloride (ZH) daily for 21 d. Placebo or ZH was added to the diet 24 d, and short-term D was added 13 d before slaughter. Treatments were removed from all diets 3 d before slaughter. Plasma total calcium (Ca(2+)) was determined at study initiation, start of ZH and short-term D feedings, and at vitamin D3 and ZH withdrawal. Both plasma total and ionic Ca(2+) were determined when animals were sent to harvest. Longissimus muscle total and ionic Ca(2+) were determined in meat aged 7 and 4 d postmortem, respectively. When ZH was fed, long-term D decreased plasma total Ca(2+) at slaughter (P < 0.04). Short-term D increased (P < 0.01) plasma total and ionic Ca(2+) at slaughter regardless of ZH inclusion in the diet. Long- and short-term D, with or without ZH, did not affect (P > 0.28) LM total Ca(2+); however, both long- and short-term D increased LM ionic Ca(2+) when ZH was not fed (P < 0.01). Long-term D reduced LM ionic Ca(2+) when ZH was fed (P < 0.02). Neither long- nor short-term D affected PPARα or δ gene expression (P = 0.19) whether or not ZH was fed. Expression of MYH1 and 2A (P < 0.05) but not 2X (P = 0.21) was decreased in steers fed ZH. Long-term D had no effect on MYH2A expression (P = 0.21). Short-term D increased MYH2A expression when ZH was not fed (P < 0.03). Calpain mRNA tended to be lower in steers fed ZH (P = 0.09), but was not affected by long- or short-term D regardless of whether or not ZH was fed (P = 0.39). Expression of calpastatin did not differ with vitamin D supplementation (P = 0.35). In conclusion, ZH decreased oxidative myosin expression, and when combined with long-term D, ZH decreased LM ionic Ca(2+). Moreover, vitamin D3 supplementation did not increase calpain mRNA. These results help explain why vitamin D3 does not improve tenderness in steers fed ZH.

  12. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids

    PubMed Central

    Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017

  13. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.

    PubMed

    Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.

  14. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia.

    PubMed

    Nizyaeva, N V; Kulikova, G V; Nagovitsyna, M N; Kan, N E; Prozorovskaya, K N; Shchegolev, A I; Sukhikh, G T

    2017-07-01

    We studied the expression of microRNA-146a and microRNA-155 in placental villi from 18 women (26-39 weeks of gestation) of reproductive age with early- or late-onset preeclampsia. The reference group consisted of women with physiological pregnancy and full-term gestation and with preterm birth after caesarian section on gestation week 26-31. MicroRNA-146a and microRNA-155 were detected by in situ hybridization with digoxigenin on paraffin sections. It was found that the expression of microRNA-146a in both syncytiotrophoblast of the intermediate villi and syncytial knots was lower at late-onset preeclampsia than at physiologic pregnancy of full-term period (p=0.037 and p=0.001 respectively). The expression of microRNA-155 in syncytiotrophoblast of intermediate placental villi in early-onset preeclampsia was higher than in group with preterm delivery (p=0.003). However, in syncytiotrophoblast of intermediate villi and in syncytial knots, the expression of microRNA-155 was lower at late-onset preeclampsia in comparison with full-term physiological pregnancy (p=0.005). In addition, the expression of microRNA-146a and microRNA-155 did not increase in the later terms in preeclampsia, while in the reference groups demonstrating gradual increase in the expression of these markers with increasing gestational age. Expression microRNA-146a and microRNA-155 little differed in early- and late-onset preeclampsia. These findings suggest that different variants of preeclampsia are probably characterized by common pathogenetic pathways. Damaged trophoblast cannot maintain of microRNAs synthesis at the required level, which determines the formation of a vicious circle in preeclampsia and further progression of the disease.

  15. Trophoblast expression of the minor histocompatibility antigen HA-1 is regulated by oxygen and is increased in placentas from preeclamptic women.

    PubMed

    Linscheid, C; Heitmann, E; Singh, P; Wickstrom, E; Qiu, L; Hodes, H; Nauser, T; Petroff, M G

    2015-08-01

    Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia. Published by Elsevier Ltd.

  16. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  17. Trophoblastic progranulin expression is upregulated in cases of fetal growth restriction and preeclampsia.

    PubMed

    Stubert, Johannes; Schattenberg, Florian; Richter, Dagmar-Ulrike; Dieterich, Max; Briese, Volker

    2012-05-13

    The expression of the anti-inflammatory glycoprotein progranulin and the hypoxia-induced transcription factor 1α (HIF-1α) in the villous trophoblast was compared between placentae from patients with preeclampsia (PE), fetal growth restriction (FGR), and normal controls. Matched pairs analysis of third trimester placentae specimens (mean gestational age 36+2) was performed by semiquantitative measurements of the immunohistochemical staining intensities for progranulin and HIF-1α expression (PE n=13, FGR n=9 and controls n=11). Further, placental progranulin mRNA expression was analyzed by qRT-PCR on term placentae (n=3 for each group). Compared to controls, villous trophoblast revealed a significantly higher expression of progranulin in cases of PE (P<0.05) and FGR (P<0.01). Similar results were shown for HIF-1α expression (P<0.01 for PE and <0.05 for FGR). The increase of the progranulin protein was not accompanied by an increase of the progranulin mRNA in term placentae. Increased expression of progranulin protein in villous trophoblast cells in cases of PE and FGR may result from disturbed placental development and, therefore, may be of pathogenetic importance. The increase was correlated to HIF-1α expression. Further evaluation of this potential mechanism of regulation is required.

  18. Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors.

    PubMed

    Postnikova, T Y; Zubareva, O E; Kovalenko, A A; Kim, K K; Magazanik, L G; Zaitsev, A V

    2017-03-01

    Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Real-time PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

  19. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  20. Effect of hypoxia on the expression of pro- and anti-apoptotic proteins in neuronal nuclei of the guinea pig fetus during gestation.

    PubMed

    Abedin, Naheed; Ashraf, Qazi; Mishra, Om Prakash; Delivoria-Papadopoulos, Maria

    2005-04-21

    The present study investigates the expression of apoptotic proteins Bax, Bad, Bcl-2, and Bcl-xl following hypoxia in the cerebral cortex of the guinea pig fetus as a function of gestational age. Normoxic (Nx, n = 6) and hypoxic (Hx, n = 6) guinea pig fetuses at 35 and 60 days gestation were studied. Bax expression (OD X mm(2)) was 96.9 +/- 9.5 (Nx 35 days), 116.5 +/- 8.3 (Hx 35 days), P < 0.05 and 116.2 +/- 3.4 (Nx 60 days, 144.6 +/- 11.7 (Hx 60 days), P < 0.05. Bad expression (OD X mm(2)) was 78.6 +/- 2.6 (Nx 35 days), 102.9 +/- 5.8 (Hx 35 days), P < 0.05 and 101.5 +/- 4.3 (Nx 60 days), 139.8 +/- 7.9 (Hx 60 days), P < 0.05 vs. Nx 60 days, also significantly higher from preterm hypoxia P < 0.007. Expression of Bcl-2 (OD X mm(2)) was 27.4 +/- 2.0 (Nx 35 days), 28.0 +/- 2.4 (Hx 35 days), and 27.4 +/- 2.7 (Nx 60 days), 29.7 +/- 2.3 (Hx 60 days). Expression of Bcl-xl (OD X mm(2)) was 51.0 +/- 4.4 (Nx 35 days), 46.1 +/- 8.0 (Hx 35 days) and 50.0 +/- 1.4 (Nx 60 days), 54.9 +/- 7.4 (Hx 60 days). Hypoxia resulted in increased expression of the proapoptotic proteins Bax and Bad by 20% and 30% in the preterm as compared to 24% and 38% at term, without altering the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. We conclude that the hypoxia-induced increased expression of Bax and Bad is greater at term compared to preterm. Furthermore, the hypoxia-induced increase in proapoptotic as compared to antiapoptotic proteins at term will accelerate the ongoing active process of programmed cell death at term compared to preterm gestation.

  1. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders.

    PubMed

    Stringer, Randa L; Laufer, Benjamin I; Kleiber, Morgan L; Singh, Shiva M

    2013-08-02

    Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3'-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders.

  2. Short-Term Hyperprolactinemia Reduces the Expression of Purinergic P2X7 Receptors during Allergic Inflammatory Response of the Lungs.

    PubMed

    Ochoa-Amaya, Julieta E; Queiroz-Hazarbassanov, Nicolle; Namazu, Lilian B; Calefi, Atilio S; Tobaruela, Carla N; Margatho, Rafael; Palermo-Neto, João; Ligeiro de Oliveira, Ana P; Felicio, Luciano F

    2018-06-06

    We have previously shown that domperidone-induced short-term hyperprolactinemia reduces the lung's allergic inflammatory response in an ovalbumin antigenic challenge model. Since purinergic receptor P2X7R activity leads to proinflammatory cytokine release and is possibly related to the pathogenesis of allergic respiratory conditions, the present study was designed to investigate a possible involvement of purinergic and prolactin receptors in this phenomenon. To induce hyperprolactinemia, domperidone was injected intraperitoneally in rats at a dose of 5.1 mg × kg-1 per day for 5 days. P2X7 expression was evaluated by lung immunohistochemistry while prolactin receptor expression in bronchoalveolar lavage leukocytes was analyzed through flow cytometry. Previous reports demonstrated that rats subjected to short-term hyperprolactinemia exhibited a decrease in leukocyte counts in bronchoalveolar lavage, especially granulocytes. Here, it is revealed that hyperprolactinemia promotes an increased expression of prolactin receptors in granulocytes. Also, increased expression of purinergic P2X7R observed in allergic animals was significantly reduced by hyperprolactinemia. Both purinergic and prolactin receptor expression changes occur during the anti-asthmatic effect of hyperprolactinemia. © 2018 S. Karger AG, Basel.

  3. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding.

    PubMed

    More, Vijay R; Xu, Jialin; Shimpi, Prajakta C; Belgrave, Clyde; Luyendyk, James P; Yamamoto, Masayuki; Slitt, Angela L

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats.

    PubMed

    Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W

    2011-11-09

    Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.

  5. Uncoupling proteins and sleep deprivation.

    PubMed

    Cirelli, C; Tononi, G

    2004-07-01

    In both humans and animals sleep deprivation (SD) produces an increase in food intake and in energy expenditure (EE). The increase in EE is a core element of the SD syndrome and, in rats, is negatively correlated with survival rate. However, the mechanisms involved are not understood. A large component of resting EE is accounted for by the mitochondrial proton leak, which is mediated by uncoupling proteins (UCPs). We measured UCP2, UCP3, and UCP5 mRNA levels in rats during the spontaneous sleep/waking cycle and after short (8 hours) and long (7 days) SD. During spontaneous sleep and waking there was no change in the level of mitochondrial uncoupling as measured by UCPs expression, either in the brain or in peripheral tissues. During SD, by contrast, UCP3 expression in skeletal muscle was elevated, but the increase was similar, compared to sleep, after both short-term and long-term SD. UCP2 expression, on the other hand, was strongly increased in the liver and skeletal muscle of long-term sleep deprived animals and much less so, or not at all, in yoked controls or in rats that lost only 8 hours of sleep. Since the skeletal muscle is the largest tissue in the body, an elevated muscular expression of UCP2 is likely to affect the overall resting EE and may thus contribute to its increase after SD.

  6. Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes

    USDA-ARS?s Scientific Manuscript database

    Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...

  7. Regulation of leptin production in humans.

    PubMed

    Fried, S K; Ricci, M R; Russell, C D; Laferrère, B

    2000-12-01

    Serum levels of the adipocyte hormone leptin are increased in proportion to body fat stores as a result of increased production in enlarged fat cells from obese subjects. In vitro studies indicate that insulin and glucocorticoids work directly on adipose tissue to upregulate in a synergistic manner leptin mRNA levels and rates of leptin secretion in human adipose tissue over the long term. Thus, the increased leptin expression observed in obesity could result from the chronic hyperinsulinemia and increased cortisol turnover. Superimposed upon the long-term regulation, nutritional status can influence serum leptin over the short term, independent of adiposity. Fasting leads to a gradual decline in serum leptin that is probably attributable to the decline in insulin and the ability of catecholamines to decrease leptin expression, as observed in both in vivo and in vitro studies. In addition, increases in serum leptin occur approximately 4-7 h after meals. Increasing evidence indicates that insulin, in concert with permissive effects of cortisol, can increase serum leptin over this time frame and likely contributes to meal-induced increases in serum leptin. Further research is required to elucidate the cellular and molecular mechanisms underlying short- and long-term nutritional and hormonal regulation of leptin production and secretion.

  8. Short- and long-term salinity challenge, Osmoregulatory ability, and (Na+, K+)-ATPase KINETICS AND α-SUBUNIT mRNA expression in the gills of the thinstripe hermit CRAB Clibanarius symmetricus.

    PubMed

    Faleiros, Rogério O; Garçon, Daniela P; Lucena, Malson N; McNamara, John C; Leone, Francisco A

    2018-06-19

    The evolutionary history of the Crustacea reveals ample adaptive radiation and the subsequent occupation of many osmotic niches resulting from physiological plasticity in their osmoregulatory mechanisms. We evaluate osmoregulatory ability in the intertidal, thinstripe hermit crab Clibanarius symmetricus after short-term exposure (6 h) or long-term acclimation (10 days) to a wide salinity range, also analyzing kinetic behavior and α-subunit mRNA expression of the gill (Na + , K + )-ATPase. The crab strongly hyper-regulates its hemolymph at 5 and 15‰S (Salinity, g L -1 ) but weakly hyper-regulates up to ≈27‰S. After 6 h exposure to 35‰S and 45‰S, C. symmetricus slightly hypo-regulates its hemolymph, becoming isosmotic after 10 days acclimation to these salinities. (Na + , K + )-ATPase specific activity decreases with increasing salinity for both exposure periods, reflecting physiological adjustment to isosmoticity. At low salinities, the gill enzyme exhibits a single, low affinity ATP binding site. However, at elevated salinities, a second, high affinity, ATP binding site appears, independently of exposure time. (Na + , K + )-ATPase α-subunit mRNA expression increases only after 10 days acclimation to 5‰S. Our findings suggest that hemolymph hyper-regulation is effected by alterations in enzyme activity during short-term exposure, but is sustained by increased mRNA expression during long-term acclimation. The decrease in gill (Na + , K + )-ATPase activity seen as a consequence of increasing salinity appears to underlie biochemical adjustments to hemolymph isosmoticity as hypo-regulatory ability diminishes. Copyright © 2018. Published by Elsevier Inc.

  9. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency.

    PubMed

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-03-01

    High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.

  10. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    PubMed Central

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795

  11. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders

    PubMed Central

    2013-01-01

    Background Prenatal alcohol exposure is known to result in fetal alcohol spectrum disorders, a continuum of physiological, behavioural, and cognitive phenotypes that include increased risk for anxiety and learning-associated disorders. Prenatal alcohol exposure results in life-long disorders that may manifest in part through the induction of long-term gene expression changes, potentially maintained through epigenetic mechanisms. Findings Here we report a decrease in the expression of Canabinoid receptor 1 (Cnr1) and an increase in the expression of the regulatory microRNA miR-26b in the brains of adult mice exposed to ethanol during neurodevelopment. Furthermore, we show that miR-26b has significant complementarity to the 3’-UTR of the Cnr1 transcript, giving it the potential to bind and reduce the level of Cnr1 expression. Conclusions These findings elucidate a mechanism through which some genes show long-term altered expression following prenatal alcohol exposure, leading to persistent alterations to cognitive function and behavioural phenotypes observed in fetal alcohol spectrum disorders. PMID:23915435

  12. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing

    Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the genemore » expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. - Highlights: • Gene expression signarue in long-term survived GBM patients are identified from Gene Expression Omnibus database. • Repaglinide is identified as a survival-related drug for GBM via drug repositioning in CMap. • Repaglinide effectively kills GBM cells, inhibits GBM cell migration and increases survival of mice bearing orthotopic glioma. • Repaglinide reduces Bcl-2, Beclin-1 and PD-L1 in GBM tissues.« less

  13. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    PubMed

    Mera, Paula; Mir, Joan Francesc; Fabriàs, Gemma; Casas, Josefina; Costa, Ana S H; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  14. Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypotalamus Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile

    PubMed Central

    Fabriàs, Gemma; Casas, Josefina; Costa, Ana S. H.; Malandrino, Maria Ida; Fernández-López, José-Antonio; Remesar, Xavier; Gao, Su; Chohnan, Shigeru; Rodríguez-Peña, Maria Sol; Petry, Harald; Asins, Guillermina; Hegardt, Fausto G.; Herrero, Laura; Serra, Dolors

    2014-01-01

    Lipid metabolism in the ventromedial hypothalamus (VMH) has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT) 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH), long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT) and reduced vesicular glutamate transporter 2 (VGLUT2) expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH. PMID:24819600

  15. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  16. Constitutive androstane receptor activation evokes the expression of glycolytic genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarushkin, Andrei A.; Kazantseva, Yuliya A.; Prokopyeva, Elena A.

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in amore » mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation. - Highlights: • CAR-mediated liver growth is correlated with increased expression of cMyc. • CAR activation increased the expression of glycolytic genes in mouse livers. • CAR activation increased the level of Pkm2 in mouse livers.« less

  17. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    PubMed

    Botta, Amy; Laher, Ismail; Beam, Julianne; Decoffe, Daniella; Brown, Kirsty; Halder, Swagata; Devlin, Angela; Gibson, Deanna L; Ghosh, Sanjoy

    2013-01-01

    PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  18. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice.

    PubMed

    Zhang, Min; Jadavji, Nafisa M; Yoo, Hyung-Suk; Smith, Patrice D

    2018-04-02

    Previous evidence suggests that a significant decline in cognitive ability begins during middle-age and continues to deteriorate with increase in age. Recent work has demonstrated the potential rejuvenation impact of growth differentiation factor-11 (GDF-11) in aged mice. We carried out experiments to evaluate the impact of a single dose of recombinant (rGDF-11) on short-term visual and spatial memory in middle-aged male mice. On the novel object recognition task, we observed middle-aged mice treated rGDF-11 showed improved performance on the novel object recognition task. However, middle-aged mice did not show increased expression of phosphorylated-Smad2/3, a downstream effector of GDF-11. We noted however that the expression of the transcription factor, Sox2 was increased within the dentate gyrus. Our data suggest that a single injection of rGDF-11 contributes to improvements in cognitive function of middle-aged animals, which may be critical in the preservation of short-term memory capacity in old age. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Postsynaptic Regulation of Long-Term Facilitation in Aplysia

    PubMed Central

    Cai, Diancai; Chen, Shanping; Glanzman, David L.

    2009-01-01

    Summary Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia [1–3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia [5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin due to 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals. PMID:18571411

  20. Short-term in vivo inhibition of nitric oxide synthase with L-NAME influences the contractile function of single left ventricular myocytes in rats.

    PubMed

    Lunz, Wellington; Natali, Antônio José; Carneiro, Miguel Araújo; Dos Santos Aggum Capettini, Luciano; Baldo, Marcelo Perim; de Souza, Matheus Ornelas; Quintão, Judson Fonseca; Bozi, Luiz Henrique Marchesi; Lemos, Virginia Soares; Mill, José Geraldo

    2011-04-01

    The main purpose of this study was to investigate the effects of short-term L-NAME treatment on the contractile function of left ventricle (LV) myocytes and the expression of proteins related to Ca(2+) homeostasis. Data from Wistar rats treated with L-NAME (L group, n = 20; 0.7 g/L in drinking water; 7 days) were compared with results from untreated controls (C group, n = 20). Cardiomyocytes from the L group showed increased (p < 0.05) fractional shortening (23%) and maximum rate of shortening (20%) compared with the C group. LV from the L group also showed increased (p < 0.05) expression of the ryanodine receptor 2 and Na(+)/Ca(2+) exchanger proteins (76% and 83%, respectively; p < 0.05). However, the L and C groups showed similar in vivo hemodynamic parameters of cardiac function. In conclusion, short-term NOS inhibition determines an increased expression of Ca(2+) regulatory proteins, which contributes to improving cardiomyocyte contractile function, preserving left ventricular function.

  1. Ghrelin in the human myometrium

    PubMed Central

    2010-01-01

    Background Ghrelin is a 28-amino acid octanolyated peptide, synthesised primarily in the stomach. It stimulates growth hormone release, food intake and exhibits many other diverse effects. Our group have previously determined that ghrelin inhibited human contractility in vitro. The aim of this study therefore, was to investigate the expression of ghrelin, its receptor, the growth hormone secretagogue receptor type 1 (GHS-R1), ghrelin O-acyltransferase (GOAT) which catalyses ghrelin octanoylation, prohormone convertase 1/3 (PC1/3) responsible for pro-ghrelin processing, in human myometrium, during pregnancy prior to labour, during labour and in the non-pregnant state. Modulation of ghrelin and ghrelin receptor expression in cultured myometrial cells was also investigated. Methods mRNA and protein were isolated from human myometrium and the myometrial smooth muscle cell line hTERT-HM; and real-time fluorescence RT-PCR, western blotting and fluorescence microscopy performed. The effects of β-Estradiol and bacterial lipopolysaccharide (LPS) on hTERT-HM gene expression were evaluated by western blotting. Results We have reported for the first time the expression and processing of ghrelin, GHS-R1, GOAT and PC1/3 expression in human myometrium, and also the down-regulation of ghrelin mRNA and protein expression during labour. Furthermore, GHS-R1 protein expression significantly decreased at labour. Myometrial GOAT expression significantly increased during term non-labouring pregnancy in comparison to both non-pregnant and labouring myometrium. Mature PC1/3 protein expression was significantly decreased at term pregnancy and labour in comparison to non-pregnant myometrium. Ghrelin, GHS-R1, GOAT and PC1/3 mRNA and protein expression was also detected in the hTERT-HM cells. Ghrelin protein expression decreased upon LPS treatment in these cells while β-Estradiol treatment increased GHS-R1 expression. Conclusions Ghrelin processing occurred in the human myometrium at term pregnancy and in the non-pregnant state. GOAT expression which increased during term non-labouring pregnancy demonstrating a similar expression pattern to prepro-ghrelin and GHS-R1, decreased at labour, signifying possible myometrial ghrelin acylation. Moreover, the presence of PC1/3 may contribute to pro-ghrelin processing. These results along with the previous in vitro data suggest that myometrially-produced and processed ghrelin plays a significant autocrine or paracrine role in the maintenance of relaxation in this tissue during pregnancy. Furthermore, the significant uterine modulators LPS and β-Estradiol are involved in the regulation of ghrelin and ghrelin receptor expression respectively, in the human myometrium. PMID:20509935

  2. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    PubMed Central

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  3. Placental membrane aging and HMGB1 signaling associated with human parturition.

    PubMed

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-02-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.

  4. Fundamental Frequency Variation of Neonatal Spontaneous Crying Predicts Language Acquisition in Preterm and Term Infants.

    PubMed

    Shinya, Yuta; Kawai, Masahiko; Niwa, Fusako; Imafuku, Masahiro; Myowa, Masako

    2017-01-01

    Spontaneous cries of infants exhibit rich melodic features (i.e., time variation of fundamental frequency [ F 0 ]) even during the neonatal period, and the development of these characteristics might provide an essential base for later expressive prosody in language. However, little is known about the melodic features of spontaneous cries in preterm infants, who have a higher risk of later language-related problems. Thus, the present study investigated how preterm birth influenced melodic features of spontaneous crying at term-equivalent age as well as how these melodic features related to language outcomes at 18 months of corrected age in preterm and term infants. At term, moderate-to-late preterm (MLP) infants showed spontaneous cries with significantly higher F 0 variation and melody complexity than term infants, while there were no significant differences between very preterm (VP) and term infants. Furthermore, larger F 0 variation within cry series at term was significantly related to better language and cognitive outcomes, particularly expressive language skills, at 18 months. On the other hand, no other melodic features at term predicted any developmental outcomes at 18 months. The present results suggest that the additional postnatal vocal experience of MLP preterm infants increased F 0 variation and the complexity of spontaneous cries at term. Additionally, the increases in F 0 variation may partly reflect the development of voluntary vocal control, which, in turn, contributes to expressive language in infancy.

  5. Object-Place Recognition Learning Triggers Rapid Induction of Plasticity-Related Immediate Early Genes and Synaptic Proteins in the Rat Dentate Gyrus

    PubMed Central

    Soulé, Jonathan; Penke, Zsuzsa; Kanhema, Tambudzai; Alme, Maria Nordheim; Laroche, Serge; Bramham, Clive R.

    2008-01-01

    Long-term recognition memory requires protein synthesis, but little is known about the coordinate regulation of specific genes. Here, we examined expression of the plasticity-associated immediate early genes (Arc, Zif268, and Narp) in the dentate gyrus following long-term object-place recognition learning in rats. RT-PCR analysis from dentate gyrus tissue collected shortly after training did not reveal learning-specific changes in Arc mRNA expression. In situ hybridization and immunohistochemistry were therefore used to assess possible sparse effects on gene expression. Learning about objects increased the density of granule cells expressing Arc, and to a lesser extent Narp, specifically in the dorsal blade of the dentate gyrus, while Zif268 expression was elevated across both blades. Thus, object-place recognition triggers rapid, blade-specific upregulation of plasticity-associated immediate early genes. Furthermore, Western blot analysis of dentate gyrus homogenates demonstrated concomitant upregulation of three postsynaptic density proteins (Arc, PSD-95, and α-CaMKII) with key roles in long-term synaptic plasticity and long-term memory. PMID:19190776

  6. A closed-form expression for the effect in breakthrough curves of biofilm development: enhanced dispersion

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Rodriguez-Escales, P.

    2017-12-01

    It has been widely reported that biofilm growth changes the hydraulic parameters in porous media. While the impact upon reduction of hydraulic conductivity has been widely explained and modeled, this has not been the case for the reported order(s) of magnitude increase in dispersion coefficient even when a minute percentage of biofilm is formed, and despite the effect of biofilm growth is to reduce specific discharge, producing a somewhat counterintuitive result. We develop here a simple yet practical expression for the evaluation of an effective dispersion coefficient caused by biomass colonization, based on the modification of the breakthrough curves (in terms of temporal moments) with respect to the biofilm-free porous media. The advantage of the expression is that it is written in terms of observables that are relatively easy to measure in the lab or the field, contrarily to existing expressions that relate the effect to channelization resulting in tortuosity being the driving term of effective dispersion. We have tested our simplified expression in a number of reported sites, where enhanced dispersion of 1-2 orders of magnitude has been reported, indirectly showing the relative importance of the terms included in the expression.

  7. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  8. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  9. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    PubMed

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  10. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins.

    PubMed

    Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen

    2013-05-01

    The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.

  11. Molecular brake pad hypothesis: pulling off the brakes for emotional memory

    PubMed Central

    Vogel-Ciernia, Annie

    2015-01-01

    Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102

  12. Starvation-responsive glycine-rich protein gene in the silkworm Bombyx mori.

    PubMed

    Taniai, Kiyoko; Hirayama, Chikara; Mita, Kazuei; Asaoka, Kiyoshi

    2014-10-01

    Four glycine-rich protein (GRP) genes were identified from expressed sequence tags of the maxillary galea of the silkworm. All four genes were expressed in the maxillary pulp, antenna, labrum, and labium, but none of the genes were expressed in most internal organs. Expression of one of the genes, termed bmSIGRP, was further increased approximately fivefold in the mouth region (including the maxilla, antenna, labrum, labium, and mandible) after 24 h of starvation. bmSIGRP expression peaked at 24 h and gradually declined during the subsequent 2 days. When a synthetic diet not containing proteins was fed, bmSIGRP expression increased significantly in the mouth region to levels similar to that observed in starved larvae. Synthetic diets that lacked vitamins or salts but contained amino acids did not significantly affect bmSIGRP expression. These results suggest that amino acid depletion increases bmSIGRP expression.

  13. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium.

    PubMed

    Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J

    2004-04-01

    Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.

  14. Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock.

    PubMed

    Mathias, Brittany; Delmas, Amber L; Ozrazgat-Baslanti, Tezcan; Vanzant, Erin L; Szpila, Benjamin E; Mohr, Alicia M; Moore, Frederick A; Brakenridge, Scott C; Brumback, Babette A; Moldawer, Lyle L; Efron, Philip A

    2017-04-01

    We hypothesized that after sepsis in humans, MDSCs will be persistently increased, functionally immunosuppressive, and associated with adverse clinical outcomes. Cancer and sepsis have surprisingly similar immunologic responses and equally dismal long term consequences. In cancer, increased myeloid-derived suppressor cells (MDSCs) induce detrimental immunosuppression, but little is known about the role of MDSCs after sepsis. Blood was obtained from 74 patients within 12 hours of severe sepsis/septic shock (SS/SS), and at set intervals out to 28 days, and also in 18 healthy controls. MDSCs were phenotyped for cell surface receptor expression and enriched by cell sorting. Functional and genome-wide expression analyses were performed. Multiple logistic regression analysis was conducted to determine if increased MDSC appearance was associated with in-hospital and long-term outcomes. After SS/SS, CD33CD11bHLA-DR MDSCs were dramatically increased out to 28 days (P < 0.05). When co-cultured with MDSCs from SS/SS patients, antigen-driven T-cell proliferation and TH1/TH2 cytokine production were suppressed (P < 0.05). Additionally, septic MDSCs had suppressed HLA gene expression and up-regulated ARG1 expression (P < 0.05). Finally, SS/SS patients with persistent increased percentages of blood MDSCs had increased nosocomial infections, prolonged intensive care unit stays, and poor functional status at discharge (P < 0.05). After SS/SS in humans, circulating MDSCs are persistently increased, functionally immunosuppressive, and associated with adverse outcomes. This novel observation warrants further studies. As observed in cancer immunotherapy, MDSCs could be a novel component in multimodality immunotherapy targeting detrimental inflammation and immunosuppression after SS/SS to improve currently observed dismal long-term outcomes.

  15. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro.

    PubMed

    Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2017-01-01

    Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.

  16. Reciprocal Feedback Between miR-181a and E2/ERα in Myometrium Enhances Inflammation Leading to Labor

    PubMed Central

    Wang, Gang; Liu, Wei-Na; Kinser, Holly; Franco, Hector L.

    2016-01-01

    Context: The initiation of term and preterm labor is associated with an up-regulated inflammatory response in myometrium; however, the underlying signaling pathways remain incompletely defined. Objective: To define the regulatory mechanisms that mediate the increased myometrial inflammatory response leading to labor, we investigated the roles of microRNAs (miRNA/miR). Design and Setting: Human myometrial tissues, isolated smooth muscle cells, and animal models were used to study miR-181a regulation of uterine inflammatory pathways and contractility. Patients: Myometrial tissues from 15 term pregnant women undergoing elective cesarean section (not in labor) and 10 term pregnant women undergoing emergency cesarean section (in labor) were used. Results: Expression of the highly conserved microRNA, miR-181a, was significantly decreased in mouse and human myometrium during late gestation. By contrast, the putative miR-181a targets, TNF-α, and estrogen receptor (ER)-α, and the validated target, c-Fos, key factors in the inflammatory response leading to parturition, were coordinately up-regulated. In studies using human myometrial cells, overexpression of miR-181a mimics repressed basal as well as IL-1β-induced TNF-α, C-C motif chemokine ligand 2 and 8 expression, whereas the expression of the antiinflammatory cytokine, IL-10, was increased. Overexpression of miR-181a dramatically inhibited both spontaneous and IL-1β-induced contraction of human myometrial cells. Notably, miR-181a directly targeted ERα and decreased its expression, whereas estradiol-17β reciprocally inhibited expression of mature miR-181a in myometrial cells. Conclusions: Thus, increased estradiol-17β/ERα signaling in myometrium near term inhibits miR-181a, resulting in a further increase in ERα and proinflammatory signaling. This escalating feedback loop provides novel targets and therapeutic strategies for the prevention of preterm labor and its consequences. PMID:27459534

  17. Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle

    PubMed Central

    Tao, Xiaoxiao; Lin, Mike T.; Thorington, Glyne U.; Wilson, Sean M.; Longo, Lawrence D.

    2015-01-01

    Acclimatization to high-altitude, long-term hypoxia (LTH) reportedly alters cerebral artery contraction-relaxation responses associated with changes in K+ channel activity. We hypothesized that to maintain oxygenation during LTH, basilar arteries (BA) in the ovine adult and near-term fetus would show increased large-conductance Ca2+ activated potassium (BK) channel activity. We measured BK channel activity, expression, and cell surface distribution by use of patch-clamp electrophysiology, flow cytometry, and confocal microscopy, respectively, in myocytes from normoxic control and LTH adult and near-term fetus BA. Electrophysiological data showed that BK channels in LTH myocytes exhibited 1) lowered Ca2+ set points, 2) left-shifted activation voltages, and 3) longer dwell times. BK channels in LTH myocytes also appeared to be more dephosphorylated. These differences collectively make LTH BK channels more sensitive to activation. Studies using flow cytometry showed that the LTH fetus exhibited increased BK β1 subunit surface expression. In addition, in both fetal groups confocal microscopy revealed increased BK channel clustering and colocalization to myocyte lipid rafts. We conclude that increased BK channel activity in LTH BA occurred in association with increased channel affinity for Ca2+ and left-shifted voltage activation. Increased cerebrovascular BK channel activity may be a mechanism by which LTH adult and near-term fetal sheep can acclimatize to long-term high altitude hypoxia. Our findings suggest that increasing BK channel activity in cerebral myocytes may be a therapeutic target to ameliorate the adverse effects of high altitude in adults or of intrauterine hypoxia in the fetus. PMID:25599571

  18. Expression of genes of the cardiac and renal renin-angiotensin systems in preterm piglets: is this system a suitable target for therapeutic intervention?

    PubMed

    Kim, Eleanor; Eiby, Yvonne; Lumbers, Eugenie; Boyce, Amanda; Gibson, Karen; Lingwood, Barbara

    2015-10-01

    The newborn circulating, cardiac and renal renin-angiotensin systems (RASs) are essential for blood pressure control, and for cardiac and renal development. If cardiac and renal RASs are immature this may contribute to cardiovascular compromise in preterm infants. This study measured mRNA expression of cardiac and renal RAS components in preterm, glucocorticoid (GC) exposed preterm, and term piglets. Renal and cardiac RAS mRNA levels were measured using real-time polymerase chain reaction (PCR). Genes studied were: (pro)renin receptor, renin, angiotensinogen, angiotensin converting enzyme (ACE), ACE2, angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R). All the genes studied were expressed in the kidney; neither renin nor AT2R mRNA were detected in the heart. There were no gestational changes in (pro)renin receptor, renin, ACE or AT1R mRNA levels. Right ventricular angiotensinogen mRNA levels in females were lower in preterm animals than at term, and GC exposure increased levels in male piglets. Renal angiotensinogen mRNA levels in female term piglets were lower than females from both preterm groups, and lower than male term piglets. Left ventricular ACE2 mRNA expression was lower in GC treated preterm piglets. Renal AT2R mRNA abundance was highest in GC treated preterm piglets, and the AT1R/AT2R ratio was increased at term. Preterm cardiac and renal RAS mRNA levels were similar to term piglets, suggesting that immaturity of these RASs does not contribute to preterm cardiovascular compromise. Since preterm expression of both renal and cardiac angiotensin II-AT1R is similar to term animals, cardiovascular dysfunction in the sick preterm human neonate might be effectively treated by agents acting on their RASs. © The Author(s), 2015.

  19. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes.

    PubMed

    Nagayasu, Yuko; Morita, Shin-Ya; Hayashi, Hideki; Miura, Yutaka; Yokoyama, Kazuki; Michikawa, Makoto; Ito, Jin-Ichi

    2014-05-14

    We found in a previous study that both mRNA expression and release of fibroblast growth factor 1 (FGF-1) are greater in rat astrocytes that are long term-cultured for one month (W/M cells) than in the cells cultured for one week (W/W cells). However, FGF-1 does not enhance phosphorylation of Akt, MEK, and ERK in W/M cells, while it does in W/W cells. In this work we studied the mechanism to cause these differences between W/W and W/M cells in culture. As it is known that long term culture generates oxidative stress, we characterized the stresses which W/M cells undergo in comparison with W/W cells. The levels of superoxide dismutase 1 (SOD1) and mitochondrial Bax were higher in W/M cells than in W/W cells. W/M cells recovered their ability to respond to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK in the presence of antioxidants. Oxidative stress induced by hydrogen peroxide (H2O2) had no effect on mRNA expression of FGF-1 in W/W cells, although H2O2 enhances release of FGF-1 from W/W cells without inducing apoptosis. The influence of cell density was studied on mRNA expression of FGF-1 and cellular response to FGF-1, as an increasing cell density is observed in W/M cells. The increasing cell density enhanced mRNA expression of FGF-1 in W/W cells without suppression of responses to FGF-1. The decrease in cell density lowered the FGF-1 mRNA expression in W/M cells without recovery of the response to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK. These findings suggest that oxidative stress attenuate sensitivity to FGF-1 and higher cell density may enhance FGF-1 expression in W/M cells. In addition, we found that the cellular level of phosphatidic acid (PA) increased in H2O2-treated W/W and W/M cells and decreased by the treatment with antioxidants, and that PA enhances the mRNA expression of FGF-1 in the W/W cells. These findings suggest that the increasing PA production may enhance FGF-1 expression to protect astrocytes against oxidative stress induced by long-term culture. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Accumulation of advanced glycation end products and beta 2-microglobulin in fibrotic thickening of the peritoneum in long-term peritoneal dialysis patients.

    PubMed

    Nakamoto, Hirotaka; Hamada, Chieko; Shimaoka, Tetsutaro; Sekiguchi, Yoshimi; Io, Hiroaki; Kaneko, Kayo; Horikoshi, Satoshi; Tomino, Yasuhiko

    2014-03-01

    Characteristics of pathological alterations in long-term peritoneal dialysis (PD) are thickening of submesothelial compact (SMC) zone, small-vessel vasculopathy, and loss of mesothelial cells. Bioincompatible PD fluid plays crucial roles in peritoneal injury. Encapsulating peritoneal sclerosis (EPS), a rare and serious complication, occurred in patients on long-term PD or frequent peritonitis episodes, and ~50 % of EPS developed after PD cessation. We hypothesized that PD-related peritoneal injury factors induced by bioincompatible PD fluid accumulated in the peritoneum and might induce EPS. We therefore examined the accumulation of advanced glycation end products (AGE) and beta 2-microglobulin (β2M) in peritoneum and evaluated the relationship between their accumulation, clinical parameters, and outcome after PD cessation. Forty-five parietal peritoneal specimens were obtained from 28 PD patients, 14 uremic patients, and three patients with normal kidney function. The peritoneal equilibration test was used for peritoneal function. AGE- and β2M-expressing areas were found in vascular walls, perivascular areas, and the deep layer of the SMC in short-term PD patients and extended over the entire SMC in long-term patients. Peritonitis and prolonged PD treatment aggravated peritoneal thickening and the proportion of AGE-expressing areas. The proportion of β2M-expressing areas was increased in long-term PD patients. Thickening of the SMC and the proportions of AGE- and β2M-expressing areas were not related to ascites or EPS after PD withdrawal. It appears that the increased proportion of AGE and β2M deposition induced by long-term exposure of PD fluid may be a marker of peritoneal injury.

  1. A Preliminary Investigation into the Impact of a Pesticide Combination on Human Neuronal and Glial Cell Lines In Vitro

    PubMed Central

    Coleman, Michael D.; O'Neil, John D.; Woehrling, Elizabeth K.; Ndunge, Oscar Bate Akide; Hill, Eric J.; Menache, Andre; Reiss, Claude J.

    2012-01-01

    Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health. PMID:22880100

  2. EPA and DHA increased PPARγ expression and deceased integrin-linked kinase and integrin β1 expression in rat glomerular mesangial cells treated with lipopolysaccharide.

    PubMed

    Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange

    2014-04-01

    Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.

  3. Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression.

    PubMed

    Wu, Minghua; Obara, Yutaro; Ohshima, Shingo; Nagasawa, Yoshinobu; Ishii, Kuniaki

    2017-11-04

    Diabetes mellitus affects ion channel physiology. We have previously reported that acute application of insulin suppresses the KCNQ1/KCNE1 currents that play an important role in terminating ventricular action potential. In this study, we investigated the effect of long-term insulin treatment on KCNQ1/KCNE1 currents using the Xenopus oocyte expression system. Insulin treatment with a duration longer than 6 h had an opposite effect to acute insulin application, that is, it augmented the KCNQ1/KCNE1 currents. Inhibitors of PI3K, wortmannin and LY294002, and a MEK inhibitor, U0126, abolished the potentiating effect of long-term insulin treatment. The long-term treatment with insulin had no effect on KCNQ1 currents indicating an essential role of KCNE1 in the insulin effect, which is similar to the acute insulin effect. Cycloheximide, an inhibitor of protein synthesis, and brefeldin A, an inhibitor of protein transport from endoplasmic reticulum, suppressed the long-term insulin effect. Western blotting analysis combined with these pharmacological data suggest that long-term insulin treatment augments KCNQ1/KCNE1 currents by increasing KCNE1 protein expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis.

    PubMed

    Combet, S; Miyata, T; Moulin, P; Pouthier, D; Goffin, E; Devuyst, O

    2000-04-01

    Long-term peritoneal dialysis (PD) is associated with alterations in peritoneal permeability and loss of ultrafiltration. These changes originate from increased peritoneal surface area, but the morphologic and molecular mechanisms involved remain unknown. The hypothesis that modifications of activity and/or expression of nitric oxide synthase (NOS) isozymes might play a role in these modifications, via enhanced local production of nitric oxide, was tested in this study. NOS activities were measured by the L-citrulline assay in peritoneal biopsies from seven control subjects, eight uremic patients immediately before the onset of PD, and 13 uremic patients on short-term (<18 mo, n = 6) or long-term(>18 mo, n = 7) PD. Peritoneal NOS activity is increased fivefold in long-term PD patients compared with control subjects. In uremic patients, NOS activity is positively correlated with the duration of PD. Increased NOS activity is mediated solely by Ca(2+)-dependent NOS and, as shown by immunoblotting, an upregulation of endothelial NOS. The biologic relevance of increased NOS in long-term PD was demonstrated by enhanced nitrotyrosine immunoreactivity and a significant increase in vascular density and endothelial area in the peritoneum. Immunoblotting and immunostaining studies demonstrated an upregulation of vascular endothelial growth factor (VEGF) mostly along the endothelium lining peritoneal blood vessels in long-term PD patients. In the latter, VEGF colocalized with the advanced glycation end product pentosidine deposits. These data provide a morphologic (angiogenesis and increased endothelial area) and molecular (enhanced NOS activity and endothelial NOS upregulation) basis for explaining the permeability changes observed in long-term PD. They also support the implication of local advanced glycation end product deposits and liberation of VEGF in that process.

  5. Expression of heparin-binding EGF-like growth factor in term chorionic villous explants and its role in trophoblast survival.

    PubMed

    Imudia, A N; Kilburn, B A; Petkova, A; Edwin, S S; Romero, R; Armant, D R

    2008-09-01

    Heparin-binding EGF-like growth factor (HBEGF) induces trophoblast extravillous differentiation and prevents apoptosis. These functions are compromised in preeclampsia. Because HBEGF is downregulated in placentas delivered by women with preeclampsia, we have examined its expression and cytoprotective activity in term villous explants. Chorionic villous explants prepared from non-pathological placentas collected by cesarean section at term were cultured at either 20% or 2% O2 and treated with the HBEGF antagonist CRM197 or recombinant HBEGF. Paraffin sections were assayed for trophoblast death, proliferation and HBEGF expression using the TUNEL method, immunohistochemistry for nuclear Ki67 expression and semi-quantitative immunohistochemistry with image analysis, respectively. Trophoblast cell death was increased significantly after 8h of culture with CRM197 or by culture for 2h at 2% O2. Exogenous HBEGF prevented cell death due to hypoxia. Proliferative capacity was not affected by culture at either 20% or 2% O2. Contrary to first trimester placenta, term trophoblasts do not elevate HBEGF expression in response to hypoxia. However, low endogenous levels of HBEGF are required to maintain survival. Therefore, HBEGF-mediated signaling significantly reduces trophoblast cell death at term and its deficiency in preeclampsia could negatively impact trophoblast survival.

  6. Expression of heparin-binding EGF-like growth factor in term chorionic villous explants and its role in trophoblast survival

    PubMed Central

    Imudia, Anthony N.; Kilburn, Brian A.; Petkova, Anelia; Edwin, Samuel S.; Romero, Roberto; Armant, D. Randall

    2008-01-01

    Heparin-binding EGF-like growth factor (HBEGF) induces trophoblast extravillous differentiation and prevents apoptosis. These functions are compromised in preeclampsia. Because HBEGF is downregulated in placentas delivered by women with preeclampsia, we have examined its expression and cytoprotective activity in term villous explants. Chorionic villous explants prepared from non-pathological placentas collected by cesarean section at term were cultured at either 20% or 2% O2 and treated with the HBEGF antagonist CRM197 or recombinant HBEGF. Paraffin sections were assayed for trophoblast death, proliferation and HBEGF expression using the TUNEL method, immunohistochemistry for nuclear Ki67 expression and semi-quantitative immunohistochemistry with image analysis, respectively. Trophoblast cell death was increased significantly after 8 h of culture with CRM197 or by culture for 2 h at 2% O2. Exogenous HBEGF prevented cell death due to hypoxia. Proliferative capacity was not affected by culture at either 20% or 2% O2. Contrary to first trimester placenta, term trophoblasts do not elevate HBEGF expression in response to hypoxia. However, low endogenous levels of HBEGF are required to maintain survival. Therefore, HBEGF-mediated signaling significantly reduces trophoblast cell death at term and its deficiency in preeclampsia could negatively impact trophoblast survival. PMID:18691754

  7. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    PubMed Central

    Lee, Jungnam; Roberts, JoAnn S.; Atanasova, Kalina R.; Chowdhury, Nityananda; Han, Kyudong; Yilmaz, Özlem

    2017-01-01

    Porphyromonas gingivalis is a host-adapted oral pathogen associated with chronic periodontitis that successfully survives and persists in the oral epithelium. Recent studies have positively correlated periodontitis with increased risk and severity of oral squamous cell carcinoma (OSCC). Intriguingly, the presence of P. gingivalis enhances tumorigenic properties independently of periodontitis and has therefore been proposed as a potential etiological agent for OSCC. However, the initial host molecular changes induced by P. gingivalis infection which promote predisposition to cancerous transformation through EMT (epithelial-mesenchymal-transition), has never been studied in human primary cells which more closely mimic the physiological state of cells in vivo. In this study, we examine for the first time in primary oral epithelial cells (OECs) the expression and activation of key EMT mediators during long-term P. gingivalis infection in vitro. We examined the inactive phosphorylated state of glycogen synthase kinase-3 beta (p-GSK3β) over 120 h P. gingivalis infection and found p-GSK3β, an important EMT regulator, significantly increases over the course of infection (p < 0.01). Furthermore, we examined the expression of EMT-associated transcription factors, Slug, Snail, and Zeb1 and found significant increases (p < 0.01) over long-term P. gingivalis infection in protein and mRNA expression. Additionally, the protein expression of mesenchymal intermediate filament, Vimentin, was substantially increased over 120 h of P. gingivalis infection. Analysis of adhesion molecule E-cadherin showed a significant decrease (p < 0.05) in expression and a loss of membrane localization along with β-catenin in OECs. Matrix metalloproteinases (MMPs) 2, 7, and 9 are all markedly increased with long-term P. gingivalis infection. Finally, migration of P. gingivalis infected cells was evaluated using scratch assay in which primary OEC monolayers were wounded and treated with proliferation inhibitor, Mitomycin C. The cellular movement was determined by microscopy. Results displayed P. gingivalis infection promoted cell migration which was slightly enhanced by co-infection with Fusobacterium nucleatum, another oral opportunistic pathogen. Therefore, this study demonstrates human primary OECs acquire initial molecular/cellular changes that are consistent with EMT induction during long-term infection by P. gingivalis and provides a critically novel framework for future mechanistic studies. PMID:29250491

  8. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors

    PubMed Central

    Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted

    2012-01-01

    The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661

  9. Placental membrane aging and HMGB1 signaling associated with human parturition

    PubMed Central

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-01-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence—the loss of cell division potential as a consequence of stress—is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. PMID:26851389

  10. Interest in Long-Term Care among Health Services Administration Students

    ERIC Educational Resources Information Center

    Temple, April; Thompson, Jon M.

    2011-01-01

    The aging of the population has created increased opportunities for health administrators in long-term care. This study consisted of a cross-sectional survey of 68 undergraduate health services administration students to explore factors related to interest in a career in long-term care administration. One third expressed interest working in the…

  11. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs.

    PubMed

    Li, Wennan; Chen, Xingjuan; Riley, Ashley M; Hiett, S Christopher; Temm, Constance J; Beli, Eleni; Long, Xin; Chakraborty, Saikat; Alloosh, Mouhamad; White, Fletcher A; Grant, Maria B; Sturek, Michael; Obukhov, Alexander G

    2017-09-01

    Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.

  12. Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP.

    PubMed

    Höper, M M; Voelkel, N F; Bates, T O; Allard, J D; Horan, M; Shepherd, D; Tuder, R M

    1997-12-01

    Prostaglandins have emerged as a therapeutic option for patients with peripheral vascular disease as well as pulmonary hypertension as a means to increase blood flow. We tested the hypothesis that prostaglandins regulate vascular endothelial growth factor (VEGF) expression in the human monocytic THP-1 cell line and in isolated perfused rat lungs. Our data show that the stable PGI2-analogue iloprost induces VEGF gene expression (predominantly VEGF121, but also VEGF165 isoforms) and VEGF protein synthesis in THP-1 cells. This effect is abolished by dexamethasone and by Rp-cAMP, a specific inhibitor of cAMP-dependent protein kinase (PKA) activation. The calcium channel blocker diltiazem has no effect on the iloprost-induced VEGF gene expression, and depletion of intracellular Ca2+ stores by long-term exposure (16 h) of THP-1 cells to thapsigargin does not inhibit iloprost-induced VEGF gene expression, suggesting that an increase in intracellular Ca2+ is not essential for VEGF gene induction by iloprost. However, an increase of intracellular Ca2+ by a short-term (2 h) exposure of THP-1 cells to thapsigargin or to the calcium-ionophore A23187 increases VEGF mRNA levels, indicating that a change in intracellular Ca2+ by itself can alter VEGF gene expression. The effects of thapsigargin or A23187 on VEGF gene expression are also mediated via cAMP-PKA since they are inhibited by Rp-cAMP. In isolated perfused rat lungs, PGI2 and PGE2 increases VEGF mRNA abundance whereas Rp-cAMP inhibits the prostaglandin-induced VEGF gene activation. Thus, our data suggest that prostaglandins stimulate VEGF gene expression in monocytic cells and in rat lungs via a cAMP-dependent mechanism.

  13. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the dopamine D1 receptor signaling pathway. These findings suggest Ca(2+) -mediated neurotoxicity owing to over-expression of calcium channels. © 2015 International Society for Neurochemistry.

  14. Long-term effects of di-octyl phthalate on the expression of immune-related genes in Tegillarca granosa

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Li, Ye; Dai, Juan; Su, Xiurong; Li, Chenghua; Shen, Lingling

    2016-05-01

    Di-octyl phthalate (DOP) is widely used as a plasticizer in the plastics industry. As a result, DOP is often found in marine water ecosystems where many species are exposed to it. Our objective was to evaluate the effect of long-term (14 d) DOP exposure (2.6, 7.8, or 31.2 mg/L) on the expression of immunerelated genes in Tegillarca granosa. The expression of small heat shock protein (sHSPs) and tissue inhibitor of metalloproteinase (TIMP) were highest in clams exposed to 31.2 mg/L DOP on days 7 and 14. The relative expression of Tg-ferritin, superoxide dismutase (SOD), and metallothionein (MT) increased initially then decreased as the concentration of DOP increased. The hemoglobin of T. granosa (Tg-HbI) exhibited two distinct expression patterns at two time points. Our results suggest that the immune response of T. granosa against DOP pollution varies depending on the dose. Additionally, we identified some immune-related genes that are promising candidates for biomarkers of DOP.

  15. Short-term fasting promotes insulin expression in rat hypothalamus.

    PubMed

    Dakic, Tamara B; Jevdjovic, Tanja V; Peric, Mina I; Bjelobaba, Ivana M; Markelic, Milica B; Milutinovic, Bojana S; Lakic, Iva V; Jasnic, Nebojsa I; Djordjevic, Jelena D; Vujovic, Predrag Z

    2017-07-01

    In the hypothalamus, insulin takes on many roles involved in energy homoeostasis. Therefore, the aim of this study was to examine hypothalamic insulin expression during the initial phase of the metabolic response to fasting. Hypothalamic insulin content was assessed by both radioimmunoassay and Western blot. The relative expression of insulin mRNA was examined by qPCR. Immunofluorescence and immunohistochemistry were used to determine the distribution of insulin immunopositivity in the hypothalamus. After 6-h fasting, both glucose and insulin levels were decreased in serum but not in the cerebrospinal fluid. Our study showed for the first time that, while the concentration of circulating glucose and insulin decreased, both insulin mRNA expression and insulin content in the hypothalamic parenchyma were increased after short-term fasting. Increased insulin immunopositivity was detected specifically in the neurons of the hypothalamic periventricular nucleus and in the ependymal cells of fasting animals. These novel findings point to the complexity of mechanisms regulating insulin expression in the CNS in general and in the hypothalamus in particular. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.

    PubMed

    Penke, Zsuzsa; Morice, Elise; Veyrac, Alexandra; Gros, Alexandra; Chagneau, Carine; LeBlanc, Pascale; Samson, Nathalie; Baumgärtel, Karsten; Mansuy, Isabelle M; Davis, Sabrina; Laroche, Serge

    2014-01-05

    It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects. This enhancement was paralleled by increased long-term potentiation in the dentate gyrus of the hippocampus and by increased activity-dependent expression of Zif268 and selected Zif268 target genes. These results provide novel evidence that transcriptional mechanisms engaging Zif268 contribute to determining the strength of newly encoded memories.

  17. XENOBIOTIC INDUCED ORGAN-SPECIFIC GENE EXPRESSION AND MACRO/MICROARRAY DEVELOPMENT IN MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    As part of an ongoing effort to understand and address the short and long-term consequences of increasing levels of environmental contaminants, we used suppressive subtractive hydridization (SSH) to develop gene expression profiles from Japanese medaka (Oryzias latipes) exposed ...

  18. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption

    PubMed Central

    Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.

    2009-01-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393

  19. Western environment/lifestyle is associated with increased genome methylation and decreased gene expression in Chinese immigrants living in Australia.

    PubMed

    Zhang, Guicheng; Wang, Kui; Schultz, Ennee; Khoo, Siew-Kim; Zhang, Xiaopeng; Annamalay, Alicia; Laing, Ingrid A; Hales, Belinda J; Goldblatt, Jack; Le Souëf, Peter N

    2016-01-01

    Several human diseases and conditions are disproportionally distributed in the world with a significant "Western-developed" vs. "Eastern-developing" gradient. We compared genome-wide DNA methylation of peripheral blood mononuclear cells in 25 newly arrived Chinese immigrants living in a Western environment for less than 6 months ("Newly arrived") with 23 Chinese immigrants living in the Western environment for more than two years ("Long-term") with a mean of 8.7 years, using the Infinium HumanMethylation450 BeadChip. In a sub-group of both subject groups (n = 12 each) we also investigated genome-wide gene expression using a Human HT-12 v4 expression beadChip. There were 62.5% probes among the total number of 382,250 valid CpG sites with greater mean Beta (β) in "Long-term" than in "Newly arrived". In the regions of CpG islands and gene promoters, compared with the CpG sites in all other regions, lower percentages of CpG sites with mean methylation levels in "Long-term" greater than "Newly arrived" were observed, but still >50%. The increase of methylation was associated with a general decrease of gene expression in Chinese immigrants living in the Western environment for a longer period of time. After adjusting for age, gender and other confounding factors the findings remained. Chinese immigrants living in Australia for a longer period of time have increased overall genome methylation and decreased overall gene expression compared with newly arrived immigrants. © 2015 Wiley Periodicals, Inc.

  20. Prenatal Nicotine Increases Matrix Metalloproteinase 2 (MMP-2) Expression in Fetal Guinea Pig Hearts

    PubMed Central

    Thompson, Loren P.; Liu, Hongshan; Evans, LaShauna; Mong, Jessica A.

    2011-01-01

    This study tested the hypothesis that maternal nicotine ingestion increases matrix metalloproteinase (MMP) expression in fetal hearts, which is mediated by the generation of reactive oxygen species. Timed pregnant guinea pigs were administered either water alone, nicotine (200 μg/mL), N-acetylcysteine (NAC), or nicotine plus NAC in their drinking water for 10 days at 52-day gestation (term = 65 days). Near-term (62 days), anesthetized fetuses were extracted, hearts were excised, and left cardiac ventricles snap frozen for analysis of MMP-2/-9/-13 protein and activity levels. Interstitial collagens were identified by Picrosirius red stain to assess changes in the extracellular matrix. Prenatal nicotine increased active MMP-2 forms and interstitial collagen but had no effect on either pro- or active MMP-9 or MMP-13 forms. In the presence of nicotine, NAC decreased active MMP-2 protein levels and reversed the nicotine-induced increase in collagen staining. We conclude that prenatal nicotine alters MMP-2 expression in fetal hearts that may be mediated by reactive oxygen species generation. PMID:21775771

  1. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    PubMed Central

    Lizotte, Pierre-Paul; Hanford, Lana E; Enghild, Jan J; Nozik-Grayck, Eva; Giles, Brenda-Louise; Oury, Tim D

    2007-01-01

    Background The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. Results Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O2) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. Conclusion Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology. PMID:17343756

  2. KLF5 regulates infection- and inflammation-induced pro-labour mediators in human myometrium.

    PubMed

    Lappas, Martha

    2015-05-01

    The transcription factor Kruppel-like factor 5 (KLF5) has been shown to associate with nuclear factor kappa B (NFκB) to regulate genes involved in inflammation. However, there are no studies on the expression and regulation of KLF5 in the processes of human labour and delivery. Thus, the aims of this study were to determine the effect of i) human labour on KLF5 expression in both foetal membranes and myometrium; ii) the pro-inflammatory cytokine interleukin 1 beta (IL1β), bacterial product flagellin and the viral dsRNA analogue poly(I:C) on KLF5 expression and iii) KLF5 knockdown by siRNA in human myometrial primary cells on pro-inflammatory and pro-labour mediators. In foetal membranes, there was no effect of term or preterm labour on KLF5 expression. In myometrium, the term labour was associated with an increase in nuclear KLF5 protein expression. Moreover, KLF5 expression was also increased in myometrial cells treated with IL1β, flagellin or poly(IC), likely factors contributing to preterm birth. KLF5 silencing in myometrial cells significantly decreased IL1β-induced cytokine expression (IL6 and IL8 mRNA expression and release), COX2 mRNA expression, and subsequent release of prostaglandins PGE2 and PGF2 α. KLF5 silencing also significantly reduced flagellin- and poly(I:C)-induced IL6 and IL8 mRNA expression. Lastly, IL1β-, flagellin- and poly(I:C)-stimulated NFκB transcriptional activity was significantly suppressed in KLF5-knockout myometrial cells. In conclusion, this study describes novel data in which KLF5 is increased in labouring myometrium, and KLF5 silencing decreased inflammation- and infection-induced pro-labour mediators. © 2015 Society for Reproduction and Fertility.

  3. Reduced Expression of Hydrogen Sulfide-Generating Enzymes Down-Regulates 15-Hydroxyprostaglandin Dehydrogenase in Chorion during Term and Preterm Labor.

    PubMed

    Sun, Qianqian; Chen, Zixi; He, Ping; Li, Yuan; Ding, Xiaoying; Huang, Ying; Gu, Hang; Ni, Xin

    2018-01-01

    Chorionic NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) plays a pivotal role in controlling the amount of prostaglandins in the uterus and has been implicated in the process of labor. Prior studies identified hydrogen sulfide-generating enzymes cystathionine-β-synthetase (CBS) and cystathionine-γ-lyase (CSE) in fetal membranes. We investigated whether hydrogen sulfide is involved in the regulation of PGDH expression in the chorion during labor. The chorionic tissues were obtained from pregnant women at preterm in labor and at term in labor or not in labor at term. Levels of CSE and CBS and hydrogen sulfide production rate were down-regulated in term in labor and preterm in labor groups compared with not in labor at term group. The CBS level correlated to PGDH expression in the chorion. Hydrogen sulfide donor NaHS and precursor l-cysteine dose-dependently stimulated PGDH expression and activity in cultured chorionic trophoblasts. The effect of l-cysteine was blocked by CBS inhibitor and CBS siRNA but not by CSE inhibitor and CSE siRNA. Hydrogen sulfide treatment suppressed miR-26b and miR-199a expression in chorionic trophoblasts. miR-26b and miR-199a mimics blocked hydrogen sulfide upregulation of PGDH expression. Our results indicate that hydrogen sulfide plays pivotal roles in maintenance of PGDH expression in the chorion during human pregnancy. Reduced expression of hydrogen sulfide-generating enzymes contributes to an increased amount of prostaglandins in the uterus during labor. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Determining the Molecular and Genetic Basis for Diabetes in Navy Bottlenose Dolphins (Tursiops truncatus)

    DTIC Science & Technology

    2015-01-12

    thereby reduces hepatic glucose production. 15. SUBJECT TERMS Gluconeogenesis , CREB ZF, Fasting, Diabetes 16. SECURITY CLASSIFICATION OF: a...Dolphin PEPCK transcription increased in the face of increasing cAMP, supporting that this enzyme induces gluconeogenesis during the fasting state...D. Test effects of CREB-ZF over-expression on gluconeogenic gene expression • Dolphin CREB-ZF is a novel, negative regulator of gluconeogenesis

  5. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    PubMed

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    PubMed

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  8. Wearing My Identity: A Transgender Teacher in the Classroom

    ERIC Educational Resources Information Center

    McCarthy, Linda

    2003-01-01

    The term "transgender" is used by people whose gender identity or expression falls outside the boundaries of traditional gender expectations. In educational systems, transgender issues are becoming increasingly relevant as both students and staff "come out" as transgender, and as young people explore non-normative gender expression. In comparison…

  9. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle

    PubMed Central

    Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.

    2012-01-01

    Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255

  10. Hypermethylation of Homeobox A10 by in Utero Diethylstilbestrol Exposure: An Epigenetic Mechanism for Altered Developmental Programming

    PubMed Central

    Bromer, Jason G.; Wu, Jie; Zhou, Yuping; Taylor, Hugh S.

    2009-01-01

    Diethylstilbestrol (DES) is a nonsteroidal estrogen that induces developmental anomalies of the female reproductive tract. The homeobox gene HOXA10 controls uterine organogenesis, and its expression is altered after in utero DES exposure. We hypothesized that an epigenetic mechanism underlies DES-mediated alterations in HOXA10 expression. We analyzed the expression pattern and methylation profile of HOXA10 after DES exposure. Expression of HOXA10 is increased in human endometrial cells after DES exposure, whereas Hoxa10 expression is repressed and shifted caudally from its normal location in mice exposed in utero. Cytosine guanine dinucleotide methylation frequency in the Hoxa10 intron was higher in DES-exposed offspring compared with controls (P = 0.017). The methylation level of Hoxa10 was also higher in the caudal portion of the uterus after DES exposure at the promoter and intron (P < 0.01). These changes were accompanied by increased expression of DNA methyltransferases 1 and 3b. No changes in methylation were observed after in vitro or adult DES exposure. DES has a dual mechanism of action as an endocrine disruptor; DES functions as a classical estrogen and directly stimulates HOXA10 expression with short-term exposure, however, in utero exposure results in hypermethylation of the HOXA10 gene and long-term altered HOXA10 expression. We identify hypermethylation as a novel mechanism of DES-induced altered developmental programming. PMID:19299448

  11. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta.

    PubMed

    Stanirowski, Paweł Jan; Szukiewicz, Dariusz; Pyzlak, Michał; Abdalla, Nabil; Sawicki, Włodzimierz; Cendrowski, Krzysztof

    2017-03-01

    Various studies in placental tissue suggest that diabetes mellitus alters the expression of glucose transporter (GLUT) proteins, with insulin therapy being a possible modulatory factor. The aim of the present study was quantitative evaluation of the expression of glucose transporters (GLUT-1, GLUT-4, GLUT-9) in the placenta of women in both, uncomplicated and diabetic pregnancy. Additionally, the effect of insulin therapy on the expression of selected glucose transporter isoforms was analyzed. Term placental samples were obtained from healthy control (n = 25) and diabetic pregnancies, including diet-controlled gestational diabetes mellitus (GDMG1) (n = 16), insulin-controlled gestational diabetes mellitus (GDMG2) (n = 6), and pre-gestational diabetes mellitus (PGDM) (n = 6). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected glucose transporter proteins. Morphometric analysis revealed a significant increase in the expression of GLUT-4 and GLUT-9 in insulin-dependent diabetic women (GDMG2 + PGDM) as compared to both, control and GDMG1 groups (p < .05). Significantly increased GLUT-1 expression was observed only in placental specimens from patients with PGDM (p < .05). No statistically significant differences in GLUT expression were found between GDMG1 patients and healthy controls. The results of the study confirmed the presence of GLUT-1, GLUT-4 and GLUT-9 proteins in the trophoblast from both, uncomplicated and diabetic pregnancies. In addition, insulin therapy may increase placental expression of GLUT-4 and GLUT-9, and partially GLUT-1, in women with GDMG2/PGDM.

  12. Long-term sensitization training in Aplysia leads to an increase in the expression of BiP, the major protein chaperon of the ER.

    PubMed

    Kuhl, D; Kennedy, T E; Barzilai, A; Kandel, E R

    1992-12-01

    Long-term memory for sensitization of the gill- and siphon-withdrawal reflexes in Aplysia californica requires RNA and protein synthesis. These long-term behavioral changes are accompanied by long-term facilitation of the synaptic connections between the gill and siphon sensory and motor neurons, which are similarly dependent on transcription and translation. In addition to showing an increase in over-all protein synthesis, long-term facilitation is associated with changes in the expression of specific early, intermediate, and late proteins, and with the growth of new synaptic connections between the sensory and motor neurons of the reflex. We previously focused on early proteins and have identified four proteins as members of the immunoglobulin family of cell adhesion molecules related to NCAM and fasciclin II. We have now cloned the cDNA corresponding to one of the late proteins, and identified it as the Aplysia homolog of BiP, an ER resident protein involved in the folding and assembly of secretory and membrane proteins. Behavioral training increases the steady-state level of BiP mRNA in the sensory neurons. The increase in the synthesis of BiP protein is first detected 3 h after the onset of facilitation, when the increase in overall protein synthesis reaches its peak and the formation of new synaptic terminals becomes apparent. These findings suggest that the chaperon function of BiP might serve to fold proteins and assemble protein complexes necessary for the structural changes characteristic of long-term memory.

  13. Isolation and selection of suitable reference genes for real-time PCR analyses in the skeletal muscle of the fine flounder in response to nutritional status: assessment and normalization of gene expression of growth-related genes.

    PubMed

    Fuentes, Eduardo N; Safian, Diego; Valdés, Juan Antonio; Molina, Alfredo

    2013-08-01

    In the present study, different reference genes were isolated, and their stability in the skeletal muscle of fine flounder subjected to different nutritional states was assessed using geNorm and NormFinder. The combinations between 18S and ActB; Fau and 18S; and Fau and Tubb were chosen as the most stable gene combinations in feeding, long-term fasting and refeeding, and short-term refeeding conditions, respectively. In all periods, ActB was identified as the single least stable gene. Subsequently, the expression of the myosin heavy chain (MYH) and the insulin-like growth factor-I receptor (IGF-IR) was assessed. A large variation in MYH and IGF-IR expression was found depending on the reference gene that was chosen for normalizing the expression of both genes. Using the most stable reference genes, mRNA levels of MYH decreased and IGF-IR increased during fasting, with both returning to basal levels during refeeding. However, the drop in mRNA levels for IGF-IR occurred during short-term refeeding, in contrast with the observed events in the expression of MYH, which occurred during long-term refeeding. The present study highlights the vast differences incurred when using unsuitable versus suitable reference genes for normalizing gene expression, pointing out that normalization without proper validation could result in a bias of gene expression.

  14. Changes in the female arcuate nucleus morphology and neurochemistry after chronic ethanol consumption and long-term withdrawal.

    PubMed

    Rebouças, Elce C C; Leal, Sandra; Silva, Susana M; Sá, Susana I

    2016-11-01

    Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    PubMed

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of Ibuprofen on Cognition and NMDA Receptor Subunit Expression Across Aging

    PubMed Central

    Loza, Alejandra Márquez; Elias, Valerie; Wong, Carmen P.; Ho, Emily; Bermudez, Michelle; Magnusson, Kathy R.

    2017-01-01

    Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-D-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26 months) were fed ibuprofen (375 ppm) in NIH31 diet or diet alone for 6 weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2′ cassettes in the hippocampus. GluN1-3 splice form mRNA and C2′ cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation. PMID:28057539

  17. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons.

    PubMed

    Calvo-Rodríguez, María; de la Fuente, Carmen; García-Durillo, Mónica; García-Rodríguez, Carmen; Villalobos, Carlos; Núñez, Lucía

    2017-01-31

    Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer's disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca 2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Ca 2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca 2+ ] and on apoptosis as well as on expression of TLR4. LPS increases cytosolic [Ca 2+ ] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca 2+ responses and neuron cell death. Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer's disease, enhance TLR4 expression as well as LPS-induced Ca 2+ responses and neuron cell death in rat hippocampal neurons aged in vitro.

  18. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    PubMed

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Minimal doses of a sequence-optimized transgene mediate high-level and long-term EPO expression in vivo: challenging CpG-free gene design.

    PubMed

    Kosovac, D; Wild, J; Ludwig, C; Meissner, S; Bauer, A P; Wagner, R

    2011-02-01

    Advanced gene delivery techniques can be combined with rational gene design to further improve the efficiency of plasmid DNA (pDNA)-mediated transgene expression in vivo. Herein, we analyzed the influence of intragenic sequence modifications on transgene expression in vitro and in vivo using murine erythropoietin (mEPO) as a transgene model. A single electro-gene transfer of an RNA- and codon-optimized mEPOopt gene into skeletal muscle resulted in a 3- to 4-fold increase of mEPO production sustained for >1 year and triggered a significant increase in hematocrit and hemoglobin without causing adverse effects. mEPO expression and hematologic levels were significantly lower when using comparable amounts of the wild type (mEPOwt) gene and only marginal effects were induced by mEPOΔCpG lacking intragenic CpG dinucleotides, even at high pDNA amounts. Corresponding with these observations, in vitro analysis of transfected cells revealed a 2- to 3-fold increased (mEPOopt) and 50% decreased (mEPOΔCpG) erythropoietin expression compared with mEPOwt, respectively. RNA analyses demonstrated that the specific design of the transgene sequence influenced expression levels by modulating transcriptional activity and nuclear plus cytoplasmic RNA amounts rather than translation. In sum, whereas CpG depletion negatively interferes with efficient expression in postmitotic tissues, mEPOopt doses <0.5 μg were sufficient to trigger optimal long-term hematologic effects encouraging the use of sequence-optimized transgenes to further reduce effective pDNA amounts.

  20. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  1. Fear Potentiated Startle Increases Phospholipase D (PLD) Expression/Activity and PLD-Linked Metabotropic Glutamate Receptor Mediated Post-Tetanic Potentiation in Rat Amygdala

    PubMed Central

    Krishnan, Balaji; Scott, Michael T.; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-01-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders. PMID:26748024

  2. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    PubMed

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  3. Toll-like Receptor 2 Signalling and the Lysosomal Machinery in Barrett's Esophagus.

    PubMed

    Verbeek, Romy E; Siersema, Peter D; Vleggaar, Frank P; Ten Kate, Fiebo J; Posthuma, George; Souza, Rhonda F; de Haan, Judith; van Baal, Jantine W P M

    2016-09-01

    Inflammation plays an important role in the development of esophageal adenocarcinoma and its metaplastic precursor lesion, Barrett's esophagus. Toll-like receptor (TLR) 2 signalling and lysosomal function have been linked to inflammation-associated carcinogenesis. We examined the expression of TLR2 in the esophagus and the effect of long-term TLR2 activation on morphological changes and expression of factors involved in lysosomal function in a Barrett's esophagus epithelium cell line. TLR2 expression in normal squamous esophagus, reflux esophagitis, Barrett's esophagus and esophageal adenocarcinoma biopsies was assessed with Q-RT-PCR, in situ hybridization and immunohistochemistry. Barrett's esophagus epithelium cells (BAR-T) were incubated with acid and bile salts in the presence or absence of the TLR2 agonist Pam3CSK4 for a period up to 4 weeks. Morphological changes were assessed with electron microscopy, while Q-RT-PCR was used to determine the expression of lysosomal enzymes (Cathepsin B and C) and factors involved in endocytosis (LAMP-1 and M6PR) and autophagy (LC3 and Rab7). TLR2 was expressed in normal squamous esophagus, reflux esophagitis, Barrett's esophagus but was most prominent in esophageal adenocarcinoma. Long-term TLR2 activation in acid and bile salts exposed BAR-T cells resulted in more and larger lysosomes, more mitochondria and increased expression of LAMP-1, M6PR, Cathepsin B and C when compared to BAR-T cells incubated with acid and bile salts but no TLR2 agonist. Factors associated with autophagy (LC3 and Rab7) expression remained largely unchanged. Activation of TLR2 in acid and bile salts exposed Barrett epithelium cells resulted in an increased number of mitochondria and lysosomes and increased expression of lysosomal enzymes and factors involved in endocytosis.

  4. Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies.

    PubMed

    Doaei, Saeid; Kalantari, Naser; Mohammadi, Nastaran Keshavarz; Tabesh, Ghasem Azizi; Gholamalizadeh, Maryam

    The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions. Copyright © 2017. Published by Elsevier B.V.

  5. Transcriptional and Physiological Characterizations of Escherichia coli MG1655 that have been grown under Low Shear Stress Environment for 1000 Generations

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Tirumalai, Madhan R.; Nelman-Gonzalez, Mayra A.; Sams, Clarence F.; Ott, Mark C.; Pierson, Duane L.; Fofanov, Yuriy; Willson, Richard C.; Fox, George E.

    Human space travelers experience a unique environment that affects homeostasis and physio-logic adaptation. One of the important regulatory biology interactions affected by space flight is the alteration of the immune response. As such, the impairment of the immune system may lead to higher risk of bacterial and/or viral infection during human space flight missions. Mi-crobiological contaminants have been a source of concern over the years for NASA and there is evidence to suggest that microbes in space do not behave like they do on Earth. Previ-ous studies have examined the physiological response of bacteria when exposed to short-term microgravity either during spaceflight or in a Low Shear Modeled Microgravity (LSMMG) en-vironment. Exposure to these environments has been found to induce increased resistance to stresses and antibiotics, and in one case increase of virulence. As NASA increases the duration of space flight missions and is starting to envision human presence on the lunar surface and Mars, it becomes legitimate to question the long-term effects of microgravity on bacteria. The effect of long-term exposure to LSMMG on microbial gene expression and physiology in Escherichia coli (E. coli) is being examined using functional genomics, and molecular tech-niques. In previous E. coli short term studies, reproducible changes in transcription were seen but no direct responses to changes in the gravity vector were identified. Instead, absence of shear and a randomized gravity vector appeared to cause local extra-cellular environmental changes, which elicited cellular responses. In order to evaluate the long-term effects of micro-gravity on bacteria, E. coli was grown under simulated microgravity for 1000 generations and gene expression patterns and cellular physiology were analyzed in comparison with short-term exposure. The analysis revealed that the long-term response differed significantly from the short-term exposure and 357 genes were expressed significantly differently. Fimbriae encoding genes were significantly up-regulated whereas genes encoding the flagellar motor complex were down-regulated. Additionally, 81 significantly expressed genes have been implicated in and/or associated with biofilm formation. The remaining up-regulated genes seemed to be involved in a response that triggered expression of genes associated with the type II secretion complex. This complex has been involved in virulence factors and members of the multidrug efflux system which confer resistance to a multitude of antimicrobial agents and antibiotics. Biofilm formation and the aggregation of cells were evaluated by scanning electron microscopy (SEM). The analysis revealed that extracellular matrix and complex cellular networking were present among cells that were exposed to the long-term LSMMG environment. In addition the response to a variety of stresses and antibiotics were examined. Significant differences were seen between long-term exposure to LSMMG and the short-term control. Changes in expression may predispose the cells to more efficiently attach to surfaces and/or other cells and thereby confer resistance to antibiotics. Future studies will seek to determine the extent to which the long-term adaptation is influenced by genomic changes. These studies will contribute to the knowledge base needed to develop countermeasures that will decrease the risks associated with astronaut health and mission integrity that are presented by microorganisms.

  6. Ginkgo biloba leaf extract and alpha-tocopherol attenuate haloperidol-induced orofacial dyskinesia in rats: Possible implication of antiapoptotic mechanisms by preventing Bcl-2 decrease and Bax elevation.

    PubMed

    An, Hui Mei; Tan, Yun Long; Shi, Jing; Wang, Zhiren; Lv, Meng Han; Soares, Jair C; Zhou, Dongfeng; Yang, Fude; Zhang, Xiang Yang

    2016-12-01

    Tardive dyskinesia (TD) is a serious side effect of long-term administration of typical neuroleptics, such as haloperidol. The pathophysiology of TD remains unclear, but the experimental evidence suggests that free radical-induced neuronal apoptosis in the basal ganglia may play an important role. This study was to investigate changes in Bax and Bcl-2 expression levels in TD-associated brain regions and the effects of the antioxidant EGb761 on Bax and Bcl-2 levels in an animal model of TD. Thirty-two rats were randomly divided into four study groups: saline control (saline), haloperidol-alone (haloperidol), EGb761-haloperidol (EGb), and alpha-tocopherol-haloperidol (vitamin E). Rats were treated with daily intraperitoneal haloperidol injections (2 mg/kg/day) for 5 weeks. EGb761 (50 mg/kg/day) and alpha-tocopherol (20 mg/kg/day) were then administered for another 5 weeks during the withdrawal period. Behavioral assessments were performed, and Bax and Bcl-2 protein expression levels were immunohistochemically analyzed in four brain regions, including the prefrontal cortex, striatum, substantia nigra, and globus pallidum. We found that increased vacuous chewing movements (VCMs) were associated with increased proapoptotic Bax protein expression, decreased antiapoptotic Bcl-2 protein expression, and an increased Bax/Bcl-2 ratio. EGb761 and alpha-tocopherol treatment reversed the increase in VCMs, decreased Bax expression, increased Bcl-2 expression, and decreased the Bax/Bcl-2 ratio. These results demonstrate that long-term haloperidol administration may affect Bcl-2 protein family expression and promote neuronal apoptosis in the basal ganglia. In combination with their antioxidant capacity, EGb761 and alpha-tocopherol's antiapoptotic effects through Bcl-2 might account for the symptom improvement observed in haloperidol-induced TD rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  8. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneysmore » of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney.« less

  10. The Molecular and Metabolic Influence of Long Term Agmatine Consumption*

    PubMed Central

    Nissim, Itzhak; Horyn, Oksana; Daikhin, Yevgeny; Chen, Pan; Li, Changhong; Wehrli, Suzanne L.; Nissim, Ilana; Yudkoff, Marc

    2014-01-01

    Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used 13C or 15N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming. PMID:24523404

  11. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  12. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    PubMed

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  13. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    PubMed Central

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  14. Reduction of serum FABP4 level by sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes mellitus[S

    PubMed Central

    Furuhashi, Masato; Hiramitsu, Shinya; Mita, Tomohiro; Fuseya, Takahiro; Ishimura, Shutaro; Omori, Akina; Matsumoto, Megumi; Watanabe, Yuki; Hoshina, Kyoko; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2015-01-01

    Fatty acid binding protein 4 (FABP4), also known as adipocyte FABP or aP2, is secreted from adipocytes in association with lipolysis as a novel adipokine, and elevated serum FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the modulation of serum FABP4 level by therapeutic drugs. Sitagliptin (50 mg/day), a dipeptidyl peptidase 4 (DPP-4) inhibitor that increases glucagon-like peptide 1 (GLP-1), was administered to patients with type 2 diabetes (n = 24) for 12 weeks. Treatment with sitagliptin decreased serum FABP4 concentration by 19.7% (17.8 ± 1.8 vs. 14.3 ± 1.5 ng/ml, P < 0.001) and hemoglobin A1c without significant changes in adiposity or lipid variables. In 3T3-L1 adipocytes, sitagliptin or exendin-4, a GLP-1 receptor agonist, had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by sitagliptin, which was not mimicked by exendin-4. Treatment with recombinant DPP-4 increased gene expression and long-term secretion of FABP4, and the effects were cancelled by sitagliptin. Furthermore, knockdown of DPP-4 in 3T3-L1 adipocytes decreased gene expression and long-term secretion of FABP4. In conclusion, sitagliptin decreases serum FABP4 level, at least in part, via reduction in the expression and consecutive secretion of FABP4 in adipocytes by direct inhibition of DPP-4. PMID:26467280

  15. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells

    PubMed Central

    Zhang, Bin; Li, Ling; Ho, Yinwei; Li, Min; Marcucci, Guido

    2016-01-01

    Chronic myelogenous leukemia (CML) results from transformation of a long-term hematopoietic stem cell (LTHSC) by expression of the BCR-ABL fusion gene. However, BCR-ABL–expressing LTHSCs are heterogeneous in their capacity as leukemic stem cells (LSCs). Although discrepancies in proliferative, self-renewal, and differentiation properties of normal LTHSCs are being increasingly recognized, the mechanisms underlying heterogeneity of leukemic LTHSCs are poorly understood. Using a CML mouse model, we identified gene expression differences between leukemic and nonleukemic LTHSCs. Expression of the thrombopoietin (THPO) receptor MPL was elevated in leukemic LTHSC populations. Compared with LTHSCs with low MPL expression, LTHSCs with high MPL expression showed enhanced JAK/STAT signaling and proliferation in response to THPO in vitro and increased leukemogenic capacity in vivo. Although both G0 and S phase subpopulations were increased in LTHSCs with high MPL expression, LSC capacity was restricted to quiescent cells. Inhibition of MPL expression in CML LTHSCs reduced THPO-induced JAK/STAT signaling and leukemogenic potential. These same phenotypes were also present in LTHSCs from patients with CML, and patient LTHSCs with high MPL expression had reduced sensitivity to BCR-ABL tyrosine kinase inhibitor treatment but increased sensitivity to JAK inhibitors. Together, our studies identify MPL expression levels as a key determinant of heterogeneous leukemia-initiating capacity and drug sensitivity of CML LTHSCs and suggest that high MPL–expressing CML stem cells are potential targets for therapy. PMID:26878174

  16. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme.

    PubMed

    Xiao, Zui Xuan; Chen, Ruo Qiao; Hu, Dian Xing; Xie, Xiao Qiang; Yu, Shang Bin; Chen, Xiao Qian

    2017-06-17

    Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a median survival time of only 14 months after treatment. It is urgent to find new therapeutic drugs that increase survival time of GBM patients. To achieve this goal, we screened differentially expressed genes between long-term and short-term survived GBM patients from Gene Expression Omnibus database and found gene expression signature for the long-term survived GBM patients. The signaling networks of all those differentially expressed genes converged to protein binding, extracellular matrix and tissue development as revealed in BiNGO and Cytoscape. Drug repositioning in Connectivity Map by using the gene expression signature identified repaglinide, a first-line drug for diabetes mellitus, as the most promising novel drug for GBM. In vitro experiments demonstrated that repaglinide significantly inhibited the proliferation and migration of human GBM cells. In vivo experiments demonstrated that repaglinide prominently prolonged the median survival time of mice bearing orthotopic glioma. Mechanistically, repaglinide significantly reduced Bcl-2, Beclin-1 and PD-L1 expression in glioma tissues, indicating that repaglinide may exert its anti-cancer effects via apoptotic, autophagic and immune checkpoint signaling. Taken together, repaglinide is likely to be an effective drug to prolong life span of GBM patients. Copyright © 2017. Published by Elsevier Inc.

  17. Feedback training induces a bias for detecting happiness or fear in facial expressions that generalises to a novel task.

    PubMed

    Griffiths, Sarah; Jarrold, Chris; Penton-Voak, Ian S; Munafò, Marcus R

    2015-12-30

    Many psychological disorders are characterised by insensitivities or biases in the processing of subtle facial expressions of emotion. Training using expression morph sequences which vary the intensity of expressions may be able to address such deficits. In the current study participants were shown expressions from either happy or fearful intensity morph sequences, and trained to detect the target emotion (e.g., happy in the happy sequence) as being present in low intensity expressions. Training transfer was tested using a six alternative forced choice emotion labelling task with varying intensity expressions, which participants completed before and after training. Training increased false alarms for the target emotion in the transfer task. Hit rate for the target emotion did not increase once adjustment was made for the increase in false alarms. This suggests that training causes a bias for detecting the target emotion which generalises outside of the training task. However it does not increase accuracy for detecting the target emotion. The results are discussed in terms of the training's utility in addressing different types of emotion processing deficits in psychological disorders. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    PubMed

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Long-Term Exercise Is a Potent Trigger for ΔFosB Induction in the Hippocampus along the dorso–ventral Axis

    PubMed Central

    Nishijima, Takeshi; Kawakami, Masashi; Kita, Ichiro

    2013-01-01

    Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso–ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced hippocampal plasticity. PMID:24282574

  20. A novel role for GSK3 in the regulation of the processes of human labour.

    PubMed

    Lim, Ratana; Lappas, Martha

    2015-02-01

    Preterm birth remains the largest single cause of neonatal death and morbidity. Infection and/or inflammation are strongly associated with preterm delivery. Glycogen synthase kinase 3 (GSK3) is known to be a crucial mediator of inflammation homeostasis. The aims of this study were to determine the effect of spontaneous human labour in foetal membranes and myometrium on GSK3α/β expression, and the effect of inhibition of GSK3α/β on pro-labour mediators in foetal membranes and myometrium stimulated with Toll-like receptor (TLR) ligands and pro-inflammatory cytokines. Term and preterm labour in foetal membranes was associated with significantly decreased serine phosphorylated GSK3α and β expression, and thus increased GSK3 activity. There was no effect of term labour on serine phosphorylated GSK3β expression in myometrium. The specific GSK3α/β inhibitor CHIR99021 significantly decreased lipopolysaccharide (ligand to TLR4)-stimulated pro-inflammatory cytokine gene expression and release; COX2 gene expression and prostaglandin release; and MMP9 gene expression and pro MMP9 release in foetal membranes and/or myometrium. CHIR99021 also decreased FSL1 (TLR2 ligand) and flagellin (TLR5 ligand)-induced pro-inflammatory cytokine gene expression and release and COX2 mRNA expression and prostaglandin release. GSK3β siRNA knockdown in primary myometrial cells was associated with a significant decrease in IL1β and TNFα-induced pro-inflammatory cytokine and prostaglandin release. In conclusion, GSK3α/β activity is increased in foetal membranes after term and preterm labour. Pharmacological blockade of the kinase GSK3 markedly reduced pro-inflammatory and pro-labour mediators in human foetal membranes and myometrium, providing a possible therapeutics for the management of preterm labour. © 2015 Society for Reproduction and Fertility.

  1. Caspase dependent and independent mechanisms of apoptosis across gestation in a sheep model of placental insufficiency and intrauterine growth restriction.

    PubMed

    Monson, Troy; Wright, Tanner; Galan, Henry L; Reynolds, Paul R; Arroyo, Juan A

    2017-05-01

    Increased placental apoptosis is a hallmark of intrauterine growth restricted (IUGR). Several molecules have been shown to be involved in the control of apoptosis during this disease. Our objective was to determine the expression of Bcl2, Bax, phospho XIAP, AIF, caspase 3 and 9, and telomerase activity across gestation in an ovine hyperthermia-induced model of IUGR. Pregnant sheep were placed in hyperthermic (HT) conditions to induce IUGR along with age-matched controls. Placental tissues were collected at 55 (early), 95 (mid-gestation) and 130 (near-term) days of gestational age (dGA) to determine the expression of apoptotic molecules during the development of IUGR. Compared to the control placenta, IGUR pregnancies showed: significantly reduced placental Bcl2 in early gestation (55 dGA) with a significant increase observed at mid gestation (95 dGA); decreased placental pXIAP at both mid and near term gestational days (95 and 130 dGA); placental AIF increased only at 55 dGA (early gestation); active caspase 3 increased at both mid and near term gestational days (95 and 130 dGA); caspase 9 only increased at mid gestation (95 dGA) and decreased Telomerase activity near term. Placental apoptosis, mediated in part by the apoptosis related molecule, participates in the development of IUGR. Findings from this study suggest a caspase-independent apoptotic pathway during early gestation and caspase-dependent apoptosis at mid and near term gestation. The data also implicate decreased activation of XIAP as a plausible factor involved in the control of placental apoptosis during IUGR.

  2. Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism.

    PubMed

    Jadavji, Nafisa M; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga; Grand'maison, Marilyn; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2014-07-15

    Hyperhomocysteinaemia can contribute to cognitive impairment and brain atrophy. MTRR (methionine synthase reductase) activates methionine synthase, which catalyses homocysteine remethylation to methionine. Severe MTRR deficiency results in homocystinuria with cognitive and motor impairments. An MTRR polymorphism may influence homocysteine levels and reproductive outcomes. The goal of the present study was to determine whether mild hyperhomocysteinaemia affects neurological function in a mouse model with Mtrr deficiency. Mtrr+/+, Mtrr+/gt and Mtrrgt/gt mice (3 months old) were assessed for short-term memory, brain volumes and hippocampal morphology. We also measured DNA methylation, apoptosis, neurogenesis, choline metabolites and expression of ChAT (choline acetyltransferase) and AChE (acetylcholinesterase) in the hippocampus. Mtrrgt/gt mice exhibited short-term memory impairment on two tasks. They had global DNA hypomethylation and decreased choline, betaine and acetylcholine levels. Expression of ChAT and AChE was increased and decreased respectively. At 3 weeks of age, they showed increased neurogenesis. In the cerebellum, mutant mice had DNA hypomethylation, decreased choline and increased expression of ChAT. Our work demonstrates that mild hyperhomocysteinaemia is associated with memory impairment. We propose a mechanism whereby a deficiency in methionine synthesis leads to hypomethylation and compensatory disturbances in choline metabolism in the hippocampus. This disturbance affects the levels of acetylcholine, a critical neurotransmitter in learning and memory.

  3. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Bordner, Kelly A.; Richey, Laura; Jones, Megan E.; Deak, Terrence

    2016-01-01

    Background Evidence has emerged demonstrating that ethanol influences cytokine expression within the CNS, although most studies have examined long-term exposure. Thus, the cytokine response to an acute ethanol challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. Methods Rats pups were injected intraperitoneally (i.p.) with 2-g/kg ethanol and IL-1 mRNA and protein assessed 0, 60, 120, 180, and 240 min post-injection (Exp. 1). In Exps. 2-5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hr after 4-g/kg ethanol), as well as withdrawal (18 hr post-injection), after i.p. and intragastric (i.g.) ethanol administration. Results Early in ontogeny, acute ethanol significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. ethanol exposure (4-g/kg). Although cytokine- and region-dependent, central IL-6 expression was generally increased and TNFα decreased during intoxication, whereas IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. ethanol elevated expression of all cytokines, with the response growing in magnitude as the time post-injection increased. Following acute i.g. ethanol (4-g/kg), intoxication-related increases in IL-6 expression were again observed in the PVN, although to a lesser extent. Long-term, voluntary, intermittent ethanol consumption resulted in tolerance to the effects of an i.g. ethanol challenge (4-g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate ethanol intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. ethanol-induced changes in central cytokine expression. Conclusions Together, these studies provide a foundation for understanding fluctuations in central and peripheral cytokines following acute ethanol as potential contributors to the constellation of neural and behavioral alterations observed during ethanol intoxication and withdrawal. PMID:25156612

  4. Short-term fluoxetine treatment induces neuroendocrine and behavioral anxiogenic-like responses in adolescent male rats.

    PubMed

    Gomez, Francisca; Venero, César; Viveros, María-Paz; García-García, Luis

    2015-03-01

    Fluoxetine (FLX) is prescribed to treat depression and anxiety in adolescent patients. However, FLX has anxiogenic effects during the acute phase of treatment, and caution has been raised due to increased suicidal thinking and behavior. Herein, we sought to study in adolescent (35-day-old) male rats, the effects of short-term FLX treatment (10 mg/kg/day, i.p. for 3-4 days) on hypothalamic-pituitary-adrenal axis activity, serotonin (5-hidroxytriptamine, 5-HT) transporter (SERT) mRNA expression in the dorsal raphe nucleus (DRN), energy balance-related variables and behavioral profiles in the holeboard. Our results revealed that daily FLX administration increased plasma corticosterone (B) concentrations without affecting basal gene expression of corticotrophin releasing hormone in the hypothalamic paraventricular nucleus (PVN) nor of pro-opiomelanocortin in the anterior pituitary. However, FLX had significant effects increasing the mRNA expression of PVN arginine vasopressin (AVP) and reducing SERT mRNA levels in the dorsolateral subdivision of the DRN. In the holeboard, FLX-induced anxiety/emotionality-like behaviors. As expected, FLX treatment was endowed with anorectic effects and reduced body weight gain. Altogether, our study shows that short-term FLX treatment results in physiological, neuroendocrine and behavioral stress-like effects in adolescent male rats. More importantly, considering that the AVP- and 5-HTergic systems: (1) are intimately involved in regulation of the stress response; (2) are regulated by sex hormones and (3) are related to regulation of aggressive behaviors, our results highlight the potential significance of these systems mediating the anxiogenic/emotionality/stress-like responses of adolescent male rats to short-term FLX treatment.

  5. SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changes.

    PubMed

    Zampieri, Thais T; Ramos-Lobo, Angela M; Furigo, Isadora C; Pedroso, João A B; Buonfiglio, Daniella C; Donato, Jose

    2015-03-01

    During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. Therefore, the present study investigated the molecular mechanisms responsible for orchestrating the metabolic changes observed during pregnancy. Initially, we investigated the hypothalamic expression of key genes that could influence the energy balance and glucose homeostasis during pregnancy. Based on these results, we generated a conditional knockout mouse that lacks the suppressor of cytokine signaling-3 (SOCS3) only in leptin receptor-expressing cells and studied these animals during pregnancy. Among several genes involved in leptin resistance, only SOCS3 was increased in the hypothalamus of pregnant mice. Remarkably, SOCS3 deletion from leptin receptor-expressing cells prevented pregnancy-induced hyperphagia, body fat accumulation as well as leptin and insulin resistance without affecting the ability of the females to carry their gestation to term. Additionally, we found that SOCS3 conditional deletion protected females against long-term postpartum fat retention and streptozotocin-induced gestational diabetes. Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

  6. Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes.

    PubMed

    Tung, Swee Ang; Smeeton, Rachel; White, Charlotte A; Black, Colin R; Taylor, Ian B; Hilton, Howard W; Thompson, Andrew J

    2008-07-01

    Previous work where 9-cis-epoxycarotenoid dioxygenase (NCED) was over-expressed using the constitutive Gelvin Superpromoter resulted in mild increases in abscisic acid (ABA) accumulation, accompanied by stomatal closure and increased water-use efficiency (WUE), but with apparently little impact on long-term biomass production. However, one of the negative effects of the over-expression of NCED using constitutive promoters in tomato was increased seed dormancy. Here we report the use of the rbcS3C promoter, from a gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), to drive LeNCED1 transgene expression in tomato in a light-responsive and circadian manner. In comparison to the constitutive promoter, the rbcS3C promoter allowed the generation of transgenic plants with much higher levels of ABA accumulation in leaves and sap, but the effect on seed dormancy was diminished. These plants displayed the expected reductions in stomatal conductance and CO(2) assimilation, but they also exhibited a severe set of symptoms that included perturbed cotyledon release from the testa, increased photobleaching in young seedlings, substantially reduced chlorophyll and carotenoid content, interveinal leaf flooding, and greatly reduced growth. These symptoms illustrate adverse consequences of long-term, very high ABA accumulation. Only more moderate increases in ABA biosynthesis are likely to be useful in the context of agriculture. Implications are discussed for the design of transgenic 'high ABA' plants that exhibit increased WUE but have minimal negative phenotypic effects.

  7. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Noelle; Department of Obstetrics and Gynecology, The University of Western Ontario; The Lawson Health Research Institute, The University of Western Ontario

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal daymore » 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced acetylation of histone H3 [K9,14]. • This provides a mechanism for developmental origins of health and disease (DOHaD)« less

  8. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  9. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  10. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  11. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    PubMed

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring.

  12. High-fat feeding in cardiomyocyte-restricted PPARdelta knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes.

    PubMed

    Li, Yuquan; Cheng, Lihong; Qin, Qianhong; Liu, Jian; Lo, Woo-kuen; Brako, Lowrence A; Yang, Qinglin

    2009-10-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is an essential determinant of basal myocardial fatty acid oxidation (FAO) and bioenergetics. We wished to determine whether increased lipid loading affects the PPARdelta deficient heart in transcriptional regulation of FAO and in the development of cardiac pathology. Cardiomyocyte-restricted PPARdelta knockout (CR-PPARdelta(-/-)) and control (alpha-MyHC-Cre) mice were subjected to 48 h of fasting and to a long-term maintenance on a (28 weeks) high-fat diet (HFD). The expression of key FAO proteins in heart was examined. Serum lipid profiles, cardiac pathology, and changes of various transduction signaling pathways were also examined. Mice subjected to fasting exhibited upregulated transcript expression of FAO genes in the CR-PPARdelta(-/-) hearts. Moreover, long-term HFD in CR-PPARdelta(-/-) mice induced a strikingly greater transcriptional response. After HFD, genes encoding key FAO enzymes were expressed remarkably more in CR-PPARdelta(-/-) hearts than in those of control mice. Despite the marked rise of FAO gene expression, corresponding protein expression remained low in the CR-PPARdelta(-/-) heart, accompanied by abnormalities in sarcomere structures and mitochondria that were similar to those of CR-PPARdelta(-/-) hearts with regular chow feeding. The CR-PPARdelta(-/-) mice displayed increased expression of PPARgamma co-activator-1alpha (PGC-1alpha) and PPARalpha in the heart with deactivated Akt and p42/44 MAPK signaling in response to HFD. We conclude that PPARdelta is an essential determinant of myocardial FAO. Increased lipid intake activates cardiac expression of FAO genes via PPARalpha/PGC-1alpha pathway, albeit it is not sufficient to improve cardiac pathology due to PPARdelta deficiency.

  13. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    PubMed

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  14. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic

    PubMed Central

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R. Craig

    2015-01-01

    Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. PMID:26446807

  15. Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies.

    PubMed

    Johnson, Elizabeth O; Calogero, Aldo E; Konstandi, Maria; Kamilaris, Themis C; La Vignera, Sandro; Vignera, Sandro La; Chrousos, George P

    2013-06-01

    Hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally responsible for the hypercorticosteronism remains unclear. The purpose of this study was to assess the effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis, to identify the locus in the HPA axis that is principally affected, and address the time-dependent effects of alterations in thyroid status. The functional integrity of each component of the HPA axis was examined in vitro and in situ in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given pharmacological dose (50 μg) of thyroxin for 7 or 60 days. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days. Basal plasma ACTH levels were similar to controls. Both hypothalamic CRH content and the magnitude of KCL- and arginine vasopressin (AVP)-induced CRH release from hypothalamic culture were increased in long-term hyperthyroid rats. There was a significant increase in the content of both ACTH and β-endorphin in the anterior pituitaries of both short- and long-term hyperthyroid animals. Short-term hyperthyroid rats showed a significant increase in basal POMC mRNA expression in the anterior pituitary, and chronically hyperthyroid animals showed increased stress-induced POMC mRNA expression. Adrenal cultures taken from short-term hyperthyroid rats responded to exogenous ACTH with an exaggerated corticosterone response, while those taken from 60-day hyperthyroid animals showed responses similar to controls. The findings show that hyperthyroidism is associated with hypercorticosteronemia and HPA axis dysfunction that becomes more pronounced as the duration of hyperthyroidism increases. The evidence suggests that experimentally induced hyperthyroidism is associated with central hyperactivity of the HPA axis.

  16. Astrocyte-neuron lactate transport is required for long-term memory formation

    PubMed Central

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M.

    2011-01-01

    SUMMARY We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. PMID:21376239

  17. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women

    PubMed Central

    Maningat, Patricia D.; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L.; Bray, Molly S.

    2011-01-01

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7–10 days. PMID:21205870

  18. MeSH key terms for validation and annotation of gene expression clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechtsteiner, A.; Rocha, L. M.

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert whomore » had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes associated with MeSH terms. MeSH terms can be associated with genes through co-occurrence of these in MEDLINE citations, i.e. the genes occur in titles or abstracts and the MeSH terms are assigned by experts. To identify MeSH terms associated with a group of genes we used the tool MESHGENE developed at the Information Dynamics Lab at HP Labs (http://www-idl.hpl.hp.com/meshgene/). When presented with a list of human genes, MESHGENE uses some sophisticated techniques to search for these gene symbols in the titles and abstracts of all MEDLINE citations. MeSH terms and the number of co-occurrences can be retrieved. Gene symbols that are aliases of each other are pooled from several databases. This addresses the problem of synonymy, the fact that several symbols can refer to the same gene. MESHGENE employs some sophisticated algorithms that disregards symbols that are likely to be acronyms for other concepts than a gene. This addresses the problem of polysemy, i.e. possible multiple meanings of a gene symbol. We applied our approach to gene expression data from herpes virus infected human fibroblast cells. The data contains 12 time-points, between 1/2 hrs and 48 hrs after infection. Singular Value Decomposition was used to identify the dominant modes of expression. 75% of the variance in the expression data was captured by the first two modes, the first exhibiting a monotonly increasing expression pattern and the second a more transient pattern. Projection of the gene expression vectors onto this first two modes identified 3 statistically significant clusters of co-expressed genes. 500 genes from cluster 1 and 300 genes from clusters 2 and 3 each were uploaded to MESHGENE and the MeSH terms and co-occurrence values were retrieved. MeSH terms were also obtained for 5 groups of randomly selected genes with similar numbers of genes. The log was taken of the co-occurrence values and for each MeSH term these log co-occurrence values were summed for each group over the genes in that group. A matrix with 8 columns for the 8 groups of genes and with 14,000 rows with the MeSH terms was obtained. To analyze this association matrix we used a Latent Semantic Analysis (LSA) approach. We applied SVD to this gene-group vs. MeSH term association matrix. The first 2 modes that capture most of the variation (and therefore most times also information) in the association matrix were highly associated with MeSH terms that occurred uniquely or disproportionally in the 3 gene clusters. MeSH terms highly associated with the 5 groups of randomly selected genes were associated with the lower modes. These modes seem to just capture 'noise' in the association matrix. This result by itself is of great interest for gene expression analysis. We were able to show that the 3 clusters of genes not only separated in 'expression space' but also in the MeSH term space with which they are associated through the literature.« less

  19. Maternal Therapy with Ad.VEGF-A165 Increases Fetal Weight at Term in a Guinea-Pig Model of Fetal Growth Restriction.

    PubMed

    Swanson, Anna M; Rossi, Carlo A; Ofir, Keren; Mehta, Vedanta; Boyd, Michael; Barker, Hannah; Ledwozyw, Agata; Vaughan, Owen; Martin, John; Zachary, Ian; Sebire, Neil; Peebles, Donald M; David, Anna L

    2016-12-01

    In a model of growth-restricted sheep pregnancy, it was previously demonstrated that transient uterine artery VEGF overexpression can improve fetal growth. This approach was tested in guinea-pig pregnancies, where placental physiology is more similar to humans. Fetal growth restriction (FGR) was attained through peri-conceptual nutrient restriction in virgin guinea pigs. Ad.VEGF-A 165 or Ad.LacZ (1 × 10 10 vp) was applied at mid-gestation via laparotomy, delivered externally to the uterine circulation with thermosensitive gel. At short-term (3-8 days post surgery) or at term gestation, pups were weighed, and tissues were sampled for vector spread analysis, VEGF expression, and its downstream effects. Fetal weight at term was increased (88.01 ± 13.36 g; n = 26) in Ad.VEGF-A 165 -treated animals compared with Ad.LacZ-treated animals (85.52 ± 13.00 g; n = 19; p = 0.028). The brain, liver, and lung weight and crown rump length were significantly larger in short-term analyses, as well as VEGF expression in transduced tissues. At term, molecular analyses confirmed the presence of VEGF transgene in target tissues but not in fetal samples. Tissue histology analysis and blood biochemistry/hematological examination were comparable with controls. Uterine artery relaxation in Ad.VEGF-A 165 -treated dams was higher compared with Ad.LacZ-treated dams. Maternal uterine artery Ad.VEGF-A 165 increases fetal growth velocity and term fetal weight in growth-restricted guinea-pig pregnancy.

  20. [Expression of negative emotional responses to the 2011 Great East Japan Earthquake: Analysis of big data from social media].

    PubMed

    Miura, Asako; Komori, Masashi; Matsumura, Naohiro; Maeda, Kazutoshi

    2015-06-01

    In this article, we investigated the expression of emotional responses to the 2011 Great East Japan Earthquake by analyzing the frequency of negative emotional terms in tweets posted on Twitter, one of the most popular social media platforms. We focused on differences in time-series variations and diurnal changes between two kinds of disasters: natural disasters (earthquakes and tsunamis) and nuclear accidents. The number of tweets containing negative emotional responses increased sharply shortly after the first huge earthquake and decreased over time, whereas tweets about nuclear accidents showed no correlation with elapsed time. Expressions of anxiety about natural disasters had a circadian rhythm, with a peak at midnight, whereas expressions of anger about the nuclear accident were highly sensitive to critical events related to the accident. These findings were discussed in terms of similarities and differences compared to earlier studies on emotional responses in social media.

  1. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.

    PubMed

    Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F

    2009-11-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.

  2. Involvement of WNT Signaling in the Regulation of Gestational Age-Dependent Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation

    PubMed Central

    Shono, Akemi; Yoshida, Makiko; Yamana, Keiji; Thwin, Khin Kyae Mon; Kuroda, Jumpei; Kurokawa, Daisuke; Koda, Tsubasa; Nishida, Kosuke; Ikuta, Toshihiko; Mizobuchi, Masami; Taniguchi-Ikeda, Mariko

    2017-01-01

    Mesenchymal stem cells (MSCs) are a heterogeneous cell population that is isolated initially from the bone marrow (BM) and subsequently almost all tissues including umbilical cord (UC). UC-derived MSCs (UC-MSCs) have attracted an increasing attention as a source for cell therapy against various degenerative diseases due to their vigorous proliferation and differentiation. Although the cell proliferation and differentiation of BM-derived MSCs is known to decline with age, the functional difference between preterm and term UC-MSCs is poorly characterized. In the present study, we isolated UC-MSCs from 23 infants delivered at 22–40 weeks of gestation and analyzed their gene expression and cell proliferation. Microarray analysis revealed that global gene expression in preterm UC-MSCs was distinct from term UC-MSCs. WNT signaling impacts on a variety of tissue stem cell proliferation and differentiation, and its pathway genes were enriched in differentially expressed genes between preterm and term UC-MSCs. Cell proliferation of preterm UC-MSCs was significantly enhanced compared to term UC-MSCs and counteracted by WNT signaling inhibitor XAV939. Furthermore, WNT2B expression in UC-MSCs showed a significant negative correlation with gestational age (GA). These results suggest that WNT signaling is involved in the regulation of GA-dependent UC-MSC proliferation. PMID:29138639

  3. The ameliorating effects of long-term electroacupuncture on cardiovascular remodeling in spontaneously hypertensive rats.

    PubMed

    Huo, Ze-Jun; Li, Quan; Tian, Gui-Hua; Zhou, Chang-Man; Wei, Xiao-Hong; Pan, Chun-Shui; Yang, Lei; Bai, Yan; Zhang, You-Yi; He, Ke; Wang, Chuan-She; Li, Zhi-Gang; Han, Jing-Yan

    2014-04-01

    The purpose of this study was to investigate the inhibitory effects of long-term electroacupuncture at BaiHui (DU20) and ZuSanLi (ST36) on cardiovascular remodeling in spontaneously hypertensive rats (SHR) and underlying mechanisms. 6-weeks-old SHR or Wistar male rats were randomly, divided into 6 groups: the control group (SHR/Wistar), the non-acupoint electroacupuncture stimulation group (SHR-NAP/Wistar-NAP) and the electroacupuncture stimulation at DU20 and ST36 group (SHR-AP/Wistar-AP), 24 rats in each group. Rats were treated with or without electroacupuncture at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP) was measured once every 2 weeks. By the end of the 8th week, the left ventricular structure and function were assessed by echocardiography. The content of angiotensin II (Ang II), endothelin-1 (ET-1) and nitric oxide (NO) in the plasma was determined using enzyme-linked immunosorbent assay. Histological studies on the heart and the ascending aorta were performed. The expression of angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor (ETAR), eNOS and iNOS in rat myocardium and ascending aorta was investigated by Western blotting. The MAP in SHR increased linearly over the observation period and significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference in MAP was observed in Wistar rats between electroacupuncture and sham control. The aortic wall thickness, cardiac hypertrophy and increased collagen level in SHR were attenuated by long term electroacupuncture. The content of Ang II, ET-1 in the plasma decreased, but the content of NO increased after electroacupuncture stimulation in SHR. Long term electroacupuncture significantly inhibited the expression of AT1R, ETAR and iNOS, whereas increased eNOS expression, in myocardium and ascending aorta of SHR. The long term electroacupuncture stimulation at DU20 and ST36 relieves the increased MAP and cardiovascular abnormality in both structure and function in SHR, this beneficial action is most likely mediated via modulation of AT1R-AT1R-ET-1-ETAR and NOS/NO pathway.

  4. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels.

    PubMed

    Cooper, Scott T; Sell, Shawn S; Fahrenkrog, Molly; Wilkinson, Kory; Howard, David R; Bergen, Hannah; Cruz, Estefania; Cash, Steve E; Andrews, Matthew T; Hampton, Marshall

    2016-07-01

    Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation. Copyright © 2016 the American Physiological Society.

  6. A Comparison of Computer-based and Instructor-led Training for Long-term Care Staff.

    ERIC Educational Resources Information Center

    Harrington, Susan S.; Walker, Bonnie L.

    2002-01-01

    Fire safety training was provided to long-term care staff by computer (n=47) or a print-based, instructor-led program (n=47). Compared to 47 controls, both treatment groups significantly increased knowledge. The computer-trained staff were enthusiastic about the learning method and expressed greater interest in additional safety topics. (SK)

  7. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phookphan, Preeyaphan; Navasumrit, Panida

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylationmore » of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is associated with increased mRNA expression. • Arsenite treatment in vitro showed hypomethylation and increased mRNA expression. • Arsenic-exposed newborns and children had higher levels of urinary 8-nitroguanine. • Urinary 8-nitroguanine correlated with hypomethylation and mRNA expression.« less

  8. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle.

    PubMed

    Kraniou, Giorgos N; Cameron-Smith, David; Hargreaves, Mark

    2004-09-01

    Six untrained, male subjects (23 +/- 1 years old, 84 +/- 5 kg, (O(2)peak)= 3.7 +/- 0.8 l min(-1)) exercised for 60 min at 75 +/- 1%(O(2)peak) on 7 consecutive days. Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by approximately 20% and muscle glycogen concentration by approximately 40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 +/- 1.5 versus 3.4 +/- 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 +/- 3.0 versus 3.4 +/- 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

  9. Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch.

    PubMed

    Song, Yi; Zhao, Cheng; Liang, Xu-Fang; He, Shan; Tian, Changxu; Cheng, Xiaoyan; Yuan, Xiaochen; Lv, Liyuan; Guo, Wenjie; Xue, Min; Tao, Ya-Xiong

    2017-06-01

    Preproghrelin, a gut/brain peptide, plays an important role in the regulation of food intake and energy homeostasis in teleost and mammals. In the present study, we obtained the full-length preproghrelin cDNA in Chinese perch. The preproghrelin messenger RNA (mRNA) tissue expression showed that level was much higher in stomach and pituitary than in other tissues. The fasting study showed, after gastric emptying (3-6 h), short-term fasting (6-12 h) increased preproghrelin expression in the stomach. While in the pituitary, fasting reduced preproghrelin expression at 1, 3, 12, and 48 h, presenting state fluctuation of self-adjustment. The temperature study showed that the mRNA expression of preproghrelin was the highest in the brain at 26 °C and highest in the stomach at 32 °C, respectively, with different optimum temperature in these two tissues, reflecting spatiotemporal differences of regulation by central nervous system and peripheral organs. The photoperiod study showed that normal light (11 h of lightness and 13 h of darkness) led to highest preproghrelin expression, both in the brain and in the stomach, than continuous light or continuous dark, proving food intake is adapted to natural photoperiod or normal light in this study. These results all indicated that tissue-specific preproghrelin expression of Chinese perch could be significantly affected by environmental factors. Short-term fasting of 6 h after gastric emptying, 26 °C, and normal light led to higher preproghrelin expression, which indicated potential appetite increase in Chinese perch.

  10. Assessment of short-term memory in Arabic speaking children with specific language impairment.

    PubMed

    Kaddah, F A; Shoeib, R M; Mahmoud, H E

    2010-12-15

    Children with Specific Language Impairment (SLI) may have some kind of memory disorder that could increase their linguistic impairment. This study assessed the short-term memory skills in Arabic speaking children with either Expressive Language Impairment (ELI) or Receptive/Expressive Language Impairment (R/ELI) in comparison to controls in order to estimate the nature and extent of any specific deficits in these children that could explain the different prognostic results of language intervention. Eighteen children were included in each group. Receptive, expressive and total language quotients were calculated using the Arabic language test. Assessment of auditory and visual short-term memory was done using the Arabic version of the Illinois Test of Psycholinguistic Abilities. Both groups of SLI performed significantly lower linguistic abilities and poorer auditory and visual short-term memory in comparison to normal children. The R/ELI group presented an inferior performance than the ELI group in all measured parameters. Strong association was found between most tasks of auditory and visual short-term memory and linguistic abilities. The results of this study highlighted a specific degree of deficit of auditory and visual short-term memories in both groups of SLI. These deficits were more prominent in R/ELI group. Moreover, the strong association between the different auditory and visual short-term memories and language abilities in children with SLI must be taken into account when planning an intervention program for these children.

  11. Mesenchymal stromal cells of osteosarcoma patients do not show evidence of neoplastic changes during long-term culture.

    PubMed

    Buddingh, Emilie P; Ruslan, S Eriaty N; Reijnders, Christianne M A; Szuhai, Karoly; Kuijjer, Marieke L; Roelofs, Helene; Hogendoorn, Pancras C W; Maarten Egeler, R; Cleton-Jansen, Anne-Marie; Lankester, Arjan C

    2015-01-01

    In vitro expanded mesenchymal stromal cells (MSCs) are increasingly used as experimental cellular therapy. However, there have been concerns regarding the safety of their use, particularly with regard to possible oncogenic transformation. MSCs are the hypothesized precursor cells of high-grade osteosarcoma, a tumor with often complex karyotypes occurring mainly in adolescents and young adults. To determine if MSCs from osteosarcoma patients could be predisposed to malignant transformation we cultured MSCs of nine osteosarcoma patients and five healthy donors for an average of 649 days (range 601-679 days). Also, we compared MSCs derived from osteosarcoma patients at diagnosis and from healthy donors using genome wide gene expression profiling. Upon increasing passage, increasing frequencies of binucleate cells were detected, but no increase in proliferation suggestive of malignant transformation occurred in MSCs from either patients or donors. Hematopoietic cell specific Lyn substrate 1 (HLCS1) was differentially expressed (fold change 0.25, P value 0.0005) between MSCs of osteosarcoma patients (n = 14) and healthy donors (n = 9). This study shows that although HCLS1 expression was downregulated in MSCs of osteosarcoma patients and binucleate cells were present in both patient and donor derived MSCs, there was no evidence of neoplastic changes to occur during long-term culture.

  12. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition

    PubMed Central

    El-Azzamy, Haidy; Balogh, Andrea; Romero, Roberto; Xu, Yi; LaJeunesse, Christopher; Plazyo, Olesya; Xu, Zhonghui; Price, Theodore G.; Dong, Zhong; Tarca, Adi L.; Papp, Zoltan; Hassan, Sonia S.; Chaiworapongsa, Tinnakorn; Kim, Chong Jai; Gomez-Lopez, Nardhy; Than, Nandor Gabor

    2017-01-01

    Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14) or without labor (TNL, n = 15). Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR). Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1), galectin-1 (LGALS1), and progestogen-associated endometrial protein (PAEP); the expression of estrogen receptor 1 (ESR1), homeobox A11 (HOXA11), interleukin 1β (IL1B), IL8, progesterone receptor membrane component 2 (PGRMC2), and prostaglandin E synthase (PTGES) was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2), CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and IL-8 were found. Conclusions Our data suggests that with the initiation of parturition, the decidual expression of anti-inflammatory mediators decreases, while the expression of pro-inflammatory mediators and steroid receptors increases. This shift may affect downstream signaling pathways that can lead to parturition. PMID:28226203

  13. Fasting Induces IL-1 Resistance and Free-Fatty Acid-Mediated Up-Regulation of IL-1R2 and IL-1RA

    PubMed Central

    Joesting, Jennifer J.; Moon, Morgan L.; Gainey, Stephen J.; Tisza, Brittany L.; Blevins, Neil A.; Freund, Gregory G.

    2014-01-01

    Objective: Weight-loss is a near societal obsession and many diet programs use significant calorie restriction including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 h fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 h. Expression of the endogenous IL-1 antagonists, IL-1 receptor type 2 (IL-1R2), and IL-1 receptor antagonist (IL-1RA) was determined as were sickness behaviors before and after IL-1β administration. Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver) and IL-1RA (68-fold in liver). Fasted mice were protected from IL-1β-induced weight-loss, hypoglycemia, loss of locomotor, and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1β on IL-1R2 gene expression in adipose tissue and liver (2.6- and 1.6-fold, respectively). Fasting not only increased IL-1RA and IL-1R2 protein 2.5- and 3.2-fold, respectively, in liver but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs) and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14- and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation. PMID:25071776

  14. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish.

    PubMed

    Cortés, Raul; Teles, Mariana; Oliveira, Miguel; Fierro-Castro, Camino; Tort, Lluis; Cerdá-Reverter, José Miguel

    2018-02-01

    Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.

  15. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

    PubMed Central

    Sun, Yue; Zhou, Liping; Fang, Lingdong; Su, Yong; Zhu, Weiyun

    2015-01-01

    Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups with a randomized block design. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified CS was replaced with purified RPS during a 100-day trial. Real-time PCR assay showed that RPS significantly decreased the number of total bacteria in the colonic digesta. MiSeq sequencing of the V3-V4 region of the 16S rRNA genes showed that RPS significantly decreased the relative abundance of Clostridium, Treponema, Oscillospira, Phascolarctobacterium, RC9 gut group, and S24-7-related operational taxonomic units (OTUs), and increased the relative abundance of Turicibacter, Blautia, Ruminococcus, Coprococcus, Marvinbryantia, and Ruminococcus bromii-related OTUs in colonic digesta and mucosa. Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome. Our findings suggest that long-term intake of high resistant starch (RS) diet may result in both positive and negative roles in gut health. PMID:26379652

  16. Reduction of serum FABP4 level by sitagliptin, a DPP-4 inhibitor, in patients with type 2 diabetes mellitus.

    PubMed

    Furuhashi, Masato; Hiramitsu, Shinya; Mita, Tomohiro; Fuseya, Takahiro; Ishimura, Shutaro; Omori, Akina; Matsumoto, Megumi; Watanabe, Yuki; Hoshina, Kyoko; Tanaka, Marenao; Moniwa, Norihito; Yoshida, Hideaki; Ishii, Junnichi; Miura, Tetsuji

    2015-12-01

    Fatty acid binding protein 4 (FABP4), also known as adipocyte FABP or aP2, is secreted from adipocytes in association with lipolysis as a novel adipokine, and elevated serum FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the modulation of serum FABP4 level by therapeutic drugs. Sitagliptin (50 mg/day), a dipeptidyl peptidase 4 (DPP-4) inhibitor that increases glucagon-like peptide 1 (GLP-1), was administered to patients with type 2 diabetes (n = 24) for 12 weeks. Treatment with sitagliptin decreased serum FABP4 concentration by 19.7% (17.8 ± 1.8 vs. 14.3 ± 1.5 ng/ml, P < 0.001) and hemoglobin A1c without significant changes in adiposity or lipid variables. In 3T3-L1 adipocytes, sitagliptin or exendin-4, a GLP-1 receptor agonist, had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by sitagliptin, which was not mimicked by exendin-4. Treatment with recombinant DPP-4 increased gene expression and long-term secretion of FABP4, and the effects were cancelled by sitagliptin. Furthermore, knockdown of DPP-4 in 3T3-L1 adipocytes decreased gene expression and long-term secretion of FABP4. In conclusion, sitagliptin decreases serum FABP4 level, at least in part, via reduction in the expression and consecutive secretion of FABP4 in adipocytes by direct inhibition of DPP-4. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway.

    PubMed

    Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-12-01

    Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In conclusion, quercetin treatment efficiently alleviated stress mediated behavioral dysfunction by modulating hippocampal insulin signaling and neurogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Endoplasmic reticulum stress is increased after spontaneous labor in human fetal membranes and myometrium where it regulates the expression of prolabor mediators.

    PubMed

    Liong, Stella; Lappas, Martha

    2014-09-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress is involved in various diseases. In nongestational tissues, several markers of the unfolded protein response (UPR) have been shown to regulate the inflammatory response. Thus, the aim of this study was to determine the effect of human labor on markers of ER stress in fetal membranes and myometrium. In addition, the effect of ER stress inhibition on the expression and secretion of proinflammatory and prolabor mediators was also assessed. The markers of ER stress, GRP78, IRE1, and spliced XBP1 (XBP1s), were significantly increased in fetal membranes and myometrium after term and preterm labor compared to nonlaboring samples. Given that inflammation is considered to be one of the leading causes of spontaneous preterm birth, here we used bacterial endotoxin lipopolysaccharide (LPS) as a model for infection-induced preterm birth. In term nonlabored fetal membranes and myometrium, LPS induced UPR activation as evidenced by a significant increase in the expression of GRP78, IRE1, and XBP1s in fetal membranes and myometrium. The use of the chemical chaperones 4-phenylbutyric acid (4-PBA) and tauroursodeoxycholic acid (TUDCA) alleviated ER stress induced by LPS. 4-PBA and TUDCA also ameliorated the increase in LPS-induced prolabor mediators. Our data suggest that the UPR may regulate the inflammatory responses associated with labor or infection in fetal membranes and myometrium of pregnant term and preterm women. Thus, the use of ER stress inhibitors, in particular 4-PBA or TUDCA, may be a potential therapeutic strategy for the prevention of infection-mediated spontaneous preterm birth. © 2014 by the Society for the Study of Reproduction, Inc.

  19. Preterm Birth and Its Long-Term Effects: Methylation to Mechanisms

    PubMed Central

    Parets, Sasha E.; Bedient, Carrie E.; Menon, Ramkumar; Smith, Alicia K.

    2014-01-01

    The epigenetic patterns established during development may influence gene expression over a lifetime and increase susceptibility to chronic disease. Being born preterm (<37 weeks of gestation) is associated with increased risk mortality and morbidity from birth until adulthood. This brief review explores the potential role of DNA methylation in preterm birth (PTB) and its possible long-term consequences and provides an overview of the physiological processes central to PTB and recent DNA methylation studies of PTB. PMID:25256426

  20. Thrust modeling for hypersonic engines

    NASA Technical Reports Server (NTRS)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  1. The association between different molecular weights of hyaluronic acid and CHAD, HIF-1α, COL2A1 expression in chondrocyte cultures

    PubMed Central

    Sirin, Duygu Yasar; Kaplan, Necati; Yilmaz, Ibrahim; Karaarslan, Numan; Ozbek, Hanefi; Akyuva, Yener; Kaya, Yasin Emre; Oznam, Kadir; Akkaya, Nuray; Guler, Olcay; Akkaya, Semih; Mahirogullari, Mahir

    2018-01-01

    The aim of the present study was to investigate the effects of three different formulations of hyaluronic acid (HA): Low molecular weight (MW) Sinovial One®, medium MW Viscoplus® and high MW Durolane®, on chondrocyte proliferation and collagen type II (COL2A1), hypoxia-inducible factor 1α (HIF-1α) and chondroadherin (CHAD) expression in primary chondrocyte cultures. Standard primary chondrocyte cultures were established from osteochondral tissues surgically obtained from 6 patients with gonarthrosis. Cell morphology was evaluated using an inverted light microscope; cell proliferation was determined with a MTT assay and confirmed with acridine orange/propidium iodide staining. Levels of CHAD, COL2A1 and HIF-1α expression were assessed using specific TaqMan gene expression assays. The results demonstrated the positive effect of HA treatment on cell proliferation, which was independent from the MW. COL2A1 expression increased in the medium and high MW HA treated groups. It was observed that HIF-1α expression increased in the high MW treated group alone. CHAD expression increased only in the medium MW HA treated group. Evaluation of gene expression revealed that levels of expression increased as the duration of HA application increased, in the medium and high MW HA treated groups. In terms of increased viability and proliferation, a longer duration of HA application was more effective. Taken together, it may be concluded that the administration of medium and high MW HA may be a successful way of treating diseases affecting chondrocytes in a clinical setting. PMID:29849772

  2. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays.

    PubMed

    Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Restraint stress is known to catalyse the pathogenesis of the variety of chronic inflammatory disorders. The present study was designed to evaluate the effect of repeated short-term stress (RRS) on cellular transduction apart from oxidative burden and early tumour promotional biomarkers induced due to combined exposure of trichloroethylene (TCE) and Ultra-violet radiation (UVB). RRS leads to the increase in the expression of the stress responsive cellular transduction elements NFkB-p65 and activity of iNOS in the epidermal tissues of mice after toxicant exposure. RRS augments the steep depletion of the cellular antioxidant machinery which was evidenced by the marked depletion in GSH (Glutathione and GSH dependant enzymes), superoxide dismutase and catalase activity that were observed at significance level of P < 0.001 with increase in lipid peroxidation, H(2)O(2) and xanthine oxidase activity (P < 0.001) in the stressed animals and down regulation of DT-diaphorase activity (P < 0.001). Since, the induction of NFkB-p65 and inducible nitric oxide synthase expression mediated can lead to the hyperproliferation, we estimated a significant increment (P < 0.001) in the synthesis of polyamines in mice skin evidenced here by the ornithine decarboxylase which is the early marker of tumour promotion and further evaluated PCNA expression. All these findings cues towards the synergising ability of repeated short-term stress in the toxic response of TCE and UVB radiation.

  3. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    PubMed

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging.

    PubMed

    Márquez Loza, Alejandra; Elias, Valerie; Wong, Carmen P; Ho, Emily; Bermudez, Michelle; Magnusson, Kathy R

    2017-03-06

    Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-d-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26months) were fed ibuprofen (375ppm) in NIH31 diet or diet alone for 6weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2' cassettes in the hippocampus. GluN1-3 splice form mRNA and C2' cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors.

    PubMed

    Puyal, Julien; Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Demêmes, Danielle; Raymond, Jaqueline; Pettorossi, Vito Enrico

    2003-12-01

    The effects of high frequency stimulation (HFS) of the primary vestibular afferents on synaptic transmission in the ventral part of the medial vestibular nuclei (vMVN) were studied during postnatal development and compared with the changes in the expression of the group I metabotropic glutamate receptor (mGluR) subtypes, mGluR1 and mGluR5. During the first stages of development, HFS always induced a mGluR5- and GABAA-dependent long-term depression (LTD) which did not require NMDA receptor and mGluR1 activation. The probability of inducing LTD decreased progressively throughout the development and it was zero at about the end of the second postnatal week. Conversely, long-term potentiation (LTP) appeared at the beginning of the second week and its occurrence increased to reach the adult value at the end of the third week. Of interest, the sudden change in the LTP frequency occurred at the time of eye opening, about the end of the second postnatal week. LTP depended on NMDA receptor and mGluR1 activation. In parallel with the modifications in synaptic plasticity, we observed that the expression patterns and localizations of mGluR5 and mGluR1 in the medial vestibular nuclei (MVN) changed during postnatal development. At the earlier stages the mGluR1 expression was minimal, then increased progressively. In contrast, mGluR5 expression was initially high, then decreased. While mGluR1 was exclusively localized in neuronal compartments and concentrated at the postsynaptic sites at all stages observed, mGluR5 was found mainly in neuronal compartments at immature stages, then preferentially in glial compartments at mature stages. These results provide the first evidence for a progressive change from LTD to LTP accompanied by a distinct maturation expression of mGluR1 and mGluR5 during the development of the MVN.

  6. Odors regulate Arc expression in neuronal ensembles engaged in odor processing.

    PubMed

    Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C

    2000-06-26

    Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.

  7. A short‐term extremely low frequency electromagnetic field exposure increases circulating leukocyte numbers and affects HPA‐axis signaling in mice

    PubMed Central

    de Kleijn, Stan; Ferwerda, Gerben; Wiese, Michelle; Trentelman, Jos; Cuppen, Jan; Kozicz, Tamas; de Jager, Linda; Hermans, Peter W. M.

    2016-01-01

    There is still uncertainty whether extremely low frequency electromagnetic fields (ELF‐EMF) can induce health effects like immunomodulation. Despite evidence obtained in vitro, an unambiguous association has not yet been established in vivo. Here, mice were exposed to ELF‐EMF for 1, 4, and 24 h/day in a short‐term (1 week) and long‐term (15 weeks) set‐up to investigate whole body effects on the level of stress regulation and immune response. ELF‐EMF signal contained multiple frequencies (20–5000 Hz) and a magnetic flux density of 10 μT. After exposure, blood was analyzed for leukocyte numbers (short‐term and long‐term) and adrenocorticotropic hormone concentration (short‐term only). Furthermore, in the short‐term experiment, stress‐related parameters, corticotropin‐releasing hormone, proopiomelanocortin (POMC) and CYP11A1 gene‐expression, respectively, were determined in the hypothalamic paraventricular nucleus, pituitary, and adrenal glands. In the short‐term but not long‐term experiment, leukocyte counts were significantly higher in the 24 h‐exposed group compared with controls, mainly represented by increased neutrophils and CD4 ± lymphocytes. POMC expression and plasma adrenocorticotropic hormone were significantly lower compared with unexposed control mice. In conclusion, short‐term ELF‐EMF exposure may affect hypothalamic‐pituitary‐adrenal axis activation in mice. Changes in stress hormone release may explain changes in circulating leukocyte numbers and composition. Bioelectromagnetics. 37:433–443, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc. PMID:27553635

  8. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    PubMed Central

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  9. Effect of Antenatal Expression of Breast Milk at Term in Reducing Breast Feeding Failures.

    PubMed

    Singh, G; Chouhan, R; Sidhu, K

    2009-04-01

    Though breast feeding is natural, during the first 2-3 days, when enough breast milk is not available with mother, she may introduce bottle feeding erroneously for improving nutrition to her baby. We studied the effect of antenatal expression of breast milk at term in reducing breast feeding failure as compared to conventional method of initiation of breast feeding. A prospective study was carried out in 180 booked cases at term. Daily expression of breast milk at least once a day after 37 weeks of pregnancy was introduced in randomly selected 90 pregnant ladies. Prior examination was done to exclude any inverted or cracked nipples and appropriate treatment instituted. The study group who expressed breast milk daily after 37 weeks did not find it difficult to initiate breast feeding after vaginal or cesarean delivery. Sufficient milk started flowing within half an hour of initiation of breast feeding in most 85 (94.4%) subjects of study group as compared to 63 (70%) patients of control group, which was statistically significant. There was no increase in any delivery complication. There were two partial breast feeding failures in control group but none in study group. Daily antenatal breast milk expression after 37 completed weeks of pregnancy significantly reduced the time for establishing full breast feeding and reduced breast feeding failures.

  10. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo

    PubMed Central

    Lewis, Jo E.; Brameld, John M.; Hill, Phil; Barrett, Perry; Ebling, Francis J.P.; Jethwa, Preeti H.

    2015-01-01

    Introduction The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. New method To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Results Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. Comparison with old method The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. Conclusion The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. PMID:26300182

  11. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.

    PubMed

    Hiramatsu, Kosuke; Yoshino, Kiyoshi; Serada, Satoshi; Yoshihara, Kosuke; Hori, Yumiko; Fujimoto, Minoru; Matsuzaki, Shinya; Egawa-Takata, Tomomi; Kobayashi, Eiji; Ueda, Yutaka; Morii, Eiichi; Enomoto, Takayuki; Naka, Tetsuji; Kimura, Tadashi

    2016-03-01

    Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.

  12. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    PubMed

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

    PubMed

    Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K

    2017-11-01

    Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.

  14. Mitochondrial MnSOD mRNA expression in human chorioamniotic membranes and its association with labor, inflammation and infection

    PubMed Central

    Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L.; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard

    2010-01-01

    Objective Human parturition is characterized by the activation of genes involved in acute inflammatory in the fetal membranes. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). MnSOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in MnSOD mRNA expression in the fetal membranes in patients with term and preterm labor as well as in acute chorioamnionitis. Study design Fetal membranes were obtained from patients in the following groups: 1) term not in labor (n=29); 2) term in labor (n=29); 3) spontaneous preterm labor with intact mebranes (n=16); 4) PTL with histological chorioamnionitis (n=12); 5) preterm prelabor rupture of membranes (PPROM; n=17); and 6) PPROM with histological chorioamnionitis (n=21). MnSOD mRNA expression in the membranes was determined by quantitative real-time RT-PCR. Results 1) MnSOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p=0.02); 2) the amount of MnSOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p=0.03; 3.2-fold, p=0.03, respectively); 3) MnSOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p=0.02) and with PTL (5.4-fold, p=0.02) than in patients with these conditions without histological chorioamnionitis; 4) expression of MnSOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p=0.03); Conclusion The increase in MnSOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes. PMID:19900038

  15. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    PubMed Central

    2017-01-01

    Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture. PMID:28540297

  16. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent.

    PubMed

    Shynlova, Oksana; Tsui, Prudence; Dorogin, Anna; Langille, B Lowell; Lye, Stephen J

    2007-09-01

    From a quiescent state in early pregnancy to a highly contractile state in labor, the myometrium displays tremendous growth and remodeling. We hypothesize that the transforming growth factor beta (TGFbeta) system is involved in the differentiation of pregnant myometrium throughout gestation and labor. Furthermore, we propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial TGFbetas. The expression of TGFbeta1-3 mRNAs and proteins was examined by real-time PCR, Western immunoblot, and localized with immunohistochemistry in the rat uterus throughout pregnancy and labor. Tgfbeta1-3 genes were expressed differentially in pregnant myometrium. Tgfbeta2 gene was not affected by pregnancy, whereas the Tgfbeta1 gene showed a threefold increase during the second half of gestation. In contrast, we observed a dramatic bimodal change in Tgfbeta3 gene expression throughout pregnancy. Tgfbeta3 mRNA levels first transiently increased at mid-gestation (11-fold on day 14) and later at term (45-fold at labor, day 23). Protein expression levels paralleled the changes in mRNA. Treatment of pregnant rats with the progesterone (P4) receptor antagonist RU486 induced premature labor on day 19 and increased Tgfbeta3 mRNA, whereas artificial maintenance of elevated P4 levels at late gestation (days 20-23) caused a significant decrease in the expression of Tgfbeta3 gene. In addition, Tgfbeta3 was up-regulated specifically in the gravid horn of unilaterally pregnant rats subjected to a passive biological stretch imposed by the growing fetuses, but not in the empty horn. Collectively, these data indicate that the TGFbeta family contributes in the regulation of myometrial activation at term integrating mechanical and endocrine signals for successful labor contraction.

  17. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization.

    PubMed

    Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin

    2014-05-16

    Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.

  18. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA) rats.

    PubMed

    Schellong, Karen; Neumann, Uta; Rancourt, Rebecca C; Plagemann, Andreas

    2013-01-01

    Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. By rearing in normal (NL) vs. small litters (SL), small-for-gestational-age (SGA) rats were neonatally exposed to either normal (SGA-in-NL) or over-feeding (SGA-in-SL), and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL). SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60), as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05), and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05). Lasercapture microdissection (LMD)-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC) revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc) in SGA-in-SL rats (p<0.05). Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy), agouti-related-peptide (Agrp) and galanin (Gal)) was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01), correlated to food intake (p<0.05). Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding appears to be a critical long-term risk factor in 'small-for-gestational-age babies'.

  19. 17β-Estradiol Alters Oxidative Stress Response Protein Expression and Oxidative Damage in the Uterus

    PubMed Central

    Yuan, Lisi; Dietrich, Alicia K.; Nardulli, Ann M.

    2014-01-01

    The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI). We demonstrated that treatment of ovariectomized C57BL/6J female mice with E2 increased the mRNA and protein levels of Trx, but decreased SOD1 and Ape1 mRNA and protein expression. In contrast, E2 treatment increased PDI protein levels but had no effect on PDI transcript levels.Interestingly, E2 treatment also increased two markers of cellular damage, lipid peroxidation and protein carbonylation. Our studies suggest that the decreased expression of SOD1 and Ape1 caused by E2 treatment may in the long term result in disruption of ROS regulation and play a role in endometrial carcinogenesis. PMID:24103313

  20. Protease Activated Receptor-2 Expression and Function in Asthmatic Bronchial Smooth Muscle

    PubMed Central

    Gilbert, Guillaume; Carvalho, Gabrielle; Trian, Thomas; Ozier, Annaig; Gillibert-Duplantier, Jennifer; Ousova, Olga; Maurat, Elise; Thumerel, Matthieu; Quignard, Jean-François; Girodet, Pierre-Olivier; Marthan, Roger; Berger, Patrick

    2014-01-01

    Asthmatic bronchial smooth muscle (BSM) is characterized by structural remodeling associated with mast cell infiltration displaying features of chronic degranulation. Mast cell-derived tryptase can activate protease activated receptor type-2 (PAR-2) of BSM cells. The aims of the present study were (i) to evaluate the expression of PAR-2 in both asthmatic and non asthmatic BSM cells and, (ii) to analyze the effect of prolonged stimulation of PAR-2 in asthmatic BSM cells on cell signaling and proliferation. BSM cells were obtained from both 33 control subjects and 22 asthmatic patients. PAR-2 expression was assessed by flow cytometry, western blot and quantitative RT-PCR. Calcium response, transduction pathways and proliferation were evaluated before and following PAR-2 stimulation by SLIGKV-NH2 or trypsin for 1 to 3 days. Asthmatic BSM cells expressed higher basal levels of functional PAR-2 compared to controls in terms of mRNA, protein expression and calcium response. When PAR-2 expression was increased by means of lentivirus in control BSM cells to a level similar to that of asthmatic cells, PAR-2-induced calcium response was then similar in both types of cell. However, repeated PAR-2 stimulations increased the proliferation of asthmatic BSM cells but not that of control BSM cells even following lentiviral over-expression of PAR-2. Such an increased proliferation was related to an increased phosphorylation of ERK in asthmatic BSM cells. In conclusion, we have demonstrated that asthmatic BSM cells express increased baseline levels of functional PAR-2. This higher basal level of PAR-2 accounts for the increased calcium response to PAR-2 stimulation, whereas the increased proliferation to repeated PAR-2 stimulation is related to increased ERK phosphorylation. PMID:24551046

  1. Tadalafil modulates aromatase activity and androgen receptor expression in a human osteoblastic cell in vitro model.

    PubMed

    Aversa, A; Fittipaldi, S; Bimonte, V M; Wannenes, F; Papa, V; Francomano, D; Greco, E A; Lenzi, A; Migliaccio, S

    2016-02-01

    Phosphodiesterase type-5 inhibitor (PDE5i) tadalafil administration in men with erectile dysfunction is associated with increased testosterone/estradiol ratio, leading to hypothesize a potential increased effect of androgen action on target tissues. We aimed to characterize, in a cellular model system in vitro, the potential modulation of aromatase and sex steroid hormone receptors upon exposure to tadalafil (TAD). Human osteoblast-like cells SAOS-2 were chosen as an in vitro model system since osteoblasts are target of steroid hormones. Cells were tested for viability upon TAD exposure, which increased cell proliferation. Then, cells were treated with/without TAD for several times to evaluate potential modulation in PDE5, aromatase (ARO), androgen (AR) and estrogen (ER) receptor expression. Osteoblasts express significant levels of both PDE5 mRNA and protein. Exposure of cells to increasing concentrations of TAD (10(-8)-10(-7) M) decreased PDE5 mRNA and protein expression. Also, TAD inhibited ARO mRNA and protein expression leading to an increase in testosterone levels in the supernatants. Interestingly, TAD increased total AR mRNA and protein expression and decreased ERα, with an increased ratio of AR/ER, suggesting preferential androgenic vs estrogenic pathway activation. Our results demonstrate for the first time that TAD decreases ARO expression and increases AR protein expression in human SAOS-2, strongly suggesting a new control of steroid hormones pathway by PDE5i. These findings might represent the first evidence of translational actions of PDE5i on AR, which leads to hypothesize a growing relevance of this molecule in men with prostate cancer long-term treated with TAD for sexual rehabilitation.

  2. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel.

    PubMed

    Huang, Jinjin; Xia, Ji; Yang, Zhen; Guan, Feifei; Cui, Di; Guan, Guohua; Jiang, Wei; Li, Ying

    2014-01-01

    We previously cloned a 1,3-specific lipase gene from the fungus Rhizomucor miehei and expressed it in methylotrophic yeast Pichia pastoris strain GS115. The enzyme produced (termed RML) was able to catalyze methanolysis of soybean oil and showed strong position specificity. However, the enzyme activity and amount of enzyme produced were not adequate for industrial application. Our goal in the present study was to improve the enzyme properties of RML in order to apply it for the conversion of microalgae oil to biofuel. Several new expression plasmids were constructed by adding the propeptide of the target gene, optimizing the signal peptide, and varying the number of target gene copies. Each plasmid was transformed separately into P. pastoris strain X-33. Screening by flask culture showed maximal (21.4-fold increased) enzyme activity for the recombinant strain with two copies of the target gene; the enzyme was termed Lipase GH2. The expressed protein with the propeptide (pRML) was a stable glycosylated protein, because of glycosylation sites in the propeptide. Quantitative real-time RT-PCR analysis revealed two major reasons for the increase in enzyme activity: (1) the modified recombinant expression system gave an increased transcription level of the target gene (rml), and (2) the enzyme was suitable for expression in host cells without causing endoplasmic reticulum (ER) stress. The modified enzyme had improved thermostability and methanol or ethanol tolerance, and was applicable directly as free lipase (fermentation supernatant) in the catalytic esterification and transesterification reaction. After reaction for 24 hours at 30°C, the conversion rate of microalgae oil to biofuel was above 90%. Our experimental results show that signal peptide optimization in the expression plasmid, addition of the gene propeptide, and proper gene dosage significantly increased RML expression level and enhanced the enzymatic properties. The target enzyme was the major component of fermentation supernatant and was stable for over six months at 4°C. The modified free lipase is potentially applicable for industrial-scale conversion of microalgae oil to biodiesel.

  3. A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis

    PubMed Central

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Plazyo, Olesya; Unkel, Ronald; Than, Nandor Gabor; Chaemsaithong, Piya; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L.; Abrahams, Vikki M.; Yeo, Lami; Hassan, Sonia S.

    2016-01-01

    Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1β and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1β and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4), absent in melanoma 2 (AIM2), and nucleotide binding oligomerization domain 2 (NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1β and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1β and IL-18 (2-fold) but not IL-6 or tumor necrosis factor α. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1β by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis. PMID:27852921

  4. A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis.

    PubMed

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Plazyo, Olesya; Unkel, Ronald; Than, Nandor Gabor; Chaemsaithong, Piya; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Abrahams, Vikki M; Yeo, Lami; Hassan, Sonia S

    2017-06-01

    Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1β and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1β and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 ( NLRP3), NLR family CARD domain containing 4 ( NLRC4), absent in melanoma 2 ( AIM2), and nucleotide binding oligomerization domain 2 ( NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1β and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1β and IL-18 (2-fold) but not IL-6 or tumor necrosis factor α. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1β by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis.

  5. The Effect of Short-term Intra-arterial Delivery of Paclitaxel on Neointimal Hyperplasia and the Local Thrombotic Environment after Angioplasty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yajun, E, E-mail: eyj7681@yahoo.com.cn; He Nengshu, E-mail: eyajun@hotmail.com; Fan Hailun, E-mail: mydream510@yahoo.com.cn

    2013-08-01

    PurposeTo evaluate the effects of short-term intra-arterial delivery of paclitaxel on neointimal hyperplasia and the local thrombotic environment after angioplasty.MethodsAn experimental common carotid artery injury model was established in 60 rats, which were divided into experimental groups (40 rats) and controls (20 rats). Local intra-arterial administration of paclitaxel was applied at 2 doses (90 and 180 {mu}g/30 {mu}l), and the effects of short-term delivery of paclitaxel on neointimal hyperplasia and the expression of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated at days 15 and 30 by hematoxylin and eosin staining and immunohistochemistry.ResultsAt 15more » and 30 days after injury, neointimal thickness and area, the ratio of intimal area to medial area and the stenotic rate were all significantly decreased in the group provided the high concentrations (180 {mu}g/30 {mu}l) of paclitaxel for 2 min or 10 min and in the group provided the low concentration (90 {mu}g/30 {mu}l) of paclitaxel for 10 min (p < 0.05). At 30 days after injury, there were no significant changes in TF expression among all experimental groups. PAI-1 expression increased in the neointima of the high concentration 10 min group (p < 0.05), while t-PA expression decreased in the neointima of the high concentration 2 min group (p < 0.05).ConclusionIn the rat common carotid artery injury model, the short-term delivery of paclitaxel could effectively inhibit neointimal hyperplasia in the long term, with very little influence on the local expression of TF and PAI-1.« less

  6. A High Protein Diet during Pregnancy Affects Hepatic Gene Expression of Energy Sensing Pathways along Ontogenesis in a Porcine Model

    PubMed Central

    Oster, Michael; Murani, Eduard; Metges, Cornelia C.; Ponsuksili, Siriluck; Wimmers, Klaus

    2011-01-01

    In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages. PMID:21789176

  7. Investigating hsp Gene Expression in Liver of Channa striatus under Heat Stress for Understanding the Upper Thermal Acclimation

    PubMed Central

    Purohit, Gopal Krishna; Mahanty, Arabinda; Suar, Mrutyunjay; Sharma, Anil Prakash; Mohanty, Bimal Prasanna

    2014-01-01

    Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C. PMID:25003111

  8. Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation.

    PubMed

    Purohit, Gopal Krishna; Mahanty, Arabinda; Suar, Mrutyunjay; Sharma, Anil Prakash; Mohanty, Bimal Prasanna; Mohanty, Sasmita

    2014-01-01

    Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C.

  9. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    PubMed Central

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  10. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors.

    PubMed

    Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude

    2011-09-01

    With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.

  11. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers.

    PubMed

    Shi, Fengqin; Chen, Xinyi; Fu, Alan; Hansen, Johnni; Stevens, Richard; Tjonneland, Anne; Vogel, Ulla B; Zheng, Tongzhang; Zhu, Yong

    2013-07-01

    The idea that shiftwork may be carcinogenic in humans has gained widespread attention since the pioneering work linking shiftwork to breast cancer over two decades ago. However, the biomolecular consequences of long-term shiftwork exposure have not been fully explored. In this study, we performed a genome-wide CpG island methylation assay of microRNA (miRNA) promoters in long-term night shiftworkers and day workers. This analysis indicated that 50 CpG loci corresponding to 31 miRNAs were differentially methylated in night shiftworkers compared to day workers, including the circadian-relevant miR-219, the expression of which has been implicated in several cancers. A genome-wide expression microarray assay was carried out in a miR-219-overexpressed MCF-7 breast cancer cell line, which identified 319 differentially expressed transcripts. The identified transcriptional targets were analyzed for network and functional interrelatedness using the Ingenuity Pathway Analysis (IPA) software. Overexpression of miR-219 in MCF-7 breast cancer cells resulted in accentuated expression of apoptosis- and proliferation-related anti-viral immunodulators of the Jak-STAT and NF-κβ pathways. These findings suggest that long-term night shiftwork exposure may lead to the methylation-dependent downregulation of miR-219, which may in turn lead to the downregulation of immunomediated antitumor activity and increased breast cancer risk. © 2013 Wiley Periodicals, Inc.

  12. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice.

    PubMed

    Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-08-01

    Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

  13. Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential.

    PubMed

    Mulvaney, Eamon P; Shilling, Christine; Eivers, Sarah B; Perry, Antoinette S; Bjartell, Anders; Kay, Elaine W; Watson, R William; Kinsella, B Therese

    2016-11-08

    The prostanoid thromboxane (TX)A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown.This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.

  14. Astrocyte-neuron lactate transport is required for long-term memory formation.

    PubMed

    Suzuki, Akinobu; Stern, Sarah A; Bozdagi, Ozlem; Huntley, George W; Walker, Ruth H; Magistretti, Pierre J; Alberini, Cristina M

    2011-03-04

    We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories.

    PubMed

    Liu, Jun; Wei, Wei; Kuang, Hui; Zhao, Fang; Tsien, Joe Z

    2013-01-01

    Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I) and a more variable phase (stage-II). We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.

  16. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Differential expression of cancer associated proteins in breast milk based on age at first full term pregnancy.

    PubMed

    Qin, Wenyi; Zhang, Ke; Kliethermes, Beth; Ruhlen, Rachel L; Browne, Eva P; Arcaro, Kathleen F; Sauter, Edward R

    2012-03-21

    First full term pregnancy (FFTP) completed at a young age has been linked to low long term breast cancer risk, whereas late FFTP pregnancy age confers high long term risk, compared to nulliparity. Our hypothesis was that proteins linked to breast cancer would be differentially expressed in human milk collected at three time points during lactation based on age at FFTP. We analyzed breast milk from 72 lactating women. Samples were collected within 10 days of the onset of lactation (baseline-BL), two months after lactation started and during breast weaning (W). We measured 16 proteins (11 kallikreins (KLKs), basic fibroblast growth factor, YKL-40, neutrophil gelatinase-associated lipocalin and transforming growth factor (TGF) β-1 and -2) associated with breast cancer, most known to be secreted into milk. During lactation there was a significant change in the expression of 14 proteins in women < 26 years old and 9 proteins in women > = 26 at FFTP. The most significant (p < .001) changes from BL to W in women divided by FFTP age (< 26 vs. > = 26) were in KLK3,6, 8, and TGFβ2 in women < 26; and KLK6, 8, and TGFβ2 in women > = 26. There was a significant increase (p = .022) in KLK8 expression from BL to W depending on FFTP age. Examination of DNA methylation in the promoter region of KLK6 revealed high levels of methylation that did not explain the observed changes in protein levels. On the other hand, KLK6 and TGFβ1 expression were significantly associated (r2 = .43, p = .0050). The expression profile of milk proteins linked to breast cancer is influenced by age at FFTP. These proteins may play a role in future cancer risk.

  18. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    NASA Astrophysics Data System (ADS)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  19. Effects of information framing on the intentions of family physicians to prescribe long-term hormone replacement therapy.

    PubMed

    Nikolajevic-Sarunac, J; Henry, D A; O'Connell, D L; Robertson, J

    1999-10-01

    To determine whether the way in which information on benefits and harms of long-term hormone replacement therapy (HRT) is presented influences family physicians' intentions to prescribe this treatment. Family physicians were randomized to receive information on treatment outcomes expressed in relative terms, or as the number needing to be treated (NNT) with HRT to prevent or cause an event. A control group received no information. Primary care. Family physicians practicing in the Hunter Valley, New South Wales, Australia. Estimates of the impact of long-term HRT on risk of coronary events, hip fractures, and breast cancer were summarized as relative (proportional) decreases or increases in risk, or as NNT. Intention to prescribe HRT for seven hypothetical patients was measured on Likert scales. Of 389 family physicians working in the Hunter Valley, 243 completed the baseline survey and 215 participated in the randomized trial. Baseline intention to prescribe varied across patients-it was highest in the presence of risk factors for hip fracture, but coexisting risk factors for breast cancer had a strong negative influence. Overall, a larger proportion of subjects receiving information expressed as NNT had reduced intentions, and a smaller proportion had increased intentions to prescribe HRT than those receiving the information expressed in relative terms, or the control group. However, the differences were small and only reached statistical significance for three hypothetical patients. Framing effects were minimal when the hypothetical patient had coexisting risk factors for breast cancer. Information framing had some effect on family physicians' intentions to prescribe HRT, but the effects were smaller than those previously reported, and they were modified by the presence of serious potential adverse treatment effects.

  20. Effects of Information Framing on the Intentions of Family Physicians to Prescribe Long-Term Hormone Replacement Therapy

    PubMed Central

    Nikolajevic-Sarunac, Jasminka; Henry, David A; Henry, David A; O'Connell, Dianne L; Robertson, Jane; Robertson, Jane

    1999-01-01

    OBJECTIVE To determine whether the way in which information on benefits and harms of long-term hormone replacement therapy (HRT) is presented influences family physicians' intentions to prescribe this treatment. DESIGN Family physicians were randomized to receive information on treatment outcomes expressed in relative terms, or as the number needing to be treated (NNT) with HRT to prevent or cause an event. A control group received no information. SETTING Primary care. PARTICIPANTS Family physicians practicing in the Hunter Valley, New South Wales, Australia. INTERVENTION Estimates of the impact of long-term HRT on risk of coronary events, hip fractures, and breast cancer were summarized as relative (proportional) decreases or increases in risk, or as NNT. MEASUREMENTS AND MAIN RESULTS Intention to prescribe HRT for seven hypothetical patients was measured on Likert scales. Of 389 family physicians working in the Hunter Valley, 243 completed the baseline survey and 215 participated in the randomized trial. Baseline intention to prescribe varied across patients—it was highest in the presence of risk factors for hip fracture, but coexisting risk factors for breast cancer had a strong negative influence. Overall, a larger proportion of subjects receiving information expressed as NNT had reduced intentions, and a smaller proportion had increased intentions to prescribe HRT than those receiving the information expressed in relative terms, or the control group. However, the differences were small and only reached statistical significance for three hypothetical patients. Framing effects were minimal when the hypothetical patient had coexisting risk factors for breast cancer. CONCLUSIONS Information framing had some effect on family physicians' intentions to prescribe HRT, but the effects were smaller than those previously reported, and they were modified by the presence of serious potential adverse treatment effects. PMID:10571703

  1. Local over-expression of VEGF-DΔNΔC in the uterine arteries of pregnant sheep results in long-term changes in uterine artery contractility and angiogenesis.

    PubMed

    Mehta, Vedanta; Abi-Nader, Khalil N; Shangaris, Panicos; Shaw, S W Steven; Filippi, Elisa; Benjamin, Elizabeth; Boyd, Michael; Peebles, Donald M; Martin, John; Zachary, Ian; David, Anna L

    2014-01-01

    The normal development of the uteroplacental circulation in pregnancy depends on angiogenic and vasodilatory factors such as vascular endothelial growth factor (VEGF). Reduced uterine artery blood flow (UABF) is a common cause of fetal growth restriction; abnormalities in angiogenic factors are implicated. Previously we showed that adenovirus (Ad)-mediated VEGF-A165 expression in the pregnant sheep uterine artery (UtA) increased nitric oxide synthase (NOS) expression, altered vascular reactivity and increased UABF. VEGF-D is a VEGF family member that promotes angiogenesis and vasodilatation but, in contrast to VEGF-A, does not increase vascular permeability. Here we examined the effect of Ad.VEGF-DΔNΔC vector encoding a fully processed form of VEGF-D, on the uteroplacental circulation. UtA transit-time flow probes and carotid artery catheters were implanted in mid-gestation pregnant sheep (n = 5) to measure baseline UABF and maternal haemodynamics respectively. 7-14 days later, after injection of Ad.VEGF-DΔNΔC vector (5×10(11) particles) into one UtA and an Ad vector encoding β-galactosidase (Ad.LacZ) contralaterally, UABF was measured daily until scheduled post-mortem examination at term. UtAs were assessed for vascular reactivity, NOS expression and endothelial cell proliferation; NOS expression was studied in ex vivo transduced UtA endothelial cells (UAECs). At 4 weeks post-injection, Ad.VEGF-DΔNΔC treated UtAs showed significantly lesser vasoconstriction (Emax144.0 v/s 184.2, p = 0.002). There was a tendency to higher UABF in Ad.VEGF-DΔNΔC compared to Ad.LacZ transduced UtAs (50.58% v/s 26.94%, p = 0.152). There was no significant effect on maternal haemodynamics. An increased number of proliferating endothelial cells and adventitial blood vessels were observed in immunohistochemistry. Ad.VEGF-DΔNΔC expression in cultured UAECs upregulated eNOS and iNOS expression. Local over-expression of VEGF-DΔNΔC in the UtAs of pregnant mid-gestation sheep reduced vasoconstriction, promoted endothelial cell proliferation and showed a trend towards increased UABF. Studies in cultured UAECs indicate that VEGF-DΔNΔC may act in part through upregulation of eNOS and iNOS.

  2. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking themore » degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.« less

  3. Task modulations of racial bias in neural responses to others' suffering.

    PubMed

    Sheng, Feng; Liu, Qiang; Li, Hong; Fang, Fang; Han, Shihui

    2014-03-01

    Recent event related brain potential research observed a greater frontal activity to pain expressions of racial in-group than out-group members and such racial bias in neural responses to others' suffering was modulated by task demands that emphasize race identity or painful feeling. However, as pain expressions activate multiple brain regions in the pain matrix, it remains unclear which part of the neural circuit in response to others' suffering undergoes modulations by task demands. We scanned Chinese adults, using functional MRI, while they categorized Asian and Caucasian faces with pain or neutral expressions in terms of race or identified painful feelings of each individual face. We found that pain vs. neutral expressions of Asian but not Caucasian faces activated the anterior cingulate (ACC) and anterior insular (AI) activity during race judgments. However, pain compared to race judgments increased ACC and AI activity to pain expressions of Caucasian but not Asian faces. Moreover, race judgments induced increased activity in the dorsal medial prefrontal cortex whereas pain judgments increased activity in the bilateral temporoparietal junction. The results suggest that task demands emphasizing an individual's painful feeling increase ACC/AI activities to pain expressions of racial out-group members and reduce the racial bias in empathic neural responses. © 2013.

  4. Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation.

    PubMed

    Jongsma, Johan; Oomen, Monique H; Noordzij, Marinus A; Van Weerden, Wytske M; Martens, Gerard J M; van der Kwast, Theodorus H; Schröder, Fritz H; van Steenbrugge, Gert J

    2002-03-01

    Neuroendocrine (NE) cells are androgen-independent cells and secrete growth-modulating peptide hormones via a regulated secretory pathway (RSP). We studied NE differentiation after long-term androgen withdrawal in the androgen-dependent human prostate cancer xenograft PC-310. Tumor-bearing nude mice were killed at 0, 2, 5, 7, 14, 21, 47, 84, and 154 days after castration. The half-life of the PC-310 tumor was 10 days, with a stable residual tumor volume of 30--40% after 21 days and longer periods of androgen deprivation. Proliferative activity and prostate-specific antigen serum levels decreased to zero after castration, whereas cell-cycle arrest was manifested by increased p27(kip1) expression. A temporary downregulation of androgen receptor (AR) expression was noted after androgen deprivation. The expression of chromogranin A, secretogranin III, and secretogranin V (7B2) increased 5 days after castration and later. Subsequently, pro-hormone convertase 1 and peptidyl alpha--amidating monooxygenase as well as vascular endothelial growth factor were expressed from 7 days after castration on. Finally, such growth factors as gastrin-releasing peptide and serotonin were expressed in a small part of the NE cells 21 days after castration, but strong expression was induced late during androgen deprivation, that is, 84 and 154 days after castration, respectively. Androgen deprivation of the NE-differentiated PC-310 model induced the formation of NE-differentiated AR(minus sign) and non-NE AR(+) tumor residues. The NE-differentiated cells actively produced growth factors via an RSP that may lead to hormone-refractory disease. The dormant non-NE AR(+) tumor cells were shown to remain androgen sensitive even after long-term androgen deprivation. In the PC-310 xenograft, time-dependent NE differentiation and subsequent maturation were induced after androgen depletion. The androgen-dependent PC-310 xenograft model constitutes an excellent model for studying the role of NE cells in the progression of clinical prostate cancer. Copyright 2002 Wiley-Liss, Inc.

  5. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

    2003-01-01

    Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

  6. Long-Term Dietary Sodium Restriction Increases Adiponectin Expression and Ameliorates the Proinflammatory Adipokine Profile in Obesity

    PubMed Central

    Baudrand, R; Lian, CG; Lian, BQ; Ricchiuti, V; Yao, TM; Li, J; Williams, GH; Adler, GK

    2015-01-01

    Background/Aim Obesity is associated with changes in adiponectin and pro-inflammatory adipokines. Sodium intake can affect adipokine secretion suggesting a role in cardiovascular dysfunction. We tested if long-term dietary sodium restriction modifies the expression of adiponectin and ameliorates the pro-inflammatory profile of obese, diabetic Methods/Results Db/db mice were randomized to high sodium (HS 1.6% Na+, n=6) or low sodium (LS 0.03% Na+, n=8) diet for 16 weeks and compared with lean, db/+ mice on HS diet (n=8). Insulin levels were 50% lower in the db/db mice on LS diet when compared with HS db/db (p <0.05). LS diet increased cardiac adiponectin mRNA levels in db/db mice by 5-fold when compared with db/db mice on HS diet and by 2-fold when compared with HS lean mice (both p < 0.01). LS diet increased adiponectin in adipose tissue compared with db/db mice on HS diet, achieving levels similar to those of lean mice. MCP-1, IL-6 and TNF-α expression were reduced more than 50% in adipose tissue of db/db mice on LS diet when compared with HS db/db mice (all p < 0.05), to levels observed in the HS lean mice. Further, LS db/db mice had significantly reduced circulating MCP-1 and IL-6 levels when compared with HS db/db mice (both p < 0.01). Conclusion In obese-diabetic mice, long-term LS diet increases adiponectin in heart and adipose tissue and reduces pro-inflammatory factors in adipose tissue and plasma. These additive mechanisms may contribute to the potential cardioprotective benefits of LS diet in obesity-related metabolic disorders. PMID:24418377

  7. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Hajian, M; Hosseini, S E; Vahdati, A; Baharvand, H; Nasr-Esfahani, Mohammad H

    2012-01-01

    To investigate the effect of serum supplementing on short-term culture, fate determination and gene expression of goat spermatogonial stem cells (SSCs). Crude testicular cells were plated over Datura-Stramonium Agglutinin (DSA) for 1 h, and non-adhering cells were cultured in the presence of different serum concentrations (1, 5, 10, and 15%) for 7 days in a highly enriched medium initially developed in mice. Colonies developed in each group were used for the assessment of morphology, immunocytochemistry, and gene expression. Brief incubation of testicular cells with DSA resulted in a significant increase in the number of cells that expressed the germ cell marker (VASA). The expression of THY1, a specific marker of undifferentiated spermatogonia, was significantly higher in colonies developed in the presence of 1% rather than 5, 10 and 15% serum. Goat SSCs could proliferate and maintain in SSC culture media for 1 week at serum concentrations as low as 1%, while higher concentrations had detrimental effects on SSC culture/expansion.

  8. Fish oil improves lipid profile in juvenile rats with intrauterine growth retardation by altering the transcriptional expression of lipid-related hepatic genes.

    PubMed

    Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen

    2016-10-01

    To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.

  9. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  10. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  11. Vascular effects of wine polyphenols.

    PubMed

    Dell'Agli, Mario; Buscialà, Alessandra; Bosisio, Enrica

    2004-09-01

    Moderate consumption of red wine has been putatively associated with lowering the risk of developing coronary heart disease. This beneficial effect is mainly attributed to the occurrence of polyphenol compounds such as anthocyanosides (ACs), catechins, proanthocyanidins (PAs), stilbenes and other phenolics in red wine. This review focuses on the vascular effects of red wine polyphenols (RWPs), with emphasis on anthocyanosides and proanthocyanidins. From in vitro studies, the effect of red wine polyphenols on the vascular tone is thought to be due to short- and long-term mechanisms. NO-mediated vasorelaxation represents the short-term response to wine polyphenols, which exert the effect by increasing the influx of extracellular Ca(2+), and the mobilization of intracellular Ca(2+) in endothelial cells. Polyphenolic compounds may also have long-term properties, as they increase endothelial NO synthase expression acting on the promoter activity. In addition, they decrease the expression of adhesion molecules and growth factors, involved in migration and proliferation of vascular smooth muscle cells. Moreover, they inhibit platelet aggregation. However, a paucity of data as regards the bioavailability and metabolism of these compounds in human studies is a limiting factor to proving their efficacy in vivo.

  12. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles.

    PubMed

    Jessen, Niels; Pold, Rasmus; Buhl, Esben S; Jensen, Lasse S; Schmitz, Ole; Lund, Sten

    2003-04-01

    Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.

  13. Dopaminergic tone persistently regulates voltage-gated ion current densities through the D1R-PKA axis, RNA polymerase II transcription, RNAi, mTORC1, and translation

    PubMed Central

    Krenz, Wulf-Dieter C.; Parker, Anna R.; Rodgers, Edmund W.; Baro, Deborah J.

    2014-01-01

    Long-term intrinsic and synaptic plasticity must be coordinated to ensure stability and flexibility in neuronal circuits. Coordination might be achieved through shared transduction components. Dopamine (DA) is a well-established participant in many forms of long-term synaptic plasticity. Recent work indicates that DA is also involved in both activity-dependent and -independent forms of long-term intrinsic plasticity. We previously examined DA-enabled long-term intrinsic plasticity in a single identified neuron. The lateral pyloric (LP) neuron is a component of the pyloric network in the crustacean stomatogastric nervous system (STNS). LP expresses type 1 DA receptors (D1Rs). A 1 h bath application of 5 nM DA followed by washout produced a significant increase in the maximal conductance (Gmax) of the LP transient potassium current (IA) that peaked ~4 h after the start of DA application; furthermore, if a change in neuronal activity accompanied the DA application, then a persistent increase in the LP hyperpolarization activated current (Ih) was also observed. Here, we repeated these experiments with pharmacological and peptide inhibitors to determine the cellular processes and signaling proteins involved. We discovered that the persistent, DA-induced activity-independent (IA) and activity-dependent (Ih) changes in ionic conductances depended upon many of the same elements that enable long-term synaptic plasticity, including: the D1R-protein kinase A (PKA) axis, RNA polymerase II transcription, RNA interference (RNAi), and mechanistic target of rapamycin (mTOR)-dependent translation. We interpret the data to mean that increasing the tonic DA concentration enhances expression of a microRNA(s) (miRs), resulting in increased cap-dependent translation of an unidentified protein(s). PMID:24596543

  14. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  15. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.

  16. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa. PMID:27458463

  17. Practices, predictors and consequences of expressed breast-milk feeding in healthy full-term infants.

    PubMed

    Bai, Dorothy Li; Fong, Daniel Yee Tak; Lok, Kris Yuet Wan; Wong, Janet Yuen Ha; Tarrant, Marie

    2017-02-01

    To investigate the prevalence and predictors of expressed breast-milk feeding in healthy full-term infants and its association with total duration of breast-milk feeding. Prospective cohort study. In-patient postnatal units of four public hospitals in Hong Kong. A total of 2450 mother-infant pairs were recruited in 2006-2007 and 2011-2012 and followed up prospectively for 12 months or until breast-milk feeding had stopped. Across the first 6 months postpartum, the rate of exclusive expressed breast-milk feeding ranged from 5·1 to 8·0 % in 2006-2007 and from 18·0 to 19·8 % in 2011-2012. Factors associated with higher rate of exclusive expressed breast-milk feeding included supplementation with infant formula, lack of previous breast-milk feeding experience, having a planned caesarean section delivery and returning to work postpartum. Exclusive expressed breast-milk feeding was associated with an increased risk of early breast-milk feeding cessation when compared with direct feeding at the breast. The hazard ratio (95 % CI) ranged from 1·25 (1·04, 1·51) to 1·91 (1·34, 2·73) across the first 6 months. Mothers of healthy term infants should be encouraged and supported to feed directly at the breast. Exclusive expressed breast-milk feeding should be recommended only when medically necessary and not as a substitute for feeding directly at the breast. Further research is required to explore mothers' reasons for exclusive expressed breast-milk feeding and to identify the health outcomes associated with this practice.

  18. Insulin secretion and GLUT-2 expression in undernourished neonate rats.

    PubMed

    Lopes Da Costa, Célia; Sampaio De Freitas, Marta; Sanchez Moura, Anibal

    2004-04-01

    In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.

  19. The effect of physical exercise on orexigenic and anorexigenic peptides and its role on long-term feeding control.

    PubMed

    Benite-Ribeiro, Sandra Aparecida; Putt, David A; Santos, Júlia Matzenbacher

    2016-08-01

    Over the past decades, life-styles changing have led to exacerbated food and caloric intake and a reduction in energy expenditure. Obesity, main outcome of these changes, increases the risk for developing type 2 diabetes, cardiovascular disease and metabolic syndrome, the leading cause of death in adult and middle age population. Body weight and energy homeostasis are maintained via complex interactions between orexigenic and anorexigenic neuropeptides that take place predominantly in the hypothalamus. Overeating may disrupt the mechanisms of feeding control, by decreasing the expression of proopiomelanocortin (POMC) and α-melanocyte stimulating hormone (α-MSH) and increasing orexigenic neuropeptide Y (NPY) and agouti-related peptide (AgRP), which leads to a disturbance in appetite control and energy balance. Studies have shown that regular physical exercise might decrease body-weight, food intake and improve the metabolic profile, however until the currently there is no consensus about its effects on the expression of orexigenic/anorexigenic neuropeptides expression. Therefore, we propose that the type and length of physical exercise affect POMC/αMSH and NPY/AgRP systems differently and plays an important role in feeding behavior. Moreover, based on the present reports, we hypothesize that increased POMC/αMSH overcome NPY/AgRP expression decreasing food intake in long term physical exercise and that results in amelioration of several conditions related to overweight and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, thesemore » secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF) through suppression of AKT and ERK signaling.« less

  1. The ameliorating effects of long-term electroacupuncture on cardiovascular remodeling in spontaneously hypertensive rats

    PubMed Central

    2014-01-01

    Background The purpose of this study was to investigate the inhibitory effects of long-term electroacupuncture at BaiHui (DU20) and ZuSanLi (ST36) on cardiovascular remodeling in spontaneously hypertensive rats (SHR) and underlying mechanisms. Methods 6-weeks-old SHR or Wistar male rats were randomly, divided into 6 groups: the control group (SHR/Wistar), the non-acupoint electroacupuncture stimulation group (SHR-NAP/Wistar-NAP) and the electroacupuncture stimulation at DU20 and ST36 group (SHR-AP/Wistar-AP), 24 rats in each group. Rats were treated with or without electroacupuncture at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP) was measured once every 2 weeks. By the end of the 8th week, the left ventricular structure and function were assessed by echocardiography. The content of angiotensin II (Ang II), endothelin-1 (ET-1) and nitric oxide (NO) in the plasma was determined using enzyme-linked immunosorbent assay. Histological studies on the heart and the ascending aorta were performed. The expression of angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor (ETAR), eNOS and iNOS in rat myocardium and ascending aorta was investigated by Western blotting. Results The MAP in SHR increased linearly over the observation period and significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference in MAP was observed in Wistar rats between electroacupuncture and sham control. The aortic wall thickness, cardiac hypertrophy and increased collagen level in SHR were attenuated by long term electroacupuncture. The content of Ang II, ET-1 in the plasma decreased, but the content of NO increased after electroacupuncture stimulation in SHR. Long term electroacupuncture significantly inhibited the expression of AT1R, ETAR and iNOS, whereas increased eNOS expression, in myocardium and ascending aorta of SHR. Conclusions The long term electroacupuncture stimulation at DU20 and ST36 relieves the increased MAP and cardiovascular abnormality in both structure and function in SHR, this beneficial action is most likely mediated via modulation of AT1R-AT1R-ET-1-ETAR and NOS/NO pathway. PMID:24685050

  2. Short-term variation of subglottal pressure for expressive purposes in singing and stage speech: a preliminary investigation.

    PubMed

    Sundberg, J; Elliot, N; Gramming, P; Nord, L

    1993-09-01

    According to previous investigations, subglottal pressure in singing is adapted not only to loudness but also to fundamental frequency. Here the significance of musical expression to subglottal pressure is analyzed in terms of alternations between stressed and unstressed bar positions. Esophageal pressure was recorded together with the audio signal in a male and a female professional singer using a paranasally introduced pressure transducer while the subjects performed vocal exercises. Also, the subjects gave examples of actors' speech by reading poetry aloud. The results show that subglottal pressure can be used for stressing the first beat in bars and also for increasing the sound level in voiced consonants in actor's speech.

  3. Evaluation of the impact of breast milk expression in early postpartum period on breastfeeding duration: a prospective cohort study.

    PubMed

    Jiang, Beiqi; Hua, Jing; Wang, Yijing; Fu, Yun; Zhuang, Zhigang; Zhu, Liping

    2015-10-20

    Breast milk expression (breast pumping) has become prevalent as an important dimension of breastfeeding behavior. It is, however, not clear whether increasing breast milk expression contributes to extend the duration of breastfeeding. The objective of the present study was to evaluate the impact of breast milk expression in early postpartum period on breastfeeding duration amongst mothers of healthy term infants. A prospective cohort study had been conducted from March to June 2010. Mothers who gave birth to healthy, full-term and singleton babies were enrolled at discharge. These women were interviewed at 6 weeks postpartum about their breastfeeding behaviors. According to expressing patterns at 6 week postpartum, women were divided into three groups: direct breastfeeding (group 1), combining direct breastfeeding with expressing (group 2), exclusive expressing (group 3). The investigators followed up the women by telephone thereafter at a bimonthly basis and documented breastfeeding duration. Survival analysis was conducted to explore the association between expressing patterns at 6 weeks postpartum and breastfeeding duration. Associated factors of exclusive expressing at 6 weeks postpartum were characterized by logistic regression analysis. Four hundred one eligible women were enrolled at discharge. Among the 389 women who attended the face-to-face interview at 6 weeks postpartum, 345 women continued breastfeeding. They were divided into 3 groups by their expressing patterns. According to survival analysis, women who exclusively expressed breast milk at 6 months postpartum (group 3) were 1.77 times as likely to stop breastfeeding as those who did not (group 1 and 2) (95% confidence interval: 1.25-2.48; P <0.001). There is, however, no significant difference of breastfeeding duration between group 1 and group 2. Subgroup analysis showed that exclusive expressing women who were exclusively breastfeeding at 6 weeks postpartum had the shortest breastfeeding duration. Mother's high education level, short maternity leave, breast milk expression in hospital and bottle-feeding in hospital were associated factors to exclusive expressing at 6 weeks postpartum. Exclusive expressing in the early postpartum period may not help women to achieve long-term breastfeeding duration, especially in women who were exclusively breastfeeding.

  4. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    PubMed

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  5. Lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment: A case report.

    PubMed

    Naruse, Tomofumi; Tokuhisa, Mitsuko; Yanamoto, Souichi; Sakamoto, Yuki; Okuyama, Kohei; Tsuchihashi, Hiroki; Umeda, Masahiro

    2018-05-01

    Long-term cetuximab treatment can lead to acquired resistance, and tumor progression and/or new lesions often occur. The present report describes a case of lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment in a 60-year-old man, including findings of an immunohistochemical study. The resected primary tumors, biopsy of the lung metastasis before administration of cetuximab, and brain metastasis specimens mediated by cetuximab were immunohistochemically examined. Histologically, the metastatic brain lesion showed hyperkeratinizing tumor cells with deeply stained irregular nuclei with necrotizing tumor cells, and a decrease in cell density was exhibited in part of the tumor nest. Moreover, the brain lesion was less malignant compared with the primary tumor and metastatic lung lesions. Immunohistochemically, the metastatic brain lesions showed low expression of epidermal growth factor receptor (EGFR) and high expression of N-cadherin compared with the primary tumor and metastatic lung lesions. These results suggest that acquired resistance to cetuximab may be associated with low EGFR expression and increased epithelial-to-mesenchymal transition potential.

  6. Dendrimer-driven neurotrophin expression differs in temporal patterns between rodent and human stem cells.

    PubMed

    Shakhbazau, Antos; Shcharbin, Dzmitry; Seviaryn, Ihar; Goncharova, Natalya; Kosmacheva, Svetlana; Potapnev, Mihail; Bryszewska, Maria; Kumar, Ranjan; Biernaskie, Jeffrey; Midha, Rajiv

    2012-05-07

    This study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells. Transient expression systems can be beneficial for some neurotrophins, which were earlier reported to cause unwanted side effects in virus-based long-term expression models. Nonviral neurotrophin expression is a biologically safe and accessible alternative to increase the therapeutic potential of autologous adult stem cells and stem cell-derived functional differentiated cells.

  7. Subchronic treatment with grape-seed phenolics inhibits ghrelin production despite a short-term stimulation of ghrelin secretion produced by bitter-sensing flavanols.

    PubMed

    Serrano, Joan; Casanova-Martí, Àngela; Depoortere, Inge; Blay, Maria Teresa; Terra, Ximena; Pinent, Montserrat; Ardévol, Anna

    2016-12-01

    Grape-seed phenolic compounds have recently been described as satiating agents in rats when administered as a whole phenolic extract (GSPE). This satiating effect may involve the release of satiating gut hormones such as GLP-1, although a short-term increase in the orexigenic hormone ghrelin was also reported. In this study, we investigated the short- and long-term effects of GSPE in rats, focusing on the role of the main grape-seed phenolics in ghrelin secretion. GSPE produced a short-term increase in plasma ghrelin in rats after an acute treatment. A mouse ghrelinoma cell line was used to test the effects of the main pure grape-seed phenolic compounds on ghrelin release. Monomeric flavanols stimulated ghrelin secretion by activating bitter taste receptors. In contrast, gallic acid (GA) and oligomeric flavanols inhibited ghrelin release. The ghrelin-inhibiting effects of GA were confirmed in rats and in rat duodenal segments. One day after the last dose of a subchronic treatment, GSPE decreased plasma ghrelin in rats, ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. The sustained satiating effects of GSPE are related to a long-term decrease in ghrelin expression. GA and oligomeric flavanols play a ghrelin-inhibiting role in this process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Erection capability is potentiated by long-term sildenafil treatment: role of blood flow-induced endothelial nitric-oxide synthase phosphorylation.

    PubMed

    Musicki, Biljana; Champion, Hunter C; Becker, Robyn E; Liu, Tongyun; Kramer, Melissa F; Burnett, Arthur L

    2005-07-01

    Despite demonstrated clinical efficacy of sildenafil for the temporary treatment of erectile dysfunction, the possibility that sildenafil used long-term durably augments erectile ability remains unclear. We investigated whether continuous long-term administration of sildenafil at clinically relevant levels to aged rats "primes" the penis for improved erectile ability and involves nitric oxide (NO) or RhoA/Rho-kinase signaling pathways. In aged, but not young rats, sildenafil prolonged erection and increased the protein expressions of phosphorylated endothelial NO synthase (eNOS) at serine-1177 and phosphorylated Akt at serine-473 in penes. Only in the young rat penis, protein expressions of phosphodiesterase-5 and phosphomyosin phosphatase target subunit 1, a marker of Rho-kinase activity, were increased by sildenafil. Sildenafil inhibited phosphodiesterase-5 activity in penes of young and aged rats coincident with assayed free plasma levels of the drug equivalent to clinically therapeutic measurements. We conclude that erectile ability can be enhanced under preconditions of erectile impairment by long-term inhibition of phosphodiesterase-5 and that the effect is mediated by Akt-dependent eNOS phosphorylation. The lack of erectile ability enhancement in young rats by long-term phosphodiesterase-5 inhibition may relate to restrained NO signaling by phosphodiesterase-5 up-regulation, lack of incremental Akt and eNOS phosphorylation, and heightened Rho-kinase signaling in the penis.

  9. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats.

    PubMed

    Lee, Tzung-Yan; Wang, Guei-Jane; Chiu, Jen-Hwey; Lin, Han-Chieh

    2003-11-01

    Carbon tetrachloride (CCl4) is metabolized by cytochrome P450 to form a reactive trichloromethyl radical that triggers a chain of lipid peroxidation. These changes lead to cell injury, and chronic liver injury leads to excessive deposition of collagen in liver, resulting in liver fibrosis. The aim of this study was to evaluate the effects of long-term Salvia miltiorrhiza administration in CCl4-induced hepatic injury in rats. Salvia miltiorrhiza (10, 25 or 50 mg kg(-1) twice a day) was given for 9 weeks, beginning at the same time as the injections of CCl4. Rats receiving CCl4 alone showed a decreased hepatic glutathione level and an increased glutathione-S-transferase content. The hepatic thiobarbituratic acid-reactive substance levels were increased. CCl4 also caused a prominent collagen deposition in liver histology that was further supported by the increased hepatic mRNA expression of transforming growth factor-beta1, tissue inhibitor of metalloproteinase-1 and procollagen I. Salvia miltiorrhiza administration led to a dose-dependent increase in hepatic glutathione levels and a decrease in peroxidation products. Additionally, it reduced the mRNA expression of markers for hepatic fibrogenesis. In conclusion, long-term administration of Salvia miltiorrhiza in rats ameliorated the CCl4-induced hepatic injury that probably related to a reduced oxidant stress and degree of hepatic fibrosis.

  10. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    PubMed

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  11. Effect of ergot alkaloids associated with fescue toxicosis on hepatic cytochrome P450 and antioxidant proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settivari, Raja S.; Evans, Tim J.; Rucker, Ed

    Intake of ergot alkaloids found in endophyte-infected tall fescue grass is associated with decreased feed intake and reduction in body weight gain. The liver is one of the target organs of fescue toxicosis with upregulation of genes involved in xenobiotic metabolism and downregulation of genes associated with antioxidant pathways. It was hypothesized that short-term exposure of rats to ergot alkaloids would change hepatic cytochrome P450 (CYP) and antioxidant expression, as well as reduce antioxidant enzyme activity and hepatocellular proliferation rates. Hepatic gene expression of various CYPs, selected nuclear receptors associated with the CYP induction, and antioxidant enzymes were measured usingmore » real-time PCR. Hepatic expression of CYP, antioxidant and proliferating cell nuclear antigen (PCNA) proteins were measured using Western blots. The CYP3A1 protein expression was evaluated using primary rat hepatocellular cultures treated with ergovaline, one of the major ergot alkaloids produced by fescue endophyte, in order to assess the direct role of ergot alkaloids in CYP induction. The enzyme activities of selected antioxidants were assayed spectrophotometrically. While hepatic CYP and nuclear receptor expression were increased in ergot alkaloid-exposed rats, the expression and activity of antioxidant enzymes were reduced. This could potentially lead to increased oxidative stress, which might be responsible for the decrease in hepatocellular proliferation after ergot alkaloid exposure. This study demonstrated that even short-term exposure to ergot alkaloids can potentially induce hepatic oxidative stress which can contribute to the pathogenesis of fescue toxicosis.« less

  12. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells

    PubMed Central

    Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane

    2006-01-01

    The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737

  13. PM2.5-induced alterations of cell cycle associated gene expression in lung cancer cells and rat lung tissues.

    PubMed

    Zhao, Hui; Yang, Biao; Xu, Jia; Chen, Dong-Mei; Xiao, Chun-Ling

    2017-06-01

    The aim of the current study was to investigate the expression of cell cycle-associated genes induced by fine particulate matter (PM 2.5 ) in lung cancer cell line and tissues. The pulmonary lymph node metastasis cells (H292) were treated with PM 2.5 in vitro. Wistar rats were used to perform an in vivo study. Rats were randomly assigned to experiment and control groups and those in the experiment group were exposed to PM 2.5 once every 15 d, while those in the control group were exposed to normal saline. The cell cycle-associated genes expression was analyzed by real-time PCR. Trachea and lung tissues of rats were processed for scanning electron microscopic (SEM) examinations. Exposure of H292 cells to PM 2.5 dramatically increased the expressions of p53 and cyclin-dependent kinase 2 (CDK2) after 24h of exposure (p<0.01) and markedly increased the expressions of the cell division cycle 2 (Cdc2) and cyclin B after 48h of exposure (p<0.01), while those genes expressions were significantly reduced after 72h of exposure, at which time the expression of p21 was predominant (p<0.01). In vivo studies further demonstrated these results. The results of SEM suggested that both of the trachea and lung tissues were damaged and the degree of damage was time-dependent. In conclusion, PM 2.5 can induce significantly alterations of p53 and CDK2 in the early phase, Cdc2 and cyclin B in mid-term and p21 in long-term exposure. The degree of PM 2.5 -induced damage to the trachea and lung tissue was time-dependent. Copyright © 2017. Published by Elsevier B.V.

  14. Gene expression changes in blood RNA after swimming in a chlorinated pool.

    PubMed

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M

    2017-08-01

    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m 3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m 3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  15. Size of Ovulatory Follicles in Cattle Expressing Multiple Ovulations Naturally and Its Influence on Corpus Luteum Development and Fertility

    USDA-ARS?s Scientific Manuscript database

    Long-term genetic selection of cattle for fraternal twins has increased the frequency of twin and triplet ovulations. Although twin and triplet ovulations increased pregnancy rates initially, ratio of fetal number:ovulation site in pregnant females with twin (0.83) or triplet (0.73) ovulations was <...

  16. Strong fascin expression promotes metastasis independent of its F-actin bundling activity.

    PubMed

    Heinz, Lisa S; Muhs, Stefanie; Schiewek, Johanna; Grüb, Saskia; Nalaskowski, Marcus; Lin, Yuan-Na; Wikman, Harriet; Oliveira-Ferrer, Leticia; Lange, Tobias; Wellbrock, Jasmin; Konietzny, Anja; Mikhaylova, Marina; Windhorst, Sabine

    2017-12-15

    High expression of the actin bundling protein Fascin increases the malignancy of tumor cells. Here we show that fascin expression is up-regulated in more malignant sub-cell lines of MDA-MB-231 cells as compared to parental cells. Since also parental MDA-MB-231 cells exhibit high fascin levels, increased fascin expression was termed as "hyperexpression". To examine the effect of fascin hyperexpression, fascin was hyperexpressed in parental MDA-MB-231 cells and metastasis was analyzed in NOD scid gamma (NSG) mice. In addition, the effect of fascin mutants with inactive or constitutively active actin bundling activity was examined. Unexpectedly, we found that hyperexpression of both, wildtype (wt) and mutant fascin strongly increased metastasis in vivo , showing that the effect of fascin hyperexpression did not depend on its actin bundling activity. Cellular assays revealed that hyperexpression of wt and mutant fascin increased adhesion of MDA-MB-231 cells while transmigration and proliferation were not affected. Since it has been shown that fascin controls adhesion by directly interacting with microtubules ( MTs), we analyzed if fascin hyperexpression affects MT dynamics. We found that at high concentrations fascin significantly increased MT dynamics in cells and in cell-free approaches. In summary our data show that strong expression of fascin in breast cancer cells increases metastasis independent of its actin bundling activity. Thus, it seems that the mechanism of fascin-stimulated metastasis depends on its concentration.

  17. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  18. The Role of GGAP2 in Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    show that GGAP2 protein expression is increased in HPC in both HPC cell lines and clinical patient samples. Biochemical studies indicate that GGAP2...GTPase domain of GGAP2 and enhance its effects on cancer growth. PC3 cells stably expressing wild-type GGAP2 form larger volume tumors in nude mice...reducing HPC incidence and slow down cancer development. 15. SUBJECT TERMS GGAP2, human PC, mutation 16. SECURITY CLASSIFICATION OF: 17

  19. Constitutive Activation of the G-Protein Subunit G[alpha]s within Forebrain Neurons Causes PKA-Dependent Alterations in Fear Conditioning and Cortical "Arc" mRNA Expression

    ERIC Educational Resources Information Center

    Kelly, Michele P.; Cheung, York-Fong; Favilla, Christopher; Siegel, Steven J.; Kanes, Stephen J.; Houslay, Miles D.; Abel, Ted

    2008-01-01

    Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit G[alpha]s…

  20. Role of sexual self-disclosure in the sexual satisfaction of long-term heterosexual couples.

    PubMed

    MacNeil, Sheila; Byers, E Sandra

    2009-01-01

    This study examined two proposed pathways between sexual self-disclosure (SSD) and sexual satisfaction in a sample of 104 heterosexual couples in long-term relationships. According to the proposed instrumental pathway, disclosure of sexual preferences increases a partner's understanding of those preferences resulting in a sexual script that is more rewarding and less costly. A more favorable balance of sexual rewards to sexual costs, in turn, results in greater sexual satisfaction for the disclosing individual. According to the proposed expressive pathway, mutual self-disclosure contributes to relationship satisfaction, which in turn leads to greater sexual satisfaction. Support was found for the instrumental pathway for both men and women. Support also was found for an expressive pathway between own SSD and partner nonsexual self-disclosure (NSD) and men's sexual satisfaction, and between own NSD and women's sexual satisfaction. These results are interpreted in terms of mechanisms for establishing and maintaining sexual satisfaction in long-term relationships in men and women.

  1. Expressive language of two year-old pre-term and full-term children.

    PubMed

    Isotani, Selma Mie; Azevedo, Marisa Frasson de; Chiari, Brasília Maria; Perissinoto, Jacy

    2009-01-01

    expressive language of pre-term children. to compare the expressive vocabulary of two year-old children born prematurely, to that of those born at term. the study sample was composed by 118 speech-language assessment protocols, divided in two groups: the pre-term group (PTG) composed by 58 underweight premature children followed by a multi-professional team at the Casa do Prematuro (House of Premature Children) at Unifesp, and the full-term group (FTG) composed by 60 full-term born children. In order to evaluate the expressive language of these children, the Lave - Lista de Avaliação do Vocabulário Expressivo (Assessment List of the Expressive Vocabulary) was used. The Lave is an adaptation of the LDS - Language Development Survey - for the Brazilian Portuguese Language. The Lave investigates the expressive language and detects delays in oral language. children born underweight and prematurely present a greater occurrence of expressive language delay, 27.6%. These pre-term children present significantly lower expressive vocabulary and phrasal extension than children of the same age born at full-term in all semantic categories. Family income proved to be positively associated to phrasal extension, as well as to gestational age and weight at birth; thus indicating the effect of these adverse conditions still during the third year of age. The audiological status was associated to word utterances in the PTG. children born prematurely and underweight are at risk in terms of vocabulary development; this determines the need for speech-therapy intervention programs.

  2. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    PubMed

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, TN; Park, AHA; Bantat, S

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilitiesmore » (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.« less

  4. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice

    PubMed Central

    Diaz-Castroverde, Sabela; Gómez-Hernández, Almudena; Fernández, Silvia; García-Gómez, Gema; Di Scala, Marianna; González-Aseguinolaza, Gloria; Fernández-Millán, Elisa; González-Rodríguez, Águeda; García-Bravo, María; Chambon, Pierre; Álvarez, Carmen; Perdomo, Liliana; Beneit, Nuria; Benito, Manuel

    2016-01-01

    ABSTRACT Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte­-specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus. PMID:27562101

  5. Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats.

    PubMed

    Díaz-Rúa, Rubén; Keijer, Jaap; Palou, Andreu; van Schothorst, Evert M; Oliver, Paula

    2017-08-01

    Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid-base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid-base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: role of group I metabotropic glutamate receptors

    PubMed Central

    Puyal, Julien; Grassi, Silvarosa; Dieni, Cristina; Frondaroli, Adele; Demêmes, Danielle; Raymond, Jaqueline; Pettorossi, Vito Enrico

    2003-01-01

    The effects of high frequency stimulation (HFS) of the primary vestibular afferents on synaptic transmission in the ventral part of the medial vestibular nuclei (vMVN) were studied during postnatal development and compared with the changes in the expression of the group I metabotropic glutamate receptor (mGluR) subtypes, mGluR1 and mGluR5. During the first stages of development, HFS always induced a mGluR5- and GABAA-dependent long-term depression (LTD) which did not require NMDA receptor and mGluR1 activation. The probability of inducing LTD decreased progressively throughout the development and it was zero at about the end of the second postnatal week. Conversely, long-term potentiation (LTP) appeared at the beginning of the second week and its occurrence increased to reach the adult value at the end of the third week. Of interest, the sudden change in the LTP frequency occurred at the time of eye opening, about the end of the second postnatal week. LTP depended on NMDA receptor and mGluR1 activation. In parallel with the modifications in synaptic plasticity, we observed that the expression patterns and localizations of mGluR5 and mGluR1 in the medial vestibular nuclei (MVN) changed during postnatal development. At the earlier stages the mGluR1 expression was minimal, then increased progressively. In contrast, mGluR5 expression was initially high, then decreased. While mGluR1 was exclusively localized in neuronal compartments and concentrated at the postsynaptic sites at all stages observed, mGluR5 was found mainly in neuronal compartments at immature stages, then preferentially in glial compartments at mature stages. These results provide the first evidence for a progressive change from LTD to LTP accompanied by a distinct maturation expression of mGluR1 and mGluR5 during the development of the MVN. PMID:12972627

  7. Retrovirus-based vectors for transient and permanent cell modification.

    PubMed

    Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel

    2015-10-01

    Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Establishment and characterization of the reversibly immortalized mouse fetal heart progenitors.

    PubMed

    Li, Mi; Chen, Yuan; Bi, Yang; Jiang, Wei; Luo, Qing; He, Yun; Su, Yuxi; Liu, Xing; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Zhang, Hongyu; Shui, Wei; Wu, Ningning; Zhu, Jing; Tian, Jie; Yi, Qi-Jian; Luu, Hue H; Haydon, Rex C; He, Tong-Chuan; Zhu, Gao-Hui

    2013-01-01

    Progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart. Although cardiomyogenic differentiation has been reported for a variety of progenitor cell types, the biological factors that regulate effective cardiomyogenesis remain largely undefined. Primary cardiomyogenic progenitors (CPs) have a limited life span in culture, hampering the CPs' in vitro and in vivo studies. The objective of this study is to investigate if primary CPs isolated from fetal mouse heart can be reversibly immortalized with SV40 large T and maintain long-term cell proliferation without compromising cardiomyogenic differentiation potential. Primary cardiomyocytes were isolated from mouse E15.5 fetal heart, and immortalized retrovirally with the expression of SV40 large T antigen flanked with loxP sites. Expression of cardiomyogenic markers were determined by quantitative RT-PCR and immunofluorescence staining. The immortalization phenotype was reversed by using an adenovirus-mediated expression of the Cre reconbinase. Cardiomyogenic differentiation induced by retinoids or dexamethasone was assessed by an α-myosin heavy chain (MyHC) promoter-driven reporter. We demonstrate that the CPs derived from mouse E15.5 fetal heart can be efficiently immortalized by SV40 T antigen. The conditionally immortalized CPs (iCP15 clones) exhibit an increased proliferative activity and are able to maintain long-term proliferation, which can be reversed by Cre recombinase. The iCP15 cells express cardiomyogenic markers and retain differentiation potential as they can undergo terminal differentiate into cardiomyctes under appropriate differentiation conditions although the iCP15 clones represent a large repertoire of CPs at various differentiation stages. The removal of SV40 large T increases the iCPs' differentiation potential. Thus, the iCPs not only maintain long-term cell proliferative activity but also retain cardiomyogenic differentiation potential. Our results suggest that the reported reversible SV40 T antigen-mediated immortalization represents an efficient approach for establishing long-term culture of primary cardiomyogenic progenitors for basic and translational research.

  9. Long-term Administration of Salicylate-induced Changes in BDNF Expression and CREB Phosphorylation in the Auditory Cortex of Rats

    PubMed Central

    Yi, Bin; Wu, Cong; Shi, Runjie; Han, Kun; Sheng, Haibin; Li, Bei; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao

    2018-01-01

    Hypothesis: We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC). Background: Salicylate medication is frequently used for long-term treatment in clinical settings, but it may cause reversible tinnitus. Salicylate-induced tinnitus is associated with changes related to central auditory neuroplasticity. Our previous studies revealed enhanced neural activity and ultrastructural synaptic changes in the central auditory system after long-term salicylate administration. However, the underlying mechanisms remained unclear. Methods: Salicylate-induced tinnitus-like behavior in rats was confirmed using gap prepulse inhibition of acoustic startle and prepulse inhibition testing, followed by comparison of the expression levels of BDNF, proBDNF, TrkB, CREB, and p-CREB. Synaptic ultrastructure was observed under a transmission electron microscope. Results: BDNF and p-CREB were upregulated along with ultrastructural changes at the synapses in the AC of rats treated chronically with salicylate (p < 0.05, compared with control group). These changes returned to normal after 14 days of recovery (p > 0.05). Conclusion: Long-term administration of salicylate increased BDNF expression and CREB activation, upregulated synaptic efficacy, and changed synaptic ultrastructure in the AC. There may be a relationship between these factors and the mechanism of tinnitus. PMID:29342042

  10. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L.

    PubMed

    Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung

    2018-01-04

    Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.

  11. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    PubMed

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.

  12. Predator stress-induced persistent emotional arousal is associated with alterations of plasma corticosterone and hippocampal steroid receptors in rat.

    PubMed

    Wang, Qingsong; Yu, Ke; Wang, Jun; Lin, Hang; Wu, Yuxian; Wang, Weiwen

    2012-04-21

    To investigate the long-term effects of psychological stress on emotionality, the emotional arousal of rats in 4 months after predator stress was assessed in both an open field environment and elevated plus maze. We also assessed the levels of plasma corticosterone (CORT) by radioimmunoassay, the distributions of brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by immunohistochemistry, and the expressions of GR and MR by Western blot. The results showed that intense predator stress, which was adjusted to ensure consistent stressor intensity using rat tonic immobility behavior, successfully induced lasting decreased locomotor activity and habituation to novel environments, suppressed exploratory behavior, and increased anxiety-like behavior. The plasma CORT levels dramatically increased 1h after stress, then returned to basal levels at 1wk, decreased 1 month later, and remained significantly lower than control levels 4 months after exposure to stress. Immunohistochemical analysis showed that GR was markedly increased in the hippocampus and frontal cortexes of stressed rats and that the changes in the hippocampus were more pronounced. In contrast, MR expression was significantly decreased in both brain regions. Western analysis confirmed these dramatically elevated levels of GR expression and lower levels of MR expression in the hippocampus 4 months after stress. We conclude that acute severe psychological stress may induce long-term emotional behavioral changes, and that different patterns in plasma CORT, alterations in brain corticoid receptors, and increased hippocampal vulnerability to the effects of predator stress may play important roles in the persistent emotional arousal induced by intense psychological stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Cognitive impairment in metabolically-obese, normal-weight rats: identification of early biomarkers in peripheral blood mononuclear cells.

    PubMed

    Cifre, Margalida; Palou, Andreu; Oliver, Paula

    2018-03-22

    Metabolically-obese, normal-weight (MONW) individuals are not obese in terms of weight and height but have a number of obesity-related features (e.g. greater visceral adiposity, insulin resistance, and increased risk of cardiovascular disease). The MONW phenotype is related to the intake of unbalanced diets, such as those rich in fat. Increasing evidence shows a relationship between high-fat diet consumption and mild cognitive impairment and dementia. Thus, MONW individuals could be at a greater risk of cognitive dysfunction. We aimed to evaluate whether MONW-like animals present gene expression alterations in the hippocampus associated with an increased risk of cognitive impairment, and to identify early biomarkers of cognitive dysfunction in peripheral blood mononuclear cells (PBMC). Wistar rats were chronically fed with a 60% (HF60) or a 45% (HF45) high-fat diet administered isocalorically to control animals to mimic MONW features. Expression analysis of cognitive decline-related genes was performed using RT-qPCR, and working memory was assessed using a T-maze. High-fat diet consumption altered the pattern of gene expression in the hippocampus, clearly pointing to cognitive decline, which was accompanied by a worse performance in the T-maze in HF60 animals. Remarkably, Syn1 and Sorl1 mRNA showed the same expression pattern in both the hippocampus and the PBMC obtained at different time-points in the HF60 group, even before other pathological signs were observed. Our results demonstrate that long-term intake of high-fat diets, even in the absence of obesity, leads to cognitive disruption that is reflected in PBMC transcriptome. Therefore, PBMC are revealed as a plausible, minimally-invasive source of early biomarkers of cognitive impairment associated with increased fat intake.

  14. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase

    PubMed Central

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate its role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of the estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of the ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E2), whereas growth hormone plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E2, their proliferation rate was not different from controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E2 treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E2-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Conclusions: increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein. PMID:20974639

  15. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase.

    PubMed

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate p38 MAPK's role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E₂), whereas GH plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E₂, their proliferation rate was lower compared to controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E₂ treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E₂-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in the apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein.

  16. Detection of low-level environmental chemical allergy by a long-term sensitization method.

    PubMed

    Fukuyama, Tomoki; Ueda, Hideo; Hayashi, Koichi; Tajima, Yukari; Shuto, Yasufumi; Saito, Toru R; Harada, Takanori; Kosaka, Tadashi

    2008-07-30

    Multiple chemical sensitivity (MCS) is characterized by various signs, including neurological disorders and allergy. Exposure may occur through a major event, such as a chemical spill, or from long-term contact with chemicals at low levels. We are interested in the allergenicity of MCS and the detection of low-level chemical-related hypersensitivity. We used long-term sensitization followed by low-dose challenge to evaluate sensitization by well-known Th2 type sensitizers (trimellitic anhydride (TMA) and toluene diisocyanate (TDI)) and a Th1 type sensitizer (2,4-dinitrochlorobenzene (DNCB)). After topically sensitizing BALB/c mice (9 times in 3 weeks) and challenging them with TMA, TDI or DNCB, we assayed their auricular lymph nodes (LNs) for number of lymphocytes, surface antigen expression of B cells, and local cytokine production, and measured antigen-specific serum IgE levels. TMA and TDI induced marked increases in levels of antigen-specific serum IgE and of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) produced by ex vivo restimulated lymph node cells. DNCB induced a marked increase in Th1 cytokine (IL-2, IFN-gamma, and TNF-alpha) levels, but antigen-specific serum IgE levels were not elevated. All chemicals induced significant increases in number of lymphocytes and surface antigen expression of B cells. Our mouse model enabled the identification and characterization of chemical-related allergic reactions at low levels. This long-term sensitization method would be useful for detecting environmental chemical-related hypersensitivity.

  17. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity.

    PubMed

    Monreal, José A; Arias-Baldrich, Cirenia; Tossi, Vanesa; Feria, Ana B; Rubio-Casal, Alfredo; García-Mata, Carlos; Lamattina, Lorenzo; García-Mauriño, Sofía

    2013-11-01

    Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.

  18. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo.

    PubMed

    Lewis, Jo E; Brameld, John M; Hill, Phil; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2015-12-30

    The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Short-term effects of growth hormone and insulin-like growth factor I on cancellous bone in rhesus macaque monkeys.

    PubMed

    Sass, D A; Jerome, C P; Bowman, A R; Bennett-Cain, A; Ginn, T A; LeRoith, D; Epstein, S

    1997-04-01

    The purpose of our study was to determine the effects of GH and insulin-like growth factor I (IGF-I) administration singly and in combination on vertebral, tibial, and femoral bone in aged female monkeys as well as the various treatment effects on serum hormone levels and osteocalcin gene expression. Twenty-one ovulating female monkeys (rhesus macaque), aged 16-20 yr (5-6 kg), were divided into four groups to receive the following treatment for 7 weeks via Alzet pumps inserted sc: A, eluant (control group); B, recombinant human IGF-I (rhIGF-I; 120 micrograms/kg.day); C) rhGH (100 micrograms/kg.day); D, combination of rhIGF-I (120 micrograms/kg.day) and rhGH (100 micrograms/kg.day). Serum was assayed serially for glucose, IGF-I, GH, and IGF-binding protein-3 levels. All groups received double labeling with calcein. On the day of death, the primates' second lumbar vertebrae, tibiae, and femora were carefully dissected, fixed in 70% ethanol, and subjected to histomorphometric analysis. Ribonucleic acid was extracted from contralateral tibiae for the purpose of osteocalcin gene expression analysis. Serum glucose was unaffected by treatment. Serum GH was significantly elevated in groups C and D, whereas serum IGF-I and IGFBP-3 were only significantly increased in group D. Histomorphometric analysis showed no significant differences or trends for bone volume in any treatment group. Bone formation rate, surface and/or bone volume referent were significantly higher in both groups treated with GH (C and D) in tibia and femur, with a similar trend in vertebrae. The increase in bone formation rate was due mainly to a significant increase in mineral apposition rate, but there was also an increase in tibial mineralizing surface by GH by factorial analysis (P < 0.05). There were significant treatment effects on osteoid surface and osteoclastic surface in femur in the combination treatment group vs. the controls. Osteocalcin gene expression analysis supported an enhanced expression in both groups treated with GH. These findings are consistent with a short term effect of GH to increase bone remodeling and predominantly osteoblastic activity in the appendicular skeleton. In contrast, other than an isolated increase in osteoclastic surface in femoral bone, IGF-I, when administered alone, was unable to significantly influence bone formation or resorption activity in this short term study.

  20. Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy

    PubMed Central

    Blaker, Carina; Clarke, Elizabeth; Jeffcott, Leo; Little, Christopher

    2017-01-01

    Flexor tendinopathy is a common problem affecting humans and animals. Tendon healing is poorly understood and the outcomes of conservative and surgical management are often suboptimal. While often considered a localized injury, recent evidence indicates that in the short term, tendinopathic changes are distributed widely throughout the tendon, remote from the lesion itself. Whether these changes persist throughout healing is unknown. The aim of this study was to document gene expression, histopathological and biomechanical changes that occur throughout the superficial digital flexor tendon (SDFT) up to 16 weeks post-injury, using an ovine surgical model of tendinopathy. Partial tendon transection was associated with decreased gene expression for aggrecan, decorin, fibromodulin, tissue inhibitors of metalloproteinases (TIMPS 1, 2 and 3), collagen I and collagen II. Gene expression for collagen III, lumican and matrix metalloproteinase 13 (MMP13) increased locally around the lesion site. Expression of collagen III and MMP13 decreased with time, but compared to controls, collagen III, MMP13 and lumican expression remained regionally high throughout the study. An increase in TIMP3 was observed over time. Histologically, operated tendons had higher pathology scores than controls, especially around the injured region. A chondroid phenotype was observed with increased cellular rounding and marked proteoglycan accumulation which only partially improved with time. Biomechanically, partial tendon transection resulted in a localized decrease in elastic modulus (in compression) but only at 8 weeks postoperatively. This study improves our understanding of tendon healing, demonstrating an early ‘peak’ in pathology characterized by altered gene expression and notable histopathological changes. Many of these pathological changes become more localized to the region of injury during healing. Collagen III and MMP13 expression levels remained high close to the lesion throughout the study and may reflect the production of tendon tissue with suboptimal biomechanical properties. Further studies evaluating the long-term response of tendon to injury (6–12 months) are warranted to provide additional information on tendon healing and provide further understanding of the mechanisms underlying the pathology observed in this study. PMID:29023489

  1. The reciprocal relationship between heme oxygenase and nitric oxide synthase in the organs of lipopolysaccharide-treated rodents.

    PubMed

    Furuichi, Masayuki; Yokozuka, Motoi; Takemori, Ken; Yamanashi, Yoshitaka; Sakamoto, Atsuhiro

    2009-08-01

    The production of nitric oxide (NO) by inducible NO synthase (NOS) and carbon monoxide (CO) by inducible heme oxygenase (HO) contributes greatly to endotoxemia. Reciprocal relationships have been proposed between the NO/NOS and CO/HO systems. However, the interaction between these systems during endotoxemia is unclear, and it is unknown whether the interactive behavior differs among organs. Using endotoxic rats, we studied the effects of the inducible NOS (iNOS) inhibitor L-canavanine (CAN), and the HO inhibitor zinc protoporphyrin (ZPP) on gene expression and protein levels of iNOS, endothelial NOS (eNOS), inducible HO (HO-1), and constitutive HO (HO-2) in the brain, lung, heart, liver and kidney tissue. Intravenous injection of LPS significantly increased iNOS and HO-1 gene expression in all organs. The effects of LPS on eNOS gene expression differed among organs, with increased expression in the liver and kidney, and no change in the lung, brain and heart. ZPP administration down-regulated the LPS-induced increase in HO-1 expression and produced a further increase in iNOS expression in all organs. These data suggest that the CO/HO system modifies the NO/NOS system in endotoxic organs, and that there were only minor organ-specific behaviors in terms of the relationship between these systems in the organs examined.

  2. Isosteviol Has Beneficial Effects on Palmitate-Induced α-Cell Dysfunction and Gene Expression

    PubMed Central

    Chen, Xiaoping; Hermansen, Kjeld; Xiao, Jianzhong; Bystrup, Sara Kjaergaard; O'Driscoll, Lorraine; Jeppesen, Per Bendix

    2012-01-01

    Background Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV), is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. Methodology/Principal Findings Long-term incubation studies with clonal α-TC1–6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG) content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01) increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01) and cell proliferation decreased by 19% (p<0.05). At 18 mM glucose, ISV (10−8 and 10−6 M) reduced palmitate-stimulated glucagon release by 27% (p<0.05) and 27% (p<0.05), respectively. ISV (10−6 M) also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10−6 M) reduced α-TC1–6 cell proliferation rate by 25% (p<0.05), but ISV (10−8 and 10−6 M) had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM) increased Pcsk2 (p<0.001), Irs2 (p<0.001), Fasn (p<0.001), Srebf2 (p<0.001), Acaca (p<0.01), Pax6 (p<0.05) and Gcg mRNA expression (p<0.05). ISV significantly (p<0.05) up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. Conclusions/Significance ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a new anti-diabetic drug for the treatment of type 2 diabetes. PMID:22479612

  3. Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity.

    PubMed

    Cheserek, Maureen Jepkorir; Wu, Guirong; Li, Longnan; Li, Lirong; Karangwa, Eric; Shi, Yonghui; Le, Guowei

    2016-07-01

    This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD+LA, HFD+R, HFD+Q and normal diet for 26weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P<.05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P<.05) in HFD mice (0.69±0.225U/mg protein) compared with controls (0.28±0.114U/mg protein), HFD+LA (0.231±0.02U/mg protein) and HFD+Q (0.182±0.096U/mg protein) at 26weeks. Moreover, Na(+)/K(+)-ATPase and Ca(2+)-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Experimental oral iron administration: Histological investigations and expressions of iron handling proteins in rat retina with aging.

    PubMed

    Kumar, Pankaj; Nag, Tapas Chandra; Jha, Kumar Abhiram; Dey, Sanjay Kumar; Kathpalia, Poorti; Maurya, Meenakshi; Gupta, Chandan Lal; Bhatia, Jagriti; Roy, Tara Sankar; Wadhwa, Shashi

    2017-12-01

    Iron is implicated in age-related macular degeneration (AMD). The aim of this study was to see if long-term, experimental iron administration with aging modifies retinal and choroidal structures and expressions of iron handling proteins, to understand some aspects of iron homeostasis. Male Wistar rats were fed with ferrous sulphate heptahydrate (500mg/kg body weight/week, oral; elemental iron availability: 20%) from 2 months of age onward until they were 19.5 month-old. At 8, 14 and 20 months of age, they were sacrificed and serum and retinal iron levels were detected by HPLC. Oxidative stress was analyzed by TBARS method. The retinas were examined for cell death (TUNEL), histology (electron microscopy) and the expressions of transferrin, transferrin receptor-1 [TFR-1], H- and L-ferritin. In control animals, at any age, there was no difference in the serum and retinal iron levels, but the latter increased significantly in 14- and 20 month-old iron-fed rats, indicating that retinal iron accumulation proceeds with progression of aging (>14 months). The serum and retinal TBARS levels increased significantly with progression of aging in experimental but not in control rats. There was significant damage to choriocapillaris, accumulation of phagosomes in retinal pigment epithelium and increased incidence of TUNEL+ cells in outer nuclear layer and vacuolation in inner nuclear layer (INL) of 20 month-aged experimental rats, compared to those in age-matched controls. Vacuolations in INL could indicate a long-term effect of iron accumulation in the inner retina. These events paralleled the increased expression of ferritins and transferrin and a decrease in the expression of TFR-1 in iron-fed rats with aging, thereby maintaining iron homeostasis in the retina. As some of these changes mimic with those happening in eyes with AMD, this model can be utilized to understand iron-induced pathophysiological changes in AMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Short-term Low-strain Vibration Enhances Chemo-transport Yet Does Not Stimulate Osteogenic Gene Expression or Cortical Bone Formation in Adult Mice

    PubMed Central

    Kotiya, Akhilesh A.; Bayly, Philip V.; Silva, Matthew J.

    2010-01-01

    Development of low-magnitude mechanical stimulation (LMMS) based treatment strategies for a variety of orthopaedic issues requires better understanding of mechano-transduction and bone adaptation. Our overall goal was to study the tissue and molecular level changes in cortical bone in response to low-strain vibration (LSV: 70 Hz, 0.5 g, 300 με) and compare these to changes in response to a known anabolic stimulus: high-strain compression (HSC: rest inserted loading, 1000 με). Adult (6–7 month) C57BL/6 mice were used for the study and non-invasive axial compression of the tibia was used as a loading model. We first studied bone adaptation at the tibial mid-diaphysis, using dynamic histomorphometry, in response to daily loading of 15 min LSV or 60 cycles HSC for 5 consecutive days. We found that bone formation rate and mineral apposition rate were significantly increased in response to HSC but not LSV. The second aim was to compare chemo-transport in response to 5 min of LSV versus 5 min (30 cycles) of HSC. Chemo-transport increased significantly in response to both loading stimuli, particularly in the medial and the lateral quadrants of the cross section. Finally, we evaluated the expression of genes related to mechano-responsiveness, osteoblast differentiation, and matrix mineralization in tibias subjected to 15 min LSV or 60 cycles HSC for 1 day (4-hour time point) or 4 consecutive days (4-day time point). The expression level of most of the genes remained unchanged in response to LSV at both time points. In contrast, the expression level of all the genes changed significantly in response to HSC at the 4-hour time point. We conclude that short-term, low-strain vibration results in increased chemo-transport, yet does not stimulate an increase in mechano-responsive or osteogenic gene expression, and cortical bone formation in tibias of adult mice. PMID:20937421

  6. High-risk and low-risk human papilloma virus in association to spontaneous preterm labor: a case-control study in a tertiary center, Egypt.

    PubMed

    Mosbah, Alaa; Barakat, Rafik; Nabiel, Yasmin; Barakat, Ghada

    2018-03-01

    This study aimed to detect the correlation between human papillomavirus (HPV) and spontaneous preterm labor in Egyptian women and its association to the human papilloma viral load and MPP2 gene expression. We performed an observational comparative case-control study in Department of Obstetric and Gynecology, Mansoura University Hospitals over women presented with spontaneous preterm labor, besides females admitted for giving birth at full term to detect conserved sequence in HPV-L1 gene (GP5/GP6) followed by genotype detection of high- and low-risk HPVs with quantification of the viral load and the MMP2 gene expression using real-time polymerase chain reaction (PCR). The prevalence of HPV was 18.1% in preterm females, but only 4% in full-term women (p value = 0.019*). Twenty percent were PCR positive for HPV 16 and 40% for HPV 18 whereas none of the control was positive for any of the studied high-risk genotypes. Thirty percent were PCR positive for HPV 6 and 10% were positive for HPV 11. MMP2 gene expression was significantly higher in preterm than full term. Human papilloma viral load was found to be positively correlated to the rate of MMP2 expression and the gestational age was significantly related to the viral load and the rate of expression of MMP2 gene. Human pabilloma virus especially high-risk genotypes was correlated to spontaneous preterm labor in Egyptian females through increasing early expression of MMP2 gene. The time of occurrence of preterm labor was affected by the viral load and so the rate of expression of MMP2 gene.

  7. Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    PubMed Central

    Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571

  8. Associating clinical archetypes through UMLS Metathesaurus term clusters.

    PubMed

    Lezcano, Leonardo; Sánchez-Alonso, Salvador; Sicilia, Miguel-Angel

    2012-06-01

    Clinical archetypes are modular definitions of clinical data, expressed using standard or open constraint-based data models as the CEN EN13606 and openEHR. There is an increasing archetype specification activity that raises the need for techniques to associate archetypes to support better management and user navigation in archetype repositories. This paper reports on a computational technique to generate tentative archetype associations by mapping them through term clusters obtained from the UMLS Metathesaurus. The terms are used to build a bipartite graph model and graph connectivity measures can be used for deriving associations.

  9. Placental protection of the fetal brain during short-term food deprivation.

    PubMed

    Broad, Kevin D; Keverne, Eric B

    2011-09-13

    The fetal genome regulates maternal physiology and behavior via its placenta, which produces hormones that act on the maternal hypothalamus. At the same time, the fetus itself develops a hypothalamus. In this study we show that many of the genes that regulate placental development also regulate the developing hypothalamus, and in mouse the coexpression of these genes is particularly high on embryonic days 12 and 13 (days E12-13). Such synchronized expression is regulated, in part, by the maternally imprinted gene, paternally expressed gene 3 (Peg3), which also is developmentally coexpressed in the hypothalamus and placenta at days E12-13. We further show that challenging this genomic linkage of hypothalamus and placenta with 24-h food deprivation results in disruption to coexpressed genes, primarily by affecting placental gene expression. Food deprivation also produces a significant decrease in Peg3 gene expression in the placenta, with consequences similar to many of the placental gene changes induced by Peg3 mutation. Such genomic dysregulation does not occur in the hypothalamus, where Peg3 expression increases with food deprivation. Thus, changes in gene expression brought about by food deprivation are consistent with the fetal genome's maintaining hypothalamic development at a cost to its placenta. This biased change to gene dysregulation in the placenta is linked to autophagy and ribosomal turnover, which sustain, in the short term, nutrient supply for the developing hypothalamus. Thus, the fetus controls its own destiny in times of acute starvation by short-term sacrifice of the placenta to preserve brain development.

  10. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats.

    PubMed

    Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P

    2013-04-01

    The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Increased long-term expression of pentraxin 3 in irradiated human arteries and veins compared to internal controls from free tissue transfers.

    PubMed

    Christersdottir Björklund, Tinna; Reilly, Sarah-Jayne; Gahm, Caroline; Bottazzi, Barbara; Mantovani, Alberto; Tornvall, Per; Halle, Martin

    2013-09-23

    Clinical studies have shown that radiotherapy increases the risk of cardiovascular disease at irradiated sites years after exposure. However, there is a lack of biological explanations in humans. We therefore examined human blood vessels exposed to radiotherapy and studied C-reactive protein (CRP) and pentraxin 3 (PTX3), a new marker for adverse cardiovascular outcome dependent on TNF- alpha (TNFα) or interleukin-1beta (IL-1β) expression. Pairs of irradiated and non-irradiated human conduit arteries and veins were harvested from the same patient during autologous free tissue transfer for cancer-reconstruction at a median time of 48 weeks after radiotherapy. Differential gene expression was studied using qRT-PCR, confirmed by immunohistochemistry and cellular origins determined by immunofluorescence. Gene expression in irradiated arteries compared to non-irradiated showed a consistent up-regulation of PTX3 in all patients and in a majority of veins (p < 0.001). Both TNFα and IL-1β were increased in irradiated compared to non-irradiated arteries (p < 0.01) and IL-1β correlated to the PTX3 expression (p = 0.017). Immunohistochemical and immunofluorescence staining confirmed an increased expression of PTX3 in endothelial cells, macrophages and smooth muscle cells. The sustained expression of PTX3 in arteries and veins tie biological evidence in humans to clinical studies and encourage further exploration of innate immunity in the pathogenesis of a radiation-induced vasculopathy.

  12. Tissue-specific changes in OGG1 and SOD mRNA expression caused by NaOCl exposure in black seabream ( Acanthopagrus schlegelii)

    NASA Astrophysics Data System (ADS)

    Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam

    2017-09-01

    The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.

  13. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.

    PubMed

    Suresh, Rahul; Li, Xing; Chiriac, Anca; Goel, Kashish; Terzic, Andre; Perez-Terzic, Carmen; Nelson, Timothy J

    2014-09-01

    Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for high-risk cardiovascular diseases. However, the feasibility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome expression microarray on blood samples from normal cardiac function controls (n=21) and first-time AMI patients (n=31) within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways. To determine molecular signatures at the time of AMI associated with long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially-expressed genes. Bioinformatic analysis of this differential gene-set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of genes involved in the developmental epithelial-to-mesenchymal transition pathway, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. Differentially regulated genes and modulated pathways were identified that were associated with recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients and warrants further study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Increase of Long-Term ‘Diabesity’ Risk, Hyperphagia, and Altered Hypothalamic Neuropeptide Expression in Neonatally Overnourished ‘Small-For-Gestational-Age’ (SGA) Rats

    PubMed Central

    Schellong, Karen; Neumann, Uta; Rancourt, Rebecca C.; Plagemann, Andreas

    2013-01-01

    Background Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and ‘diabesity’ risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. Methods and Findings By rearing in normal (NL) vs. small litters (SL), small-for-gestational-age (SGA) rats were neonatally exposed to either normal (SGA-in-NL) or over-feeding (SGA-in-SL), and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL). SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60), as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05), and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern ‘westernized’ lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05). Lasercapture microdissection (LMD)-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC) revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc) in SGA-in-SL rats (p<0.05). Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy), agouti-related-peptide (Agrp) and galanin (Gal)) was not significantly altered. In essence, the ‘orexigenic index’, proposed here as a neuroendocrine ‘net-indicator’, was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01), correlated to food intake (p<0.05). Conclusion Adult SGA rats developed increased ‘diabesity’ risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding appears to be a critical long-term risk factor in ‘small-for-gestational-age babies’. PMID:24265718

  15. Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer.

    PubMed

    Hiura, Hitoshi; Hattori, Hiromitsu; Kobayashi, Norio; Okae, Hiroaki; Chiba, Hatsune; Miyauchi, Naoko; Kitamura, Akane; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Arima, Takahiro

    2017-01-01

    Frozen-thawed embryo transfer (FET) is increasingly available for the improvement of the success rate of assisted reproductive technologies other than fresh embryo transfer (ET). There have been numerous findings that FET provides better obstetric and perinatal outcomes. However, the birth weight of infants conceived using FET is heavier than that of those conceived via ET. In addition, some reports have suggested that FET is associated with perinatal diseases such as placenta accreta and pregnancy-induced hypertension (PIH). In this study, we compared the microRNA (miRNA) expression profiles in term placentae derived from FET, ET, and spontaneous pregnancy (SP). We identified four miRNAs, miR-130a-3p, miR-149-5p, miR-423-5p, and miR-487b-3p, that were significantly downregulated in FET placentae compared with those from SP and ET. We found that DNA methylation of MEG3 -DMR, not but IG-DMR, was associated with miRNA expression of the DLK1-DIO3 imprinted domain in the human placenta. In functional analyses, GO terms and signaling pathways related to positive regulation of gene expression, growth, development, cell migration, and type II diabetes mellitus (T2DM) were enriched. This study supports the hypothesis that the process of FET may increase exposure of epigenome to external influences.

  16. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus.

    PubMed

    McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L

    2005-07-26

    Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.

  17. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus

    PubMed Central

    McIntyre, Christa K.; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D.; Steward, Oswald; Guzowski, John F.; McGaugh, James L.

    2005-01-01

    Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the β-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance. PMID:16020527

  18. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling.

    PubMed

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Leverkus, Martin; Ströbel, Philipp; Marx, Alexander

    2017-10-27

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1 high thymomas and TCs.

  19. Expression and organization of basement membranes and focal adhesion proteins in pregnant myometrium is regulated by uterine stretch.

    PubMed

    Shynlova, Oksana; Chow, Michelle; Lye, Stephen J

    2009-10-01

    The mechanisms underlying the preparation of the uterus for labor are not fully understood. We have previously found a significant increase in the expression of messenger RNA (mRNAs) encoding extracellular basement membrane (BM) proteins of the smooth muscle cells (SMCs) in late pregnant rat myometrium. At term, the myometrium is stretched by growing fetuses and these mechanical signals are transmitted from extracellular matrix into SMCs through focal adhesions (FA). The aim of this study was to investigate the effect of gravidity on the expression and spatiotemporal distribution of major BM proteins, laminin-gamma2 and collagen IV, as well as typical FA constituents, vinculin and paxillin, in the myometrium during gestation and parturition, using a unilaterally pregnant rat model. We found that the expression of laminin-gamma2 and collagen IV proteins increased significantly with gestational age (P < .05) and was dependent on gravidity whereas vinculin and paxillin proteins were not affected. Near term, BM proteins from gravid horn myometrium demonstrated increased extracellular immunostaining and major rearrangement from sporadic protein distribution to organized, continuous, and regular structures surrounding the plasma membrane of each myocyte. Examination of FA proteins revealed that paxillin was translocated from the cytoplasm to the cell periphery, while vinculin was sequestered specifically to FAs. At labor, BM and FA proteins, organized in similar bead-like structures, were localized on opposing sides of SMC plasma membrane into 2 different compartments. We suggest that these stretch-induced changes facilitate formation of stable cell-matrix adhesions and provide the molecular basis for optimal force transduction during labor contractions.

  20. PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory

    PubMed Central

    Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.

    2013-01-01

    It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733

  1. Feedback from Arctic charr: Feed flavour stimulation and re-feeding after feed deprivation stimulate genes encoding both orexigenic and anorexigenic neuropeptides.

    PubMed

    Striberny, Anja; Jørgensen, Even H

    2017-05-15

    Despite vast research attention, the knowledge about central mechanisms of appetite regulation in teleost remains inconclusive. A common strategy in studies on appetite regulating mechanisms is to measure the response to feed restriction or - deprivation, but responses vary between fish species and between experiments, and are also likely dependent on the degree of energy perturbation. The anadromous Arctic charr is an interesting model for studying appetite regulation as its feeding cycle comprises months of winter anorexia, and hyperphagia during summer. Here we studied how the gene expression of putative hypothalamic appetite regulators were affected by two days, one week and one month feed deprivation during summer, and subsequent re-feeding and exposure to feed flavour. Short-term feed deprivation caused only a minor reduction in condition factor and had no effect on hypothalamic gene expression. Long-term feed-deprivation caused a marked reduction in weight and condition factor which contrasted the increase in weight and condition factor seen in ad libitum fed controls. A marked energy perturbation by feed deprivation was also indicated by a lower hypothalamic expression of the genes encoding insulin-like growth factor 1 (IGF1) and IGF1 binding protein 5 in the feed deprived charr compared to fed controls. Surprisingly, long-term feed deprivation and energy perturbation did not induce changes in hypothalamic appetite regulators. Unexpectedly, re-feeding and exposure to feed flavour caused an increase in the expression of the genes encoding the orexigenic agouti-related peptide and the anorexigenic melanocortin receptor 4 and cocaine- and amphetamine-regulated transcript. Our study gives strong evidence for a role of these in appetite regulation in Arctic charr, but their mechanisms of action remain unknown. We suggest that changes in gene expression are more likely to be registered during transition phases, e.g. from fasting to feeding and upon stimulatory inputs such as feed flavour. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Response of genes involved in lipid metabolism in rat epididymal white adipose tissue to different fasting conditions after long-term fructose consumption.

    PubMed

    Li, Jin-Xiu; Ke, Da-Zhi; Yao, Ling; Wang, Shang; Ma, Peng; Liu, Li; Zuo, Guo-Wei; Jiang, Li-Rong; Wang, Jian-Wei

    2017-03-04

    There has been much concern regarding the dietary fructose contributes to the development of metabolic syndrome. High-fructose diet changes the expression of genes involved in lipid metabolism. Levels of a number of hepatic lipogenic enzymes are increased by a high-carbohydrate diet in fasted-refed model rats/mice. Both the white adipose tissue (WAT) and the liver play a key role in the maintenance of nutrient homeostasis. Here, the aim of this study was to analyze the expression of key genes related to lipid metabolism in epididymal WAT (eWAT) in response to different fasting condition after long-term chronic fructose consumption. Rats were fed standard chow supplemented with 10% w/v fructose solution for 5 weeks, and killed after chow-fasting and fructose withdrawal (fasting) or chow-fasting and continued fructose (fructose alone) for 14 h. Blood parameters and the expression of genes involved in fatty acid synthesis (ChREBP, SREBP-1c, FAS, SCD1), triglyceride biosynthesis (DGAT-1, DGAT-2) and lipid mobilization (ATGL, HSL) in eWAT were analyzed. In addition, mRNA levels of PPAR-γ, CD36 and LPL were also detected. As expected, fructose alone increased the mRNA expression of FAS, SCD1, and correspondingly decreased ATGL and HSL mRNA levels. However, ChREBP, DGAT-2, ATGL and HSL mRNA levels restored near to normal while FAS and SCD1 tend to basic level under fasting condition. The mRNA expression of SREBP-1c, PPAR-γ and LPL did not changed at any situations but CD36 mRNA decreased remarkably in fructose alone group. In conclusion, these findings demonstrate that genes involved in lipid metabolism in rat eWAT are varied in response to different fasting conditions after long-term fructose consumption. Copyright © 2017. Published by Elsevier Inc.

  3. Gene expression changes in the ventral hippocampus and medial prefrontal cortex of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    PubMed

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2018-05-01

    Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and deficits in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-h sessions/day during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation, and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice.

    PubMed

    Packer, Nicholas; Hoffman-Goetz, Laurie

    2012-06-01

    Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15-16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a "sedentary" no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF(2α) and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may "protect" the bowel by reducing inflammatory cytokine and apoptotic protein expression.

  5. Transient enhancement of proliferation of neural progenitors and impairment of their long-term survival in p25 transgenic mice

    PubMed Central

    Dong, Fengping; Shu, Tianzhi; Zhou, Ying; Tsai, Li-Huei; Mao, Yingwei

    2016-01-01

    Cyclin-dependent kinase 5 (CDK5) regulates important neuronal functions via p35. p35 undergoes cleavage in response to neuronal activity and neurotoxic conditions to release its subunit p25. Although p25 has been implicated in various neurodegenerative diseases, the mechanisms by which p25 mediates neurodegenerative impairment have not been fully elucidated. We aimed to determine the role of p25-mediated neurodegeneration on neurogenesis in an inducible transgenic mouse line overexpressing p25 (p25 TG) in the forebrain. Adult neuronal progenitor cells (NPCs) were labeled with BrdU in vivo, which were significantly increased in numbers in the subventricular zone, the hippocampus, and the cortex of p25 TG mice. Consistently, more mitotic cells were observed in p25 TG mice than in controls, even in the cortex and the CA1, which are not neurogenic regions. BrdU-positive cells were negative for GFAP or γ-H2AX, suggesting that they are not astrocytes or dying cells. Neurospheres derived from the dentate gyrus and the cortex were significantly increased in p25 TG mice and can be differentiated into astrocytes and neurons. However, p25 TG decreased the long-term survival of proliferating NPCs and severely impaired adult neurogenesis. A Transwell co-culture system was used to assess the influence of p25-expressing primary neurons on adult NPCs. Co-culture with p25-expressing neurons downregulated Ki67 expression and upregulated cleaved caspase-3, indicating that the paracrine signaling in cell-cell communication is essential for NPC survival and proliferation. Moreover, increased CDK5 activity impairs Wnt activation. This study demonstrates that hyperactivation of p25 may temporarily enhance NPC proliferation, but impair their long-term survival. PMID:27283769

  6. Transient enhancement of proliferation of neural progenitors and impairment of their long-term survival in p25 transgenic mice.

    PubMed

    Zou, Donghua; Zhou, Yijing; Liu, Long; Dong, Fengping; Shu, Tianzhi; Zhou, Ying; Tsai, Li-Huei; Mao, Yingwei

    2016-06-28

    Cyclin-dependent kinase 5 (CDK5) regulates important neuronal functions via p35. p35 undergoes cleavage in response to neuronal activity and neurotoxic conditions to release its subunit p25. Although p25 has been implicated in various neurodegenerative diseases, the mechanisms by which p25 mediates neurodegenerative impairment have not been fully elucidated. We aimed to determine the role of p25-mediated neurodegeneration on neurogenesis in an inducible transgenic mouse line overexpressing p25 (p25 TG) in the forebrain. Adult neuronal progenitor cells (NPCs) were labeled with BrdU in vivo, which were significantly increased in numbers in the subventricular zone, the hippocampus, and the cortex of p25 TG mice. Consistently, more mitotic cells were observed in p25 TG mice than in controls, even in the cortex and the CA1, which are not neurogenic regions. BrdU-positive cells were negative for GFAP or γ-H2AX, suggesting that they are not astrocytes or dying cells. Neurospheres derived from the dentate gyrus and the cortex were significantly increased in p25 TG mice and can be differentiated into astrocytes and neurons. However, p25 TG decreased the long-term survival of proliferating NPCs and severely impaired adult neurogenesis. A Transwell co-culture system was used to assess the influence of p25-expressing primary neurons on adult NPCs. Co-culture with p25-expressing neurons downregulated Ki67 expression and upregulated cleaved caspase-3, indicating that the paracrine signaling in cell-cell communication is essential for NPC survival and proliferation. Moreover, increased CDK5 activity impairs Wnt activation. This study demonstrates that hyperactivation of p25 may temporarily enhance NPC proliferation, but impair their long-term survival.

  7. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    PubMed

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P < 0.05). Firmicutes, especially Clostridium leptum, decreased in HF compared to C and HP (P < .05). The ratio of Firmicutes:Bacteroidetes was markedly lower in HF versus C and HP at 25 weeks (P < .05). HF decreased hepatic cholesterol content compared to HP and C at 25 weeks. HF and HP increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA and decreased lecithin-cholesterol acyltransferase mRNA compared to C (P < .05). In conclusion, re-matching rats to a HF but not HP diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    PubMed

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken together, these data suggested that transgenic lines with long term stable expression and no position effect can be established by lentiviral transgenesis.

  9. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    PubMed

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  10. Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles.

    PubMed

    Yurek, D M; Hasselrot, U; Cass, W A; Sesenoglu-Laird, O; Padegimas, L; Cooper, M J

    2015-01-22

    In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. Several aging studies have also reported an increase of gliosis as a function of normal aging. In this study we used DNPs that encoded for human glial cell line-derived neurotrophic factor (hGDNF) and either a non-specific human polyubiquitin C (UbC) or an astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The DNPs were injected intracerebrally into the denervated or intact striatum of young, middle-aged or aged rats, and glial cell line-derived neurotrophic factor (GDNF) transgene expression was subsequently quantified in brain tissue samples. The results of our studies confirmed our earlier finding that transgene expression was higher in the denervated striatum when compared to intact striatum for DNPs incorporating either promoter. In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    PubMed Central

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  12. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  13. [Expression of AMPA receptors and related protein in immobilization stressed rats and effect of Xiaoyaosan].

    PubMed

    Yue, Guang-Xin; Wang, Zhu-Feng; Zhang, Qiao-Li; Zhao, Xin; Yue, Li-Feng; Ding, Jie; Chen, Jia-Xu

    2008-05-01

    To observe protein expression changes of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and related regulatory protein in the hippocampus and amygdala in chronic immobilization stressed rat and Xiaoyaosan's regulatory effect. Rats were tied 3 h per day to establish immobilization stress condition and treatment with Xiaoyaosan. After 7 days and 21 days stress, the protein expression of AMPA receptor subunit (GluR2/3), N-ethylmaleimide sensitive factor (NSF) and protein interacting with C-kinase 1 (PICK1) in hippocampus and amygdala were detected by using Western blot techniques. The expression of GluR2/3, NSF in dentate gyrus (DG) and amygdala were markedly attenuated (P < 0.05) and PICK1 in CA1 region were significantly increased (P < 0.05) in 7 d immobilization stressed rats while 7 days xiaoyaosan treatment showed an effective regulatory result to PICK1's changes. Under 21 days immobilization stressed condition, the expression of GluR2/3, NSF in CA1 region showed an increasing trend, and GluR2/3 showed a markedly increase (P < 0.01), but showed an significantly decreased trend in amygdala, Xiaoyaosan showed an effective result to such changes above (P < 0.05). The expression of PICK1 showed increasing trend in amygdala and xiaoyaosan could lower its expression (P < 0.05). There are different trends of the expression of AMPA receptor in repeat short-term stress versus chronic immobilization stress, and in hippocampal CA1 region versus amygdala. Xiaoyaosan has better regulation effect on the expression of AMPA receptors in the condition of chronic immobilization stress than those of repeat shortterm stress.

  14. Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2012-04-01

    Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.

  15. ACTH-independent macronodular adrenocortical hyperplasia reveals prevalent aberrant in vivo and in vitro responses to hormonal stimuli and coupling of arginine-vasopressin type 1a receptor to 11β-hydroxylase

    PubMed Central

    2013-01-01

    Background Adrenal Cushing’s syndrome caused by ACTH-independent macronodular adrenocortical hyperplasia (AIMAH) can be accompanied by aberrant responses to hormonal stimuli. We investigated the prevalence of adrenocortical reactions to these stimuli in a large cohort of AIMAH patients, both in vivo and in vitro. Methods In vivo cortisol responses to hormonal stimuli were studied in 35 patients with ACTH-independent bilateral adrenal enlargement and (sub-)clinical hypercortisolism. In vitro, the effects of these stimuli on cortisol secretion and steroidogenic enzyme mRNA expression were evaluated in cultured AIMAH and other adrenocortical cells. Arginine-vasopressin (AVP) receptor mRNA levels were determined in the adrenal tissues. Results Positive serum cortisol responses to stimuli were detected in 27/35 AIMAH patients tested, with multiple responses within individual patients occurring for up to four stimuli. AVP and metoclopramide were the most prevalent hormonal stimuli triggering positive responses in vivo. Catecholamines induced short-term cortisol production more often in AIMAH cultures compared to other adrenal cells. Short- and long-term incubation with AVP increased cortisol secretion in cultures of AIMAH cells. AVP also increased steroidogenic enzyme mRNA expression, among which an aberrant induction of CYP11B1. AVP type 1a receptor was the only AVPR expressed and levels were high in the AIMAH tissues. AVPR1A expression was related to the AVP-induced stimulation of CYP11B1. Conclusions Multiple hormonal signals can simultaneously induce hypercortisolism in AIMAH. AVP is the most prevalent eutopic signal and expression of its type 1a receptor was aberrantly linked to CYP11B1 expression. PMID:24034279

  16. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  17. Developmental changes in facial expressions of emotions in the strange situation during the second year of life.

    PubMed

    Izard, Carroll E; Abe, Jo Ann A

    2004-09-01

    Infants' expressions of discrete emotions were coded during the more stressful episodes (4 through 8) of the Strange Situation at 13 and 18 months. The data showed a significant decrease in full-face expressions (more complex configurations of movements) and a significant increase in component expressions (simpler and more constrained patterns of movements). The authors interpreted this trend as a developmental change toward more regulated and less intense emotions. Consistent with this view, the aggregate index of infants' full-face negative emotion expressions, interpreted as reflecting relatively unregulated intense emotions, correlated significantly with maternal ratings of difficult temperament. The authors discuss alternative interpretations of the findings in terms of changes in reactivity/arousability and the emerging capacity for self-regulation. (c) 2004 APA, all rights reserved

  18. TOWARD COST-BENEFIT ANALYSIS OF ACUTE BEHAVIORAL EFFECTS OF TOLUENE IN HUMANS

    EPA Science Inventory

    There is increasing interest in being able to express the consequences of exposure to potentially toxic compounds in monetary terms in order to evaluate potential cost-benefit relationships of controlling exposure. Behavioral effects of acute toluene exposure could be subjected ...

  19. Spiritual vs. Religious: Perspectives from Today's Undergraduate Catholics

    ERIC Educational Resources Information Center

    Overstreet, Dawn V.

    2010-01-01

    Contemporary American college students simultaneously express both increased interest in spirituality and declining interest in traditional religion. Recent research recognizes the trend of young adults separating spirituality from religion, but utilizes varied definitions of each term developed by the researchers. This study asks students…

  20. Simultaneous monitoring of presynaptic transmitter release and postsynaptic receptor trafficking reveals an enhancement of presynaptic activity in metabotropic glutamate receptor-mediated long-term depression.

    PubMed

    Xu, Wei; Tse, Yiu Chung; Dobie, Frederick A; Baudry, Michel; Craig, Ann Marie; Wong, Tak Pan; Wang, Yu Tian

    2013-03-27

    Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.

  1. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community.

    PubMed

    Zaghmouri, Imen; Michotey, Valerie D; Armougom, Fabrice; Guasco, Sophie; Bonin, Patricia C

    2018-05-01

    The sensitivity of denitrifying community to salinity fluctuations was studied in microcosms filled with marine coastal sediments subjected to different salinity disturbances over time (sediment under frequent salinity changes vs sediment with "stable" salinity pattern). Upon short-term salinity shift, denitrification rate and denitrifiers abundance showed high resistance whatever the sediment origin is. Denitrifying community adapted to frequent salinity changes showed high resistance when salinity increases, with a dynamic nosZ relative expression level. Marine sediment denitrifying community, characterized by more stable pattern, was less resistant when salinity decreases. However, after two successive variations of salinity, it shifted toward the characteristic community of fluctuating conditions, with larger proportion of Pseudomonas-nosZ, exhibiting an increase of nosZ relative expression level. The impact of long-term salinity variation upon bacterial community was confirmed at ribosomal level with a higher percentage of Pseudomonas and lower proportion of nosZII clade genera. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Long-term consequences of Sox9 depletion on inner ear development

    PubMed Central

    Park, Byung-Yong; Saint-Jeannet, Jean-Pierre

    2010-01-01

    The transcription factor Sox9 has been implicated in inner ear formation in several species. To investigate the long-term consequences of Sox9 depletion on inner ear development we analyzed the inner ear architecture of Sox9-depleted Xenopus tadpoles generated by injection of increasing amounts of Sox9 morpholino antisense oligonucleotides. We found that Sox9-depletion resulted in major defects in the development of vestibular structures, semicircular canals and utricle, while the ventrally located saccule was less severely affected in these embryos. Consistent with this phenotype we observed a specific loss of the dorsal expression of Wnt3a expression in the otic vesicle of Sox9 morphants, associated with an increase in cell death and a reduction in cell proliferation in the region of the presumptive otic epithelium. We propose that in addition to its early role in placode specification, Sox9 is also required for the maintenance of progenitors in the otic epithelium. PMID:20201105

  3. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Fear extinction requires Arc/Arg3.1 expression in the basolateral amygdala.

    PubMed

    Onoue, Kousuke; Nakayama, Daisuke; Ikegaya, Yuji; Matsuki, Norio; Nomura, Hiroshi

    2014-04-23

    Prolonged re-exposure to a fear-eliciting cue in the absence of an aversive event extinguishes the fear response to the cue, and has been clinically used as an exposure therapy. Arc (also known as Arg3.1) is implicated in synaptic and experience-dependent plasticity. Arc is regulated by the transcription factor cAMP response element binding protein, which is upregulated with and necessary for fear extinction. Because Arc expression is also activated with fear extinction, we hypothesized that Arc expression is required for fear extinction. Extinction training increased the proportion of Arc-labeled cells in the basolateral amygdala (BLA). Arc was transcribed during latter part of extinction training, which is possibly associated with fear extinction, as well as former part of extinction training. Intra-BLA infusions of Arc antisense oligodeoxynucleotide (ODN) before extinction training impaired long-term but not short-term extinction memory. Intra-BLA infusions of Arc antisense ODN 3 h after extinction training had no effect on fear extinction. Our findings demonstrate that Arc is required for long-term extinction of conditioned fear and contribute to the understanding of extinction as a therapeutic manner.

  5. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich

    PubMed Central

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress. PMID:26053067

  6. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich.

    PubMed

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress.

  7. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.

    PubMed

    Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L

    2016-06-23

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  8. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    PubMed Central

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  9. Regulation of protein expression and function of octn2 in forskolin-induced syncytialization in BeWo Cells.

    PubMed

    Huang, F-D; Kung, F-L; Tseng, Y-C; Chen, M-R; Chan, H-S; Lin, C-J

    2009-02-01

    Placental OCTN2 is a high-affinity carnitine transporter that can interact with a number of therapeutic agents. The process of syncytialization is associated with the expression of a variety of genes. However, the association between syncytialization and OCTN2 expression is not yet clear. Given that forskolin induces BeWo cells to undergo biochemical and morphological differentiation, the purpose of the present study was to investigate whether the function and expression of OCTN2 are influenced by forskolin treatment during syncytialization. The forskolin-induced differentiation of BeWo cells was validated by secretion of beta-human chorionic gonadotropin (beta-hCG) and syncytin expression. Cellular localization of OCTN2 was analyzed by confocal microscopy. Expression of OCTN2 and the modular proteins PDZK1, PDZK2, NHERF1 and NHERF2 was analyzed by Western blotting and carnitine uptake by BeWo cells was estimated and the kinetic properties of uptake measured. The results showed that forskolin treatment increased beta-hCG secretion and syncytin expression, suggesting induction of syncytialization. Confocal images of BeWo cells showed the localization of OCTN2 in the brush-border membrane. OCTN2 protein expression was upregulated in isolated brush-border membranes by long-term forskolin treatment, but the V(m) for carnitine uptake was unchanged, although the K(m) increased. PDZK1, NHERF1 and NHERF2 protein expression in the brush-border membrane was downregulated by forskolin treatment, whereas PDZK2 levels remained unchanged. In conclusion, protein expression and function of OCTN2 in BeWo cells can be regulated by forskolin treatment. While the presence of forskolin results in an increase in OCTN2 protein expression, the increase in uptake capacity may be compensated by the decreased expression of PDZK1, NHERF1 or NHERF2.

  10. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  11. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke.

    PubMed

    Sood, Abhilasha; Mehrotra, Arpit; Dhawan, Devinder K; Sandhir, Rajat

    2018-04-18

    Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.

  12. Dynamic Changes in Cervical Glycosaminoglycan Composition during Normal Pregnancy and Preterm Birth

    PubMed Central

    Akgul, Yucel; Holt, Roxane; Mummert, Mark; Word, Ann

    2012-01-01

    Glycosaminoglycans (GAG) have diverse functions that regulate macromolecular assembly in the extracellular matrix. During pregnancy, the rigid cervix transforms to a pliable structure to allow birth. Quantitative assessment of cervical GAG is a prerequisite to identify GAG functions in term and preterm birth. In the current study, total GAG levels increased at term, yet the abundance, chain length, and sulfation levels of sulfated GAG remained constant. The increase in total GAG resulted exclusively from an increase in hyaluronan (HA). HA can form large structures that promote increased viscosity, hydration, and matrix disorganization as well as small structures that have roles in inflammation. HA levels increased from 19% of total GAG in early pregnancy to 71% at term. Activity of the HA-metabolizing enzyme, hyaluronidase, increased in labor, resulting in metabolism of large to small HA. Similar to mice, HA transitions from high to low molecular weight in term human cervix. Mouse preterm models were also characterized by an increase in HA resulting from differential expression of the HA synthase (Has) genes, with increased Has1 in preterm in contrast to Has2 induction at term. The Has2 gene but not Has1 is regulated in part by estrogen. These studies identify a shift in sulfated GAG dominance in the early pregnant cervix to HA dominance in term and preterm ripening. Increased HA synthesis along with hyaluronidase-induced changes in HA size in mice and women suggest diverse contributions of HA to macromolecular changes in the extracellular matrix, resulting in loss of tensile strength during parturition. PMID:22529214

  13. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Fiorotto, M. L.; Schwartz, R. J.; Booth, F. W.

    2001-01-01

    Insulin-like growth factor-I (IGF-I) overexpression for 1-month in mouse skeletal muscle increases satellite cell proliferation potential. However, it is unknown whether this beneficial enhancement by IGF-I expression would persist over a longer-term duration in aged mice. This is an important issue to address if a prolonged course of IGF-I is to be used clinically in muscle-wasting conditions where satellite cells may become limiting. Using the IGF-I transgenic (IGF-I Tg) mouse that selectively expresses the IGF-I transgene in striated muscles, we found that 18-months of continuous IGF-I overexpression led to a loss in the enhanced in vitro proliferative capacity of satellite cells from Tg skeletal muscles. Also 18-month-old IGF-I Tg satellite cells lost the enhanced BrdU incorporation, greater pRb and Akt phosphorylations, and decreased p27(Kip1) levels initially observed in cells from 1-month-old IGF-I Tg mice. The levels of those biochemical markers reverted to similar values seen in the 18-months WT littermates. These findings, therefore, suggest that there is no further beneficial effect on enhancing satellite cell proliferation ability with persistent long-term expression of IGF-I in skeletal muscles of these transgenic mice.

  14. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  16. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  17. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  18. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  19. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  20. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the increased variation in physiological response under the future scenario indicated that some individuals have higher physiological plasticity to cope with these conditions. While short-term acclimation to reduced pH seawater decreases the ability of partial individuals against thermal stress, physiological plasticity and variability seem to be crucial in allowing some intertidal animals to survive in a rapidly changing environment.

  1. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    PubMed Central

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3–7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α. PMID:25484856

  2. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE).

    PubMed

    Heroux, Nicholas A; Osborne, Brittany F; Miller, Lauren A; Kawan, Malak; Buban, Katelyn N; Rosen, Jeffrey B; Stanton, Mark E

    2018-01-01

    The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE. Copyright © 2017. Published by Elsevier Inc.

  3. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    PubMed

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  4. Long-Term Behavioral Recovery in Parkinsonian Rats by an HSV Vector Expressing Tyrosine Hydroxylase

    PubMed Central

    Naegele, Janice R.; O’Malley, Karen L.; Geller, Alfred I.

    2006-01-01

    One therapeutic approach to treating Parkinson’s disease is to convert endogenous striatal cells into levo-3,4-dihydroxyphenylalanine (l-dopa)–producing cells. A defective herpes simplex virus type 1 vector expressing human tyrosine hydroxylase was delivered into the partially denervated striatum of 6-hydroxydopamine–lesioned rats, used as a model of Parkinson’s disease. Efficient behavioral and biochemical recovery was maintained for 1 year after gene transfer. Biochemical recovery included increases in both striatal tyrosine hydroxylase enzyme activity and in extracellular dopamine concentrations. Persistence of human tyrosine hydroxylase was revealed by expression of RNA and immunoreactivity. PMID:7669103

  5. Evidence against Resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR

    PubMed Central

    Jai, Ying; Shah, Kalpit; Bridges, Robert J.; Bradbury, Neil A.

    2015-01-01

    BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. PMID:26342647

  6. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells.

    PubMed

    Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas

    2017-03-11

    Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.

  7. COMPARATIVE MICROARRAY EXPRESSION ANALYSIS OF SELECTED CANCER RELEVANT GENES IN HYPERTENSIVE RESISTANT VERSUS SUSCEPTIBLE RODENT STRAINS

    EPA Science Inventory

    Hypertension and cancer are prevalent diseases. Epidemiological studies suggest that hypertension may increase the long term risk of cancer. Identification of resistance and/or susceptibility genes using rodent models could provide important insights into the management and treat...

  8. Increased matrix metalloproteinases as possible cause of osseoarticular tissue destruction in long-term haemodialysis and beta 2-microglobulin amyloidosis.

    PubMed

    Ohashi, K; Kawai, R; Hara, M; Okada, Y; Tachibana, S; Ogura, Y

    1996-04-01

    Immunolocalization of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in periarticular tissues of beta 2-microglobulin amyloidosis patients was investigated. MMP-1 (interstitial collagenase) the most strongly expressed of the MMPs, was localized in the synovial lining cells, mesenchymal cells in granulation tissue and nodular amyloid deposits, and chondrocytes within areas of cartilage erosion. Expression of MMP-1 was correlated with the degree of macrophage infiltration and synovial cell hyperplasia, but it was not correlated with the degree of amyloid deposition or haemodialysis period. Expression of MMP-1 appeared more intense than that of TIMP-1 and TIMP-2 in highly inflammatory cases. MMP-2 was mildly expressed in the interstitial fibroblasts and MMP-3 was faintly stained in the extracellular matrix of the synovial membrane. MMP-9 (gelatinase B) was found to be strongly positive in the osteoclasts which increased in the progressing osteolytic lesion from the destructive arthropathy. These results suggest involvement of MMPs in inflammation with an imbalance between expression of MMPs and TIMPs being closely related to pathogenesis of the destructive arthropathy.

  9. Glyburide treatment in gestational diabetes is associated with increased placental glucose transporter 1 expression and higher birth weight.

    PubMed

    Díaz, Paula; Dimasuay, Kris Genelyn; Koele-Schmidt, Lindsey; Jang, Brian; Barbour, Linda A; Jansson, Thomas; Powell, Theresa L

    2017-09-01

    Use of glyburide in gestational diabetes (GDM) has raised concerns about fetal and neonatal side effects, including increased birth weight. Placental nutrient transport is a key determinant of fetal growth, however the effect of glyburide on placental nutrient transporters is largely unknown. We hypothesized that glyburide treatment in GDM pregnancies is associated with increased expression of nutrient transporters in the syncytiotrophoblast plasma membranes. We collected placentas from GDM pregnancies who delivered at term and were treated with either diet modification (n = 15) or glyburide (n = 8). Syncytiotrophoblast microvillous (MVM) and basal (BM) plasma membranes were isolated and expression of glucose (glucose transporter 1; GLUT1), amino acid (sodium-coupled neutral amino acid transporter 2; SNAT2 and L-type amino acid transporter 1; LAT1) and fatty acid (fatty acid translocase; FAT/CD36, fatty acid transporter 2 and 4; FATP2, FATP4) transporters was determined by Western blot. Additionally, we determined GLUT1 expression by confocal microscopy in cultured primary human trophoblasts (PHT) after exposure to glyburide. Birth weight was higher in the glyburide-treated group as compared to diet-treated GDM women (3764 ± 126 g vs. 3386 ± 75 g; p < 0.05). GLUT1 expression was increased in both MVM (+50%; p < 0.01) and BM (+75%; p < 0.01). In contrast, MVM FAT/CD36 (-65%; p = 0.01) and FATP2 (-65%; p = 0.02) protein expression was reduced in mothers treated with glyburide. Glyburide increased membrane expression of GLUT1 in a dose-dependent manner in cultured PHT. This data is the first to show that glyburide increases GLUT1 expression in syncytiotrophoblast MVM and BM in GDM pregnancies, and may promote transplacental glucose delivery contributing to fetal overgrowth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Breast pump use amongst mothers of healthy term infants in Melbourne, Australia: A prospective cohort study.

    PubMed

    Johns, Helene M; Amir, Lisa H; McLachlan, Helen L; Forster, Della A

    2016-02-01

    this paper describes the use of breast pumps amongst a group of mothers of healthy term infants in Melbourne, Australia, between birth and six months post partum. a prospective cohort study; data were collected using structured questionnaires. 1003 postpartum women who had given birth to healthy infants at term were recruited from three Melbourne maternity hospitals between July 2009 and April 2011. Data were collected by face-to-face interview at recruitment and by telephone interview three and six months later. at recruitment (24 to 48 hours post partum), 60% (605/1003) of women already had a breast pump. At two weeks post partum expressing was common; 62% (290/466) of women had expressed by this time, with 40% (186/466) doing so several times a day. By six months post partum 83% (754/911) of the women had a breast pump and 40% (288/715) were expressing, although most just occasionally. The most common reasons for any expressing in the first six months were 'to be able to go out and leave the baby' (35%; 268/772); milk supply 'not enough'(27%; 207/772); and having 'too much' milk (19%; 147/772). The increasing popularity of expressing breast milk to feed infants is not driven by women returning to the workforce, as only 10% of women (80/772) expressed because they had returned to paid employment. health professionals should be aware that in some settings breast pump use is common in the first six months, and this is not always related to maternal workforce participation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of growth, diving history, and high altitude on blood oxygen capacity in harbor seals

    NASA Technical Reports Server (NTRS)

    Kodama, A. M.; Elsner, R.; Pace, N.

    1977-01-01

    Blood volume and body composition for diving and nondiving harbor seals were measured at six-week intervals during a 10-month period of captitivity. Whole body hematocrit, red cell volume per kg of lean body mass, and total circulating hemoglobin per kg lean body mass were significantly higher in the diving group, but relatively large blood volumes expressed in terms of body weight (11-12%) were found in both groups. A pair of harbor seals exposed to high altitude for about three months registered significant increases in red cell volume, blood hemoglobin levels, and blood volume expressed in terms of body weight; results of alveolar gas analyses indicate that hyperventilation also occurred. These typical mammalian responses to hypoxia suggest that the harbor seal's large blood volume and high hemoglobin content are an expression of phylogenetic control, and that in spite of its adaptability to apnea during its diving life, the animal cannot be considered preacclimatized to high altitude.

  12. Improved memory for reward cues following acute buprenorphine administration in humans.

    PubMed

    Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack

    2015-03-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.

  13. Magmas Overexpression Inhibits Staurosporine Induced Apoptosis in Rat Pituitary Adenoma Cell Lines

    PubMed Central

    Gentilin, Erica; Minoia, Mariella; Molè, Daniela; delgi Uberti, Ettore C.; Zatelli, Maria Chiara

    2013-01-01

    Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development. PMID:24069394

  14. Persistence of Amygdala-Hippocampal Connectivity and Multi-Voxel Correlation Structures During Awake Rest After Fear Learning Predicts Long-Term Expression of Fear.

    PubMed

    Hermans, Erno J; Kanen, Jonathan W; Tambini, Arielle; Fernández, Guillén; Davachi, Lila; Phelps, Elizabeth A

    2017-05-01

    After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning "offline" periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region

    PubMed Central

    Englert, Neal A.; Turesky, Robert J.; Han, Weiguo; Bessette, Erin E.; Spivack, Simon D.; Caggana, Michele; Spink, David C.; Spink, Barbara C.

    2014-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, contributes to carcinogenesis through its role in the regulation of cytochrome P450 1 (CYP1)-catalyzed metabolism of carcinogens. Here, we investigated genetic and epigenetic mechanisms that affect AhR expression. Analyses of the human AHR proximal promoter in MCF-7 human breast cancer cells using luciferase assays and electrophoretic mobility shift assays revealed multiple specificity protein (Sp) 1 binding sequences that are transcriptional activators in vitro. The regulation of AhR expression was evaluated in long-term estrogen exposed (LTEE) MCF-7 cells, which showed increased AhR expression, enhanced CYP1 inducibility, and increased capacity to form DNA adducts when exposed to the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. The increased AhR expression in LTEE cells was found not to result from increased mRNA stability, differential RNA processing, or decreased DNA methylation. Analysis of the AHR proximal promoter region using chromatin immunoprecipitation confirmed that enhanced expression of AhR in LTEE cells involves changes in histone modifications, notably decreased trimethylation of histone 3, lysine 27. Upon further examination of the GC-rich Sp1-binding region, we confirmed that it contains a polymorphic (GGGGC)n repeat. In a population of newborns from New York State, the allele frequency of (GGGGC)n was n = 4>5≫6, 2. Circular dichroism spectroscopy revealed the ability of sequences of this GC-rich region to form guanine-quadruplex structures in vitro. These studies revealed multiple levels at which AhR expression may be controlled, and offer additional insights into mechanisms regulating AhR expression that can ultimately impact carcinogenesis. PMID:22728919

  16. Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9.

    PubMed

    Schroeter, Marco R; Stein, Susanne; Heida, Nana-Maria; Leifheit-Nestler, Maren; Cheng, I-Fen; Gogiraju, Rajinikanth; Christiansen, Hans; Maier, Lars S; Shah, Ajay M; Hasenfuss, Gerd; Konstantinides, Stavros; Schäfer, Katrin

    2012-01-01

    Bone marrow (BM) progenitors participate in new vessel formation and endothelial repair. The leptin receptor (ObR) is expressed on hematopoietic cells; however, the effects of leptin on BM progenitor cells and their angiogenic potential are unknown. In the present study, we show that the short-term administration of leptin (over five consecutive days) into wild-type mice increased the number of circulating, BM-derived sca-1(+), flk-1(+) vascular progenitors, 95 ± 1.7% of which also expressed ObR. Ex vivo stimulation of BM cells with leptin enhanced the expression of NADPH oxidase isoform 2 (NOX2), and the leptin-induced increase in reactive oxygen species production, matrix metalloproteinase-9 (MMP9) expression and circulating soluble KitL levels was absent in mice lacking NOX2. Furthermore, intraperitoneal injections of leptin improved perfusion and increased the number of BM-derived, CD31-positive endothelial cells in ischaemic hindlimbs after femoral artery ligation. The effects of leptin on the mobilization of sca-1(+), flk-1(+) cells and neovascularization were abolished in mice transplanted with BM from ObR-deficient and in NOX2(-/-) mice. Our findings suggest that the angiogenic effects of leptin involve sca-1(+), flk-1(+) vascular progenitor cells mobilized from the BM in response to ObR-mediated activation of NOX2, increased MMP9 expression, and sKitL release.

  17. Thyroid hormone stimulates myoglobin expression in soleus and extensorum digitalis longus muscles of rats: concomitant alterations in the activities of Krebs cycle oxidative enzymes.

    PubMed

    dos Santos, R A; Giannocco, G; Nunes, M T

    2001-06-01

    Myoglobin (Mb) gene expression, Citrate Synthase (CS) and Succinate Dehydrogenase (SDH) activities of Soleus (S) and Extensorum Digitalis Longus (EDL) muscles were studied in intact, thyroidectomized and T3-treated (25 microg/100g, BW, ip, 15 days) rats. The fiber type composition of S muscle was also evaluated and used as control of the T3-induced effects. In the S muscle, the T3 treatment increased the Mb mRNA and protein expression, as well as the CS and SDH activity. These changes occurred parallel to the expected increase in type II (fast) and decrease in type I (slow)-fibers in S muscle. In the hypothyroid state, the Mb mRNA was decreased, while the Mb expression and CS activity tended to decrease. In contrast the SDH activity was increased, probably due to the enhanced motor activity that occurs as a short-term response to the hypothermia induced by hypothyroidism. In the EDL, the alterations were milder than those in S muscle in both thyroid states. These findings show that Mb gene expression is induced by T3. This is concomitant with the enhancement of Krebs Cycle enzyme activities and provides additional evidence that thyroid hormone increases the aerobic potential of skeletal muscles, as well as the speed of muscle contraction.

  18. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction.

    PubMed

    Kelai, Sabah; Maussion, Gilles; Noble, Florence; Boni, Claudette; Ramoz, Nicolas; Moalic, Jean-Marie; Peuchmaur, Michel; Gorwood, Philip; Simonneau, Michel

    2008-05-07

    Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2beta and Nlgn3 in the substantia nigra and Nlgn1 in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3beta expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning.

  19. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.

    PubMed

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-20

    The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits' hearts after SXSM treatment. Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain.

  20. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain. PMID:28091410

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, C. A.; Sullivan, R.; Johnson, C.

    CO2 and H2 are promising feedstocks for production of valuable biocompounds. Ralstonia eutropha utilizes these feedstocks to generate energy (ATP) and reductant (NAD(P)H) via oxidation of H2 by a membrane-bound (MBH) and a soluble hydrogenase (SH) for CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle. Increased expression of the enzyme that fixes CO2 (RubisCO) resulted in 6-fold activity improvement in vitro, while increased expression of the MBH operon or the SH operon plus MBH operon maturation factors necessary for activity resulted in a 10-fold enhancement. Current research involves genetic manipulation of two endogenous cbb operons for increased expression, analysis of expressionmore » and activity of CBB/MBH/SH, cofactor ratios, and downstream products during autotrophic growth in control versus enhanced strains, and development of strategies for long-term, optimal overexpression. These studies will improve our understanding of autotrophic metabolism and provide a chassis strain for autotrophic production of biodiesel and other valuable carbon biocompounds.« less

  2. Persistent Short-Term Memory Defects Following Sleep Deprivation in a Drosophila Model of Parkinson Disease

    PubMed Central

    Seugnet, Laurent; Galvin, James E.; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J.

    2009-01-01

    Study Objectives: Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on short-term memory using a Drosophila model of Parkinson disease. Participants: Transgenic strains of Drosophila melanogaster. Design: Using the GAL4-UAS system, human α-synuclein was expressed throughout the nervous system of adult flies. α-Synuclein expressing flies (αS flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. Measurments and Results: When sleep deprived at an intermediate stage of the pathology, αS flies showed persistent short-term memory deficits that lasted ≥ 3 days. Cognitive deficits were not observed in younger αS flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived αS flies. Blocking D1-like receptors during sleep deprivation prevented persistent short-term memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. Conclusions: These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics. Citation: Seugnet L; Galvin JE; Suzuki Y; Gottschalk L; Shaw PJ. Persistent short-term memory defects following sleep deprivation in a drosophila model of parkinson disease. SLEEP 2009;32(8):984-992. PMID:19725249

  3. The Roles of Phasic and Tonic Dopamine in Tic Learning and Expression.

    PubMed

    Maia, Tiago V; Conceição, Vasco A

    2017-09-15

    Tourette syndrome (TS) prominently involves dopaminergic disturbances, but the precise nature of those disturbances has remained elusive. A substantial body of empirical work and recent computational models have characterized the specific roles of phasic and tonic dopamine (DA) in action learning and selection, respectively. Using insights from this work and models, we suggest that TS involves increases in both phasic and tonic DA, which produce increased propensities for tic learning and expression, respectively. We review the evidence from reinforcement-learning and habit-learning studies in TS, which supports the idea that TS involves increased phasic DA responses; we also review the evidence that tics engage the habit-learning circuitry. On the basis of these findings, we suggest that tics are exaggerated, maladaptive, and persistent motor habits reinforced by aberrant, increased phasic DA responses. Increased tonic DA amplifies the tendency to execute learned tics and also provides a fertile ground of motor hyperactivity for tic learning. We review evidence suggesting that antipsychotics may counter both the increased propensity for tic expression, by increasing excitability in the indirect pathway, and the increased propensity for tic learning, by shifting plasticity in the indirect pathway toward long-term potentiation (and possibly also through more complex mechanisms). Finally, we review evidence suggesting that low doses of DA agonists that effectively treat TS decrease both phasic and tonic DA, thereby also reducing the propensity for both tic learning and tic expression, respectively. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Long-term high-soybean oil feeding alters regulation of body temperature in rats.

    PubMed

    Tsushima, Hiromi; Yamada, Kazuyo; Miyazawa, Daisuke; Mori, Mayumi; Hashimoto, Yoko; Ohkubo, Takeshi; Hibino, Hidehiko; Okuyama, Harumi

    2014-01-01

    We investigated whether body temperature (BT) regulatory mechanisms are influenced by dietary fatty acids (FA). Male Wistar rats were fed a high-fat diet containing fish oil (HFD), soybean oil (HSD) or lard (HLD). At the 20-week intervention, the BT of the HSD and HLD groups were lower than that of the normal diet (ND) group in the light and dark periods. The intracerebroventricular injections of interleukin-1β and bombesin in the HSD group induced greater hyperthermia and weaker hypothermia, respectively, than in the ND group. The HSD differentially affected BT under both physiological and pharmacological conditions. In the hypothalamus, the ratio of n-6/n-3 FAs was higher in the HSD group compared with the ND group. DNA microarrays revealed increased expression of thyroid-stimulating hormone β-subunit, and decreased expression of several genes in the hypothalamus of the HSD group compared with the ND group. The HSD feeding increased several adipokine concentrations in the plasma. However, there were no adipokines or gene expressions that changed in only the HSD and HLD groups showing significant hypothermia under the physiological condition. These findings suggested that long-term HSD intake produces abnormal BT regulation. It is less likely that adipokines or proteins/peptides are involved in abnormal BT regulation under the physiological conditions after HSD feeding.

  5. The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells.

    PubMed

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.

  6. The Impact of cHS4 Insulators on DNA Transposon Vector Mobilization and Silencing in Retinal Pigment Epithelium Cells

    PubMed Central

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238

  7. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less

  8. Characterization of ribulose-1, 5-bisphosphate carboxylase/oxygenase and transcriptional analysis of its related genes in Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Shao, Zhanru; Liu, Fuli; Li, Qiuying; Yao, Jianting; Duan, Delin

    2014-03-01

    Saccharina japonica is a common macroalga in sublittoral communities of cold seawater environments, and consequently may have highly efficient ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activity for carbon assimilation. In our study, we cloned the full-length Rubisco gene from S. japonica ( SJ-rbc). It contained an open reading frame for a large subunit gene ( SJ — rbcL) of 1 467 bp, a small subunit gene ( SJ-rbcS) of 420 bp, and a SJ-rbcL/S intergenic spacer of 269 bp. The deduced peptides of SJ-rbcL and SJ-rbcS were 488 and 139 amino acids with theoretical molecular weights and isoelectric points of 53.97 kDa, 5.81 and 15.84 kDa, 4.71, respectively. After induction with 1 mmol/L isopropyl- β-D-thiogalactopyranoside for 5 h and purification by Ni2+ affinity chromatography, electrophoresis and western blot detection demonstrated successful expression of the 55 kDa SJ-rbcL protein. Real-time quantitative PCR showed that the mRNA levels of SJ-rbcL in gametophytes increased when transferred into normal growth conditions and exhibited diurnal variations: increased expression during the day but suppressed expression at night. This observation implied that Rubisco played a role in normal gametophytic growth and development. In juvenile sporophytes, mRNA levels of SJ-rbcL, carbonic anhydrase, Calvin-Benson-Bassham cycle-related enzyme, and chloroplast light-harvesting protein were remarkably increased under continuous light irradiance. Similarly, expression of these genes was up-regulated under blue light irradiance at 350 μmol/(m2·s). Our results indicate that long-term white light and short-term blue light irradiance enhances juvenile sporophytic growth by synergistic effects of various photosynthetic elements.

  9. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration

    PubMed Central

    Freeman, WM; Patel, KM; Brucklacher, RM; Lull, ME; Erwin, M; Morgan, D; Roberts, DCS; Vrana, KE

    2010-01-01

    Cocaine-responsive gene expression changes have been described after either no drug abstinence or short periods of abstinence. Little data exist on the persistence of these changes after long-term abstinence. Previously, we reported that after discrete-trial, cocaine self-administration and 10 days of forced abstinence, incubation of cocaine reinforcement was observable by a progressive ratio schedule. The present study used rat discrete-trial cocaine self-administration and long-term forced abstinence to examine: extinction responding, mRNA abundance of known cocaine-responsive genes, and chromatin remodeling. At 30 and 100 days of abstinence, extinction responding increased compared to 3-day abstinent rats. Decreases in both medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) c-fos, Nr4a1, Arc, and EGR1 mRNA were observed, and in most cases persisted, for 100 days of abstinence. The signaling peptides CART and NPY transiently increased in the mPFC, but returned to baseline levels following 10 days of abstinence. To investigate a potential regulatory mechanism for these persistent mRNA changes, levels of histone H3 acetylation at promoters for genes with altered mRNA expression were examined. In the mPFC, histone H3 acetylation decreased after 1 and 10 days of abstinence at the promoter for EGR1. H3 acetylation increased for NPY after 1 day of abstinence and returned to control levels by 10 days of abstinence. Behaviorally, these results demonstrate incubation after discrete-trial cocaine self-administration and prolonged forced abstinence. This incubation is accompanied by changes in gene expression that persist long after cessation of drug administration and may be regulated by chromatin remodeling. PMID:17851536

  10. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns.

    PubMed

    Pergolizzi, Barbara; Carriero, Vitina; Abbadessa, Giuliana; Penna, Claudia; Berchialla, Paola; De Francia, Silvia; Bracco, Enrico; Racca, Silvia

    2017-10-01

    Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.

  11. The effect of long-term hindlimb unloading on the expression of risk neurogenes encoding elements of serotonin-, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain.

    PubMed

    Kulikova, E A; Kulikov, V A; Sinyakova, N A; Kulikov, A V; Popova, N K

    2017-02-15

    The study of spaceflight effects on the brain is technically complex concern; complicated by the problem of applying an adequate ground model. The most-widely used experimental model to study the effect of microgravity is the tail-suspension hindlimb unloading model; however, its compliance with the effect of actual spaceflight on the brain is still unclear. We evaluated the effect of one month hindlimb unloading on the expression of genes related to the brain neuroplasticity-brain neutotrophic factors (Gdnf, Cdnf), apoptotic factors (Bcl-xl, Bax), serotonin- and dopaminergic systems (5-HT 2A , Maoa, Maob, Th, D1r, Comt), and compared the results with the data obtained on mice that spent one month in spaceflight on Russian biosatellite Bion-M1. No effect of hindlimb unloading was observed on the expression of most genes, which were considered as risk neurogenes for long-term actual spaceflight. The opposite effect of hindlimb unloading and spaceflight was found on the level of mRNA of D1 dopamine receptor and catechol-O-methyltransferase in the striatum. At the same time, the expression of Maob in the midbrain decreased, and the expression of Bcl-xl genes increased in the hippocampus, which corresponds to the effect of spaceflight. However, the hindlimb unloading model failed to reproduce the majority of effects of long-term spaceflight on serotonin-, dopaminergic systems and some apoptotic factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns.

    PubMed

    Xiong, Xian-rong; Lan, Dao-liang; Li, Jian; Wang, Yong; Zhong, Jin-cheng

    2015-02-01

    Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.

  13. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling

    PubMed Central

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J.; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M.; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Ströbel, Philipp; Marx, Alexander

    2017-01-01

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs. PMID:29163772

  14. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. © 2014 Wiley Periodicals, Inc.

  15. The effects of syntactic complexity on the human-computer interaction

    NASA Technical Reports Server (NTRS)

    Chechile, R. A.; Fleischman, R. N.; Sadoski, D. M.

    1986-01-01

    Three divided-attention experiments were performed to evaluate the effectiveness of a syntactic analysis of the primary task of editing flight route-way-point information. For all editing conditions, a formal syntactic expression was developed for the operator's interaction with the computer. In terms of the syntactic expression, four measures of syntactic were examined. Increased syntactic complexity did increase the time to train operators, but once the operators were trained, syntactic complexity did not influence the divided-attention performance. However, the number of memory retrievals required of the operator significantly accounted for the variation in the accuracy, workload, and task completion time found on the different editing tasks under attention-sharing conditions.

  16. Purposes, Causes and Consequences of Excessive Internet Use among Turkish Adolescents

    ERIC Educational Resources Information Center

    Akar, Filiz

    2015-01-01

    Problem Statement: Excessive internet use, particularly problematic and negative consequences of internet use, is rapidly increasing among children and adolescents throughout the World and in Turkey. While the internet provides potential advantages for users in terms of the academic support, sharing ideas & feelings, and freedom of expression,…

  17. Cloning and Expression of Laccase from Trametes versicolor in Saccharomyces cerevisiae using a Novel Vector System

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of this research is to increase efficiency and decrease cost of ethanol fermentation of lignocellulosic feedstocks by combining pre-treatment using laccase enzyme and subsequent fermentation to ethanol through simultaneous saccharification and fermentation paradigms. The first st...

  18. Myometrial contractility influences oxytocin receptor (OXTR) expression in term trophoblast cells obtained from the maternal surface of the human placenta.

    PubMed

    Szukiewicz, Dariusz; Bilska, Anna; Mittal, Tarun Kumar; Stangret, Aleksandra; Wejman, Jaroslaw; Szewczyk, Grzegorz; Pyzlak, Michal; Zamlynski, Jacek

    2015-09-16

    Oxytocin (OXT) acts through its specific receptor (OXTR) and increased density of OXTR and/or augmented sensitivity to OXT were postulated as prerequisites of normal onset of labor. Expression of OXTR in the placental term trophoblast cells has not yet been analyzed in the context of contractile activity of the uterus. Here we examine comparatively OXT contents in the placental tissue adjacent to the uterine wall and expressions of OXTR in this tissue and corresponding isolated placental trophoblast cells. Twenty eight placentae after normal labors at term (group I, N = 14) and after cesarean sections performed without uterine contractile activity (group II, N = 14) have been collected. Tissue excised from the maternal surface of examined placenta was used for OXT concentration measurement, cytotrophoblast cell cultures preparation and immunohistochemistry of OXTR. Concentration of OXT was estimated in the tissue homogenates by an enzyme immunoassay with colorimetric detection. Cytotrophoblast cells were isolated using Kliman's method based on trypsin, DNase, and a 5-70% Percoll gradient centrifugation. The cultures were incubated for 5 days in normoxia. Both placental specimens and terminated cytotrophoblast cultures were fixed and embedded in paraffin before being immunostained for OXTR. Using light microscopy with computed morphometry for quantitative analysis, OXTR expressions were estimated in calibrated areas of the paraffin sections. There were not significant differences between the groups in respect to the mean OXT concentration. However, in both groups the median value of OXT concentration was significantly (p < 0.05) higher in the tissue obtained from the peripheral regions of the maternal surface of the placenta, compared to the samples from the central region of this surface. In placental tissue the mean expression of OXTR in group I was significantly (p < 0.05) increased by approximately 3.2-fold and 3.45-fold (the samples collected from central and peripheral regions, respectively) compared to the values obtained in group II. In the isolated primary trophoblast cultures the differences were even more evident (p < 0.02) and the mean change in OXTR expression in group I comprised approximately 6.9-fold increase and 6.5-fold increase (the samples collected from central and peripheral regions, respectively) compared to the values obtained in group II. Upregulation of OXTR within placental trophoblast cells localized close or adherent to uterine wall may play a crucial role in labor with efficient contractile activity (vaginal delivery). Further studies may disclose if this local OXT/OXTR signaling is utilized in the third stage of labor to elicit placental detachment or contribute in a more versatile way throughout the labor period.

  19. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.

    PubMed

    Villegas, Daniel; Handford, Michael; Alcalde, José Antonio; Perez-Donoso, Alonso

    2016-07-01

    Anthocyanins are secondary metabolites synthesized in grape berry skins via the phenylpropanoid pathway, with functions ranging from skin coloration to protection against pathogens or UV light. Accumulation of these compounds is highly variable depending on genetics, environmental factors and viticultural practices. Besides their biological functions, anthocyanins improve wine quality, as a high anthocyanin content in berries has a positive impact on the color, total phenolic concentration and, ultimately, the price of wine. The present work studies the effect of the pre-veraison application of pectin derived oligosaccharides (PDO) on the synthesis and accumulation of these compounds, and associates the changes observed with the expression of key genes in the phenylpropanoid pathways. To this end, pre-veraison Cabernet Sauvignon bunches were treated with PDO to subsequently determine total anthocyanin content, the anthocyanin profile (by HPLC-DAD) and gene expression (by qRT-PCR), using Ethrel and water treatments for comparison. The results show that PDO were as efficient as Ethrel in generating a significant rise in total anthocyanin content at 30 days after treatment (dat), compared with water treatments (1.32, 1.48 and 1.02 mg e.Mv-3G/g FW respectively) without any undesirable effect on berry size, soluble solids, tartaric acid concentration or pH. In addition, a significant alteration in the anthocyanin profile was observed. Specifically, a significant increase in the relative concentration of malvidin was observed for both PDO and Ethrel treatments, compared with water controls (52.8; 55.0 and 48.3%, respectively), with a significant rise in tri-hydroxylated forms and a fall in di-hydroxylated anthocyanins. The results of gene expression analyses suggest that the increment in total anthocyanin content is related to a short term increase in phenylalanine ammonia-lyase (PAL) expression, mediated by a decrease in MYB4A expression. A longer term increase in UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) expression, probably mediated by a rise in MYBA1 was also observed. Regarding the anthocyanin profile, despite the increase observed in MYB5A expression in PDO and Ethrel treatments, no changes in flavonoid 3'-hydroxylase (F-3'-H); flavonoid 3'5'-hydroxylase (F-3'5'-H) or O-methyltransferase (OMT) could be related with the profile modifications described. Overall, this study highlights that application of PDO is a novel means of altering specific grape berry anthocyanins, and could be a means of positively influencing wine quality without the addition of agrochemicals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    PubMed

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  2. Chemoprevention of Oral Cancer by Topical Application of Black Raspberries on High At-Risk Mucosa

    PubMed Central

    Warner, Blake M.; Casto, Bruce C.; Knobloch, Thomas J.; Accurso, Brent T.; Weghorst, Christopher M.

    2014-01-01

    Objective To evaluate the preclinical efficacy of topical administration of freeze-dried black raspberries (BRBs) to inhibit the progression of premalignant oral lesions and modulate biomarkers of cancer development in high at-risk mucosa (HARM). Study Design Hamster cheek pouches (HCPs) were treated with carcinogen for six weeks to initiate a HARM microenvironment. Subsequently, right HCPs were topically administered a BRB suspension in short-term or long-term studies. After 12 weeks, SCC multiplicity, SCC incidence, and cell proliferation rates were evaluated. mRNA expression was measured in short-term treated pouches for selected oral cancer biomarkers. Results SCC multiplicity (−41.3%), tumor incidence (−37.1%), and proliferation rate (−6.9%) were reduced in HCPs receiving BRBs. Topical BRBs correlated with an increase in Rb1 expression in developing oral lesions. Conclusion Topical BRBs inhibit SCC development when targeted to HARM tissues. These results support the translational role of BRBs to prevent oral cancer development in humans. PMID:25457886

  3. Long-term Dietary Macronutrients and Hepatic Gene Expression in Aging Mice.

    PubMed

    Gokarn, Rahul; Solon-Biet, Samantha M; Cogger, Victoria C; Cooney, Gregory J; Wahl, Devin; McMahon, Aisling C; Mitchell, James R; Mitchell, Sarah J; Hine, Christopher; de Cabo, Rafael; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2018-04-23

    Nutrition influences both hepatic function and aging, but mechanisms are poorly understood. Here, the effects of lifelong, ad libitum-fed diets varying in macronutrients and energy on hepatic gene expression were studied. Gene expression was measured using Affymetrix mouse arrays in livers of 46 mice aged 15 months fed one of 25 diets varying in protein, carbohydrates, fat, and energy density from 3 weeks of age. Gene expression was almost entirely influenced by protein intake. Carbohydrate and fat intake had few effects on gene expression compared with protein. Pathways and processes associated with protein intake included those involved with mitochondrial function, metabolic signaling (PI3K-Akt, AMPK, mTOR) and metabolism of protein and amino acids. Protein intake had variable effects on genes associated with regulation of longevity and influenced by caloric restriction. Among the genes of interest with expression that were significantly associated with protein intake are Cth, Gls2, Igf1, and Nnmt, which were increased with higher protein intake, and Igf2bp2, Fgf21, Prkab2, and Mtor, which were increased with lower protein intake. Dietary protein has a powerful impact on hepatic gene expression in older mice, with some overlap with genes previously reported to be involved with regulation of longevity or caloric restriction.

  4. Long-term hypoxia modulates expression of key genes regulating adipose function in the late-gestation ovine fetus.

    PubMed

    Myers, Dean A; Hanson, Krista; Mlynarczyk, Malgorzata; Kaushal, Kanchan M; Ducsay, Charles A

    2008-04-01

    A major function of abdominal adipose in the newborn is nonshivering thermogenesis. Uncoupling protein (UCP) UCP1 and UCP2 play major roles in thermogenesis. The present study tested the hypothesis that long-term hypoxia (LTH) modulates expression of UCP1 and UCP2, and key genes regulating expression of these genes in the late-gestation ovine fetus. Ewes were maintained at high altitude (3,820 m) from 30 to 138 days gestation (dG); perirenal adipose tissue was collected from LTH and age-matched, normoxic control fetuses at 139-141 dG. Quantitative real-time PCR was used to analyze mRNA for UCP1, UCP2, 11beta hydroxysteroid dehydrogenase type 1 (HSD11B1) and 2 (HSD11B2), glucocorticoid receptor (GR), beta3 adrenergic receptor (beta3AR), deiodinase type 1 (DIO1) and DIO2, peroxisome proliferator activated receptor (PPAR) alpha and gamma and PPARgamma coactivator 1 (PGC1alpha). Concentrations of mRNA for UCP1, HSD11B1, PPARgamma, PGC1, DIO1, and DIO2 were significantly higher in perirenal adipose of LTH compared with control fetuses, while mRNA for HSD11B2, GR, or PPARalpha in perirenal adipose did not differ between control and LTH fetuses. The increased expression of UCP1 is likely an adaptive response to LTH, assuring adequate thermogenesis in the event of birth under oxygen-limiting conditions. Because both glucocorticoids and thyroid hormone regulate UCP1 expression, the increase in HSD11B1, DIO1, and DIO2 implicate increased adipose capacity for local synthesis of these hormones. PPARgamma and its coactivator may provide an underlying mechanism via which LTH alters development of the fetal adipocyte. These findings have important implications regarding fetal/neonatal adipose tissue function in response to LTH.

  5. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.

    PubMed

    Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang

    2002-10-01

    CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.

  7. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    PubMed

    Brugger, Daniel; Windisch, Wilhelm M

    2017-04-01

    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism. Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets. Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients. Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively ( P < 0.0001). Further reduction in dietary zinc promoted a linear decrease of glutathione and α-tocopherol (30 and 0.6 nmol/mg dietary Zn, respectively; P < 0.05) and a linear increase of gene expression [0.02, 0.01, 0.003, and 0.02 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05)]. Tissue zinc declined linearly with reduction in dietary zinc (0.21 mg tissue Zn/mg dietary Zn; P = 0.004) from 88.0 to 42.7 mg/kg ( P < 0.0001), below which it linearly increased inversely to further reduction in dietary zinc (0.57 mg tissue Zn/mg dietary Zn; P = 0.006). H 2 O 2 -detoxification activity and metallothionein 1A gene expression decreased linearly with reduction in dietary zinc from 88.0 to 28.1 mg/kg [0.02 mU and 0.008 Log 10 (2 -ΔΔCt )/mg dietary Zn, respectively; P < 0.05]. Fas cell-surface death receptor, etoposide-induced 2.4 and cyclin-dependent kinase inhibitor 1A gene expression correlated positively to cardiac zinc in piglets fed ≤42.7 mg Zn/kg ( r ≥ 0.97; P < 0.05). Conclusions: Short-term SZD decreased cardiac antioxidative capacity of weaned piglets while simultaneously increasing stress-associated gene expression and zinc concentration. This is the first report to our knowledge on the effects of SZD on redox metabolism. © 2017 American Society for Nutrition.

  8. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    PubMed

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  10. Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney

    PubMed Central

    Rohatgi, Rajeev; Flores, Daniel

    2010-01-01

    Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105

  11. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    PubMed

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  12. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    PubMed

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  13. Long-term high-fat consumption leads to downregulation of Akt phosphorylation of eNOS at Ser1177 and upregulation of Sirtuin-1 expression in rat cavernous tissue.

    PubMed

    Tomada, I; Negrão, R; Almeida, H; Neves, D

    2014-04-01

    Long-term consumption of high-fat diets negatively interferes with metabolic status and promotes endothelial dysfunction and inflammation. In the cavernous tissue, these outcomes become conspicuous in the elderly and strongly affect penile erection, a vascular process highly dependent on local nitric oxide bioavailability. Although epidemiological data links erectile dysfunction to nutritional patterns, the underlying molecular mechanisms remain unclear. Therefore, we investigated the effects of long-term high-fat diet on endothelial nitric oxide synthase (eNOS)-Sirtuin-1 axis and Akt/eNOS phosphorylation in the cavernous tissue of Sprague-Dawley rats, and compared with energy-restricted animals. We demonstrated that high-fat diet intake led to a noteworthy decrease in eNOS phosphorylation at Ser1177 residue through the Akt pathway, which seems to be compensated by upregulation of phosphorylation at Ser615, but without an increment in nitric oxide production. These results are accompanied by an increase of systemic inflammatory markers and upregulation of the inducible NOS and of the deacetylase Sirtuin-1 in the cavernous tissue to levels apparently detrimental to cells and to metabolic homeostasis. Conversely, in long-term energy-restricted animals, the rate of phosphorylation of eNOS at Ser1177 diminished, but the activation of the enzyme increased through phosphorylation of eNOS at Ser615, resulting in an enhancement in nitric oxide bioavailability. Taken together, our results demonstrate that long-term nutritional conditions override the influence of age on the eNOS expression and activation in rat cavernous tissue.

  14. The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression.

    PubMed

    Park, Jun-Beom

    2012-03-01

    Ascorbic acid (AA), β-glycerophosphate (GP), and dexamethasone (DEX) are the compounds known to favor the expression of the osteoblastic phenotype in several bone cell systems. In this report, the combination effects of differentiation agents on osteoprecursor cells were evaluated. The effect on cell proliferation was determined by a cell viability test with morphologic analysis. Differentiation and mineralization were evaluated using an alkaline phosphatase activity test and alizarin red-S staining. Protein expressions related to bone formation, such as transforming growth factor-beta (TGF-β), estrogen receptor-alpha (ER-α), and osteopontin (OPN) were evaluated by using a Western blot analysis. AA and GP provided an inductive effect for differentiation of osteoprecusor cells, while short-term application of DEX seemed to lead to a dose-dependent increase of cellular differentiation. Long-term use of DEX seemed to reduce mineralization. These effects may seem to be regulated by the expression of ER-α, OPN, and TGF-β. Further studies related to this mechanism within the in vivo model may be necessary to ascertain greater detail. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    PubMed

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-06-01

    The remarkable regeneration capability of skeletal muscle depends on the coordinated proliferation and differentiation of satellite cells (SCs). The self-renewal of SCs is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in SCs in vivo remains largely unknown. Here, we demonstrate that SCs are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of SCs by maintaining their quiescence, increasing their self-renewal, and blocking their myogenic differentiation. HIF2A stabilization in SCs cultured under normoxia augments their engraftment potential in regenerative muscle. Conversely, HIF2A ablation leads to the depletion of SCs and their consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerates muscle regeneration by increasing SC proliferation and differentiation. Mechanistically, HIF2A induces the quiescence and self-renewal of SCs by binding the promoter of the Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in SCs and may be therapeutically targeted to improve muscle regeneration.

  16. Molecular cloning, characterization and expression profiles of multiple leptin genes and a leptin receptor gene in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Huixian; Chen, Huapu; Zhang, Yong; Li, Shuisheng; Lu, Danqi; Zhang, Haifa; Meng, Zining; Liu, Xiaochun; Lin, Haoran

    2013-01-15

    Leptin plays key roles in body weight regulation, energy metabolism, food intake, reproduction and immunity in mammals. However, its function in teleosts is still unclear. In the present study, two leptin genes (gLepA and gLepB) and one leptin receptor gene (gLepR) were cloned and characterized in orange-spotted grouper (Epinephelus coioides). The cDNAs of gLepA and gLepB were 671 bp and 684 bp in length, encoding for proteins of 161 amino acid (aa) and 158 aa, respectively. The three-dimensional (3D) structures modeling of gLepA and gLepB showed strong conservation of tertiary structure with that of other vertebrates. The total length of gLepR cDNA was 4242 bp, encoding a protein of 1169 aa which contained all functionally important domains conserved among vertebrate LEPR. Tissue distribution analysis showed that gLepA was highly expressed in cerebellum, liver and ovary, while gLepB mRNA abundantly in the brain regions, as well as in the ovary with some extend. The gLepR was mainly expressed in kidney, head kidney and most of brain regions. Analysis of expression profiles of gLep and gLepR genes during the embryonic stages showed that high expression of gLepR was observed in the brain vesicle stage, while neither gLepA nor gLepB mRNA was detected during different embryonic stages. Finally, fasting and refeeding experiments were carried out to investigate the possible function of leptin genes in food intake and energy metabolism, and the results showed that a significant increase of gLepA expression in the liver was induced by food deprivation in both short-term (7 days) and long-term (3 weeks) fasting and gLepA mRNA upregulation was eliminated after refeeding, while gLepB wasn't detected in the liver of grouper during fasting. No significant differences in hypothalamic leptin and leptin receptor expression were found during short-term fasting and refeeding. Hepatic expression of gLepA mRNA increased significantly 9h after a single meal. These results suggested gLepA, other than gLepB, functioned in the regulation of energy metabolism and food intake in this Perciform fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  18. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    PubMed

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.

  19. Adipose Tissue-Derived Mesenchymal Stem Cells in Long-Term Dialysis Patients Display Downregulation of PCAF Expression and Poor Angiogenesis Activation

    PubMed Central

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients. PMID:25025381

  20. Helios expression and Foxp3 TSDR methylation of IFNy+ and IFNy- Treg from kidney transplant recipients with good long-term graft function.

    PubMed

    Trojan, Karina; Unterrainer, Christian; Weimer, Rolf; Bulut, Nuray; Morath, Christian; Aly, Mostafa; Zhu, Li; Opelz, Gerhard; Daniel, Volker

    2017-01-01

    There is circumstantial evidence that IFNy+ Treg might have clinical relevance in transplantation. IFNy+ Treg express IFNy receptors and are induced by IFNy. In the present study we investigated in kidney transplant recipients with good long-term stable graft function the absolute cell counts of IFNy+ Treg subsets and whether their expression of Foxp3 is stable or transient. Helios expression determined by eight-color-fluorescence flow cytometry and methylation status of the Foxp3 Treg specific demethylation region (TSDR) served as indicators for stability of Foxp3 expression. Methylation status was investigated in enriched IFNy+ and IFNy- Treg preparations originating from peripheral blood using high resolution melt analysis. A total of 136 transplant recipients and 52 healthy controls were studied. Proportions of IFNy+ Treg were similar in patients and healthy controls (0.05% and 0.04% of all CD4+ lymphocytes; p = n.s.). Patients also had similar absolute counts of IFNy producing Helios+ and Helios- Treg (p = n.s.). Most of the IFNy+ and IFNy- Treg in transplant recipients had a methylated Foxp3 TSDR, however, there was a sizeable proportion of IFNy+ and IFNy- Treg with demethylated Foxp3 TSDR. Male and female patients showed more frequently methylated IFNy+ and IFNy- Treg than male and female controls (all p<0.05). Kidney transplant recipients with good long-term stable graft function have similar levels of IFNy+ Treg as healthy controls. IFNy+ and IFNy- Treg subsets in patients consist of cells with stable and cells with transient Foxp3 expression; however, patients showed more frequently methylated IFNy+ and IFNy- Treg than controls. The data show increased levels of Treg subsets with stable as well as transient Foxp3 expression in patients with stable allograft acceptance compared to healthy controls.

  1. KPNA2 predicts long term survival in patients with anaplastic oligoastrocytomas.

    PubMed

    Gousias, Konstantinos; Niehusmann, Pitt; Gielen, Gerrit; Simon, Matthias; Boström, Jan

    2014-10-01

    The family of karyopherins comprises importins and exportins which are both involved in nucleocytoplasmic shuttling. Increased levels of karyopherin a2/importin 1 (KPNA2) and chromosome region maintenance protein 1/exportin 1 (CRM1) have been associated with poorer prognosis in patients with infiltrative astrocytomas. Isocitrate dehydrogenase 1 gene (IDH1) R132H mutation status was also recently identified as a prognostic factor for malignant gliomas. We evaluated KPNA2 and CRM1, as well as the IDH1 mutation status, as possible novel biomarkers for World Health Organization grade III anaplastic oligoastrocytomas (AOA). We analyzed nuclear expression of KPNA2 by immunohistochemistry in 72 primary anaplastic gliomas (29 AOA, 24 anaplastic astrocytomas, 19 anaplastic oligodendrogliomas). The IDH1 mutation status was also determined in patients with anaplastic astrocytomas and AOA, and AOA patients were additionally evaluated for CRM1 nuclear expression. Long term survivors (LTS; >8 years) with AOA showed lower KPNA2 expression levels compared to non-LTS (p=0.005). KPNA2 expression (⩾ 5% versus <5%, 1-<5%, median) was found to correlate inversely with overall survival (OS) and progression-free survival (PFS) in our overall series as well as in the AOA group (anaplastic gliomas: OS p=0.017; PFS p=0.033; AOA: OS p=0.017, PFS p=0.040). Mutant IDH1-R132H was detected in 69% of the AOA cohort; a combination of KPNA2 low expression and mutant IDH1-R132H was only seen in LTS (p=0.050). No differences between the histological subtypes were observed in terms of KPNA2 expression and IDH1-R132H mutation status. To our knowledge this is the first time it has been shown that KPNA2 expression may have potential as a prognostic biomarker for AOA as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Maternal stress in pregnancy affects myelination and neurosteroid regulatory pathways in the guinea pig cerebellum.

    PubMed

    Bennett, Greer A; Palliser, Hannah K; Shaw, Julia C; Palazzi, Kerrin L; Walker, David W; Hirst, Jonathan J

    2017-11-01

    Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABA A receptor (GABA A R) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABA A R subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.

  3. The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells.

    PubMed

    Brodie, Shlomit; Lee, Hae Kyung; Jiang, Wei; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M; Datta, Indrani; Kalkanis, Steve; Ginsberg, Doron; Brodie, Chaya

    2017-05-09

    Despite advances in novel therapeutic approaches for the treatment of glioblastoma (GBM), the median survival of 12-14 months has not changed significantly. Therefore, there is an imperative need to identify molecular mechanisms that play a role in patient survival. Here, we analyzed the expression and functions of a novel lncRNA, TALNEC2 that was identified using RNA seq of E2F1-regulated lncRNAs. TALNEC2 was localized to the cytosol and its expression was E2F1-regulated and cell-cycle dependent. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM specimens derived from short-term survivors and in glioma cells and glioma stem cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the cells in the G1\\S phase of the cell cycle in various cancer cell lines. In addition, silencing of TALNEC2 decreased the self-renewal and mesenchymal transformation of GSCs, increased sensitivity of these cells to radiation and prolonged survival of mice bearing GSC-derived xenografts. Using miRNA array analysis, we identified specific miRNAs that were altered in the silenced cells that were associated with cell-cycle progression, proliferation and mesenchymal transformation. Two of the downregulated miRNAs, miR-21 and miR-191, mediated some of TALNEC2 effects on the stemness and mesenchymal transformation of GSCs. In conclusion, we identified a novel E2F1-regulated lncRNA that is highly expressed in GBM and in tumors from patients of short-term survival. The expression of TALNEC2 is associated with the increased tumorigenic potential of GSCs and their resistance to radiation. We conclude that TALNEC2 is an attractive therapeutic target for the treatment of GBM.

  4. Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice.

    PubMed

    Maejima, Hiroshi; Kanemura, Naohiko; Kokubun, Takanori; Murata, Kenji; Takayanagi, Kiyomi

    2018-02-05

    Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    PubMed

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  6. Long-Term Haloperidol Treatment Prolongs QT Interval and Increases Expression of Sigma 1 and IP3 Receptors in Guinea Pig Hearts.

    PubMed

    Stracina, Tibor; Slaninova, Iva; Polanska, Hana; Axmanova, Martina; Olejnickova, Veronika; Konecny, Petr; Masarik, Michal; Krizanova, Olga; Novakova, Marie

    2015-07-01

    Haloperidol is a neuroleptic drug used for a medication of various psychoses and deliria. Its administration is frequently accompanied by cardiovascular side effects, expressed as QT interval prolongation and occurrence of even lethal arrhythmias. Despite these side effects, haloperidol is still prescribed in Europe in clinical practice. Haloperidol binds to sigma receptors that are coupled with inositol 1,4,5-trisphosphate (IP3) receptors. Sigma receptors are expressed in various tissues, including heart muscle, and they modulate potassium channels. Together with IP3 receptors, sigma receptors are also involved in calcium handling in various tissues. Therefore, the present work aimed to study the effects of long-term haloperidol administration on the cardiac function. Haloperidol (2 mg/kg once a day) or vehiculum was administered by intraperitoneal injection to guinea pigs for 21 consecutive days. We measured the responsiveness of the hearts isolated from the haloperidol-treated animals to additional application of haloperidol. Expression of the sigma 1 receptor and IP3 receptors was studied by real time-PCR and immunohistochemical analyses. Haloperidol treatment caused the significant decrease in the relative heart rate and the prolongation of QT interval of the isolated hearts from the haloperidol-treated animals, compared to the hearts isolated from control animals. The expression of sigma 1 and IP3 type 1 and type 2 receptors was increased in both atria of the haloperidol-treated animals but not in ventricles. The modulation of sigma 1 and IP3 receptors may lead to altered calcium handling in cardiomyocytes and thus contribute to changed sensitivity of cardiac cells to arrhythmias.

  7. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice.

    PubMed

    Agabiti-Rosei, Claudia; Favero, Gaia; De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; Rodella, Luigi Fabrizio; Franceschetti, Lorenzo; Maria Sarkar, Anna; Agabiti-Rosei, Enrico; Rizzoni, Damiano; Rezzani, Rita

    2017-01-01

    Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.

  8. Leptin expression in mandarin fish Siniperca chuatsi (Basilewsky): Regulation by postprandial and short-term fasting treatment.

    PubMed

    Yuan, Xiaochen; Li, Aixuan; Liang, Xu-Fang; Huang, Wei; Song, Yi; He, Shan; Cai, Wenjing; Tao, Ya-xiong

    2016-04-01

    Most fish species possess duplicate leptin genes (LEP). Mandarin fish (Siniperca chuatsi) leptin A gene (sLEP-A) have been cloned in the previous study. In the present study, we cloned and characterized leptin B gene (sLEP-B) in mandarin fish, including a 471bp open reading frame (ORF) encoding a 158-amino acid protein. The three-dimensional (3D) structural model of sLEP-B protein showed a highly conserved of tertiary structure similar to that of other vertebrates. Genomic sequencing results indicated that sLEP-B possessed only one intron. This is the first report of the loss of an intron in LEP-B in Perciformes. The different distribution patterns of sLEPs suggest different physiological roles of these two genes. The presence of HNF3β, a liver-enriched transcription factor, only in sLEP-A indicated abundant expression and metabolic function of sLEP-A in the liver. In an in vivo experiment, the expressions of brain sLEP-A and sLEP-B were observed to increase after a meal. During the short-term fasting, the expressions of sLEPs in mandarin fish brain were decreased significantly. A persistent and significant increase in hepatic sLEP-A expression supported a relationship between leptin and food intake in mandarin fish. These results suggest that sLEP-A plays an important role in the regulation of energy homeostasis in this carnivorous fish, and sLEP-B is probably a specialized gene responsible for the central nervous system (CNS) control of energy regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice.

    PubMed

    Isken, Frank; Klaus, Susanne; Osterhoff, Martin; Pfeiffer, Andreas F H; Weickert, Martin O

    2010-04-01

    Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved. We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8+/-3.0 vs. 33.6+/-1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Region-Specific Onset of Handling-Induced Changes in Corticotropin-Releasing Factor and Glucocorticoid Receptor Expression

    PubMed Central

    Fenoglio, Kristina A.; Brunson, Kristen L.; Avishai-Eliner, Sarit; Chen, Yuncai; Baram, Tallie Z.

    2011-01-01

    Early-life experience including maternal care profoundly influences hormonal stress responses during adulthood. Daily handling on postnatal day (P) 2–9, eliciting augmented maternal care upon returning pups to their cage, permanently modifies the expression of the stress neuromodulators corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR). We have previously demonstrated reduced hypothalamic CRF expression already at the end of the handling period, followed by enhanced hippocampal GR mRNA levels (by P45). However, the initial site(s) and time of onset of these enduring changes have remained unclear. Therefore, we used semiquantitative in situ hybridization to delineate the spatiotemporal evolution of CRF and GR expression throughout stress-regulatory brain regions in handled (compared with undisturbed) pups. Enhanced CRF mRNA expression was apparent in the amygdaloid central nucleus (ACe) of handled pups already by P6. By P9, the augmented CRF mRNA levels persisted in ACe, accompanied by increased peptide expression in the bed nucleus of the stria terminalis and reduced expression in the paraventricular nucleus. The earliest change in GR consisted of reduced expression in the ACe of handled pups on P9, a time point when hippocampal GR expression was not yet affected. Thus, altered gene expression in ACe, bed nucleus of the stria terminalis as well as paraventricular nucleus may contribute to the molecular cascade by which handling (and increased maternal care) influences the stress response long term. PMID:15044366

  11. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    PubMed Central

    Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj

    2013-01-01

    Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615

  12. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    PubMed

    Hamilton, Kelly A; Wang, Yue; Raefsky, Sophia M; Berkowitz, Sean; Spangler, Ryan; Suire, Caitlin N; Camandola, Simonetta; Lipsky, Robert H; Mattson, Mark P

    2018-01-01

    Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT) control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM) revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq) screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide) had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in the hippocampus and that indirect regulation of Ide transcription may be involved in these phenotypes.

  13. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    PubMed

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.

  14. Vitamin A supplementation in early life affects later response to an obesogenic diet in rats.

    PubMed

    Granados, N; Amengual, J; Ribot, J; Musinovic, H; Ceresi, E; von Lintig, J; Palou, A; Bonet, M L

    2013-09-01

    To assess the influence of supplementation with a moderate dose of vitamin A in early life on adipose tissue development and the response to an obesogenic diet later in life. During the suckling period, rat pups received a daily oral dose of retinyl palmitate corresponding to three times the vitamin A ingested daily from maternal milk. Control rats received the vehicle (olive oil). Short-term effects of treatment on gene expression and morphology of white adipose tissue (WAT) were analyzed in animals on the day after weaning (day 21). To study long-term effects, control and vitamin A-treated rats were fed, after weaning, a normal fat or a high-fat (HF) diet for 16 weeks. WAT of vitamin A-treated young rats (day 21) was enriched in small adipocytes with a reduced expression of adipogenic markers (peroxisome proliferator-activated receptor γ and lipoprotein lipase) and an increased cell proliferation potential as indicated by increased expression of proliferating cell nuclear antigen. Increased retinoic acid (RA)-induced transcriptional responses were present in the tissues of vitamin A-treated young rats (day 21) including WAT. Vitamin A-treated rats developed higher adiposity than control rats on a HF diet as indicated by body composition analysis and increased WAT depot mass, adipocyte diameter, WAT DNA content, leptinemia and adipose leptin gene expression. Excess adiposity gain in vitamin A-treated rats developed in the absence of changes in body weight and was attributable to excess adipocyte hyperplasia. No differences in adiposity were observed between vitamin A-treated rats and control rats on a normal fat diet. Total retinol levels in WAT of vitamin A-treated rats were elevated at weaning (day 21) and normalized by day 135 of age. Vitamin A intake in the early stages of postnatal life favors subsequent HF diet-induced adiposity gain through mechanisms that may relate to changes in adipose tissue development, likely mediated by RA.

  15. Expression analysis of Toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure.

    PubMed

    Bharati, Jaya; Dangi, S S; Mishra, S R; Chouhan, V S; Verma, V; Shankar, O; Bharti, M K; Paul, A; Mahato, Dilip K; Rajesh, G; Singh, G; Maurya, V P; Bag, S; Kumar, Puneet; Sarkar, M

    2017-04-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15 days acclimation at thermo neutral zone (TNZ) in psychrometric chamber, animals were exposed at 42°C for 6h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (day 1, 5 and 12), after heat stress exposure (day 1-10, Short Term Heat Stress Acclimation - STHSA; day 15-23, Long Term Heat Stress Acclimation - LTHSA) and recovery period (day 7 and 12) and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. Serum cortisol concentration was assessed by RIA. The mRNA and protein expression in PBMCs were determined by qPCR and western blot respectively. Samples at TNZ were taken as control. Serum cortisol concentration was increased (P<0.05) during STHSA and gradually declined during LTHSA. Toll like receptor 2 (TLR 2) expression was up regulated (P<0.05) during STHSA and declined to basal level during LTHSA and recovery phase. However, toll like receptor 4 (TLR 4) expression was up regulated (P<0.05) during STHSA and LTHSA while declined in recovery phase. Interleukin 2 (IL2) and interleukin 6 (IL 6) were up regulated (P<0.05) during STHSA and reduced to basal level during LTHSA. PBMCs culture study was conducted to study transcriptional abundance of TLR2/4 and IL2/6 at different temperature-time combinations. The present findings indicate that TLR 2/4 and IL 2/6 could possibly play a vital role in thermo tolerance in Tharparkar cattle during short term and long term heat stress exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells.

    PubMed

    Savary, Camille C; Bellamri, Nessrine; Morzadec, Claudie; Langouët, Sophie; Lecureur, Valérie; Vernhet, Laurent

    2018-06-19

    Chronic exposure to diesel engine exhausts is associated with an increased risk of pulmonary diseases including lung cancer. Diesel engine exhausts contain large amounts of diesel exhaust particles (DEP) on which are adsorbed several carcinogenic compounds such as polycyclic aromatic hydrocarbons. Acute toxicity of high concentrations of DEP has been largely demonstrated in various in vitro cellular models. In contrast, the cellular and molecular impacts of low environmental concentrations of DEP on the phenotype of chronically exposed lung epithelial cells remain to be investigated. In the present study, we show that long term exposure (6 months) to 2 μg/ml (0.4 μg/cm 2 ) DEP (standard reference material 1650b) increased cytochrome P4501A mRNA levels in the human bronchial epithelial BEAS-2B cell line. However, chronic exposure to DEP did not change cell morphology, trigger epithelial-mesenchymal transition or increase anchorage-independent cell growth. Moreover, DEP increase neither the levels of reactive oxygen species or those of γ-histone H2AX, nor the expression of interleukin-6 and interleukin-8. Our results thus demonstrate that the chronic exposure to low DEP concentrations could increase cytochrome P501A gene expression in BEAS-2B cells but did not induce molecular effects related to genotoxicity, oxidative stress or inflammation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.

    PubMed

    He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.

  18. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    PubMed Central

    Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814

  19. Atrazine alters expression of reproductive and stress genes in the developing hypothalamus of the snapping turtle, Chelydra serpentina.

    PubMed

    Russart, Kathryn L G; Rhen, Turk

    2016-07-29

    Atrazine is an herbicide used to control broadleaf grasses and a suspected endocrine disrupting chemical. Snapping turtles lay eggs between late May and early June, which could lead to atrazine exposure via field runoff. Our goal was to determine whether a single exposure to 2ppb or 40ppb atrazine during embryogenesis could induce short- and long-term changes in gene expression within the hypothalamus of snapping turtles. We treated eggs with atrazine following sex determination and measured gene expression within the hypothalamus. We selected genes a priori for their role in the hypothalamus-pituitary-gonad or the hypothalamus-pituitary-adrenal axes of the endocrine system. We did not identify any changes in gene expression 24-h after treatment. However, at hatching AR, Kiss1R, and POMC expression was upregulated in both sexes, while expression of CYP19A1 and PDYN was increased in females. Six months after hatching, CYP19A1 and PRLH expression was increased in animals treated with 2ppb atrazine. Our study shows persistent changes in hypothalamic gene expression due to low-dose embryonic exposure to the herbicide atrazine with significant effects in both the HPG and HPA axes. Effects reported here appear to be conserved among vertebrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells.

    PubMed

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Uzgun, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-12-31

    phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.

  1. Role of Spermidine in Overwintering of Cyanobacteria

    PubMed Central

    Zhu, Xiangzhi; Li, Qiong; Yin, Chuntao; Fang, Xiantao

    2015-01-01

    ABSTRACT Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on gene expression at 5°C, lacZ was expressed from the promoter of carboxy(nor)spermidine decarboxylase gene (CASDC) in Synechocystis. Synechocystis 6803::PCASDC-lacZ pretreated at 15°C showed a high level of LacZ activity for a long period of time at 5°C; without the pretreatment or with protein synthesis inhibited at 5°C, the enzyme activity gradually decreased. In a spermidine-minus mutant harboring PCASDC-lacZ, lacZ showed an expression pattern as if protein synthesis were inhibited at 5°C, even though the stability of its mRNA increased. Four other genes, including rpoA that encodes the α subunit of RNA polymerase, showed similar expression patterns. The chill-light stress led to a rapid increase of protein carbonylation in Synechocystis. The protein carbonylation then quickly returned to the background level in the wild type but continued to slowly increase in the spermidine-minus mutant. Our results indicate that spermidine promotes gene expression and replacement of damaged proteins in cyanobacteria under the chill-light stress in winter. IMPORTANCE Outbreak of cyanobacterial blooms in freshwater lakes is a worldwide environmental problem. In the annual cycle of bloom-forming cyanobacteria, overwintering is the least understood stage. Survival of Synechocystis sp. strain PCC 6803 under long-term chill (5°C)-light stress has been established as a model for molecular studies on overwintering of cyanobacteria. Here, we show that spermidine, the most common polyamine in cyanobacteria, promotes the survivability of Synechocystis under long-term chill-light stress and that the physiological function is based on its effects on gene expression and recovery from protein damage. This is the first report on the role of polyamines in survival of overwintering cyanobacteria. We also analyzed spermidine synthesis pathways in cyanobacteria on the basis of bioinformatic and experimental data. PMID:25917915

  2. The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat

    PubMed Central

    2013-01-01

    Background Iron deficiency anaemia during pregnancy is a global problem, with short and long term consequences for maternal and child health. Animal models have demonstrated that the developing fetus is vulnerable to maternal iron restriction, impacting on postnatal metabolic and blood pressure regulation. Whilst long-term outcomes are similar across different models, the commonality in mechanistic events across models is unknown. This study examined the impact of iron deficiency on maternal and fetal iron homeostasis in two strains of rat. Methods Wistar (n=20) and Rowett Hooded Lister (RHL, n=19) rats were fed a control or low iron diet for 4 weeks prior to and during pregnancy. Tissues were collected at day 21 of gestation for analysis of iron content and mRNA/protein expression of regulatory proteins and transporters. Results A reduction in maternal liver iron content in response to the low iron diet was associated with upregulation of transferrin receptor expression and a reduction in hepcidin expression in the liver of both strains, which would be expected to promote increased iron absorption across the gut and increased turnover of iron in the liver. Placental expression of transferrin and DMT1+IRE were also upregulated, indicating adaptive responses to ensure availability of iron to the fetus. There were considerable differences in hepatic maternal and fetal iron content between strains. The higher quantity of iron present in livers from Wistar rats was not explained by differences in expression of intestinal iron transporters, and may instead reflect greater materno-fetal transfer in RHL rats as indicated by increased expression of placental iron transporters in this strain. Conclusions Our findings demonstrate substantial differences in iron homeostasis between two strains of rat during pregnancy, with variable impact of iron deficiency on the fetus. Whilst common developmental processes and pathways have been observed across different models of nutrient restriction during pregnancy, this study demonstrates differences in maternal adaptation which may impact on the trajectory of the programmed response. PMID:23635304

  3. Induction of plasminogen activator inhibitor type-1 (PAI-1) by hypoxia and irradiation in human head and neck carcinoma cell lines.

    PubMed

    Schilling, Daniela; Bayer, Christine; Geurts-Moespot, Anneke; Sweep, Fred C G J; Pruschy, Martin; Mengele, Karin; Sprague, Lisa D; Molls, Michael

    2007-07-30

    Squamous cell carcinoma of the head and neck (SCCHN) often contain highly radioresistant hypoxic regions, nonetheless, radiotherapy is a common treatment modality for these tumours. Reoxygenation during fractionated radiotherapy is desired to render these hypoxic tumour regions more radiosensitive. Hypoxia additionally leads to up-regulation of PAI-1, a protein involved in tumour progression and an established prognostic marker for poor outcome. However, the impact of reoxygenation and radiation on PAI-1 levels is not yet clear. Therefore, we investigated the kinetics of PAI-1 expression and secretion after hypoxia and reoxygenation, and determined the influence of ionizing radiation on PAI-1 levels in the two human SCCHN cell lines, BHY and FaDu. HIF-1alpha immunoblot was used to visualize the degree of hypoxia in the two cell lines. Cellular PAI-1 expression was investigated by immunofluorescence microscopy. ELISA was used to quantify relative changes in PAI-1 expression (cell lysates) and secretion (cell culture supernatants) in response to various lengths (2-4 h) of hypoxic exposure (< 0.66% O2), reoxygenation (24 h, 20% O2), and radiation (0, 2, 5 and 10 Gy). HIF-1alpha expression was induced between 2 and 24 h of hypoxic exposure. Intracellular PAI-1 expression was significantly increased in BHY and FaDu cells as early as 4 h after hypoxic exposure. A significant induction in secreted PAI-1 was seen after 12 to 24 h (BHY) and 8 to 24 h (FaDu) hypoxia, as compared to the normoxic control. A 24 h reoxygenation period caused significantly less PAI-1 secretion than a 24 h hypoxia period in FaDu cells. Irradiation led to an up-regulation of PAI-1 expression and secretion in both, BHY and FaDu cells. Our data suggest that both, short-term (approximately 4-8 h) and long-term (approximately 20-24 h) hypoxic exposure could increase PAI-1 levels in SCCHN in vivo. Importantly, radiation itself could lead to PAI-1 up-regulation in head and neck tumours, whereas reoxygenation of hypoxic tumour cells during fractionated radiotherapy could counteract the increased PAI-1 levels.

  4. Exercise Training and PI3Kα-Induced Electrical Remodeling Is Independent of Cellular Hypertrophy and Akt Signaling

    PubMed Central

    Yang, Kai-Chien; Tseng, Yi-Tang; Nerbonne, Jeanne M.

    2012-01-01

    In contrast with pathological hypertrophy, exercise-induced physiological hypertrophy is not associated with electrical abnormalities or increased arrhythmia risk. Recent studies have shown that increased cardiac-specific expression of phosphoinositide-3-kinase-α (PI3Kα), the key mediator of physiological hypertrophy, results in transcriptional upregulation of ion channel subunits in parallel with the increase in myocyte size (cellular hypertrophy) and the maintenance of myocardial excitability. The experiments here were undertaken to test the hypothesis that Akt1, which underlies PI3Kα-induced cellular hypertrophy, mediates the effects of augmented PI3Kα signaling on the transcriptional regulation of cardiac ion channels. In contrast to wild-type animals, chronic exercise (swim) training of mice (Akt1−/−) lacking Akt1 did not result in ventricular myocyte hypertrophy. Ventricular K+ current amplitudes and the expression of K+ channel subunits, however, were increased markedly in Akt1−/− animals with exercise training. Expression of the transcripts encoding inward (Na+ and Ca2+) channel subunits were also increased in Akt1−/− ventricles following swim training. Additional experiments in a transgenic mouse model of inducible cardiac-specific expression of constitutively active PI3Kα (icaPI3Kα) revealed that short-term activation of PI3Kα signaling in the myocardium also led to the transcriptional upregulation of ion channel subunits. Inhibition of cardiac Akt activation with triciribine in this (inducible caPI3Kα expression) model did not prevent the upregulation of myocardial ion channel subunits. These combined observations demonstrate that chronic exercise training and enhanced PI3Kα expression/activity result in transcriptional upregulation of myocardial ion channel subunits independent of cellular hypertrophy and Akt signaling. PMID:22824041

  5. Altered expression of p97/Valosin containing protein and impaired autophagy in preeclamptic human placenta.

    PubMed

    Ozsoy, Asker Zeki; Cayli, Sevil; Sahin, Cansu; Ocakli, Seda; Sanci, Tuba Ozdemir; Ilhan, Delibas Bahri

    2018-07-01

    Autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation but the regulation of autophagy by ubiquitin proteasome pathway (UPP) proteins, p97/Valosin containing protein (VCP) and ubiquitin (Ub) have not been previuosly studied in preeclampsia. The objective of this study is to investigate the expression of UPP (p97/VCP and Ub), autophagosomal (p62 and LC3) and autolysosomal proteins (Lamp1 and Lamp2) in the normal and preeclamptic human placentas and to explore the regulatory mechanism of these proteins in autophagic pathway. Different portions of normal term placentas (n = 20) and preeclamptic placentas (n = 10) were snap-frozen in liquid nitrogen for Western blotting and coimmunoprecipitation and others were fixed-embedded in paraffin for immunohistochemistry. Colocalization and coimmunoprecipitation experiments were done for the detection of interaction between p97/VCP and autophagic proteins. Compared with normal placentas, expression of p97/VCP was significantly reduced; however accumulation of ubiquitinlated proteins were significantly increased in preeclamptic placentas. The expression of autophagosomal proteins (LC3-II and p62) were significantly increased and no significant alterations of the expression of autolysosomal proteins were observed in preeclamptic placentas. Additionally, p97/VCP was found to colocalized and interact with autophagosomal and autolysosomal markers in normal and preeclamptic placentas. Autophagosome maturation diminished and autophagosomes had decreased localization with lysosomal markers in preeclamptic human placentas. Decreased expression of p97/VCP and increased expression of Ub in preeclampsia might be related to impaired autophagy and pathophysiology of preeclampsia. Therefore, our study highlights an important potential relationship between p97/VCP and autophagic proteins in preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Interleukin-33 in the Human Placenta

    PubMed Central

    Topping, Vanessa; Romero, Roberto; Than, Nandor Gabor; Tarca, Adi L.; Xu, Zhonghui; Kim, Sun Young; Wang, Bing; Yeo, Lami; Kim, Chong Jai; Hassan, Sonia S.; Kim, Jung-Sun

    2012-01-01

    Objective Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of key regulators of inflammation. The purpose of this study was to determine whether IL-33 is expressed in the human placenta and to investigate its expression in the context of acute and chronic chorioamnionitis. Methods Placental tissues were obtained from five groups of patients: (1) normal pregnancy at term without labor (n=10); (2) normal pregnancy at term in labor (n=10); (3) preterm labor without inflammation (n=10); (4) preterm labor with acute chorioamnionitis (n=10); and (5) preterm labor with chronic chorioamnionitis (n=10). Immunostaining was performed to determine IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion epithelial and mesenchymal cells (AECs and AMCs, n=4) and human umbilical vein endothelial cells (HUVECs, n=4) treated with IL-1β (1ng/ml and 10ng/ml) and CXCL10 (0.5ng/ml and 1ng/ml or 5ng/ml). Results 1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in the cytoplasm of myofibroblasts in the Wharton’s jelly; 3) acute (but not chronic) chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs and increased in HUVECs after IL-1β but not CXCL10 treatment. Conclusions IL-33 is expressed in the nucleus of placental endothelial cells, CD14+ macrophages, and myofibroblasts in the Wharton’s jelly. IL-1β can induce the expression of IL-33 and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic membranes in acute (but not chronic) chorioamnionitis. PMID:23039129

  7. Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings.

    PubMed

    Lopes, Marta S; Araus, José L

    2008-09-01

    Long-term differences in photosynthesis, respiration and growth of plants receiving distinct nitrogen (N) sources imply that N metabolism generates signals that regulate metabolism and development. The molecular basis of these signals remains unclear. Here we studied the gene expression profiles of barley (Hordeum vulgare L. cv. Graphic) seedlings fertilized either with ammonium (NH4+), with ammonium and nitrate (NH4+:NO3-), or with nitrate (NO3-) only. Our transcriptome analysis after 48 h of growth in these N sources showed major changes in the expression of genes involved in N metabolism (nitrate reductase), signalling (protein kinases and protein phosphatases), photosynthesis (chlorophyll a/b-binding protein and a PsbQ domain), where increases in NO3- as compared with NH4+ were observed. Moreover, NH4+ assimilation induced genes participating in C and sugars metabolism (phosphoglycerate kinase, glucosyltranferase and galactokinase), respiration (cytochrome c oxidase), protein fate (heat shock proteins) and development (MTN3-like protein). These changes in gene expression could well explain the long-term growth depression observed in NH4+ plants. Even if a few genes participating in protein fate (proteases) and development (OsNAC5) were upregulated in NH4+ as compared with NH4+:NO3-, the general pattern of expression was quite similar between these two N sources. Taken together, these results indicated that other downstream mechanisms should be involved in the synergetic long-term response of NH4+:NO3-.

  8. Modulation of Cytokine-Induced Cyclooxygenase 2 Expression by PPARG Ligands Through NFκB Signal Disruption in Human WISH and Amnion Cells1

    PubMed Central

    Ackerman, William E.; Zhang, Xiaolan L.; Rovin, Brad H.; Kniss, Douglas A.

    2006-01-01

    Cyclooxygenase (COX) activity increases in the human amnion in the settings of term and idiopathic preterm labor, contributing to the generation of uterotonic prostaglandins (PGs) known to participate in mammalian parturition. Augmented COX activity is highly correlated with increased COX2 (also known as prostaglandin-endoperoxide synthase 2, PTGS2) gene expression. We and others have demonstrated an essential role for nuclear factor κB (NFκB) in cytokine-driven COX2 expression. Peroxisome proliferator-activated receptor gamma (PPARG), a member of the nuclear hormone receptor superfamily, has been shown to antagonize NFκB activation and inflammatory gene expression, including COX2. We hypothesized that PPARG activation might suppress COX2 expression during pregnancy. Using primary amnion and WISH cells, we evaluated the effects of pharmacological (thiazolidinediones) and putative endogenous (15-deoxy-Δ12,14-prostaglandin J2, 15d-PGJ2) PPARG ligands on cytokine-induced NFκB activation, COX2 expression, and PGE2 production. We observed that COX2 expression and PGE2 production induced by tumor necrosis factor alpha (TNF) were significantly abrogated by 15d-PGJ2. The thiazolidinediones rosiglitazone (ROSI) and troglitazone (TRO) had relatively little effect on cytokine-induced COX2 expression except at high concentrations, at which these agents tended to increase COX2 abundance relative to cells treated with TNF alone. Interestingly, treatment with ROSI, but not TRO, led to augmentation of TNF-stimulated PGE2 production. Mechanistically, we observed that 15d-PGJ2 markedly diminished cytokine-induced activity of the NFκB transcription factor, whereas thiazolidinediones had no discernable effect on this system. Our data suggest that pharmacological and endogenous PPARG ligands use both receptor-dependent and -independent mechanisms to influence COX2 expression. PMID:15843495

  9. Increased expression of low density granulocytes in juvenile-onset systemic lupus erythematosus patients correlates with disease activity.

    PubMed

    Midgley, A; Beresford, M W

    2016-04-01

    Neutrophils are implicated in a wide range of non-infectious inflammatory conditions. A subset of neutrophils in the peripheral circulation of systemic lupus erythematosus (SLE) patients has been described and termed low density granulocytes (LDGs). This study investigates the expression of LDG in juvenile-onset SLE (JSLE) patients compared to controls, and any correlations with disease activity.Neutrophils and LDGs were isolated from JSLE (n = 13) and paediatric non-inflammatory control patients (n = 12). Cell populations were assessed and compared using flow cytometry and morphological analysis. Standard clinical data, which included disease activity markers/scores, were collected for each patient.Significantly increased LDG expression (%mean ± SEM, range) was observed in JSLE patients (10.4 ± 3.26, 3.41-36.3) compared to controls (2.4 ± 0.44, 0.36-5.27; p = 0.005). A statistically significant positive correlation was observed between LDG expression and the British Isles Lupus Activity Group (correlation coefficient 0.685; p = 0.010) and SLE Disease Activity Index (correlation coefficient 0.567; p = 0.043) and the biomarker of dsDNA-antibodies (correlation coefficient 0.590; p = 0.043).Here we observe increased expression in LDGs in JSLE patients, which correlate with dsDNA antibody concentration and scores of disease activity. These correlations indicate that the increased LDG expression observed in this study may have a potential role in the pathogenesis of JSLE, and may be a useful biomarker. © The Author(s) 2015.

  10. Orally administered indomethacin acutely reduces cellular prion protein in the small intestine and modestly increases survival of mice exposed to infectious prions.

    PubMed

    Martin, Gary R; Sharkey, Keith A; Jirik, Frank R

    2015-05-01

    The oral uptake of infectious prions represents a common way to acquire a prion disease; thus, host factors, such as gut inflammation and intestinal "leakiness", have the potential to influence infectivity. For example, the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) is known to induce intestinal inflammation and increase intestinal permeability. Previously, we reported that normal cellular prion protein (PrP(C)) expression was increased in experimental colitis, and since the level of PrP(C) expressed is a determinant of prion disease propagation, we hypothesized that NSAID administration prior to the oral inoculation of mice with infectious prions would increase intestinal PrP(C) expression and accelerate the onset of neurological disease. In the long-term experiments, one group of mice was gavaged with indomethacin, followed by a second gavage with brain homogenate containing mouse-adapted scrapie (ME7). Control mice received ME7 brain homogenate alone. Brain and splenic tissues were harvested at several time points for immunoblotting, including at the onset of clinical signs of disease. In a second series of experiments, mice were gavaged with indomethacin to assess the acute effects of this treatment on intestinal PrP(C) expression. Acutely, NSAID treatment reduced intestinal PrP(C) expression, and chronically, there was a modest delay in the onset of neurological disease. In contrast to our hypothesis, brief exposure to an NSAID decreased intestinal PrP(C) expression and led to a modest survival advantage following oral ingestion of infectious prions.

  11. Maternal Obesity Induces Sustained Inflammation in Both Fetal and Offspring Large Intestine of Sheep

    PubMed Central

    Yan, Xu; Huang, Yan; Wang, Hui; Du, Min; Hess, Bret W.; Ford, Stephen P.; Nathanielsz, Peter W.; Zhu, Mei-Jun

    2010-01-01

    Background Both maternal obesity and inflammatory bowel diseases (IBDs) are increasing. It was hypothesized that maternal obesity induces an inflammatory response in the fetal large intestine, predisposing offspring to IBDs. Methods Nonpregnant ewes were assigned to a control (Con, 100% of National Research Council [NRC] recommendations) or obesogenic (OB, 150% of NRC) diet from 60 days before conception. The large intestine was sampled from fetuses at 135 days (term 150 days) after conception and from offspring lambs at 22.5 ± 0.5 months of age. Results Maternal obesity enhanced mRNA expression tumor necrosis factor (TNF)α, interleukin (IL)1α, IL1β, IL6, IL8, and monocyte/macrophage chemotactic protein-1 (MCP1), as well as macrophage markers, CD11b, CD14, and CD68 in fetal gut. mRNA expression of Toll-like receptor (TLR) 2 and TLR4 was increased in OB versus Con fetuses; correspondingly, inflammatory NF-κB and JNK signaling pathways were also upregulated. Both mRNA expression and protein content of transforming growth factor (TGF) β was increased. The IL-17A mRNA expression and protein content was higher in OB compared to Con samples, which was associated with fibrosis in the large intestine of OB fetuses. Similar inflammatory responses and enhanced fibrosis were detected in OB compared to Con offspring. Conclusions Maternal obesity induced inflammation and enhanced expression of proinflammatory cytokines in fetal and offspring large intestine, which correlated with increased TGFβ and IL17 expression. These data show that maternal obesity may predispose offspring gut to IBDs. PMID:21674707

  12. mTORC1 controls long-term memory retrieval.

    PubMed

    Pereyra, Magdalena; Katche, Cynthia; de Landeta, Ana Belén; Medina, Jorge H

    2018-06-08

    Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.

  13. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

    PubMed

    Rodriguez-Cuenca, Sergio; Cochemé, Helena M; Logan, Angela; Abakumova, Irina; Prime, Tracy A; Rose, Claudia; Vidal-Puig, Antonio; Smith, Anthony C; Rubinsztein, David C; Fearnley, Ian M; Jones, Bruce A; Pope, Simon; Heales, Simon J R; Lam, Brian Y H; Neogi, Sudeshna Guha; McFarlane, Ian; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2010-01-01

    The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Integrin β1 activation induces an anti-melanoma host response

    PubMed Central

    Sole, Xavier; Salony; Chowdhury, Joeeta; Ross, Kenneth N.; Ramaswamy, Sridhar

    2017-01-01

    TGF-β is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-β increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin β1-mediated TGF-β activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin β1-activation increases TGF-β activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-β1 correlates with integrin β1/TGF-β1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin β1/TGF-β1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between β1 integrin/TGF-β1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-β1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study. PMID:28448494

  15. Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats.

    PubMed

    Sharma, Sandeep; Singh, Rumani; Kaur, Manpreet; Kaur, Gurcharan

    2010-04-01

    Numerous reports implicate increased oxidative stress in the functional and structural changes occurring in the brain and other organs as a part of the normal aging process. Dietary restriction (DR) has long been shown to be life-prolonging intervention in several species. This study was aimed to assess the potential efficacy of late-onset short term DR when initiated in 21 months old male wistar rats for 3 months on the antioxidant defense system and lipid peroxidation, cellular stress response protein HSP 70 and synaptic marker protein synapsin 1 in discrete brain regions such as cortex, hypothalamus, and hippocampus as well as liver, kidney and heart from 24 month old rats. Age-associated decline in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid peroxidation was observed in brain and peripheral organ as well as increased expression of HSP 70 and reduction in synapsin 1 was observed in brain studied. Late-onset short term DR was effective in partially restoring the antioxidant status and in decreasing lipid peroxidation level as well as enhancing the expression of HSP 70 and synapsin 1 in aged rats. Late onset short term DR also prevented age-related neurodegeneration as revealed by Fluoro-Jade B staining in hippocampus and cortex regions of rat brain. Thus our current results suggest that DR initiated even in old age has the potential to improve age related decline in body functions.

  16. Short-term foraging costs and long-term fueling rates in central-place foraging swans revealed by giving-up exploitation times.

    PubMed

    van Gils, J A; Tijsen, W

    2007-05-01

    Foragers tend to exploit patches to a lesser extent farther away from their central place. This has been interpreted as a response to increased risk of predation or increased metabolic costs of prey delivery. Here we show that migratory Bewick's swans (Cygnus columbianus bewickii), though not incurring greater predation risks farther out or delivering food to a central place, also feed for shorter periods at patches farther away from their roost. Predictions from an energy budget model suggest that increasing metabolic travel costs per se are responsible. Establishing the relation between intake rate and exploitation time enabled us to express giving-up exploitation times as quitting harvest rates (QHRs). This revealed that net QHRs were not different from observed long-term net intake rates, a sign that the birds were maximizing their long-term net intake rate. This study is unique because giving-up decisions were measured at the individual level, metabolic and predation costs were assessed simultaneously, the relation with harvest rate was made explicit, and finally, short-term giving-up decisions were related to long-term net intake rates. We discuss and conceptualize the implications of metabolic traveling costs for carrying-capacity predictions by bridging the gap between optimal-foraging theory and optimal-migration theory.

  17. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction

    PubMed Central

    Kelai, Sabah; Maussion, Gilles; Noble, Florence; Boni, Claudette; Ramoz, Nicolas; Moalic, Jean-Marie; Peuchmaur, Michel; Gorwood, Philip; Simonneau, Michel

    2008-01-01

    Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2β and Nlgn3 in the substantia nigra and Nlgn1in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3β expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning. PMID:18418251

  18. Aberrant methylation of miR-34b is associated with long-term shiftwork: a potential mechanism for increased breast cancer susceptibility.

    PubMed

    Liu, Ran; Jacobs, Daniel I; Hansen, Johnni; Fu, Alan; Stevens, Richard G; Zhu, Yong

    2015-02-01

    Although the evidence linking exposure to light at night (LAN) and breast cancer risk continues to accumulate, the molecular mechanisms driving this association remain to be fully elucidated. We have previously suggested that long-term exposure to LAN through shiftwork may result in dysregulated patterns of methylation genome-wide. In this study, we investigate the link between miR-34b, a miRNA suggested to be an important tumor suppressor, and shiftwork-related breast cancer. Methylation states in the miR-34b promoter region were previously compared between 10 female long-term shiftworkers and 10 folate intake- and age-matched female dayworkers participating in the Danish "Diet, Cancer and Health" prospective cohort study. In order to further explore the functional role of miR-34b in breast tumorigenesis, a genome-wide expression microarray was carried out in miR-34b-overexpressed MCF-7 breast cancer cells and the identified transcripts were further analyzed for network and functional interrelatedness using Ingenuity Pathway Analysis software. We observed a 49.1 % increase in miR-34b promoter methylation among shiftworkers at a CpG site in this region (p = 0.016). Transfection of the miR-34b mimic in an MCF-7 breast cancer cell line induced differential expression of 230 transcripts that are involved in the interferon-mediated antiviral response as well as apoptotic and antiproliferative gene networks. Together, our results suggest that long-term shiftwork may increase the risk of breast cancer via methylation-based suppression of miR-34b and a consequent reduction in immunomediated anti-tumor capacity and support our previous findings that LAN may induce epigenetic alteration of cancer-relevant microRNAs.

  19. Dual effects of fluoxetine on mouse early embryonic development.

    PubMed

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models.

    PubMed

    Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J; Campbell, Sean R; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J; Chambers, Daniel B; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M; Liebelt, David A; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J; Louneva, Natalia; Arnold, Steven E; Featherstone, Robert E; Siegel, Steven J; Zukin, R Suzanne; McDonald, Thomas V; Bolduc, Francois V; Jongens, Thomas A; McBride, Sean M J

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.

  1. Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia.

    PubMed

    Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M; Ducsay, Charles A

    2018-02-01

    We previously demonstrated decreased expression of key genes regulating cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P45011A1/cytochrome P450c17 (CYP11A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP11A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ∼40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10 -8 M) with or without UO126 (10 µM) for 18 hours. Media samples were collected for cortisol analysis and messenger RNA (mRNA) for CYP11A1, CYP17, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control ( P < .05). StAR mRNA was decreased in LTH versus control ( P < .05). U0126 alone had no effect on mRNA in either group. UO126 prevented the increase in CYP11A1 and CYP17 in control FACs. Basal CYP11A1 and CYP17 were not different in LTH versus control. ACTH increased CYP11A1 and CYP17 only in control FACs ( P < .05). U1026 attenuated the ACTH response indicative of a role for ERK in CYP11A1 and CYP17 expression. ACTH may require additional factors in FACs to fully regulate StAR expression.

  2. Acquisition of Expert/Non-Expert Vocabulary from Reformulations.

    PubMed

    Antoine, Edwige; Grabar, Natalia

    2017-01-01

    Technical medical terms are complicated to be correctly understood by non-experts. Vocabulary, associating technical terms with layman expressions, can help in increasing the readability of technical texts and their understanding. The purpose of our work is to build this kind of vocabulary. We propose to exploit the notion of reformulation following two methods: extraction of abbreviations and of reformulations with specific markers. The segments associated thanks to these methods are aligned with medical terminologies. Our results allow to cover over 9,000 medical terms and show precision of extractions between 0.24 and 0.98. The results and analyzed and compared with the existing work.

  3. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    PubMed Central

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  4. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  5. Transient prehypertensive treatment in spontaneously hypertensive rats: a comparison of losartan and amlodipine regarding long-term blood pressure, cardiac and renal protection.

    PubMed

    Peng, Feng; Lin, Jinxiu; Lin, Liming; Tang, Hong

    2012-12-01

    The aim of this study was to compare the effectiveness of transient prehypertensive treatment with losartan compared with amlodipine in spontaneously hypertensive rats (SHRs) on long-term blood pressure (BP), cardiac and renal protection. SHRs were prehypertensively treated with losartan, amlodipine or saline. Rats were followed up until 46 weeks of age. The left ventricular (LV) geometry and function were assessed by echocardiography. Angiotensin II (Ang II) and aldosterone (Aldo) were measured by radioimmunoassay. Ang II type 1 (AT1R) and type 2 (AT2R) receptor protein expression was determined by western blotting. The systolic blood pressure (SBP) in losartan-treated SHRs (SHR-Los) was persistently reduced until 46 weeks of age, but returned to untreated SHR levels in amlodipine-treated SHRs (SHR-Aml) from 30 weeks onwards. Compared to untreated SHRs, the albuminuria excretion in SHR-Los at week 46 was markedly decreased, the plasma, myocardium and renal tissue Ang II and Aldo levels in SHR-Los at week 46 were markedly decreased; AT1R and TGF-β1 protein expression was downregulated and AT2R protein was upregulated. Compared to untreated SHRs, the left ventricular mass index (LVMI) and collagen volume fraction (CVF) in SHR-Los were markedly decreased until week 46, and the left ventricular ejection fraction (LVEF) and cardiac brain natriuretic peptide mRNA expression were improved, whereas similar LVMI and elevated CVF were observed in SHR-Aml, and the LVEF decreased significantly below that of untreated SHRs at week 46, with cardiac BNP mRNA expression increasing slightly. Prehypertensive treatment with losartan was more effective than amlodipine on delaying long-term BP increase and ameliorating cardiac, renal structure and function, which may be related to the permanent attenuation of the circulating and local renin-angiotensin systems.

  6. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators.

    PubMed

    Ramírez-López, María T; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes ( Faah, Dagl α , Dagl β , Mgll ) and several key regulators of fatty-acid β-oxidation ( Cpt1b, Acox1 ), mitochondrial respiration ( Cox4i1 ), and lipid flux ( Ppar γ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Ppar α, Ppar γ, the eCBs-degrading enzymes Faah and Mgll , the de novo lipogenic enzymes Acaca and Fasn , and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr . Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.

  7. Modest long-term ethanol consumption affects expression of neurotransmitter receptor genes in the rat nucleus accumbens.

    PubMed

    Jonsson, Susanne; Ericson, Mia; Söderpalm, Bo

    2014-03-01

    Over 100 million people worldwide are affected by alcohol use disorders. These conditions usually take years to develop where an initial, voluntary consumption is gradually replaced by a compulsive intake of alcohol. The exact mechanisms behind this transition remain unknown. However, ethanol (EtOH) is known to interact with several neurotransmitters and receptors in the central nervous system, and chronic EtOH consumption causes alterations in these neurotransmitter systems, proposed to contribute to the development of dependence. This study aimed to repeat previous findings that animals after long-term voluntary EtOH consumption spontaneously increase their intake. That the initial encounter with EtOH causes an elevation of dopamine in the nucleus accumbens (nAc), inducing feelings of well-being and creating an incentive to continue the behavior, has been repeatedly reported in both animals and humans. The effects of chronic EtOH consumption on this region are not as well investigated. We examined both long-term EtOH consumption behavior and its consequences on expression of neurotransmitter-related genes in the nAc of the Wistar rat using quantitative polymerase chain reaction. In general, the EtOH consumption of the animals in this study was modest with an average intake of 0.9 g/kg/d, and only 1 of the 24 rats consuming EtOH for 10 months drastically increased its intake in line with the results of Wolffgramm and Heyne (1995). Expression of the genes for dopamine receptor 2, μ-opioid receptor, and somatostatin receptor 4 were down-regulated in animals after 2 and/or 4, but not 10, months of EtOH consumption. Chronic consumption even of modest amounts of alcohol seems to affect regulation of expression of these genes, possibly leading to changes in neurotransmitter signaling. Studies are ongoing to investigate whether these alterations are specific for the nAc. Copyright © 2013 by the Research Society on Alcoholism.

  8. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators

    PubMed Central

    Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878

  9. Bladder Cancer-associated Protein, a Potential Prognostic Biomarker in Human Bladder Cancer*

    PubMed Central

    Moreira, José M. A.; Ohlsson, Gita; Gromov, Pavel; Simon, Ronald; Sauter, Guido; Celis, Julio E.; Gromova, Irina

    2010-01-01

    It is becoming increasingly clear that no single marker will have the sensitivity and specificity necessary to be used on its own for diagnosis/prognosis of tumors. Interpatient and intratumor heterogeneity provides overwhelming odds against the existence of such an ideal marker. With this in mind, our laboratory has been applying a long term systematic approach to identify multiple biomarkers that can be used for clinical purposes. As a result of these studies, we have identified and reported several candidate biomarker proteins that are deregulated in bladder cancer. Following the conceptual biomarker development phases proposed by the Early Detection Research Network, we have taken some of the most promising candidate proteins into postdiscovery validation studies, and here we report on the characterization of one such biomarker, the bladder cancer-associated protein (BLCAP), formerly termed Bc10. To characterize BLCAP protein expression and cellular localization patterns in benign bladder urothelium and urothelial carcinomas (UCs), we used two independent sets of samples from different patient cohorts: a reference set consisting of 120 bladder specimens (formalin-fixed as well as frozen biopsies) and a validation set consisting of 2,108 retrospectively collected UCs with long term clinical follow-up. We could categorize the UCs examined into four groups based on levels of expression and subcellular localization of BLCAP protein and showed that loss of BLCAP expression is associated with tumor progression. The results indicated that increased expression of this protein confers an adverse patient outcome, suggesting that categorization of staining patterns for this protein may have prognostic value. Finally, we applied a combinatorial two-marker discriminator using BLCAP and adipocyte-type fatty acid-binding protein, another UC biomarker previously reported by us, and found that the combination of the two markers correlated more closely with grade and/or stage of disease than the individual markers. The implications of these results in biomarker discovery are discussed. PMID:19783793

  10. 42 CFR 81.4 - Definition of terms used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... expression of the way that the risk of a biological effect (for example, cancer) changes with increased... factor to account for differences in the effectiveness of the radiation in inducing cancer. (f) External... Department of Health and Human Services. (l) Non-radiogenic cancer means a type of cancer that HHS has found...

  11. Spanish Words in the Jicarilla Language.

    ERIC Educational Resources Information Center

    Pono, Filomena P.; And Others

    As contact with the American Indian people increased, Indian words, expressions, and terms filtered into the English language. On the other hand, the Indians also borrowed words from those people who came to the New World. The Jicarillas, because of their early contact with the Spanish culture and civilization, tended to borrow more words from the…

  12. Catholic Social Teaching Should Permeate the Catholic Secondary School Curriculum: An Agenda for Reform

    ERIC Educational Resources Information Center

    Grace, Gerald

    2013-01-01

    International research shows that the curricula of Catholic secondary schools are increasingly becoming dominated by the pressures of conforming to the requirements of nation states. These requirements are generally expressed in economic and utilitarian terms and evaluated by criteria of measurable outputs. As a result of these pressures, Catholic…

  13. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    PubMed

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cytokines and cytokine networks target neurons to modulate long-term potentiation

    PubMed Central

    Prieto, G. Aleph; Cotman, Carl W.

    2017-01-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062

  15. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid: An application to solar energy

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Tlili, I.

    2018-06-01

    In this article the idea of Caputo time fractional derivatives is applied to MHD mixed convection Poiseuille flow of nanofluids with graphene nanoparticles in a vertical channel. The applications of nanofluids in solar energy are argued for various solar thermal systems. It is argued in the article that using nanofluids is an alternate source to produce solar energy in thermal engineering and solar energy devices in industries. The problem is modelled in terms of PDE's with initial and boundary conditions and solved analytically via Laplace transform method. The obtained solutions for velocity, temperature and concentration are expressed in terms of Wright's function. These solutions are significantly controlled by the variations of parameters including thermal Grashof number, Solutal Grashof number and nanoparticles volume fraction. Expressions for skin-friction, Nusselt and Sherwood numbers are also determined on left and right walls of the vertical channel with important numerical results in tabular form. It is found that rate of heat transfer increases with increasing nanoparticles volume fraction and Caputo time fractional parameters.

  16. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  17. Preoperative chemoradiotherapy alters the expression and prognostic significance of adhesion molecules in Barrett's-associated adenocarcinoma.

    PubMed

    Turner, J R; Torres, C M; Wang, H H; Shahsafaei, A; Richards, W G; Sugarbaker, D; Odze, R D

    2000-03-01

    A variety of prognostic markers have been related to decreased patient survival in patients with epithelial malignancies. These include expression of the homotypic adhesion molecule E-cadherin (ECAD) and the hyaluronic acid receptor CD44. Expression of ECAD and CD44 was evaluated in Barrett's-associated adenocarcinoma (BAd) from 67 patients. Expression was determined by immunoperoxidase staining and graded semiquantitatively based on the proportion of positively stained cells. These data were then correlated with clinical and pathological parameters, including the presence or absence of chemoradiotherapy (chemrad) and patient survival. There were 56 men and 11 women (mean age, 62 years). Thirty-nine (58%) patients received preoperative chemrad. ECAD expression was detected in all (100%) tumors. The ECAD staining grade did not correlate with other pathological features of the tumors. However, ECAD staining was significantly increased in BAd of patients who received chemrad (P = .003), in comparison with those who did not, and in individual patients when prechemrad biopsies and postchemrad resection specimens were compared (P = .04). In terms of prognosis, increased ECAD expression was associated with shortened patient survival only in BAd patients who had received chemrad (univariate analysis of chemrad patients with stage I and II BAd, P = .02). ECAD expression was not significantly associated with survival in BAd patients who did not receive chemrad. CD44 expression was detected in 88% of cases. CD44 expression did not correlate with any of the pathological features of the tumors or with chemrad status. Increased expression of CD44 was significantly associated with shortened patient survival in chemrad patients only (univariate analysis P = .03, multivariate analysis P = .04), although a strong trend was observed when all patients were analyzed regardless of chemrad status (P = .07). The results of this study indicate that chemrad alters the expression of ECAD in BAd. Thus, the prognostic utility of ECAD expression must be evaluated in the context of chemrad status. CD44 also may be a valuable prognostic marker in BAd.

  18. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.

    PubMed

    Huang, Chun-Yen; Lin, Hui-Chen; Lin, Cheng-Huang

    2015-01-01

    We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determine whether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12h of hypoxia and 12h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na(+)/K(+)-ATPase enzyme activity did not decrease, but increases in Na(+)/K(+)-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein mediated multidrug resistance

    PubMed Central

    Roy, Aniruddha; Murakami, Mami; Ernsting, Mark J.; Hoang, Bryan; Undzys, Elijus; Li, Shyh-Dar

    2014-01-01

    Taxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp). We have developed a PEGylated carboxymethylcellulose conjugate of docetaxel (Cellax), which condenses into ~120 nm nanoparticles. Here we demonstrated that Cellax therapy did not upregulate Pgp expression in MDA-MB-231 and EMT-6 breast tumor cells whereas a significant increase in Pgp expression was measured with native docetaxel (DTX) treatment. Treatment with DTX led to 4 to 7-fold higher Pgp mRNA expression and 2-fold higher Pgp protein expression compared to Cellax treatment in the in vitro and in vivo system respectively. Cellax also exhibited significantly increased efficacy compared to DTX in a taxane-resistant breast tumor model. Against the highly Pgp expressing EMT6/AR1 cells, Cellax exhibited a 6.5 times lower IC50 compared to native DTX, and in the in vivo model, Cellax exhibited 90% tumor growth inhibition, while native DTX had no significant antitumor activity. PMID:24564177

  20. Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons.

    PubMed

    Churn, S B; Sombati, S; Jakoi, E R; Severt, L; DeLorenzo, R J; Sievert, L

    2000-05-09

    Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the alpha subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy.

  1. Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons

    PubMed Central

    Churn, Severn B.; Sombati, Sompong; Jakoi, Emma R.; Sievert, Lawrence; DeLorenzo, Robert J.

    2000-01-01

    Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the α subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy. PMID:10779547

  2. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions.

    PubMed

    De la Cruz, Miguel A; Ares, Miguel A; von Bargen, Kristine; Panunzi, Leonardo G; Martínez-Cruz, Jessica; Valdez-Salazar, Hilda A; Jiménez-Galicia, César; Torres, Javier

    2017-01-01

    Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA . The regulatory genes hrcA, hup , and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR , and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043 , and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori . Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.

  3. Long-term administration with levonorgestrel decreases allopregnanolone levels and alters GABA(A) receptor subunit expression and anxiety-like behavior.

    PubMed

    Porcu, Patrizia; Mostallino, Maria Cristina; Sogliano, Cristiana; Santoru, Francesca; Berretti, Roberta; Concas, Alessandra

    2012-08-01

    Fluctuations in the concentrations of the neuroactive steroid allopregnanolone are thought to influence γ-amino-butyric acid type A (GABA(A)) receptor gene expression and function. Long-term treatment with ethinyl estradiol (EE) plus levonorgestrel (LNG), two of the most widely used steroids in the hormonal contraceptive pill, decreases allopregnanolone levels in rat cerebral cortex and plasma, alters GABA(A) receptor expression and induces anxiety-like behavior. We evaluated which component of the hormonal contraceptive pill is responsible for the aforementioned changes. Female rats were injected subcutaneously (s.c.) with EE (0.030 mg) or LNG (0.125 mg) once a day for 4 weeks. Compared to the respective vehicle-treated control groups, EE decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 76, 72 and 33%, respectively and hippocampal levels by 52, 56 and 50%, respectively. Likewise, LNG decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 75, 68 and 33%, respectively, and hippocampal levels by 55, 65 and 60%, respectively. Administration of LNG, but not EE, increased the abundance of the γ2 subunit peptide in cerebral cortex and hippocampus by 38 and 59%, respectively. Further, LNG, but not EE, decreased the time spent and the number of entries into the open arms of the elevated plus maze by 56 and 43%, respectively, an index of anxiety-like behavior. These results suggest that alterations in GABA(A) receptor subunit expression and anxiety-like behavior induced by long-term treatment with combined EE/LNG appear to be caused by LNG. Given that both EE and LNG decrease allopregnanolone levels in a similar manner, these results further suggest that changes in allopregnanolone levels are not associated with GABA(A) receptor expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Long-Term Dexamethasone Exposure Down-Regulates Hepatic TFR1 and Reduces Liver Iron Concentration in Rats

    PubMed Central

    Li, Huifang; Jiang, Shuxia; Yang, Chun; Yang, Shu; He, Bin; Ma, Wenqiang; Zhao, Ruqian

    2017-01-01

    Exposure to stress is known to cause hepatic iron dysregulation, but the relationship between prolonged stress and liver iron metabolism is not yet fully understood. Thirty 13-week-old female Sprague–Dawley rats were randomly divided into two groups, as follows: the control group (saline-injection) and the dexamethasone group (Dexamethasone (Dex)-injection 0.1 mg/kg/day). After the 21-day stress trial, the results showed that chronic Dex administration not only impaired serum corticosterone (p = 0.00) and interleukin-6 (IL-6) (p = 0.01) levels, but also decreased white blood cell counts (p = 0.00), and reduced blood lymphocyte counts (p = 0.00). The daily Dex-injection also significantly reduced body weight (p < 0.01) by inhibiting food intake. Consecutive Dex administration resulted in decreased iron intake (p = 0.00), enhanced serum iron levels (p = 0.01), and increased the serum souble transferrin receptor (sTfR) content (p = 0.00) in rats. Meanwhile, long-term Dex exposure down-regulated duodenal cytochrome b (DCYTB) (p = 0.00) and the divalent metal transporter 1 (DMT1) (p = 0.04) protein expression, but up-regulated ferroportin (FPN) protein expression (p = 0.04). Chronic Dex administration reduced liver iron concentration (p = 0.02) in rats. Hepatic transferrin receptor 1 (TFR1) expression was lowered at the protein level (p = 0.03), yet with uncoupled mRNA abundance in Dex-treated rats. Enhanced iron-regulatory protein (IRP)/iron-responsive element (IRE) binding activity was observed, but did not line up with lowered hepatic TFR1 protein expression. This study indicates that long-term Dex exposure reduces liver iron content, which is closely associated with down-regulated hepatic TFR1 protein expression. PMID:28629118

  5. Carprofen neither reduces postoperative facial expression scores in rabbits treated with buprenorphine nor alters long term bone formation after maxillary sinus grafting.

    PubMed

    Hedenqvist, Patricia; Trbakovic, Amela; Thor, Andreas; Ley, Cecilia; Ekman, Stina; Jensen-Waern, Marianne

    2016-08-01

    In connection with bilateral maxillary sinus augmentation, the acute effects of the nonsteroidal anti-inflammatory drug carprofen on facial expressions and long-term effects on bone formation were evaluated in 18 male New Zealand White rabbits. A 10×10mm bone window was drilled in the maxilla, the sinus membrane elevated and a titanium mini-implant inserted. One of two test materials was randomly inserted unilaterally and bovine bone chips (control) on the contralateral side in the created space. Rabbits were randomly allocated to receive buprenorphine plus carprofen (n=9) or buprenorphine plus saline (n=9) postoperatively. Buprenorphine was administered subcutaneously every 6h for 3days in a tapered dose (0.05-0.01mg/kg) and carprofen (5mg/kg) or saline administered subcutaneously 1h before, and daily for 4days postoperatively. To assess pain, clinical examination, body weight recording and scoring of facial expressions from photos taken before, and 6-13h after surgery were performed. Twelve weeks after surgery the rabbits were euthanized and sections of maxillary bones and sinuses were analysed with histomorphometry and by qualitative histology. Carprofen had no effect on mean facial expression scores, which increased from 0.0 to 3.6 (carprofen) and 4.3 (saline), of a maximum of 8.0. Neither did carprofen have an effect on bone formation or implant incorporation, whereas the test materials had. In conclusion, treatment with 5mg/kg carprofen once daily for 5days did not reduce facial expression scores after maxillary sinus augmentation in buprenorphine treated rabbits and did not affect long term bone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Glucocorticoid receptors in bronchial epithelial cells in asthma.

    PubMed

    Vachier, I; Chiappara, G; Vignola, A M; Gagliardo, R; Altieri, E; Térouanne, B; Vic, P; Bousquet, J; Godard, P; Chanez, P

    1998-09-01

    The expression of the glucocorticoid receptor (GR) in untreated or in steroid-dependent asthmatic patients is poorly understood. We therefore studied GR mRNA and protein levels in bronchial biopsies obtained from seven untreated asthmatic patients, seven control volunteers, and seven patients with chronic bronchitis. We also studied in bronchial epithelial cells obtained by brushing from 13 untreated asthmatics, 18 steroid-dependent asthmatics, 11 control volunteers, and 12 patients with chronic bronchitis, GR and heat shock protein 90 kD (hsp90) mRNA as well as the immunoreactivity of GR, intercellular adhesion molecule (ICAM-1), and granulocyte macrophage-colony-stimulating factor (GM-CSF). GR mRNA and protein level was similar in all subject groups in both biopsies and bronchial epithelial cells. Hsp90 mRNA level was also similar in all subject groups. ICAM-1 expression was significantly increased in bronchial epithelial cells from untreated asthmatics, but ICAM-1 was not expressed in those from steroid-dependent asthmatic patients. GM-CSF expression was significantly increased in bronchial epithelial cells from untreated and steroid-dependent asthmatic patients. GR expression within the airways is unaltered by oral long-term steroid treatment in asthma, but the expression of some but not all specific markers for asthma is modified by oral steroid.

  7. Neonatal injury rapidly alters markers of pain and stress in rat pups.

    PubMed

    Victoria, Nicole C; Karom, Mary C; Eichenbaum, Hila; Murphy, Anne Z

    2014-01-01

    Less than 60% of infants undergoing invasive procedures in the neonatal intensive care unit receive analgesic therapy. These infants show long-term decreases in pain sensitivity and cortisol reactivity. In rats, we have previously shown that inflammatory pain experienced on the day of birth significantly decreases adult somatosensory thresholds and responses to anxiety- and stress-provoking stimuli. These long-term changes in pain and stress responsiveness are accompanied by two-fold increases in central met-enkephalin and β-endorphin expression. However, the time course over which these changes in central opioid peptide expression occur, relative to the time of injury, are not known. The present studies were conducted to determine whether the observed changes in adult opioid peptide expression were present within the first postnatal week following injury. The impact of neonatal inflammation on plasma corticosterone, a marker for stress reactivity, was also determined. Brain, spinal cord, and trunk blood were harvested at 24 h, 48 h, and 7 d following intraplantar administration of the inflammatory agent carrageenan on the day of birth. Radioimmunoassay was used to determine plasma corticosterone and met-enkephalin and β-endorphin levels within the forebrain, cortex, midbrain, and spinal cord. Within 24 h of injury, met-enkephalin levels were significantly increased in the midbrain, but decreased in the spinal cord and cortex; forebrain β-endorphin levels were significantly increased as a result of early life pain. Corticosterone levels were also significantly increased. At 7 d post-injury, opioid peptides remained elevated relative to controls, suggesting a time point by which injury-induced changes become programmed and permanent. Copyright © 2013 Wiley Periodicals, Inc.

  8. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy.

    PubMed

    Kaur, Harpreet; Patro, Ishan; Tikoo, Kulbhushan; Sandhir, Rajat

    2015-10-01

    Evidence suggests that glial cells play a critical role in inflammation in chronic epilepsy, contributing to perpetuation of seizures and cognitive dysfunctions. The present study was designed to evaluate the beneficial effect of curcumin, a polyphenol with pleiotropic properties, on cognitive deficits and inflammation in chronic epilepsy. Kindled model of epilepsy was induced by administering sub-convulsive dose of pentylenetetrazole (PTZ) at 40 mg/kg, i.p. every alternative day for 30 days to Wistar rats. The animals were assessed for cognitive deficits by Morris water maze and inflammatory response in terms of microglial and astrocyte activation. PTZ treated animals had increased escape latency suggesting impaired cognitive functions. Further, an increased expression of astrocyte (GFAP) and microglial (Iba-1) activation markers were observed in terms of mRNA and protein levels in the PTZ treated animals. Concomitantly, mRNA and protein levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and chemokine (MCP-1) were increased in hippocampus and cortex. Immunoreactivity to anti-GFAP and anti-Iba-1 antibodies was also enhanced in hippocampus and cortex suggesting gliosis in PTZ treated animals. However, curcumin administration at a dose of 100 mg/kg to PTZ animals prevented cognitive deficits. A significant decrease in pro-inflammatory cytokines and chemokine expression was observed in hippocampus and cortex of PTZ treated rats supplemented with curcumin. In addition, curcumin also attenuated increased expression of GFAP and Iba-1 in animals with PTZ induced chronic epilepsy. Moreover, immunohistochemical analysis also showed significant reduction in number of activated glial cells on curcumin administration to PTZ treated animals. Taken together, these findings suggest that curcumin is effective in attenuating glial activation and ameliorates cognitive deficits in chronic epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Diabetes and Age-Related Differences in Vascular Function of Renal Artery: Possible Involvement of Endoplasmic Reticulum Stress.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Ando, Makoto; Yamada, Kosuke; Iguchi, Maika; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-02-01

    To study the time-course relationship between vascular functions and endoplasmic reticulum (ER) stress in type 2 diabetes, we investigated vascular function and associated protein expression, including cyclo-oxygenase (COX), ER stress, and apoptotic markers, in renal arteries (RA) from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats at the young adult (4 months old) and aged (18 months old) stages. In the RA of aged OLETF (vs. young OLETF), we found: (1) Increased contractions induced by uridine adenosine tetraphosphate (Up4A) and phenylephrine, (2) decreased relaxation and increased contraction induced by acetylcholine (ACh) at lower and higher concentrations, respectively, and (3) increased expression of COX-1 and C/EBP-homologous protein (CHOP, a pro-apoptotic protein). In aged rats, the expression of COX-1, COX-2, PDI (an ER protein disulfide isomerase), Bax (a proapoptotic marker), and CHOP were increased in RA from OLETF rats (vs. age-matched control Long-Evans Tokushima Otsuka [LETO] rats). Up-regulation of PDI and Bax were seen in the RA from young OLETF (vs. young LETO) rats. No age-related alterations were apparent in the above changes in RA from LETO rats, excluding ACh-induced contraction. Short-term treatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 100 mg/kg per day, intraperitoneally for 1 week) to OLETF rats at the chronic stage of the disease (12 months old) could suppress renal arterial contractions induced by Up4A and ACh. These results suggest that a long-term duration of disease may be important for the development of vascular dysfunction rather than aging per se. The early regulation of ER stress may be important against the development of diabetes-associated vascular dysfunction.

  10. Noopept stimulates the expression of NGF and BDNF in rat hippocampus.

    PubMed

    Ostrovskaya, R U; Gudasheva, T A; Zaplina, A P; Vahitova, Ju V; Salimgareeva, M H; Jamidanov, R S; Seredenin, S B

    2008-09-01

    We studied the effect of original dipeptide preparation Noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) with nootropic and neuroprotective properties on the expression of mRNA for neurotropic factors NGF and BDNF in rat hippocampus. Expression of NGF and BDNF mRNA in the cerebral cortex and hippocampus was studied by Northern blot analysis. Taking into account the fact that pharmacological activity of Noopept is realized after both acute and chronic treatment, we studied the effect of single and long-term treatment (28 days) with this drug. Expression of the studied neurotropic factors in the cerebral cortex was below the control after single administration of Noopept, while chronic administration caused a slight increase in BDNF expression. In the hippocampus, expression of mRNA for both neurotrophins increased after acute administration of Noopept. Chronic treatment with Noopept was not followed by the development of tolerance, but even potentiated the neurotrophic effect. These changes probably play a role in neuronal restoration. We showed that the nootropic drug increases expression of neurotrophic factors in the hippocampus. Our results are consistent with the hypothesis that neurotrophin synthesis in the hippocampus determines cognitive function, particularly in consolidation and delayed memory retrieval. Published data show that neurotrophic factor deficiency in the hippocampus is observed not only in advanced Alzheimer's disease, but also at the stage of mild cognitive impairment (pre-disease state). In light of this our findings suggest that Noopept holds much promise to prevent the development of Alzheimer's disease in patients with mild cognitive impairment. Moreover, therapeutic effectiveness of Noopept should be evaluated at the initial stage of Alzheimer's disease.

  11. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    PubMed Central

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  12. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence

    PubMed Central

    Tapocik, Jenica D.; Solomon, Matthew; Flanigan, Meghan; Meinhardt, Marcus; Barbier, Estelle; Schank, Jesse; Schwandt, Melanie; Sommer, Wolfgang H.; Heilig, Markus

    2012-01-01

    Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs for persistent gene expression changes in the rat medial prefrontal cortex after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, qPCR, bioinformatic analysis, and microRNA-mRNA integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. 41 rat-microRNAs and 165 mRNAs in the medial prefrontal cortex were significantly altered after chronic alcohol exposure. A subset of the microRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation, and synaptic plasticity. microRNA-mRNA expression pairing identified 33 microRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the medial prefrontal cortex following a history of dependence. Due to their global regulation of multiple downstream target transcripts, microRNAs may play a pivotal role in the reorganization of synaptic connections and long term neuroadaptations in alcohol dependence. microRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol-drinking observed in alcoholic patients. PMID:22614244

  14. Cancer survival classification using integrated data sets and intermediate information.

    PubMed

    Kim, Shinuk; Park, Taesung; Kon, Mark

    2014-09-01

    Although numerous studies related to cancer survival have been published, increasing the prediction accuracy of survival classes still remains a challenge. Integration of different data sets, such as microRNA (miRNA) and mRNA, might increase the accuracy of survival class prediction. Therefore, we suggested a machine learning (ML) approach to integrate different data sets, and developed a novel method based on feature selection with Cox proportional hazard regression model (FSCOX) to improve the prediction of cancer survival time. FSCOX provides us with intermediate survival information, which is usually discarded when separating survival into 2 groups (short- and long-term), and allows us to perform survival analysis. We used an ML-based protocol for feature selection, integrating information from miRNA and mRNA expression profiles at the feature level. To predict survival phenotypes, we used the following classifiers, first, existing ML methods, support vector machine (SVM) and random forest (RF), second, a new median-based classifier using FSCOX (FSCOX_median), and third, an SVM classifier using FSCOX (FSCOX_SVM). We compared these methods using 3 types of cancer tissue data sets: (i) miRNA expression, (ii) mRNA expression, and (iii) combined miRNA and mRNA expression. The latter data set included features selected either from the combined miRNA/mRNA profile or independently from miRNAs and mRNAs profiles (IFS). In the ovarian data set, the accuracy of survival classification using the combined miRNA/mRNA profiles with IFS was 75% using RF, 86.36% using SVM, 84.09% using FSCOX_median, and 88.64% using FSCOX_SVM with a balanced 22 short-term and 22 long-term survivor data set. These accuracies are higher than those using miRNA alone (70.45%, RF; 75%, SVM; 75%, FSCOX_median; and 75%, FSCOX_SVM) or mRNA alone (65.91%, RF; 63.64%, SVM; 72.73%, FSCOX_median; and 70.45%, FSCOX_SVM). Similarly in the glioblastoma multiforme data, the accuracy of miRNA/mRNA using IFS was 75.51% (RF), 87.76% (SVM) 85.71% (FSCOX_median), 85.71% (FSCOX_SVM). These results are higher than the results of using miRNA expression and mRNA expression alone. In addition we predict 16 hsa-miR-23b and hsa-miR-27b target genes in ovarian cancer data sets, obtained by SVM-based feature selection through integration of sequence information and gene expression profiles. Among the approaches used, the integrated miRNA and mRNA data set yielded better results than the individual data sets. The best performance was achieved using the FSCOX_SVM method with independent feature selection, which uses intermediate survival information between short-term and long-term survival time and the combination of the 2 different data sets. The results obtained using the combined data set suggest that there are some strong interactions between miRNA and mRNA features that are not detectable in the individual analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Long-Term Energy Deficit in Mice Causes Long-Lasting Hypothalamic Alterations after Recovery.

    PubMed

    Méquinion, Mathieu; Le Thuc, Ophélia; Zgheib, Sara; Alexandre, David; Chartrel, Nicolas; Rovère, Carole; Hardouin, Pierre; Viltart, Odile; Chauveau, Christophe

    2017-01-01

    Although the short-term effects of fasting or energy deficit on hypothalamic neuropeptide circuitries are now better understood, the effects of long-term energy deficit and refeeding remain to be elucidated. We showed that after a long-term energy deficit, mice exhibited persistent hypoleptinemia following the refeeding period despite restoration of fat mass, ovarian activity, and feeding behavior. We aimed to examine the hypothalamic adaptations after 10 weeks of energy deficit and after 10 further weeks of nutritional recovery. To do so, we assessed the mRNA levels of the leptin receptor and the main orexigenic and anorexigenic peptides, and their receptors regulated by leptin. Markers of hypothalamic inflammation were assessed as leptin can also participate in this phenomenon. Long-term time-restricted feeding and separation induced significant increase in mRNA levels of hypothalamic orexigenic peptides, while both Y1 and Y5 receptor mRNAs were downregulated. No changes occurred in the mRNA levels of orexin (OX), melanin-concentrating hormone, pro-opiomelanocortin, 26RFa (26-amino acid RF-amide peptide), and their receptors despite an increase in the expression of melanocortin receptors (MC3-R and MC4-R) and OXR1 (OX receptor 1). The refeeding period induced an overexpression of leptin receptor mRNA in the hypothalamus. The other assessed mRNA levels were normalized except for Y2, Y5, MC3-R, and MC4-R, which remained upregulated. No convincing changes were observed in neuroinflammatory markers, even if interleukin-1β mRNA levels were increased in parallel with those of Iba1 (ionized calcium-binding adaptor molecule 1), a marker of microglial activation. Normalization of leptin-regulated functions and hypothalamic gene expressions in refed mice with low plasma leptin levels could be sustained by recalibration of hypothalamic sensitivity to leptin. © 2016 S. Karger AG, Basel.

  16. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism

    PubMed Central

    Raheja, Geetu; Singh, Varsha; Ma, Ke; Boumendjel, Redouane; Borthakur, Alip; Gill, Ravinder K.; Saksena, Seema; Alrefai, Waddah A.; Ramaswamy, Krishnamurthy

    2010-01-01

    Clinical efficacy of probiotics in treating various forms of diarrhea has been clearly established. However, mechanisms underlying antidiarrheal effects of probiotics are not completely defined. Diarrhea is caused either by decreased absorption or increased secretion of electrolytes and solutes in the intestine. In this regard, the electroneutral absorption of two major electrolytes, Na+ and Cl−, occurs mainly through the coupled operation of Na+/H+ exchangers and Cl−/OH− exchangers. Previous studies from our laboratory have shown that Lactobacillus acidophilus (LA) acutely stimulated Cl−/OH− exchange activity via an increase in the surface levels of the apical anion exchanger SLC26A3 (DRA). However, whether probiotics influence SLC26A3 expression and promoter activity has not been examined. The present studies were, therefore, undertaken to investigate the long-term effects of LA on SLC26A3 expression and promoter activity. Treatment of Caco-2 cells with LA for 6–24 h resulted in a significant increase in Cl−/OH− exchange activity. DRA mRNA levels were also significantly elevated in response to LA treatment starting as early as 8 h. Additionally, the promoter activity of DRA was increased by more than twofold following 8 h LA treatment of Caco-2 cells. Similar to the in vitro studies, in vivo studies using mice gavaged with LA also showed significantly increased DRA mRNA (∼4-fold) and protein expression in the colonic regions as assessed by Western blot analysis and immunofluorescence. In conclusion, increase in DRA promoter activity and expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of LA. PMID:20044511

  17. Maternal obesity in the ewe increases cardiac ventricular expression of glucocorticoid receptors, proinflammatory cytokines and fibrosis in adult male offspring

    PubMed Central

    Odhiambo, John F.; McCormick, Richard J.; Nathanielsz, Peter W.; Ford, Stephen P.

    2017-01-01

    Obesity during human pregnancy predisposes offspring to obesity and cardiovascular disease in postnatal life. In a sheep model of maternal overnutrition/obesity we have previously reported myocardial inflammation and fibrosis, as well as cardiac dysfunction in late term fetuses, in association with chronically elevated blood cortisol. Significant research has suggested a link between elevated glucocorticoid exposure in utero and hypertension and cardiovascular disease postnatally. Here we examined the effects of maternal obesity on myocardial inflammation and fibrosis of their adult offspring. Adult male offspring from control (CON) mothers fed 100% of National Research Council (NRC) recommendations (n = 6) and male offspring from obese mothers (MO) fed 150% NRC (n = 6), were put on a 12-week ad libitum feeding challenge then necropsied. At necropsy, plasma cortisol and left and right ventricular thickness were markedly increased (P<0.05) in adult male MO offspring. Myocardial collagen content and collagen-crosslinking were greater (P<0.05) in MO offspring compared to CON offspring in association with increased mRNA and protein expression of glucocorticoid receptors (GR). No group difference was found in myocardial mineralocorticoids receptor (MR) protein expression. Further, mRNA expression for the proinflammatory cytokines: cluster of differentiation (CD)-68, transforming growth factor (TGF)-β1, and tumor necrosis factor (TNF)-α were increased (P < 0.05), and protein expression of CD-68, TGF-β1, and TNF-α tended to increase (P<0.10) in MO vs. CON offspring. These data provide evidence for MO-induced programming of elevated plasma cortisol and myocardial inflammation and fibrosis in adult offspring potentially through increased GR. PMID:29267325

  18. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice.

    PubMed

    Bhat, Virunya S; Hester, Susan D; Nesnow, Stephen; Eastmond, David A

    2013-11-01

    The ability to anchor chemical class-based gene expression changes to phenotypic lesions and to describe these changes as a function of dose and time informs mode-of-action determinations and improves quantitative risk assessments. Previous global expression profiling identified a 330-probe cluster differentially expressed and commonly responsive to 3 hepatotumorigenic conazoles (cyproconazole, epoxiconazole, and propiconazole) at 30 days. Extended to 2 more conazoles (triadimefon and myclobutanil), the present assessment encompasses 4 tumorigenic and 1 nontumorigenic conazole. Transcriptional benchmark dose levels (BMDL(T)) were estimated for a subset of the cluster with dose-responsive behavior and a ≥ 5-fold increase or decrease in signal intensity at the highest dose. These genes primarily encompassed CAR/RXR activation, P450 metabolism, liver hypertrophy- glutathione depletion, LPS/IL-1-mediated inhibition of RXR, and NRF2-mediated oxidative stress pathways. Median BMDL(T) estimates from the subset were concordant (within a factor of 2.4) with apical benchmark doses (BMDL(A)) for increased liver weight at 30 days for the 5 conazoles. The 30-day median BMDL(T) estimates were within one-half order of magnitude of the chronic BMDLA for hepatocellular tumors. Potency differences seen in the dose-responsive transcription of certain phase II metabolism, bile acid detoxification, and lipid oxidation genes mirrored each conazole's tumorigenic potency. The 30-day BMDL(T) corresponded to tumorigenic potency on a milligram per kilogram day basis with cyproconazole > epoxiconazole > propiconazole > triadimefon > myclobutanil (nontumorigenic). These results support the utility of measuring short-term gene expression changes to inform quantitative risk assessments from long-term exposures.

  19. More than mere mimicry? The influence of emotion on rapid facial reactions to faces.

    PubMed

    Moody, Eric J; McIntosh, Daniel N; Mann, Laura J; Weisser, Kimberly R

    2007-05-01

    Within a second of seeing an emotional facial expression, people typically match that expression. These rapid facial reactions (RFRs), often termed mimicry, are implicated in emotional contagion, social perception, and embodied affect, yet ambiguity remains regarding the mechanism(s) involved. Two studies evaluated whether RFRs to faces are solely nonaffective motor responses or whether emotional processes are involved. Brow (corrugator, related to anger) and forehead (frontalis, related to fear) activity were recorded using facial electromyography (EMG) while undergraduates in two conditions (fear induction vs. neutral) viewed fear, anger, and neutral facial expressions. As predicted, fear induction increased fear expressions to angry faces within 1000 ms of exposure, demonstrating an emotional component of RFRs. This did not merely reflect increased fear from the induction, because responses to neutral faces were unaffected. Considering RFRs to be merely nonaffective automatic reactions is inaccurate. RFRs are not purely motor mimicry; emotion influences early facial responses to faces. The relevance of these data to emotional contagion, autism, and the mirror system-based perspectives on imitation is discussed.

  20. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process

    PubMed Central

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-01-01

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318

  1. Near-term acceleration in the rate of temperature change

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Edmonds, James; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine

    2015-04-01

    Anthropogenically driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature. The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt. We find that present trends in greenhouse-gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the past 1,000 years. The rate of global-mean temperature increase in the CMIP5 (ref. ) archive over 40-year periods increases to 0.25 +/- 0.05 °C (1σ) per decade by 2020, an average greater than peak rates of change during the previous one to two millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  2. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process.

    PubMed

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-12-06

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.

  3. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine.

    PubMed

    He, Dao-Yao; Ron, Dorit

    2006-11-01

    We recently showed that the up-regulation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the midbrain, is the molecular mechanism by which the putative anti-addiction drug Ibogaine mediates its desirable action of reducing alcohol consumption. Human reports and studies in rodents have shown that a single administration of Ibogaine results in a long-lasting reduction of drug craving (humans) and drug and alcohol intake (rodents). Here we determine whether, and how, Ibogaine exerts its long-lasting actions on GDNF expression and signaling. Using the dopaminergic-like SHSY5Y cell line as a culture model, we observed that short-term Ibogaine exposure results in a sustained increase in GDNF expression that is mediated via the induction of a long-lasting autoregulatory cycle by which GDNF positively regulates its own expression. We show that the initial exposure of cells to Ibogaine or GDNF results in an increase in GDNF mRNA, leading to protein expression and to the corresponding activation of the GDNF signaling pathway. This, in turn, leads to a further increase in the mRNA level of the growth factor. The identification of a GDNF-mediated, autoregulatory long-lasting feedback loop could have important implications for GDNF's potential value as a treatment for addiction and neurodegenerative diseases.

  4. Morphological changes of cerebral vessels and expression patterns of MMP-2 and MMP-9 on cerebrovascular wall of alcoholic rats.

    PubMed

    Qi, Qian; Liu, Xia; Zhang, Guozhong; He, Wenjing; Ma, Rufei; Cong, Bin; Li, Yingmin

    2014-01-01

    Alcohol abuse increases the incidence of cerebral accidents, which correlates with cerebrovascular structural changes. The present study was designed to observe the cerebrovascular remodeling of drinking rats with light microscopy and transmission electron microscopy (TEM). Short-term alcohol administration induced apparent amplification of perivascular spaces around small vessels in brain tissue, while long-term administration caused pathological changes of basilar arteries (BAs), including endothelial exfoliation, inner elastic lamina (IEL) fragmentation and thickening of tunica media and adventitia. In addition, the relationship between cerebrovascular remodeling and MMP-2 and MMP-9 synthesized by endothelial cells and vascular smooth muscle cells was explored by immunohistochemistry. The two protein expression in cerebral vessels changed dynamically, peaking at 1-2 weeks after treatment, and decreasing as treatment continued. These results suggest that MMP-2 and MMP-9 may play a significant role in blood-brain barrier disruption after alcohol abuse. But the chronic changes of cerebral arteries resulted from drinking are not coincident with time course of MMP-2 and MMP-9 expression in situ.

  5. Cultured bovine granulosa cells rapidly lose important features of their identity and functionality but partially recover under long-term culture conditions.

    PubMed

    Yenuganti, Vengala Rao; Vanselow, Jens

    2017-05-01

    Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.

  6. Laxative effect of repeated Daiokanzoto is attributable to decrease in aquaporin-3 expression in the colon.

    PubMed

    Kon, Risako; Yamamura, Miho; Matsunaga, Yukari; Kimura, Hiroshi; Minami, Moe; Kato, Saki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-03-01

    Daiokanzoto (DKT) exerts its laxative effect via colonic inflammation caused by sennoside A in Daio (rhubarb). Previously, we showed that the laxative effect of sennoside A is related to decreased aquaporin-3 (AQP3) expression in mucosal epithelial cells due to colonic inflammation. We also found that a combination of glycyrrhizin, an ingredient in Kanzo (glycyrrhiza), and sennoside A attenuates the inflammatory response induced by sennoside A and reduces its laxative effect. These findings indicate that DKT may be a long-term treatment for chronic constipation, but there is no evidence supporting this hypothesis. In this study, we analyzed the laxative effect of repeated DKT administration, focusing on AQP3 expression in the colon. After rats were treated for 7 days, decreased AQP3 expression and the onset of diarrhea were observed in the DKT group, but were not seen in the Daio group either. Although the relative abundance of gut microbiota after repeated DKT administration was similar to that after control treatment, Daio reduced Lactobacillaceae, Bifidobacteriaceae, and Bacteroidaceae levels and markedly increased Lachnospiraceae levels. In this study, we show that DKT has a sustained laxative effect, even upon repeated use, probably because it maintains decreased AQP3 expression and gut microbiota homeostasis. This outcome therefore indicates that DKT can be used as a long-term treatment for chronic constipation.

  7. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, L.M.; Catt, K.J.

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less

  8. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    PubMed

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  9. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.

    PubMed

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2011-09-01

    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO(2) availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO(2) (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO(2) and temperature are leading to increased CO(2) and HCO(3)(-) and decreased CO(3)(2-) and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO(2) affinity, whilst increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO(2) affinity, decreased iron availability increases CO(2) affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions amongst the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity.

  10. Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm.

    PubMed

    Zhang, Jianhong; Shynlova, Oksana; Sabra, Sally; Bang, Annie; Briollais, Laurent; Lye, Stephen J

    2017-10-01

    The onset of labour in rodents and in humans is associated with physiological inflammation which is manifested by infiltration of activated maternal peripheral leukocytes (mPLs) into uterine tissues. Here, we used flow cytometry to immunophenotype mPLs throughout gestation and labour, both term and preterm. Peripheral blood was collected from non-pregnant women and pregnant women in the 1st, 2nd and 3rd trimesters. Samples were also collected from women in active labour at term (TL) or preterm (PTL) and compared with women term not-in-labour (TNIL) and preterm not-in-labour (PTNIL). Different leukocyte populations were identified by surface markers such as CD45, CD14, CD15, CD3, CD4, CD8, CD19 and CD56. Their activation status was measured by the expression levels of CD11b, CD44, CD55, CD181 and CD192 proteins. Of all circulating CD45+ leukocytes, we detected significant increases in CD15+ granulocytes (i) in pregnant women versus non-pregnant; (ii) in TL women versus TNIL and versus pregnant women in the 1st/2nd/3rd trimester; (iii) in PTL women versus PTNIL. TL was characterized by (iv) increased expressions of CD11b, CD55 and CD192 on granulocytes; (v) increased mean fluorescent intensity (MFI) of CD55 and CD192 on monocytes; (vi) increased CD44 MFI on CD3+ lymphocytes as compared to late gestation. In summary, we have identified sub-populations of mPLs that are specifically activated in association with gestation (granulocytes) or with the onset of labour (granulocytes, monocytes and lymphocytes). Additionally, beta regression analysis created a set of reference values to rank this association between immune markers of pregnancy and to identify activation status with potential prognostic and diagnostic capability. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    PubMed Central

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID:26431529

  12. Randomized cross-over trial of short-term water-only fasting: metabolic and cardiovascular consequences.

    PubMed

    Horne, B D; Muhlestein, J B; Lappé, D L; May, H T; Carlquist, J F; Galenko, O; Brunisholz, K D; Anderson, J L

    2013-11-01

    Routine, periodic fasting is associated with a lower prevalence of coronary artery disease (CAD). Animal studies show that fasting may increase longevity and alter biological parameters related to longevity. We evaluated whether fasting initiates acute changes in biomarker expression in humans that may impact short- and long-term health. Apparently-healthy volunteers (N = 30) without a recent history of fasting were enrolled in a randomized cross-over trial. A one-day water-only fast was the intervention and changes in biomarkers were the study endpoints. Bonferroni correction required p ≤ 0.00167 for significance (p < 0.05 was a trend that was only suggestively significant). The one-day fasting intervention acutely increased human growth hormone (p = 1.1 × 10⁻⁴), hemoglobin (p = 4.8 × 10⁻⁷), red blood cell count (p = 2.5 × 10⁻⁶), hematocrit (p = 3.0 × 10⁻⁶), total cholesterol (p = 5.8 × 10⁻⁵), and high-density lipoprotein cholesterol (p = 0.0015), and decreased triglycerides (p = 1.3 × 10⁻⁴), bicarbonate (p = 3.9 × 10⁻⁴), and weight (p = 1.0 × 10⁻⁷), compared to a day of usual eating. For those randomized to fast the first day (n = 16), most factors including human growth hormone and cholesterol returned to baseline after the full 48 h, with the exception of weight (p = 2.5 × 10⁻⁴) and (suggestively significant) triglycerides (p = 0.028). Fasting induced acute changes in biomarkers of metabolic, cardiovascular, and general health. The long-term consequences of these short-term changes are unknown but repeated episodes of periodic short-term fasting should be evaluated as a preventive treatment with the potential to reduce metabolic disease risk. Clinical trial registration (ClinicalTrials.gov): NCT01059760 (Expression of Longevity Genes in Response to Extended Fasting [The Fasting and Expression of Longevity Genes during Food abstinence {FEELGOOD} Trial]). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jie, E-mail: JLiu@kumc.edu; Zunyi Medical College, Zunyi 563003; Lu, Yuan-Fu

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by livermore » histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.« less

  14. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats.

    PubMed

    Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Huang, Xiang; Kong, Weijia

    2012-05-01

    In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the D-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish.

    PubMed

    Zhang, Jin; Ma, Wenge; He, Yan; Wu, Junjie; Dawar, Farman Ullah; Ren, Fan; Zhao, Xiaohan; Mei, Jie

    2016-03-10

    Sexual size dimorphism has been observed in many cultivable fish species including yellow catfish, in which male fish grow much faster than female fish. Ghrelin is a potent stimulator of pituitary growth hormone (GH) release and known to potentially promote food intake and body weight gain. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), ghrelin and its functional receptor, growth hormone secretagogue receptor (GHSR) cDNAs were cloned. Real-time PCR indicated that both ghrelin and GHSR were more highly expressed in hypothalamus and gut of male fish than female. During normal larval development, expression of ghrelin and GHSR genes was significantly higher in males than in females. 17a-Methyltestosterone (MT) treatment enhanced the expression of ghrelin in female larval fish and GHSR in both sexes, whereas the expression of ghrelin in male larval fish increased in the beginning, then decreased as the treatment time prolonged. Furthermore, the expression of ghrelin and GHSR in male juvenile was significantly increased compared with female juvenile, in short and long term fasting periods, suggesting that male fish may have a better appetite than female during fasting. Our results demonstrate that sex difference in the expression of ghrelin and GHSR may be involved in sexual size dimorphism by regulating feeding and GH/IGF signaling in yellow catfish. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Colonic Saturated Fatty Acid Concentrations and Expression of COX-1, but not Diet, Predict Prostaglandin E2 in Normal Human Colon Tissue.

    PubMed

    Sidahmed, ElKhansa; Sen, Ananda; Ren, Jianwei; Patel, Arsh; Turgeon, D Kim; Ruffin, Mack T; Brenner, Dean E; Djuric, Zora

    2016-10-01

    Prostaglandin E2 (PGE2) in the colon is a pro-inflammatory mediator that is associated with increased risk of colon cancer. In this study, expression of genes in the PGE2 pathway were quantified in colon biopsies from a trial of a Mediterranean versus a Healthy Eating diet in 113 individuals at high risk for colon cancer. Colon biopsies were obtained before and after 6 months of intervention. Quantitative, real-time PCR was used to measure mRNA expression of prostaglandin H synthases (PTGS1 and 2), prostaglandin E synthases (PTGES1 and 3), prostaglandin dehydrogenase (HPGD), and PGE2 receptors (PTGER2, PTGER4). The most highly expressed genes were HPGD and PTGS1. In multivariate linear regression models of baseline data, both colon saturated fatty acid concentrations and PTGS1 expression were significant, positive predictors of colon PGE2 concentrations after controlling for nonsteroidal anti-inflammatory drug use, gender, age, and smoking status. The effects of dietary intervention on gene expression were minimal with small increases in expression noted for PTGES3 in both arms and in PTGER4 in the Mediterranean arm. These results indicate that short-term dietary change had little effect on enzymes in the prostaglandin pathway in the colon and other factors, such as differences in fatty acid metabolism, might be more influential.

  17. Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA.

    PubMed

    Jantzen, Carrie E; Annunziato, Kate M; Cooper, Keith R

    2016-11-01

    Perfluoroalkylated substances (PFAS) are a class of persistent anthropogenic chemicals that have been detected worldwide. PFASs consist of fluorinated carbon chains of varying length, terminal groups, and have a number of industrial uses. A previous zebrafish study from our laboratory showed that acute (3-120h post fertilization, 0.02-2.0μM), waterborne embryonic exposure to these chemicals resulted in chemical specific alterations at 5days post fertilization (dpf), and some effects persisted up to 14 dpf. Using a gene battery consisting of 100 transcripts identified several genes that were up or down regulated. This current study looks at the long-term impacts of PFASs in adult zebrafish using the same exposure regimen. It was hypothesized that sub-lethal exposure of perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), or perfluorooctane sulfonate (PFOA) in embryonic zebrafish (3-120 hpf) would result in permanent morphometric, gene expression, and behavioral changes in adult fish similar to those observed at 5 and 14 dpf. Zebrafish were exposed to PFOS, PFOA, and PFNA (Control 0μM, 2.0μM) for the first five days post fertilization. At six months post fertilization, no PFAS treatment resulted in a significant change in total body length or weight. In terms of behavior, PFNA males showed a reduction in total distance traveled and time of immobility, and an increase in thigmotaxis behavior, aggressive attacks, and preference for the bright section of the tank. PFOS treated males had a reduced aggression behavior, and PFOA females preferred the dark section of the tank. Gene expression of slco2b1, slco1d1, and tgfb1a were analyzed because these transcripts were previously found to be affected by PFAS exposure in 5dpf and 14 dpf zebrafish and resulted in: significant decrease in expression of slco2b1 for both sexes in PFNA and PFOS treated groups, significant decrease of slco1d1 in all treatment groups for females and PFOS and PFOA exposed males, significant increase of tgfb1a in males treated with PFOS and PFNA, and a significant increase of bdnf in all PFAS male groups. This study demonstrates that acute, embryonic exposure (5days) to individual PFASs result in significant biochemical and behavioral changes in young adult zebrafish 6 months after exposure. These three PFASs have long term and persistent impacts following short term embryonic exposure that persists into adulthood. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ryk receptor regulates hematopoietic stem and progenitor sensitivity to myelosuppressive injury in mice

    PubMed Central

    Povinelli, Benjamin J.; Srivastava, Pragya; Nemeth, Michael J.

    2017-01-01

    Maintaining a careful balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) is necessary for lifelong blood formation. Previously, we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a non-canonical Wnt ligand receptor termed Ryk. Expression of Ryk on HSPCs in vivo is associated with a lower rate of proliferation and following treatment with fluorouracil (5-FU), the percentage of Ryk+/high HSPCs increased while the percent of Ryk−/low HSPCs decreased. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. We found that Ryk expression on HSPCs is associated with lower rates of apoptosis following 5-FU and radiation. Transient inhibition of Ryk signaling in vivo resulted in increased HSC proliferation and decreased HSC function in bone marrow transplant assays. Furthermore, inhibition of Ryk signaling sensitized HSPCs to 5-FU treatment in association with increased levels of reactive oxygen species. Together, these results demonstrated an association between Ryk expression and survival of HSPCs following suppressive injury. PMID:25461251

  19. In Vitro and in Vivo Experimental Studies on Trabecular Meshwork Degeneration Induced by Benzalkonium Chloride (An American Ophthalmological Society Thesis)

    PubMed Central

    Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice

    2012-01-01

    Purpose: Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Methods: Trabecular specimens were examined using immunohistology and reverse transcriptase–polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Results: Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. Conclusion: BAK enhances all characteristics of TM degeneration typical of glaucoma—trabecular apoptosis, oxidative stress, induction of inflammatory chemokines—and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents. PMID:23818734

  20. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    PubMed

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  1. Biochemical and morphological effects of hypoxic environment on human embryonic stem cells in long-term culture and differentiating embryoid bodies.

    PubMed

    Lim, Hee-Joung; Han, Jiyou; Woo, Dong-Hun; Kim, Sung-Eun; Kim, Suel-Kee; Kang, Hee-Gyoo; Kim, Jong-Hoon

    2011-02-01

    The mammalian reproductive tract is known to contain 1.5-5.3% oxygen (O(2)), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O(2) tension. The aim of this study was to investigate the effects of O(2) tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O(2) tensions (3, 12, and 21% O(2)). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O(2) tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O(2)) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O(2)), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O(2)) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.

  2. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride (an American Ophthalmological Society thesis).

    PubMed

    Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice

    2012-12-01

    Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Trabecular specimens were examined using immunohistology and reverse transcriptase-polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. BAK enhances all characteristics of TM degeneration typical of glaucoma-trabecular apoptosis, oxidative stress, induction of inflammatory chemokines-and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents.

  4. Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta.

    PubMed

    Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco

    2010-11-01

    Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Calculation of Beach Change Under Interacting Cross-Shore and Longshore Processes

    DTIC Science & Technology

    2010-01-01

    the dune toe , berm width, and shoreline position are calculated, while maintaining longshore transport rates representative of the regional long-term...during growth together with the dune shape, the seaward movement of the dune toe ΔyDw for a given increase in dune volume ΔVDw is: ΔyDw = ΔVDw DD ð2Þ...Expressing Eq. (1) in terms of dune toe advance yields: dyDw dt = qw DD ð3Þ It is assumed that sand transport to the dune is related to thewidth of the

  6. The Temporal Dynamics of Two Response-Focused Forms of Emotion Regulation: Experiential, Expressive, and Autonomic Consequences

    PubMed Central

    Dan-Glauser, Elise S.; Gross, James J.

    2011-01-01

    This study examines the early affective consequences of two close forms of suppression. Participants (N=37) were shown negative, positive, and neutral pictures and cued either to attend to the pictures, or to perform expressive or physiological suppression (i.e. reduce body reactions). Continuous measures of experience, expressivity, and autonomic responses showed that both suppression strategies produced rapid response modulation. Common effects of the two strategies included a transient increase in negative feeling, a durable decrease in positive feeling, and a decrease in expressivity, cardiovascular activity, and oxygenation. The two strategies were significantly different only in response to positive stimuli, with physiological suppression showing a larger decrease in experience intensity and blood pressure. These results suggest a strong overlap between the two suppression strategies in terms of their early impact on emotional responses. PMID:21361967

  7. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    PubMed Central

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  8. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  9. Exploring Expressive Vocabulary Variability in Two-Year-Olds: The Role of Working Memory.

    PubMed

    Newbury, Jayne; Klee, Thomas; Stokes, Stephanie F; Moran, Catherine

    2015-12-01

    This study explored whether measures of working memory ability contribute to the wide variation in 2-year-olds' expressive vocabulary skills. Seventy-nine children (aged 24-30 months) were assessed by using standardized tests of vocabulary and visual cognition, a processing speed measure, and behavioral measures of verbal working memory and phonological short-term memory. Strong correlations were observed between phonological short-term memory, verbal working memory, and expressive vocabulary. Speed of spoken word recognition showed a moderate significant correlation with expressive vocabulary. In a multivariate regression model for expressive vocabulary, the most powerful predictor was a measure of phonological short-term memory (accounting for 66% unique variance), followed by verbal working memory (6%), sex (2%), and age (1%). Processing speed did not add significant unique variance. These findings confirm previous research positing a strong role for phonological short-term memory in early expressive vocabulary acquisition. They also extend previous research in two ways. First, a unique association between verbal working memory and expressive vocabulary in 2-year-olds was observed. Second, processing speed was not a unique predictor of variance in expressive vocabulary when included alongside measures of working memory.

  10. Effect of early versus late AT(1) receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits.

    PubMed

    González, Germán E; Seropian, Ignacio M; Krieger, Maria Laura; Palleiro, Jimena; Lopez Verrilli, Maria A; Gironacci, Mariela M; Cavallero, Susana; Wilensky, Luciana; Tomasi, Victor H; Gelpi, Ricardo J; Morales, Celina

    2009-07-01

    To characterize the temporal activation of the renin-angiotensin system after myocardial infarction (MI) in rabbits, we examined cardiac ANG II type 1 receptor (AT(1)R) expression and ANG II levels from 3 h to 35 days. The effects of losartan (12.5 mg.kg(-1).day(-1)) on functional and histomorphometric parameters when treatment was initiated early (3 h) and late (day 15) post-MI and maintained for different periods of time [short term (4 days), midterm (20 days), and long term (35 days)] were also studied. AT(1)R expression increased in the MI zone at 15 and 35 days (P < 0.05). ANG II levels increased (P < 0.05) in the non-MI zone at 24 h and in the MI zone as well as in plasma at 4 days and then progressively decreased until 35 days. The survival rate was significantly lower in untreated MI and early long-term-treated animals. Diastolic pressure-volume curves in MI at 35 and 56 days shifted to the right (P < 0.05). This shift was even more pronounced in long-term-treated groups (P < 0.05). Contractility decreased (P < 0.05 vs. sham) in the untreated and long-term-treated groups and was attenuated in the midterm-treated group. The early administration of losartan reduced RAM 11-positive macrophages from 4.15 +/- 0.05 to 3.05 +/- 0.02 cells/high-power field (HPF; P < 0.05) and CD45 RO-positive lymphocytes from 2.23 +/- 0.05 to 1.48 +/- 0.01 cells/HPF (P < 0.05) in the MI zone at 4 days. Long-term treatment reduced the scar collagen (MI: 70.50 +/- 2.35% and MI + losartan: 57.50 +/- 2.48, P < 0.05), determined the persistency of RAM 11-positive macrophages (3.02 +/- 0.13 cells/HPF) and CD45 RO-positive lymphocytes (2.77 +/- 0.58 cells/HPF, P < 0.05 vs. MI), and reduced the scar thinning ratio at 35 days (P < 0.05). Consequently, the temporal expressions of cardiac AT(1)R and ANG II post-MI in rabbits are different from those described in other species. Long-term treatment unfavorably modified post-MI remodeling, whereas midterm treatment attenuated this harmful effect. The delay in wound healing (early reduction and late persistency of inflammatory infiltrate) and adverse remodeling observed in long-term-treated animals might explain the unfavorable effect observed in rabbits.

  11. Zscan4 restores the developmental potency of embryonic stem cells

    PubMed Central

    Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.

    2013-01-01

    The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662

  12. Sex-specific disruptions in spatial memory and anhedonia in a "two hit" rat model correspond with alterations in hippocampal brain-derived neurotrophic factor expression and signaling.

    PubMed

    Hill, Rachel A; Klug, Maren; Kiss Von Soly, Szerenke; Binder, Michele D; Hannan, Anthony J; van den Buuse, Maarten

    2014-10-01

    Post-mortem studies have demonstrated reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of schizophrenia and major depression patients. The "two hit" hypothesis proposes that two or more major disruptions at specific time points during development are involved in the pathophysiology of these mental illnesses. However, the role of BDNF in these "two hit" effects is unclear. Our aim was to behaviorally characterize a "two hit" rat model of developmental stress accompanied by an in-depth assessment of BDNF expression and signalling. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. In adulthood, models of cognitive and negative symptoms of mental illness were analyzed. The hippocampus was then dissected into dorsal (DHP) and ventral (VHP) regions and analyzed by qPCR for exon-specific BDNF gene expression or by Western blot for BDNF protein expression and downstream signaling. Male "two hit" rats showed marked disruptions in short-term spatial memory (Y-maze) which were absent in females. However, female "two hit" rats showed signs of anhedonia (sucrose preference test), which were absent in males. Novel object recognition and anxiety (elevated plus maze) were unchanged by either of the two "hits". In the DHP, MS caused a male-specific increase in BDNF Exons I, II, IV, VII, and IX mRNA but a decrease in mature BDNF and phosphorylated TrkB (pTrkB) protein expression in adulthood. In the VHP, BDNF transcript expression was unchanged; however, in female rats only, MS significantly decreased mature BDNF and pTrkB protein expression in adulthood. These data demonstrate that MS causes region-specific and sex-specific long-term effects on BDNF expression and signaling and, importantly, mRNA expression does not always infer protein expression. Alterations to BDNF signaling may mediate the sex-specific effects of developmental stress on anhedonic behaviors. © 2014 Wiley Periodicals, Inc.

  13. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  14. Exploiting the metabolism of PYC expressing HEK293 cells in fed-batch cultures.

    PubMed

    Vallée, Cédric; Durocher, Yves; Henry, Olivier

    2014-01-01

    The expression of recombinant yeast pyruvate carboxylase (PYC) in animal cell lines was shown in previous studies to reduce significantly the formation of waste metabolites, although it has translated into mixed results in terms of improved cellular growth and productivity. In this work, we demonstrate that the unique phenotype of PYC expressing cells can be exploited through the application of a dynamic fed-batch strategy and lead to significant process enhancements. Metabolically engineered HEK293 cells stably producing human recombinant IFNα2b and expressing the PYC enzyme were cultured in batch and fed-batch modes. Compared to parental cells, the maximum cell density in batch was increased 1.5-fold and the culture duration was extended by 2.5 days, but the product yield was only marginally increased. Further improvements were achieved by developing and implementing a dynamic fed-batch strategy using a concentrated feed solution. The feeding was based on an automatic control-loop to maintain a constant glucose concentration. This strategy led to a further 2-fold increase in maximum cell density (up to 10.7×10(6)cells/ml) and a final product titer of 160mg/l, representing nearly a 3-fold yield increase compared to the batch process with the parental cell clone. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Long-Term Effects of Atrial Ganglionated Plexi Ablation on Function and Structure of Sinoatrial and Atrioventricular Node in Canine.

    PubMed

    Zhang, Ming; Wang, Ximin; Xie, Xinxing; Wang, Zhongsu; Liu, Xiaoyan; Guan, Juan; Wang, Weizong; Li, Zhan; Wang, Jiangrong; Gao, Mei; Hou, Yinglong

    2015-10-01

    Long-term effects of ganglionated plexi (GP) ablation on sinoatrial node (SAN) and atrioventricular node (AVN) remain unclear. This study is to investigate the long-term effects of ablation of cardiac anterior right GP (ARGP) and inferior right GP (IRGP) on function and structure of SAN and AVN in canine. Thirty-two dogs were randomly divided into an operated group (n = 24) and sham-operated group (n = 8). ARGP and IRGP were ablated in operated group which was randomly divided into three subgroups according to the period of evaluation after operation (1 month, 6 months, 12 months). The functional and histological characteristics of SAN and AVN, as well as the expression of connexin (Cx) 43 and Cx 45 in SAN and AVN, were evaluated before and after ablation. Resting heart rate was increased and AVN effective refractory period was prolonged and sinus node recovery time (SNRT) and corrected SNRT were shortened immediately after ablation. These changes were reverted to preablation level after 1 month. At 1 month, ventricular rate during atrial fibrillation was slowed, atria-His intervals were prolonged, and Cx43 and Cx45 expression in SAN and AVN were downregulated. At 6 months, all changes were reverted to preablation level. The histological characteristics of SAN and AVN did not change. Ablation of ARGP and IRGP has short-term effects on function and structure of SAN and AVN rather than long-term effects, which suggests that ablation of ARGP and IRGP is safe. Atrioventricular conduction dysfunction after ablation may be related to downregulated Cx43 and Cx45 expression in AVN. © 2015 Wiley Periodicals, Inc.

  16. p53 and PCNA expression in advanced colorectal cancer: response to chemotherapy and long-term prognosis.

    PubMed

    Paradiso, A; Rabinovich, M; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriquez, R; Leone, B; Sapia, M G; Simone, G; De Lena, M

    1996-12-20

    In a series of 71 patients with advanced colorectal cancer treated with biochemically modulated 5-fluorouracil (5-FU) and methotrexate (MTX), we investigated the relationship between the proliferating-cell nuclear antigen (PCNA) (PC10) and p53 (Pab1801) primary-tumor immunohistochemical expression with respect to clinical response and long-term prognosis. Nuclear p53 expression was demonstrated in 44% of samples (any number of positive tumor cells) while all tumors showed a certain degree of PCNA immunostaining. PCNA immunostaining was correlated with histopathologic grade and p53 expression, while p53 was not correlated with any of the parameters considered. The probability of clinical response to biochemically modulated 5-FU was independent of p53 and PCNA expression. p53 expression (all cut-off values) was not associated with short- or long-term clinical prognosis, whereas patients with higher PCNA primary-tumor expression showed longer survival from treatment and survival from diagnosis, according to univariate and multivariate analysis, particularly in the sub-set of colon-cancer patients. We conclude that the clinical response of advanced-colorectal-cancer patients to biochemically modulated 5-FU and MTX cannot be predicted by PCNA and p53 primary-tumor expression, but high PCNA expression appears to be independently related to long-term prognosis.

  17. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  18. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org; Holdcraft, Robert W.; Martis, Prithy C.

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expressionmore » profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.« less

  19. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    PubMed

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  20. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    PubMed

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

Top