A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures
NASA Astrophysics Data System (ADS)
Youssef, Rasha M.; Maher, Hadir M.
2008-10-01
A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.
Evaluation of ternary blended cements for use in transportation concrete structures
NASA Astrophysics Data System (ADS)
Gilliland, Amanda Louise
This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make designing ternary blended cements more acceptable by eliminating arbitrary limitations for supplementary cementitious materials (SCMs) use and changing to performance-based standards. Performance-based standards require trial batching of concrete mixture designs, which can be used to optimize ternary combinations of portland cement and SCMs. States should be aware of various SCMs that are appropriate for the project type and its environment.
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.
Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
Metal biosorption equilibria in a ternary system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.H.; Volesky, B.
Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data andmore » with conclusions postulated from the three possible binary subsystems.« less
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.
Solubility enhancement of miconazole nitrate: binary and ternary mixture approach.
Rai, Vineet Kumar; Dwivedi, Harinath; Yadav, Narayan Prasad; Chanotiya, Chandan Singh; Saraf, Shubhini A
2014-08-01
Enhancement of aqueous solubility of very slightly soluble Miconazole Nitrate (MN) is required to widen its application from topical formulation to oral/mucoadhesive formulations. Aim of the present investigation was to enhance the aqueous solubility of MN using binary and ternary mixture approach. Binary mixtures such as solvent deposition, inclusion complexation and solid dispersion were adopted to enhance solubility using different polymers like lactose, beta-cyclodextrin (β-CD) and polyethylene-glycol 6000 (PEG 6000), respectively. Batches of binary mixtures with highest solubility enhancement potentials were further mixed to form ternary mixture by a simple kneading method. Drug polymer interaction and mixture morphology was studied using the Fourier transform infrared spectroscopy and the scanning electron microscopy, respectively along with their saturation solubility studies and drug release. An excellent solubility enhancement, i.e. up to 72 folds and 316 folds of MN was seen by binary and ternary mixture, respectively. Up to 99.5% drug was released in 2 h from the mixtures of MN and polymers. RESULTS revealed that solubility enhancement by binary mixtures is achieved due to surface modification and by increasing wettability of MN. Tremendous increase in solubility of MN by ternary mixture could possibly be due to blending of water soluble polymers, i.e. lactose and PEG 6000 with β-CD which was found to enhance the solubilizing nature of β-CD. Owing to the excellent solubility enhancement potential of ternary mixtures in enhancing MN solubility from 110.4 μg/ml to 57640.0 μg/ml, ternary mixture approach could prove to be promising in the development of oral/mucoadhesive formulations.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, Scott R.; Christophorou, Loucas G.
1990-01-01
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.
Bak, J H; Yoo, B
2018-04-12
The effect of CMC on the steady and dynamic shear rheological properties of binary mixtures of XG and GG was examined at different mixing ratios. All XG-GG-CMC ternary mixtures had high shear-thinning behavior and the n value of the sample with 5% CMC was the smallest compared with those of other samples. A marked increase in K and η a,50 values was observed for ternary mixtures at a lower content (5%) of CMC, indicating that the synergistic interactions of the XG-GG binary mixture were affected by the content of CMC. The effect of temperature on the η a,50 was well described by the Arrhenius equation for all samples. The activation energy values of all ternary gum mixtures are higher than that of binary gum mixture, and these values also decreased with an increase in CMC content from 5 to 15%. The dynamic moduli of ternary gum mixtures decreased with an increase in CMC content. The tan δ value of the ternary gum mixture with 5% CMC was much lower than those of other ternary mixtures. In general, these results suggest that the flow and dynamic shear rheological properties of XG-GG binary mixtures are strongly influenced by a small addition of CMC. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham
2014-11-01
This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, S.R.; Christophorou, L.G.
1988-04-27
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.
García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique
2011-03-01
The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.
Drop-in substitute for dichlorodifluoromethane refrigerant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goble, G.H.
1993-06-01
A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.
Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham
2014-11-11
This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya
2015-10-01
Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.
NASA Astrophysics Data System (ADS)
Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader
2016-06-01
Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tezcan, S. S.; Dincer, M. S.; Bektas, S.
2016-07-15
This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF{sub 3}I + CF{sub 4} + Ar in the E/N range of 100–700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF{sub 3}I component is increased while the CF{sub 4} component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF{sub 3}I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in themore » mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF{sub 3}I component.« less
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
NASA Astrophysics Data System (ADS)
Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.
2018-01-01
We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.
NASA Astrophysics Data System (ADS)
Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.
2016-01-01
A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.
Planetary Ices and the Linear Mixing Approximation
Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.; ...
2017-10-10
Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.
Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less
Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures
NASA Astrophysics Data System (ADS)
Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj
2016-09-01
The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.
DOT National Transportation Integrated Search
2012-07-01
The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, : by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious ...
The use of ternary mixtures in concrete.
DOT National Transportation Integrated Search
2014-05-01
This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the eff...
Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness
Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle
2010-01-01
Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh
A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less
Christophorou, Loucas G.; Hunter, Scott R.
1990-01-01
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.
Christophorou, L.G.; Hunter, S.R.
1990-06-26
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
Christophorou, L.G.; Hunter, S.R.
1988-06-28
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
NASA Astrophysics Data System (ADS)
Pabalan, Roberto T.; Pitzer, Kenneth S.
1987-09-01
Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.
Colorful Column Chromatography: A Classroom Demonstration of a Three-Component Separation
ERIC Educational Resources Information Center
Heumann, Lars V.
2008-01-01
A classroom demonstration detailing the procedure for the separation of a ternary mixture consisting of intensely colored compounds using silica gel column chromatography is described. The audience can follow the compounds during their passage through the column as individual, colored bands while learning about different tools and techniques used…
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...
A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures
ERIC Educational Resources Information Center
Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.
2010-01-01
Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
NASA Astrophysics Data System (ADS)
Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.
Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2015-12-05
A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Prasad, Dev; Chauhan, Harsh; Atef, Eman
2014-11-01
The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany
2015-04-01
This work represents a comparative study of two smart spectrophotometric techniques namely; successive resolution and progressive resolution for the simultaneous determination of ternary mixtures of Amlodipine (AML), Hydrochlorothiazide (HCT) and Valsartan (VAL) without prior separation steps. These techniques consist of several consecutive steps utilizing zero and/or ratio and/or derivative spectra. By applying successive spectrum subtraction coupled with constant multiplication method, the proposed drugs were obtained in their zero order absorption spectra and determined at their maxima 237.6 nm, 270.5 nm and 250 nm for AML, HCT and VAL, respectively; while by applying successive derivative subtraction they were obtained in their first derivative spectra and determined at P230.8-246, P261.4-278.2, P233.7-246.8 for AML, HCT and VAL respectively. While in the progressive resolution, the concentrations of the components were determined progressively from the same zero order absorption spectrum using absorbance subtraction coupled with absorptivity factor methods or from the same ratio spectrum using only one divisor via amplitude modulation method can be used for the determination of ternary mixtures using only one divisor where the concentrations of the components are determined progressively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. Moreover comparative study between spectrum addition technique as a novel enrichment technique and a well established one namely spiking technique was adopted for the analysis of pharmaceutical formulations containing low concentration of AML. The methods were validated as per ICH guidelines where accuracy, precision and specificity were found to be within their acceptable limits. The results obtained from the proposed methods were statistically compared with the reported one where no significant difference was observed.
Song, Mingkai; Jiao, Pengfei; Qin, Taotao; Jiang, Kangkang; Zhou, Jingwei; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan
2017-10-01
An innovative benign process for recovery lactic acid from its fermentation broth is proposed using a novel hyper-cross-linked meso-micropore resin and water as eluent. This work focuses on modeling the competitive adsorption behaviors of glucose, lactic acid and acetic acid ternary mixture and explosion of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the mechanism of the separation is proposed as hydrophobic effect and size-exclusion. Subsequently three chromatographic models were applied to predict the competitive breakthrough curves of the ternary mixture under different operating conditions. The pore diffusion was the major limiting factor for the adsorption process, which was consistent with the BET results. The novel HD-06 resin can be a good potential adsorbent for the future SMB continuous separation process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khashaba, Pakinaz Y.; Ali, Hassan Refat H.; El-Wekil, Mohamed M.
2018-02-01
A simple and non-destructive FTIR method was used to determine certain proton pump inhibitors (PPIs) in binary and ternary mixtures. Proton pump inhibitors (PPIs); omeprazole (OMZ), esomeprazole (EZM), lansoprazole (LAN), pantoprazole sodium (PAN sodium) and rabeprazole sodium (RAB sodium) in binary mixture with domperidone (DOM) and ternary mixture of OMZ, clarithromycin (CLM) and tinidazole (TNZ) were determined in the solid-state by FTIR spectroscopy for the first time. The method was validated according to ICH-guidelines where linearity was ranged from 20 to 850 μg/g and 20-360 μg/g for PPIs and DOM, respectively in binary mixtures and 10-400, 100-8000 and 150-14,000 μg/g for OMZ, CLM and TNZ, respectively. Limits of detection were found to be 6-100 and 9-100 μg/g for PPIs and DOM, respectively and 4, 40 and 50 μg/g for OMZ, CLM and TNZ, respectively. The method was applied successfully for determination of the cited drugs in their respective pharmaceutical dosage forms.
NASA Astrophysics Data System (ADS)
Palkin, V. A.; Igoshin, I. S.
2017-01-01
The separation potentials suggested by various researchers for separating multicomponent isotopic mixtures are considered. An estimation of their applicability to determining the parameters of the efficiency of enrichment of a ternary mixture in a cascade with an optimum scheme of connection of stages made up of elements with three takeoffs is carried out. The separation potential most precisely characterizing the separative power and other efficiency parameters of stages and cascade schemes has been selected based on the results of the estimation made.
NASA Astrophysics Data System (ADS)
Lux, Simon F.; Schmuck, Martin; Appetecchi, Giovanni B.; Passerini, Stefano; Winter, Martin; Balducci, Andrea
In this paper we report the results about the use of ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. Mixtures of N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide, PYR 13FSI, and N-butyl- N-methylpyrrolidinium bis(trifluoromethansulfonyl) imide, PYR 14TFSI, with lithium hexafluorophosphate, LiPF 6 and lithium bis(trifluoromethansulfonyl) imide, LiTFSI, containing 5 wt.% of vinylene carbonate (VC) as additive, have been used in combination with a commercial graphite, KS6 TIMCAL. The performance of the graphite electrodes has been considered in term of specific capacity, cycling efficiency and cycling stability. The results clearly show the advantage of the use of ternary mixtures on the performance of the graphite electrode.
Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao
2018-01-01
Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775
NASA Astrophysics Data System (ADS)
Gilbert, Christine M.
The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.
Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2011-01-01
A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system
Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao
2008-01-01
Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.
Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.
2013-01-01
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861
Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.; Peters, C.A.; Jaffe, P.R.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nagasaka, Y.
2018-02-01
We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Gordillo, Belén; Rodríguez-Pulido, Francisco J; González-Miret, M Lourdes; Quijada-Morín, Natalia; Rivas-Gonzalo, Julián C; García-Estévez, Ignacio; Heredia, Francisco J; Escribano-Bailón, M Teresa
2015-09-09
The combined effect of anthocyanin-flavanol-flavonol ternary interactions on the colorimetric and chemical stability of malvidin-3-glucoside has been studied. Model solutions with fixed malvidin-3-glucoside/(+)-catechin ratio (MC) and variable quercetin-3-β-d-glucoside concentration (MC+Q) and solutions with fixed malvidin-3-glucoside/quercetin-3-β-d-glucoside ratio (MQ) and variable (+)-catechin concentration (MQ+C) were tested at levels closer to those existing in wines. Color variations during storage were evaluated by differential colorimetry. Changes in the anthocyanin concentration were monitored by HPLC-DAD. CIELAB color-difference formulas were demonstrated to be of practical interest to assess the stronger and more stable interaction of quercetin-3-β-d-glucoside with MC binary mixture than (+)-catechin with MQ mixture. The results imply that MC+Q ternary solutions kept their intensity and bluish tonalities for a longer time in comparison to MQ+C solutions. The stability of malvidin-3-glucoside improves when the concentration of quercetin-3-β-d-glucoside increases in MC+Q mixtures, whereas the addition of (+)-catechin in MQ+C mixtures resulted in an opposite effect.
Leclercq, Loïc; Lubart, Quentin; Aubry, Jean-Marie; Nardello-Rataj, Véronique
2013-05-28
The surface tension equations of binary surfactant mixtures (di-n-decyldimethylammonium chloride and octaethylene glycol monododecyl ether) are established by combining the Szyszkowski equation of surfactant solutions, the ideal or nonideal mixing theory, and the phase separation model. For surfactant mixtures, the surface tension at the air-water interface is calculated using nonideal theory due to synergism between the two adsorbed surfactant types. The incorporation of cyclodextrin complexation model to the surface tension equations gives a robust model for the description of the surface tension isotherms of binary, ternary, and more complex systems involving numerous inclusion complexes. The surface tension data obtained experimentally shows excellent agreement with the theoretical model below and above the formation of micelles. The strong synergistic effect observed between the two surfactants is disrupted by the presence of CDs, leading to ideal behavior of ternary systems. Indeed, depending on the nature of the cyclodextrin (i.e., α, β, or γ), which allows a tuning of the cavity size, the binding constants with the surfactants are modified as well as the surface properties due to strong modification of equilibria involved in the ternary mixture.
Equilibrium study for ternary mixtures of biodiesel
NASA Astrophysics Data System (ADS)
Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.
2017-11-01
The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.
NASA Technical Reports Server (NTRS)
Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)
1981-01-01
A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-05
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Structure of ternary additive hard-sphere fluid mixtures.
Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano
2002-12-01
Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.
Fluctuating hydrodynamics of multispecies nonreactive mixtures
Balakrishnan, Kaushik; Garcia, Alejandro L.; Donev, Aleksandar; ...
2014-01-22
In this study we discuss the formulation of the fluctuating Navier-Stokes equations for multispecies, nonreactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of nonequilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well asmore » reverse diffusion in a ternary mixture. Finally, good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multispecies fluids.« less
Hofmann, Andreas; Migeot, Matthias; Arens, Lukas; Hanemann, Thomas
2016-01-01
Temperature-dependent viscosity, conductivity and density data of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide (EMIM-TFSA), ethylene carbonate (EC), and lithium bis(trifluoromethanesulfonyl)azanide (Li-TFSA) were determined at atmospheric pressure in the temperature range of 20 to 80 °C. Differential scanning calorimetry (DSC) measurements were performed to characterize phase conditions of the mixtures in a temperature range of −120 to +100 °C. The viscosity data were fitted according to the Vogel-Fulcher-Tammann-Hesse (VFTH) equation and analyzed with the help of the fractional Walden rule. In this study, fundamental physicochemical data about the mixtures are provided and discussed as a basis for structure-property relationship calculations and for potential use of those mixtures as electrolytes for various applications. PMID:27153066
Ternary boride product and process
NASA Technical Reports Server (NTRS)
Clougherty, Edward V. (Inventor)
1976-01-01
A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.
Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko
2012-12-01
The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.
Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.
Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema
2011-09-01
Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. © 2011 American Chemical Society
ThermoData Engine Database - Pure Compounds and Binary Mixtures
National Institute of Standards and Technology Data Gateway
SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase) This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.
A study of nonflammable ArCO 2-hydrocarbon gas mixtures for limited streamer tubes
NASA Astrophysics Data System (ADS)
Cartwright, S.; Schneekloth, U.; Alpat, B.; Artemi, C.; Battiston, R.; Bilei, G.; Italiani, M.; Pauluzzi, M.; Servoli, L.; Messner, R.; Wyss, J.; Zdarko, R.; Johnson, J.
1989-04-01
The gas mixtures generally used until now in limited streamer tube detectors (Ar+C 4H 10 or Ar+CO 2+C 5H 12) are very flammable when leaked into air. The safety issues are therefore very relevant for large-volume underground experiments. We have found a set of completely safe (i.e. nonflammable) ternary mixtures of the kind Ar + hydrocarbon + CO 2 containing less than ˜ 5% of Ar and less than ˜ 10% of hydrocarbon. We tested C 4H 10, C 5H 12 and C 6H 14 as quenching agents. The main characteristics of the various mixtures have been measured: singles (untriggered) counting rate versus high voltage and with different dead times, and average charge. The stability of these mixtures is good, and their spurious streamer activity is compared with the standard binary or ternary mixture. We studied in particular the combination Ar(2.5%) + C 4H 10(9.5%) + CO 2(88%). All the data suggest that this or a similar gas mixture can successfully replace standard flammable mixtures both in tracking devices and hadron calorimeters.
Blanchette, Craig D.; Lin, Wan-Chen; Orme, Christine A.; Ratto, Timothy V.; Longo, Marjorie L.
2008-01-01
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts. PMID:18065459
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
Experimental study of detonation of large-scale powder-droplet-vapor mixtures
NASA Astrophysics Data System (ADS)
Bai, C.-H.; Wang, Y.; Xue, K.; Wang, L.-F.
2018-05-01
Large-scale experiments were carried out to investigate the detonation performance of a 1600-m3 ternary cloud consisting of aluminum powder, fuel droplets, and vapor, which were dispersed by a central explosive in a cylindrically stratified configuration. High-frame-rate video cameras and pressure gauges were used to analyze the large-scale explosive dispersal of the mixture and the ensuing blast wave generated by the detonation of the cloud. Special attention was focused on the effect of the descending motion of the charge on the detonation performance of the dispersed ternary cloud. The charge was parachuted by an ensemble of apparatus from the designated height in order to achieve the required terminal velocity when the central explosive was detonated. A descending charge with a terminal velocity of 32 m/s produced a cloud with discernably increased concentration compared with that dispersed from a stationary charge, the detonation of which hence generates a significantly enhanced blast wave beyond the scaled distance of 6 m/kg^{1/3}. The results also show the influence of the descending motion of the charge on the jetting phenomenon and the distorted shock front.
Farajzadeh, Mir Ali; Khoshmaram, Leila
2015-01-30
In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.
von Konigslow, Kier; Park, Chul B; Thompson, Russell B
2018-06-06
A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.
Contribution to the benchmark for ternary mixtures: Transient analysis in microgravity conditions.
Ahadi, Amirhossein; Ziad Saghir, M
2015-04-01
We present a transient experimental analysis of the DCMIX1 project conducted onboard the International Space Station for a ternary tetrahydronaphtalene, isobutylbenzene, n-dodecane mixture. Raw images taken in microgravity environment using the SODI (Selectable Optical Diagnostic) apparatus which is equipped with two wavelength diagnostic were processed and the results were analyzed in this work. We measured the concentration profile of the mixture containing 80% THN, 10% IBB and 10% nC12 during the entire experiment using an advanced image processing technique and accordingly we determined the Soret coefficients using an advanced curve-fitting and post-processing technique. It must be noted that the experiment has been repeated five times to ensure the repeatability of the experiment.
The Linear Mixing Approximation for Planetary Ices
NASA Astrophysics Data System (ADS)
Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.
2017-12-01
We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).
NASA Astrophysics Data System (ADS)
Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.
2014-03-01
Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.
Improved oral bioavailability of probucol by dry media-milling.
Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning
2017-09-01
The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...
2017-08-15
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Laboratory evaluation of 100% fly ash cementitious systems containing Ekkomaxx.
DOT National Transportation Integrated Search
2013-09-01
Long-lasting, durable concrete is a must have for DOTs in todays construction : and economic climate. Many entities are turning to alternative concrete : mixtures, such as ternary mixtures, lower w/cm ratios, lower cementitious : materials cont...
Laboratory evaluation of 100 percent fly ash cementitious systems : tech summary.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting durable concrete is a must-have for departments of transportation (DOTs) in todays : construction and economic climate. Many entities are turning to alternative concrete mixtures to : ensure long-term durability such as ternary mixtur...
NASA Astrophysics Data System (ADS)
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-05
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-01
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.
Morphology and Optical Properties of Mixed Aerosol Particles
NASA Astrophysics Data System (ADS)
Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas
2016-04-01
Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of LLPS in accumulation-sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode particles of the same composition would allow proving that LLPS indeed occurs in particles of accumulation mode size. Up to now LLPS has not been studied for particles in this size range. References: 1. Bertram, et al. Atmos. Chem & Phys, 11(21), 10995-11006, 2011. 2. Krieger, et al. Chemical Society Reviews, 41(19), 6631-6662, 2012 3. Song, M. et al. Geophys Res Lett, 39(19), 2012b 4. Smith et al. Atmos Chem & Phys, 12(20), 9613- 9628, 2012. 5. You, Y. et al. Proceedings of the National Academy of Sciences, 109(33), 13188-13193, 2012.
Development of performance properties of ternary mixtures : laboratory study on concrete.
DOT National Transportation Integrated Search
2011-03-01
This research project is a comprehensive study of how supplementary cementitious materials (SCMs) can be used to : improve the performance of concrete mixtures. This report summarizes the findings of the Laboratory Study on Concrete : phase of this w...
Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí
2016-07-01
Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.
Smith, Zachary J; Strombom, Sven; Wachsmann-Hogiu, Sebastian
2011-08-29
A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.
Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A
2011-07-19
The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.
Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.
Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery
2015-07-23
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
Santana, Audirene A; Cano-Higuita, Diana M; de Oliveira, Rafael A; Telis, Vânia R N
2016-12-01
The objective of this work was to study the spray drying of jussara pulp using ternary mixtures of gum Arabic (GA) and modified starch (MS) together with either whey protein concentrate (WPC) or soy protein isolate (SPI), as the carrier agents. Two experimental mixture designs and triangular response surfaces were used to evaluate the effects of the mixtures on the responses for powders formulated with GA:MS:WPC and GA:MS:SPI, respectively. The spray drying process was selected for each carrier agent mixture, aiming to maximum the process yield (PY), solubility (S), retention of total anthocyanins (RTA) and encapsulation efficiency (EE). It was shown that the ternary formulations showed higher PY, S and RTA than the pure and binary formulations, as well as good results for EE and a low moisture content, showing that the use of GA and MS together with either WPC or SPI provide better microencapsulation of the jussara pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghosh, Soumadwip; Dey, Souvik; Patel, Mahendra; Chakrabarti, Rajarshi
2017-03-15
The folding/unfolding equilibrium of proteins in aqueous medium can be altered by adding small organic molecules generally termed as co-solvents. Denaturants such as urea are instrumental in the unfolding of proteins while protecting osmolytes favour the folded ensemble. Recently, room temperature ionic liquids (ILs) have been shown to counteract the deleterious effect of urea on proteins. In this paper, using atomistic molecular dynamics we show that a ternary mixture containing a particular ammonium-based IL, triethylammonium acetate (TEAA), and urea (in 1 : 5 molar ratio) helps a small 15-residue S-peptide analogue regain most of its native structure, whereas a binary aqueous mixture containing a large amount of urea alone completely distorts it. Our simulations show that the denaturant urea directly interacts with the peptide backbone in the binary mixture while for the ternary mixture both urea as well as the IL are preferentially excluded from the peptide surface.
Picker, K M; Bikane, F
2001-08-01
The aim of the study is to use the 3D modeling technique of compaction cycles for analysis of binary and ternary mixtures. Three materials with very different deformation and densification characteristics [cellulose acetate (CAC), dicalcium phosphate dihydrate (EM) and theophylline monohydrate (TM)] have been tableted at graded maximum relative densities (rhorel, max) on an eccentric tableting machine. Following that, graded binary mixtures from CAC and EM have been compacted. Finally, the same ratios of CAC and EM have been tableted in a ternary mixture with 20 vol% TM. All compaction cycles have been analyzed by using different data analysis methods. Three-dimensional modeling, conventional determination of the slope of the Heckel function, determination of the elastic recovery during decompression, and calculations according to the pressure-time function were the methods of choice. The results show that the 3D model technique is able to gain the information in one step instead of three different approaches, which is an advantage for formulation development. The results show that this model enables one to better distinguish the compaction properties of mixtures and the interaction of the components in the tablet than 2D models. Furthermore, the information by 3D modeling is more precise since in the slope K of the Heckel-plot (in die) elasticity is included, and in the parameters of the pressure-time function beta and gamma plastic deformation due to pressure is included. The influence of time and pressure on the displacement can now be differentiated.
Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-05
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Ashraf-Khorassani, M; Yan, Q; Akin, A; Riley, F; Aurigemma, C; Taylor, L T
2015-10-30
Method development for normal phase flash liquid chromatography traditionally employs preliminary screening using thin layer chromatography (TLC) with conventional solvents on bare silica. Extension to green flash chromatography via correlation of TLC migration results, with conventional polar/nonpolar liquid mixtures, and packed column supercritical fluid chromatography (SFC) retention times, via gradient elution on bare silica with a suite of carbon dioxide mobile phase modifiers, is reported. Feasibility of TLC/SFC correlation is individually described for eight ternary mixtures for a total of 24 neutral analytes. The experimental criteria for TLC/SFC correlation was assumed to be as follows: SFC/UV/MS retention (tR) increases among each of the three resolved mixture components; while, TLC migration (Rf) decreases among the same resolved mixture components. Successful correlation of TLC to SFC was observed for most of the polar organic solvents tested, with the best results observed via SFC on bare silica with methanol as the CO2 modifier and TLC on bare silica with a methanol/dichloromethane mixture. Copyright © 2015 Elsevier B.V. All rights reserved.
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry
Gabel, Scott A.; London, Robert E.
2010-01-01
Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392
Phase Separation Kinetics in Isopycnic Mixtures of H2O/CO2/Ethoxylated Alcohol Surfactants
NASA Technical Reports Server (NTRS)
Lesemann, Markus; Paulaitis, Michael E.; Kaler, Eric W.
1999-01-01
Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(sub i)E(sub j)) surfactants form three coexisting liquid phases at conditions where two of the phases have equal densities (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing C8E5, C10E6, and C12E6 surfactants, but not for those mixtures containing either C4E1 or C8E3 surfactants. Pressure-temperature (PT) projections for this three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. Measurements of the microstructure in H2O/CO2/C12E6 mixtures as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%) have also been carried out to show that while micellar structure remains essentially un-changed, critical concentration fluctuations increase as the phase boundary and plait point are approached. In this report, we present our first measurements of the kinetics of isopycnic phase separation for ternary mixtures of H2O/CO2/C8E5.
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...
2017-02-07
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.
Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.
Valoppi, Fabio; Calligaris, Sonia; Barba, Luisa; Nicoli, Maria Cristina
2015-08-01
The structure at different length scales and the viscoelastic properties of ternary mixtures composed of saturated monoglycerides, sunflower oil and aqueous solutions of weak bases (KHCO 3 , NaHCO 3 , and NH 4 HCO 3 ) or strong bases (NaOH and KOH) were investigated. The characteristics of ternary mixtures were studied systematically by using polarized light microscopy, differential scanning calorimetry (DSC), synchrotron X-ray diffraction (XRD) and rheological analysis. Results showed that the base type and concentration greatly affected the structure of the mixtures. The use of strong bases allowed gelled systems to be obtained only at low concentrations (<10mM). On the contrary, the presence of weak bases induced gelling at all concentrations considered (from 1 to 1000mM). The increase of base concentration led to a reduction of the mean droplet diameter and melting temperature. At the same time, the viscoelastic characteristics as a function of base concentration followed a more complex behavior: G' and G″ progressively decreased as the salt concentration increased in a concentration range from 1 to 100mM, while the rheological parameters increased when salt concentration increased from 100 to 1000mM. The structural and viscoelastic behavior of systems prepared with different salts were commonly independent of the cation present in the medium. Results highlight that it is possible to tailor the structure of these gels by using specific bases. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man
2017-06-01
Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.
Mixture experiment methods in the development and optimization of microemulsion formulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furlanetto, Sandra; Cirri, Marzia; Piepel, Gregory F.
2011-06-25
Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil, and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. Themore » results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1 v/v), 5% oil (Labrafac Hydro) and 17% aqueous (water). The stable region of MEs was identified using mixture experiment methods for the first time.« less
Schönbichler, S A; Bittner, L K H; Weiss, A K H; Griesser, U J; Pallua, J D; Huck, C W
2013-08-01
The aim of this study was to evaluate the ability of near-infrared chemical imaging (NIR-CI), near-infrared (NIR), Raman and attenuated-total-reflectance infrared (ATR-IR) spectroscopy to quantify three polymorphic forms (I, II, III) of furosemide in ternary powder mixtures. For this purpose, partial least-squares (PLS) regression models were developed, and different data preprocessing algorithms such as normalization, standard normal variate (SNV), multiplicative scatter correction (MSC) and 1st to 3rd derivatives were applied to reduce the influence of systematic disturbances. The performance of the methods was evaluated by comparison of the standard error of cross-validation (SECV), R(2), and the ratio performance deviation (RPD). Limits of detection (LOD) and limits of quantification (LOQ) of all methods were determined. For NIR-CI, a SECVcorr-spec and a SECVsingle-pixel corrected were calculated to assess the loss of accuracy by taking advantage of the spatial information. NIR-CI showed a SECVcorr-spec (SECVsingle-pixel corrected) of 2.82% (3.71%), 3.49% (4.65%), and 4.10% (5.06%) for form I, II, III. NIR had a SECV of 2.98%, 3.62%, and 2.75%, and Raman reached 3.25%, 3.08%, and 3.18%. The SECV of the ATR-IR models were 7.46%, 7.18%, and 12.08%. This study proves that NIR-CI, NIR, and Raman are well suited to quantify forms I-III of furosemide in ternary mixtures. Because of the pressure-dependent conversion of form II to form I, ATR-IR was found to be less appropriate for an accurate quantification of the mixtures. In this study, the capability of NIR-CI for the quantification of polymorphic ternary mixtures was compared with conventional spectroscopic techniques for the first time. For this purpose, a new way of spectra selection was chosen, and two kinds of SECVs were calculated to achieve a better comparability of NIR-CI to NIR, Raman, and ATR-IR. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said
2016-08-01
Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.
Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said
2016-08-05
Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Emam, Aml A.; Abdelaleem, Eglal A.; Naguib, Ibrahim A.; Abdallah, Fatma F.; Ali, Nouruddin W.
2018-03-01
Furosemide and spironolactone are commonly prescribed antihypertensive drugs. Canrenone is the main degradation product and main metabolite of spironolactone. Ratio subtraction and extended ratio subtraction spectrophotometric methods were previously applied for quantitation of only binary mixtures. An extension of the above mentioned methods; successive ratio subtraction, is introduced in the presented work for quantitative determination of ternary mixtures exemplified by furosemide, spironolactone and canrenone. Manipulating the ratio spectra of the ternary mixture allowed their determination at 273.6 nm, 285 nm and 240 nm and in the concentration ranges of (2-16 μg mL- 1), (4-32 μg mL- 1) and (1-18 μg mL- 1) for furosemide, spironolactone and canrenone, respectively. Method specificity was ensured by the application to laboratory prepared mixtures. The introduced method was ensured to be accurate and precise. Validation of the developed method was done with respect to ICH guidelines and its validity was further ensured by the application to the pharmaceutical formulation. Statistical comparison between the obtained results and those obtained from the reported HPLC method was achieved concerning student's t-test and F ratio test where no significant difference was observed.
Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Fegley, Bruce Jr., E-mail: lschaefer@asu.edu
2017-07-10
The Earth and other rocky planets and planetesimals in the solar system formed through the mixing of materials from various radial locations in the solar nebula. This primordial material likely had a range of oxidation states as well as bulk compositions and volatile abundances. We investigate the oxygen fugacity produced by the outgassing of mixtures of solid meteoritic material, which approximate the primitive nebular materials. We find that the gas composition and oxygen fugacity of binary and ternary mixtures of meteoritic materials vary depending on the proportion of reduced versus oxidized material, and also find that mixtures using differentiated materialsmore » do not show the same oxygen fugacity trends as those using similarly reduced but undifferentiated materials. We also find that simply mixing the gases produced by individual meteoritic materials together does not correctly reproduce the gas composition or oxygen fugacity of the binary and ternary mixtures. We provide tabulated fits for the oxygen fugacities of all of the individual materials and binary mixtures that we investigate. These values may be useful in planetary formation models, models of volatile transport on planetesimals or meteorite parent bodies, or models of trace element partitioning during metal-silicate fractionation.« less
Simplified formulations with high drug loads for continuous twin-screw granulation.
Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P
2015-12-30
As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Takayama, Haruki; Shibata, Tomohiko; Ishii, Takahiro; Kojima, Seiji
2013-04-01
Ternary mixtures of water, sugar, and ionic liquid have been studied as new candidates for bioprotectants. To clarify the elastic properties and relaxation dynamics of the supercooled liquid and glassy states at low temperatures, the liquid-glass transitions were investigated by using a micro-Brillouin-scattering technique. The refractive index was measured accurately as a function of content and temperature to determine the sound velocity and the attenuation from Brillouin frequency shift and peak width. The relaxation times of structural relaxations related to liquidglass transitions were determined as functions of temperature. The Meyer-Neldel rule was found to hold for the activation energy and the prefactor of the Arrhenius law for the relaxation time.
The Kirkwood-Buff theory of solutions and the local composition of liquid mixtures.
Shulgin, Ivan L; Ruckenstein, Eli
2006-06-29
The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.
Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten
2017-11-01
Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture exposures, and the consideration of mixture effects when setting water quality guidelines for this class of pesticides. Environ Toxicol Chem 2017;36:3091-3101. © 2017 SETAC. © 2017 SETAC.
Thermal Energy Storage Material Comprising Mixtures of Sodium, Potassium and Magnesium Chlorides.
This invention pertains generally to the storage of thermal energy and in particular to such storage as latent heat of fusion in a ternary eutectic ... salt mixture. Storage of thermal energy has gained great importance since the increased interest in the use of solar energy. On account of the
Ternary gas mixture for diffuse discharge switch
Christophorou, Loucas G.; Hunter, Scott R.
1988-01-01
A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son
2014-11-15
Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (anilinemore » and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.« less
Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2015-09-18
Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation of solution characteristics using in situ evaluation techniques will lead to the formation of useful solid dispersion and nanoparticle formulations, resulting in improved drug absorption. Copyright © 2015 Elsevier B.V. All rights reserved.
Bittar, Dayana B; Ribeiro, David S M; Páscoa, Ricardo N M J; Soares, José X; Rodrigues, S Sofia M; Castro, Rafael C; Pezza, Leonardo; Pezza, Helena R; Santos, João L M
2017-11-01
Semiconductor quantum dots (QDs) have demonstrated a great potential as fluorescent probes for heavy metals monitoring. However, their great reactivity, whose tunability could be difficult to attain, could impair selectivity yielding analytical results with poor accuracy. In this work, the combination in the same analysis of multiple QDs, each with a particular ability to interact with the analyte, assured a multi-point detection that was not only exploited for a more precise analyte discrimination but also for the simultaneous discrimination of multiple mutually interfering species, in the same sample. Three different MPA-CdTe QDs (2.5, 3.0 and 3.8nm) with a good size distribution, confirmed by the FWHM values of 48.6, 55.4 and 80.8nm, respectively, were used. Principal component analysis (PCA) and partial least squares regression (PLS) were used for fluorescence data analysis. Mixtures of two MPA-CdTe QDs, emitting at different wavelength namely 549/566, 549/634 and 566/634nm were assayed. The 549/634nm emitting QDs mixture provided the best results for the discrimination of distinct ions on binary and ternary mixtures. The obtained RMSECV and R 2 CV values for the binary mixture were good, namely, from 0.01 to 0.08mgL -1 and from 0.74 to 0.89, respectively. Regarding the ternary mixture the RMSECV and R 2 CV values were good for Hg(II) (0.06 and 0.73mgL -1 , respectively) and Pb(II) (0.08 and 0.87mg L -1 , respectively) and acceptable for Cu(II) (0.02 and 0.51mgL -1 , respectively). In conclusion, the obtained results showed that the developed approach is capable of resolve binary and ternary mixtures of Pb (II), Hg (II) and Cu (II), providing accurate information about lead (II) and mercury (II) concentration and signaling the occurrence of Cu (II). Copyright © 2017 Elsevier B.V. All rights reserved.
Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana
2016-11-01
Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.
Mixture experiment methods in the development and optimization of microemulsion formulations.
Furlanetto, S; Cirri, M; Piepel, G; Mennini, N; Mura, P
2011-06-25
Microemulsion formulations represent an interesting delivery vehicle for lipophilic drugs, allowing for improving their solubility and dissolution properties. This work developed effective microemulsion formulations using glyburide (a very poorly-water-soluble hypoglycaemic agent) as a model drug. First, the area of stable microemulsion (ME) formations was identified using a new approach based on mixture experiment methods. A 13-run mixture design was carried out in an experimental region defined by constraints on three components: aqueous, oil and surfactant/cosurfactant. The transmittance percentage (at 550 nm) of ME formulations (indicative of their transparency and thus of their stability) was chosen as the response variable. The results obtained using the mixture experiment approach corresponded well with those obtained using the traditional approach based on pseudo-ternary phase diagrams. However, the mixture experiment approach required far less experimental effort than the traditional approach. A subsequent 13-run mixture experiment, in the region of stable MEs, was then performed to identify the optimal formulation (i.e., having the best glyburide dissolution properties). Percent drug dissolved and dissolution efficiency were selected as the responses to be maximized. The ME formulation optimized via the mixture experiment approach consisted of 78% surfactant/cosurfacant (a mixture of Tween 20 and Transcutol, 1:1, v/v), 5% oil (Labrafac Hydro) and 17% aqueous phase (water). The stable region of MEs was identified using mixture experiment methods for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Hegazy, Maha A.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-01-01
A comparative study of smart spectrophotometric techniques for the simultaneous determination of Omeprazole (OMP), Tinidazole (TIN) and Doxycycline (DOX) without prior separation steps is developed. These techniques consist of several consecutive steps utilizing zero/or ratio/or derivative spectra. The proposed techniques adopt nine simple different methods, namely direct spectrophotometry, dual wavelength, first derivative-zero crossing, amplitude factor, spectrum subtraction, ratio subtraction, derivative ratio-zero crossing, constant center, and successive derivative ratio method. The calibration graphs are linear over the concentration range of 1-20 μg/mL, 5-40 μg/mL and 2-30 μg/mL for OMP, TIN and DOX, respectively. These methods are tested by analyzing synthetic mixtures of the above drugs and successfully applied to commercial pharmaceutical preparation. The methods that are validated according to the ICH guidelines, accuracy, precision, and repeatability, were found to be within the acceptable limits.
Xenon and Other Volatile Anesthetics Change Domain Structure in Model Lipid Raft Membranes
Weinrich, Michael; Worcester, David L.
2014-01-01
Inhalation anesthetics have been in clinical use for over 160 years, but the molecular mechanisms of action continue to be investigated. Direct interactions with ion channels received much attention after it was found that anesthetics do not change the structure of homogeneous model membranes. However, it was recently found that halothane, a prototypical anesthetic, changes domain structure of a binary lipid membrane. The noble gas xenon is an excellent anesthetic and provides a pivotal test of the generality of this finding, extended to ternary lipid raft mixtures. We report that xenon and conventional anesthetics change the domain equilibrium in two canonical ternary lipid raft mixtures. These findings demonstrate a membrane-mediated mechanism whereby inhalation anesthetics can affect the lipid environment of trans-membrane proteins. PMID:24299622
Yan, Luchun; Liu, Jiemin; Jiang, Shen; Wu, Chuandong; Gao, Kewei
2017-07-13
The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( n = 12), 0.996 for their binary mixtures ( n = 36) and 0.990 for their ternary mixtures ( n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( n = 15), 0.973 for their binary mixtures ( n = 24), and 0.888 for their ternary mixtures ( n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Gopalapillai, Yamini; Hale, Beverley A
2017-05-02
Simultaneous determinations of internal dose ([M] tiss ) and external doses ([M] tot , {M 2+ } in solution) were conducted to study ternary mixture (Ni, Cu, Cd) chronic toxicity to Lemna minor in alkaline solution (pH 8.3). Also, concentration addition (CA) based on internal dose was evaluated as a tool for risk assessment of metal mixture. Multiple regression analysis of dose versus root growth inhibition, as well as saturation binding kinetics, provided insight into interactions. Multiple regressions were simpler for [M] tiss than [M] tot and {M 2+ }, and along with saturation kinetics to the internal biotic ligand(s) in the cytoplasm, they indicated that Ni-Cu-Cd competed for uptake into plant, but once inside, only Cu-Cd shared a binding site. Copper inorganic complexes (hydroxides, carbonates) played a role in metal bioavailability in single metal exposure but not in mixtures. Regardless of interactions, the current regulatory approach of using CA based on [M] tot can sufficiently predict mixture toxicity (∑TU close to 1), but CA based on [M] tiss was closest to unity across a range of doses. Internal dose integrates all metal-metal interactions in solution and during uptake into the organism, thereby providing a more direct metric describing toxicity.
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Destro, Massimo; Ottolini, Luca; Vicentini, Lorenza; Boschetti, Silvia
2012-10-01
The parenteral administration of combinations of drugs is often necessary in palliative medicine, particularly in the terminal stage of life, when patients are no longer able to take medication orally. The use of infusers to administer continuous subcutaneous infusions is a well-established practice in the palliative care setting and enables several drugs to be given simultaneously, avoiding the need for repeated administrations and the effects of peaks and troughs in the doses of medication. The method is also appreciated by patients and caregivers in the home care setting because the devices and infusion sites are easy to manage. Despite their frequent use, however, the mixtures of drugs adopted in clinical practice are sometimes not supported by reliable data concerning their chemical and physical compatibility. The present study investigates the chemical compatibility of binary mixtures (morphine with ketorolac) and the physical compatibility of binary (morphine or methadone with ketorolac) or ternary mixtures (morphine with ketorolac and/or haloperidol, and/or dexamethasone, and/or metoclopramide, and/or hyoscine butylbromide) with a view to reducing the aleatory nature of the empirical use of such combinations, thereby increasing their safety and clinical appropriateness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alassane-Kpembi, Imourana; Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse; Institut des Sciences Biomédicales Appliquées, Cotonou, Bénin
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. DON is often present with other type B trichothecenes such as 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX). Although the cytotoxicity of individual mycotoxins has been widely studied, data on the toxicity of mycotoxin mixtures are limited. The aim of this study was to assess interactions caused by co-exposure to Type B trichothecenes on intestinal epithelial cells. Proliferating Caco-2 cells were exposed to increasing doses of Type B trichothecenes, alone or in binary or ternary mixtures. The MTT test and neutral red uptake,more » respectively linked to mitochondrial and lysosomal functions, were used to measure intestinal epithelial cytotoxicity. The five tested mycotoxins had a dose-dependent effect on proliferating enterocytes and could be classified in increasing order of toxicity: 3-ADON < 15-ADON ≈ DON < NIV ≪ FX. Binary or ternary mixtures also showed a dose-dependent effect. At low concentrations (cytotoxic effect between 10 and 30–40%), mycotoxin combinations were synergistic; however DON–NIV–FX mixture showed antagonism. At higher concentrations (cytotoxic effect around 50%), the combinations had an additive or nearly additive effect. These results indicate that the simultaneous presence of low doses of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. Considering the frequent co-occurrence of trichothecenes in the diet and the concentrations of toxins to which consumers are exposed, this synergy should be taken into account. - Highlights: • We assessed the individual and combined cytotoxicity of five trichothecenes. • The tested concentrations correspond to the French consumer exposure levels. • The type of interaction in combined cytotoxicity varied with the effect level. • Low doses of Type B trichothecenes induced synergistic cytotoxicity. • Ternary combination DON–NIV–FX showed antagonism.« less
Kan, Hyo; Tsukagoshi, Kazuhiko
2017-07-01
Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Antiandrogenic activity of phthalate mixtures: Validity of concentration addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia
2012-03-01
Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approachmore » (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.« less
NASA Astrophysics Data System (ADS)
Salem, Hesham; Lotfy, Hayam M.; Hassan, Nagiba Y.; El-Zeiny, Mohamed B.; Saleh, Sarah S.
2015-01-01
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.
NASA Astrophysics Data System (ADS)
Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia
2015-02-01
Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.
Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S
2015-01-25
This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Song, Mingkai; Cui, Linlin; Kuang, Han; Zhou, Jingwei; Yang, Pengpeng; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan
2018-08-10
An intermittent simulated moving bed (3F-ISMB) operation scheme, the extension of the 3W-ISMB to the non-linear adsorption region, has been introduced for separation of glucose, lactic acid and acetic acid ternary-mixture. This work focuses on exploring the feasibility of the proposed process theoretically and experimentally. Firstly, the real 3F-ISMB model coupled with the transport dispersive model (TDM) and the Modified-Langmuir isotherm was established to build up the separation parameter plane. Subsequently, three operating conditions were selected from the plane to run the 3F-ISMB unit. The experimental results were used to verify the model. Afterwards, the influences of the various flow rates on the separation performances were investigated systematically by means of the validated 3F-ISMB model. The intermittent-retained component lactic acid was finally obtained with the purity of 98.5%, recovery of 95.5% and the average concentration of 38 g/L. The proposed 3F-ISMB process can efficiently separate the mixture with low selectivity into three fractions. Copyright © 2018 Elsevier B.V. All rights reserved.
Ross, David S; Thurston, George M; Lutzer, Carl V
2008-08-14
In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.
Performance of HCFC22 alternative refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, D.; Kim, C.B.; Song, Y.J.
1999-07-01
In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a,more » and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.« less
Paiva, Eduardo M; da Silva, Vitor H; Poppi, Ronei J; Pereira, Claudete F; Rohwedder, Jarbas J R
2018-05-12
This work reports on the use of micro- and macro-Raman measurements for quantification of mebendazole (MBZ) polymorphs A, B, and C in mixtures. Three Raman spectrophotometers were studied with a laser spot size of 3, 80 and 100 μm and spectral resolutions of 3.9, 9 and 4 cm -1 , respectively. The samples studied were ternary mixtures varying the MBZ polymorphs A and C from 0 to 100% and polymorph B from 0 to 30%. Partial Least Squares (PLS) regression models were developed using the pre-processing spectra (2nd derivative) of the ternary mixtures. The best performance was obtained when the macro-Raman configuration was applied, obtaining RMSEP values of 1.68%, 1.24% and 2.03% w/w for polymorphs A, B, and C, respectively. In general, micro-Raman presented worst results for MBZ polymorphs prediction because the spectra obtained with this configuration does not represent the bulk proportion of mixtures, which have different particle morphologies and sizes. In addition, the influence of these particle features on micro-Raman measurements was also studied. Finally, the results demonstrated that reliable analytical quantifying of MBZ polymorphs can be reached using a laser with wider area illuminated, thus enabling acquisition of more reproductive and representative spectra of the mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.
Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G
2014-01-01
The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Was-Gubala, Jolanta; Starczak, Roza
2015-01-01
Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
DOT National Transportation Integrated Search
2012-07-01
Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three : cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and...
New concrete mixtures turn waste into quality roads : fact sheet.
DOT National Transportation Integrated Search
2011-11-01
Many entities currently use fly ash, slag, and other supplementary cementitious materials (SCMs) in Portland cement concrete (PCC) pavement and structures. Although the body of knowledge is limited, several states are currently using ternary cementit...
NASA Astrophysics Data System (ADS)
Costesèque, Pierre; Mojtabi, Abdelkader; Platten, Jean Karl
2011-05-01
The aim of this article is to present briefly a summary of the state of art in theoretical, experimental and numerical approaches in thermodiffusion. The concepts and equations giving the mass flux of constituents in binary, ternary and multicomponent mixtures are presented.
Lee, Eun-Hee; Cho, Kyung-Suk
2009-08-15
It was examined the substrate interactions of benzene (B), tolulene (T), ethylbenzene (E), xylene (X), and methyl tert-butyl ether (M) in binary, ternary, quaternary, and quinary mixtures by Rhodococcus sp. EH831 that could aerobically degrade all of five single components. The specific degradation rates (SDRs) of B, T, E, X, and M were 234, 913, 131, 184 and 139 micromol g-dry cell weight (DCW)(-1)h(-1), respectively. In binary, ternary, quaternary, and quinary mixtures of them, ethylbenzene was the strongest inhibitor for the other substrates, and methyl tert-butyl ether was the weakest inhibitor. Interestingly, no degradation of benzene and methyl tert-butyl ether was found in the coexistence of ethylbenzene. The degradation of benzene followed only after toluene became exhausted when both was present. Ethylbenzene was least inhibited by methyl tert-butyl ether and most inhibited by toluene.
Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan
2016-10-01
Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.
Montalbán, Mercedes G; Collado-González, Mar; Lozano-Pérez, A Abel; Baños, F Guillermo Díaz; Víllora, Gloria
2018-08-01
This data article is related to the subject of the research article "Extraction of Organic Compounds Involved in the Kinetic Resolution of rac-2-Pentanol from n-Hexane by Imidazolium-based Ionic Liquids: Liquid-Liquid Equilibrium" (Montalbán et al., 2018) [1]. It contains experimental data of density and refractive index of binary and ternary mixtures of imidazolium-based ionic liquids, n -hexane and organic compounds involved in the kinetic resolution of rac -2-pentanol ( rac -2-pentanol, vinyl butyrate, rac -2-pentyl butyrate or butyric acid) measured at 303.15 K and 1 atm. These data are presented as calibration curves which help to determine the composition of the ionic liquid-rich phase knowing its density or refractive index.
NASA Astrophysics Data System (ADS)
Liu, Yi; Fang, Shaohua; Shi, Pei; Luo, Dong; Yang, Li; Hirano, Shin-ichi
2016-11-01
New mixtures of 3-(2-methoxyethoxy)propanenitrile, fluoroethylene carbonate and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether are introduced as safe electrolytes for lithium-ion batteries. The electrolytes with 30 wt% 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether can own high safety and better wettability to separator and electrodes than the conventional electrolyte. The oxidation potentials of these electrolytes are about 4.8 V versus Li/Li+, and their conductivity can reach 5.42 mS cm-1 at 25 °C. Graphite/LiMn2O4 coin cells are used to evaluate the electrochemical performances, and this kind of safe electrolytes can exhibit better rate and cycle performances than the conventional electrolyte. These results indicate that such ternary electrolytes have a great potential for practical application.
Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades
2014-07-13
determine volume-based diameter distributions of aqueous boron carbide suspensions. Potassium nitrate (MIL-P-156B, 15 μm) and potassium chloride (−50... Potassium chloride was found to be particularly effective in this role. The combustion of certain ternary B4C/KNO3/KCl mixtures (such Distribution A... of unconsolidated mixtures. Five wet binder systems were therefore evaluated. Polyacrylate elastomer and nitro- cellulose (NC) were applied as
Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka
2012-06-21
Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.
Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie
2007-11-01
Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.
Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi
2016-12-01
Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q -3.6 , which is consistent with the results for the SBR/CP mixture.
Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi
2016-01-01
Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q −3.6, which is consistent with the results for the SBR/CP mixture. PMID:27980510
Feng, Tao; Wang, Ke; Liu, Fangfang; Ye, Ran; Zhu, Xiao; Zhuang, Haining; Xu, Zhimin
2017-06-01
Naringin is a bioflavonoid that is rich in citrus plants and possesses enormous health benefits. However, the use of naringin as a nutraceutical is significantly limited by its low bioavailability. In this study, a novel water-soluble ternary nanoparticle material consisting of amylose, α-linoleic acid and β-lactoglobulin was developed to encapsulate naringin to improve its bioavailability. The physicochemical characteristics of the ternary nanoparticle-naringin inclusion complex were analysed by ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), high-resolution transmission electron microscopy (TEM), X-ray diffractometry (XRD) and particle size distribution. The results confirmed the formation of the ternary nanoparticle-naringin inclusion complex. The encapsulation efficiency (EE) and loading content (LC) of the ternary nanoparticle-naringin inclusion complex were 78.73±4.17% and 14.51±3.43%, respectively. In addition, the results of the ternary nanoparticle-naringin inclusion complex in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that naringin can be gradually released from the complex. In conclusion, ternary nanoparticles are considered promising carriers to effectively improve the bioavailability of naringin. Copyright © 2017 Elsevier B.V. All rights reserved.
Kimura, Yuji; Haraguchi, Kazutoshi
2017-05-16
Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, E.; Rendo, R.; Sanjurjo, B.
1998-11-01
The surface tension of aqueous solutions of N-methyldiethanolamine and diethanolamine + N-methyldiethanolamine, monoethanolamine + N-methyldiethanolamine and 2-amino-2-methyl-1-propanol + N-methyldiethanolamine was measured at temperatures from 25 C to 50 C. For binary mixtures the concentration range was 0--50 mass % N-methyldiethanolamine, and for the tertiary mixtures the concentration range for each amine was 0--50 mass %. The experimental values were correlated with temperature and mole fraction. The maximum deviation in both cases was always less than 0.5%.
Dudásová, Dorota; Rune Flåten, Geir; Sjöblom, Johan; Øye, Gisle
2009-09-15
The transmission profiles of one- to three-component particle suspension mixtures were analyzed by multivariate methods such as principal component analysis (PCA) and partial least-squares regression (PLS). The particles mimic the solids present in oil-field-produced water. Kaolin and silica represent solids of reservoir origin, whereas FeS is the product of bacterial metabolic activities, and Fe(3)O(4) corrosion product (e.g., from pipelines). All particles were coated with crude oil surface active components to imitate particles in real systems. The effects of different variables (concentration, temperature, and coating) on the suspension stability were studied with Turbiscan LAb(Expert). The transmission profiles over 75 min represent the overall water quality, while the transmission during the first 15.5 min gives information for suspension behavior during a representative time period for the hold time in the separator. The behavior of the mixed particle suspensions was compared to that of the single particle suspensions and models describing the systems were built. The findings are summarized as follows: silica seems to dominate the mixture properties in the binary suspensions toward enhanced separation. For 75 min, temperature and concentration are the most significant, while for 15.5 min, concentration is the only significant variable. Models for prediction of transmission spectra from run parameters as well as particle type from transmission profiles (inverse calibration) give a reasonable description of the relationships. In ternary particle mixtures, silica is not dominant and for 75 min, the significant variables for mixture (temperature and coating) are more similar to single kaolin and FeS/Fe(3)O(4). On the other hand, for 15.5 min, the coating is the most significant and this is similar to one for silica (at 15.5 min). The model for prediction of transmission spectra from run parameters gives good estimates of the transmission profiles. Although the model for prediction of particle type from transmission parameters is able to predict some particles, further improvement is required before all particles are consistently correctly classified. Cross-validation was done for both models and estimation errors are reported.
Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong
2010-01-01
We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.
Diffusive transport processes in microgravity: the DCMIX project and the path to DCMIX-3
NASA Astrophysics Data System (ADS)
Triller, Thomas; Köhler, Werner
2016-07-01
Thermodiffusion describes the demixing of a system under the influence of an external temperature gradient which drives diffusive mass fluxes. Over the years, several (ground based) optical techniques have been employed for measuring thermodiffusion: Thermal Diffusion Forced Rayleigh Scattering (TDFRS), Optical Digital Interferometry (ODI) or Optical Beam Deflection (OBD). Most of these experiments use the same mechanism for the detection of demixing: light passes through a thermodiffusion cell, in which a well defined temperature gradient is applied on the sample. Diffusive fluxes change the concentration profile across the cell, and therefore the refractive index profile. This refractive index change is detected and mapped to the concentration using proper optical contrast factors. In particular ternary and higher multicomponent systems can suffer from thermosolutal convective instabilities. Therefore, the DCMIX project, a collaboration between several international research teams, ESA and Roscosmos, spearheads a measurement campaign on the ISS, utilizing SODI (Selectable Optical Diagnostics Instrument), a Mach-Zehnder interferometer inside the Microgravity Science Glovebox. Several ternary mixtures have been selected for measurement, all exhibiting unique properties. DCMIX-1 consisted of tetralin/isobutylbenzene/dodecane, a good model for hydrocarbon mixtures. DCMIX-2 was the system toluene/methanol/cyclohexane, which has a miscibility gap and allows to study critical behavior. DCMIX-3 is planned for the end of 2016 and will be an aqueous mixture of water/ethanol/triethylene-glycol. After a setback in 2014, when DCMIX-3 samples were lost with the explosion of the unmanned Orb3 vehicle, the project is now underway and will be ready for analysis at the beginning of 2017. As preparation for this, the methodology developed for data analysis has been applied to the DCMIX-1 data, especially aiming for the identification of stable quantities, which allow utilization of microgravity data as a benchmark for ground based measurements.
Laboratory evaluation of 100 percent fly ash cementitious systems : final report 573.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting, durable concrete is a must have for Departments of Transportation (DOTs) in todays construction and economic climate. Many entities are : turning to alternative concrete mixtures to ensure long-term durability such as ternary mixt...
Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.
Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua
2018-06-13
Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.
Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino
2012-03-16
Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.
Destruction of decabromodiphenyl ether (BDE-209) in a ternary carbonate molten salt reactor.
Yao, Zhi-tong; Li, Jin-hui; Zhao, Xiang-yang
2013-09-30
Soil contamination by PBDEs has become a significant environmental concern and requires appropriate remediation technologies. In this study, the destruction of decabromodiphenyl ether (BDE-209) in a ternary molten salt (Li, Na, K)2 CO3 reactor was evaluated. The effects of reaction temperature, additive amount of BDE-209 and salt mixture, on off-gas species, were investigated. The salt mixture after reaction was characterized by XRD analysis and a reaction pathway proposed. The results showed that the amounts of C2H6, C2H4, C4H8 and CH4 in the off-gas decreased with increases in temperature, while the CO2 level increased. When the reaction temperature reached 750 °C, incomplete combustion products (PICs) were no longer detected. Increasing BDE-209 loading was not helpful for the reaction, as more PICs were produced. Larger amounts of salt mixture were helpful for the reaction and PICs were not observed with the mole ratio 1: 2000 of BDE-209 to carbonate melt. XRD analysis confirmed the capture of bromine in BDE-209 by the molten salt. Copyright © 2013 Elsevier Ltd. All rights reserved.
An analytical solubility model for nitrogen-methane-ethane ternary mixtures
NASA Astrophysics Data System (ADS)
Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric
2018-01-01
Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.
Pb-free Sn-Ag-Cu ternary eutectic solder
Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.
1996-06-18
A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).
Pb-free Sn-Ag-Cu ternary eutectic solder
Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.
1996-06-18
A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.
Wahle, Chris W.; Ross, David S.; Thurston, George M.
2012-01-01
We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)10.1063/1.2937902], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two minutes of measurement time is, in principle, sufficient to determine the dimensionless mixing free energy of a non-associating ternary mixture to within an integrated error norm of 0.003. These findings establish a quantitative framework for designing light scattering experiments to determine the Gibbs free energy of ternary liquid mixtures. PMID:22830693
NASA Astrophysics Data System (ADS)
Triller, T.; Bataller, H.; Bou-Ali, M. M.; Braibanti, M.; Croccolo, F.; Ezquerro, J. M.; Galand, Q.; Gavaldà, Jna.; Lapeira, E.; Laverón-Simavilla, A.; Lyubimova, T.; Mialdun, A.; Zárate, J. M. Ortiz de; Rodríguez, J.; Ruiz, X.; Ryzhkov, I. I.; Shevtsova, V.; Vaerenbergh, S. Van; Köhler, W.
2018-05-01
We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30∘C and an almost complete data set at 25∘C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations.
NASA Astrophysics Data System (ADS)
Triller, T.; Bataller, H.; Bou-Ali, M. M.; Braibanti, M.; Croccolo, F.; Ezquerro, J. M.; Galand, Q.; Gavaldà, Jna.; Lapeira, E.; Laverón-Simavilla, A.; Lyubimova, T.; Mialdun, A.; Zárate, J. M. Ortiz de; Rodríguez, J.; Ruiz, X.; Ryzhkov, I. I.; Shevtsova, V.; Vaerenbergh, S. Van; Köhler, W.
2018-02-01
We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30∘C and an almost complete data set at 25∘C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations.
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Köhler, W.
2015-02-01
A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into the concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces
Arai, Yuji; Fuller, C.C.
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.
Arai, Yuji; Fuller, C C
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.
Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng
2015-01-01
Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution. © 2014 American Institute of Chemical Engineers.
Elkady, Ehab F
2010-09-15
New, simple, rapid and precise reversed phase liquid chromatographic (RP-LC) method has been developed for the simultaneous determination of diclofenac potassium (DP) and methocarbamol (MT) in ternary mixture with guaifenesin (GF), degradation product of methocarbamol. Chromatographic separation was achieved on a Symmetry Waters C18 column (150 mm x 4. 6mm, 5 microm). Gradient elution based on phosphate buffer pH (8)-acetonitrile at a flow rate of 1 mL min(-1) was applied. The UV detector was operated at 282 nm for DP and 274 nm for MT and GF. Linearity, accuracy and precision were found to be acceptable over the concentration ranges of 0.05-16, 0.5-160 and 0.5-160 microg mL(-1) for DP, MT and GF, respectively. The optimized method proved to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical preparation. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.
Prentice, Daniel; Pantoya, Michelle L; Clapsaddle, Brady J
2005-11-03
Nanocomposite thermites are attractive materials for their diverse applications from metallurgy to ordnance technologies. While there are a plethora of combinations of fuel and oxidizers, this work shows that the composite's overall performance is intimately tied to how the fuel and oxidizer are prepared and combined. Comparison of the combustion velocities of two separate ternary mixtures of Al-Fe(2)O(3)-SiO(2), one prepared in situ using sol-gel processing and the other prepared by physically mixing discrete nanoscale particles, demonstrated different burning behaviors as a result of preparation technique. The stoichiometry of the two sets of thermite was varied to examine the influence of SiO(2) on combustion velocity as a means to control the reaction behavior. For pure Fe(2)O(3) + Al reactions, results show that the sol-gel synthesized materials (40 m/s) exhibit increased velocities over the physically mixed materials (9 m/s) by approximately 4 times. This trend is not observed, however, upon addition of SiO(2) to the thermite mixture; ternary thermites with 40 wt % SiO(2) showed decreased burn velocities of 0.02 m/s for sol-gel prepared thermites compared to 0.2 m/s for their physically mixed counterparts. The observed trends are believed to be caused by the unique mixing between the Fe(2)O(3) and SiO(2) phases resulting from the two synthesis techniques.
El Yazbi, Fawzy A; Hassan, Ekram M; Khamis, Essam F; Ragab, Marwa A A; Hamdy, Mohamed M A
2017-11-15
Ketorolac tromethamine (KTC) with phenylephrine hydrochloride (PHE) binary mixture (mixture 1) and their ternary mixture with chlorpheniramine maleate (CPM) (mixture 2) were analyzed using a validated HPLC-DAD method. The developed method was suitable for the in vitro as well as quantitative analysis of the targeted mixtures in rabbit aqueous humor. The analysis in dosage form (eye drops) was a stability indicating one at which drugs were separated from possible degradation products arising from different stress conditions (in vitro analysis). For analysis in aqueous humor, Guaifenesin (GUF) was used as internal standard and the method was validated according to FDA regulation for analysis in biological fluids. Agilent 5 HC-C18(2) 150×4.6mm was used as stationary phase with a gradient eluting solvent of 20mM phosphate buffer pH 4.6 containing 0.2% triethylamine and acetonitrile. The drugs were resolved with retention times of 2.41, 5.26, 7.92 and 9.64min for PHE, GUF, KTC and CPM, respectively. The method was sensitive and selective to analyze simultaneously the three drugs in presence of possible forced degradation products and dosage form excipients (in vitro analysis) and also with the internal standard, in presence of aqueous humor interferences (analysis in biological fluid), at a single wavelength (261nm). No extraction procedure was required for analysis in aqueous humor. The simplicity of the method emphasizes its capability to analyze the drugs in vivo (in rabbit aqueous humor) and in vitro (in pharmaceutical formulations). Copyright © 2017 Elsevier B.V. All rights reserved.
Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J
2017-10-05
A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.
Properties of sugar-based low-melting mixtures
NASA Astrophysics Data System (ADS)
Fischer, Veronika; Kunz, Werner
2014-05-01
Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef
2016-08-02
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
NASA Astrophysics Data System (ADS)
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef
2016-08-01
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.
Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian
2016-02-07
The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.
Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop
Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef
2016-01-01
Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601
NASA Astrophysics Data System (ADS)
Yang, Shiliang; Zhang, Liangqi; Luo, Kun; Chew, Jia Wei
2017-12-01
Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar; Nonaka, Andy
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. Themore » formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.« less
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham
This work represents the application of the isosbestic points present in different absorption spectra. Three novel spectrophotometric methods were developed, the first method is the absorption subtraction method (AS) utilizing the isosbestic point in zero-order absorption spectra; the second method is the amplitude modulation method (AM) utilizing the isosbestic point in ratio spectra; and third method is the amplitude summation method (A-Sum) utilizing the isosbestic point in derivative spectra. The three methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The components at the isosbestic point were determined using the corresponding unified regression equation at this point with no need for a complementary method. The obtained results were statistically compared to each other and to that of the developed PLS model. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.
NASA Astrophysics Data System (ADS)
Joo, Sung-Ho; Shin, Dongju; Oh, ChangHyun; Wang, Jei-Pil; Shin, Shun Myung
2016-02-01
We investigate the separation of manganese by an antagonistic effect from a leaching solution of ternary cathodic material of spent lithium-ion batteries that contain 11,400 mg L-1 Co, 11,700 mg L-1 Mn, 12,200 mg L-1 Ni, and 5300 mg L-1 Li using a mixture of alkyl monocarboxylic acid and di-(2-ethylhexyl)phosphoric acid extractants. pH isotherm, distribution coefficient, separation factor, McCabe-Thiele diagram, selective scrubbing, and countercurrent extraction tests are carried out to prove an antagonistic effect and to recover manganese using alkyl monocarboxylic in the mixed extractant. Slope analysis is used to determine the extraction mechanism between a mixture of extractants and valuable metals. An increasing concentration of alkyl monocarboxylic acid in the mixture of extractants results in a decrease in distribution coefficient of cobalt and manganese, however, the separation factor value (β(Mn/Co)) increases at pH 4.5. This is caused by slope analysis where alkyl monocarboxylic acid disrupts the extraction mechanism between di-(2-ethylhexyl)phosphoric acid and cobalt. Finally, continuous countercurrent extraction in a mini-plant test demonstrate the feasibility of manganese recovery from cobalt, nickel, and lithium.
EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5
Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...
Spectrofluorimetric determination of some water-soluble vitamins.
Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R
2011-01-01
Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.
Fe-C-Si ternary composite coating on CP-titanium and its tribological properties
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Saffina, W.; Ahmed, A. S.; Ali, M. Y.
2017-03-01
This study focused on the development of ternary composite coating through incorporation of Fe-C-Si ternary powder mixtures on CP-Ti substrate and characterizes the microstructure, hardness and wears behavior in presence of Jatropha oil. In this work, the surface of commercial purity titanium (CP-Ti) was modified using a tungsten inert gas (TIG) surface melting technique. The wear behavior of coated CP-titanium was performed using pin-on-disk machine. The results showed that the melt track has dendritic microstructure which was homogenously distributed throughout the melt pool. This Fe-C-Si ternary composite coating enhanced the surface hardness of CP-Ti significantly from 175 HV for the untreated substrate to ∼800 HV for the Fe-C-Si coated CP-Ti due to the formation of intermetallic compounds.. The wear results showed that less wear volume loss was observed on the composite coated CP-Ti in presence of Jatropha-biodiesel compared to uncoated CP-Ti. The achievement of this hard Fe-C-Si composite coating on the surface of CP-Ti can broadened new prospect for many engineering applications that use biodiesel under different tribological variables.
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; Goger, Michael; Wang, Xiaobo; Fries, Bettina C.
2015-01-01
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; ...
2015-01-08
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used tomore » validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Lastly structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.« less
Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.
Santos da Silva, Francisco Vitor; Seidel-Morgenstern, Andreas
2016-07-22
Different multi-column options to perform continuous chromatographic separations of ternary mixtures have been proposed in order to overcome limitations of batch chromatography. One attractive option is given by simulated moving bed chromatography (SMB) with 8 zones, a process that offers uninterrupted production, and, potentially, improved economy. As in other established ternary separation processes, the separation sequence is crucial for the performance of the process. This problem is addressed here by computing and comparing optimal performances of the two possibilities assuming linear adsorption isotherms. The conclusions are presented in a decision tree which can be used to guide the selection of system configuration and operation. Copyright © 2016 Elsevier B.V. All rights reserved.
The influence of high shear mixing on ternary dry powder inhaler formulations.
Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina
2017-12-20
The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.
Ionic Liquids Database- (ILThermo)
National Institute of Standards and Technology Data Gateway
SRD 147 NIST Ionic Liquids Database- (ILThermo) (Web, free access) IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.
Ternary Sulfide Infrared Window Materials.
1981-10-10
results. Oxalates of the two cations can also be used for those combinations where oxalates of good purity are available. The reaction is: CaCO3 + 2La(OH... hydrothermal condi- tions. At 3000C and 300 bars pressure, CaLa2S4 breaks down completely into a mixture of calcium and lanthanum hydroxides. 3.0 CERAMIC
Dong, Yongkwan; Chai, Ping; Beekman, Matt; Zeng, Xiaoyu; Tritt, Terry M; Nolas, George S
2015-06-01
Single crystals of the ternary clathrate-I Na8Al8Si38 were synthesized by kinetically controlled thermal decomposition (KCTD), and microcrystalline Na8Al8Si38 was synthesized by spark plasma sintering (SPS) using a NaSi + NaAlSi mixture as the precursor. Na8AlxSi46-x compositions with x ≤ 8 were also synthesized by SPS from precursor mixtures of different ratios. The crystal structure of Na8Al8Si38 was investigated using both Rietveld and single-crystal refinements. Temperature-dependent transport and UV/vis measurements were employed in the characterization of Na8Al8Si38, with diffuse-reflectance measurement indicating an indirect optical gap of 0.64 eV. Our results indicate that, when more than one precursor is used, both SPS and KCTD are effective methods for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.
Ternary liquid mixtures control the multiplicity, shape and internal structure of emulsion droplets
NASA Astrophysics Data System (ADS)
Haase, Martin F.; Brujic, Jasna
2014-03-01
It is important to control the shape, internal structure and stability of emulsion droplets for drug delivery, biochemical assays, and the design of materials with novel physical properties. Successful methods involve the mechanical manipulation of the flow of oil in water using complex microfluidic devices to make multiple emulsions with a sequential introduction of specific reactants. Instead, here we show how the thermodynamics of immiscible liquid mixtures tailor emulsions using a single dripping instability. For example, the initial composition and choice of surfactant govern the multiplicity of concentric alternating oil and water layers inside the droplets. Stabilizing ternary droplets using nanoparticles gives rise to a plethora of shapes whose geometry is defined by the deformability of the shell and the flow rate. Another option is to incorporate lipids to the multiple emulsion droplet, which form vesicles upon expulsion of the inner water droplets. Depending on the number of initial water droplets, these vesicles eventually form complex hollow topologies, which can be used as junctions or scaffolds for the self-assembly of colloidal particles in the future.
Phase behavior of ternary polymer brushes
Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.
2016-01-07
Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.
NASA Astrophysics Data System (ADS)
He, Hongcai; Jiang, Zhuolin; He, Zhaoling; Liu, Tao; Li, Enzhu; Li, Bao-Wen
2018-01-01
An excellent ternary composite photocatalyst consisting of silver orthophosphate (Ag3PO4), attapulgite (ATP), and TiO2 was synthesized, in which heterojunction was formed between dissimilar semiconductors to promote the separation of photo-generated charges. The ATP/TiO2/Ag3PO4 composite was characterized by SEM, XRD, and UV-vis diffuse reflectance spectroscopy. The co-deposition of Ag3PO4 and TiO2 nanoparticles onto the surface of ATP forms a lath-particle structure. Compared with composite photocatalysts consisting of two phases, ATP/TiO2/Ag3PO4 ternary composite exhibits greatly improved photocatalytic activity for degradation of rhodamine B under simulated solar irradiation. Such ternary composite not only improves the stability of Ag3PO4, but also lowers the cost by reducing application amount of Ag3PO4, which provides guidance for the design of Ag3PO4- and Ag-based composites for photocatalytic applications.
NASA Astrophysics Data System (ADS)
Ghezal, Aicha Fadela
Concrete structures repairs in Civil Engineering by using a thin bonded overlay is common practice. However the repaired structures are often victim of premature deterioration of the new repair material due to the appearance of restrained shrinkage cracks. In this context, the main objective of this thesis is to identify, through the experimental program called Phase I the principal parameters that significantly influence the creep potential of the evaluated mixtures. Once these parameters identified, the experimental entitled Phase II is conducted under conditions simulating repairs, and emphasis was placed on restrained shrinkage using instrumented ring test. Article 1 summarized the laboratory investigation undertaken to evaluate the potential of flexural creep behavior of several SCC. The results show clearly that the flexural creep potential of SCC varies widely depending on the nature of HRWR in use. In general, the use of naphthalene sulfonate leads to higher creep by comparison to polycarboxylate. It has been shown also that even when belonging to the same A.S.T.M. classification (polycarboxylic family) the magnitude of flexural creep varies also widely depending on the properties of polycarboxylic chemicals admixture. Based on the identified parameters in phase I, namely PNS superplasticizers type and PC2, with two ternary blended cements with fly ash (BTCFA) and slag (BTCS), the second experimental program was undertaken and summarized in articles 2 and 3. As presented in article 2, the results indicate that optimized SCCs produced with blended ternary cement with fly ash (BTCFA) developed at earlier age lower compressive and splitting-tensile strengths than the corresponding SCCs with blended cement with slag (BTCS). Test results also indicated that the drying shrinkage of SCCs based on BTCFA is higher than the corresponding SCCs proportioned with BTCS and attributed in part to higher total pores volume measured at 120 days on SCC BTCFA. The restrained shrinkage of SCC summarized in article 3 show that the resistance of SCC to shrinkage cracks was quite different depending on the nature of HRWR and the binder type in use. The cracking age increases in mixtures proportioned with PC-HRWR comparatively to PNS-HRWR. The SCC mixtures based on blended ternary cement containing Class F fly ash show shorter cracking age than the corresponding SCCs proportioned with ternary blended cement containing slag. Moreover, a data analysis of current research shows that the ratio of tensile strength to free shrinkage and modulus of elasticity, referred as index of dimensional compatibility, is a promising assessment of cracking resistant performance. In this way, only the free shrinkage test (ASTM C157) and basic mechanical properties are required to assess cracking of candidate concrete mixture designs.
The Soret Effect in Liquid Mixtures - A Review
NASA Astrophysics Data System (ADS)
Köhler, Werner; Morozov, Konstantin I.
2016-07-01
The Soret effect describes diffusive motion that originates from a temperature gradient. It is observed in mixtures of gases, liquids and even solids. Although there is a formal phenomenological description based on linear nonequilibrium thermodynamics, the Soret effect is a multicause phenomenon and there is no univocal microscopic picture. After a brief historical overview and an outline of the fundamental thermodynamic concepts, this review focuses on thermodiffusion in binary and ternary liquid mixtures. The most important experimental techniques used nowadays are introduced. Then, a modern development in studying thermal diffusion, the discovery of both integral and specific additivity laws, is discussed. The former relate to the general behavior of the substances in a temperature field according to their thermophobicities, which prove to be pure component properties. The thermophobicities allow for a convenient classification of the phenomenon, a simple interpretation and a proper estimation and prediction of the thermodiffusion parameters. The specific laws relate to the additivity of the particular contributions. Among the latter, we discuss the isotopic Soret effect and the so-called chemical contribution. From the theoretical side, there are kinetic and thermodynamic theories, and the nature of the driving forces of thermodiffusion can be either of volume or surface type. Besides analytical models, computer simulations become increasingly important. Polymer solutions are special as they represent highly asymmetric molecular systems with a molar mass-independent thermophoretic mobility. Its origin is still under debate, and draining and non-draining models are presently discussed. Finally, some discussion is devoted to ternary mixtures, which only recently have been investigated in more detail.
El-Bagary, Ramzia I; Elkady, Ehab F; Ayoub, Bassam M
2011-03-01
Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL(-1). The first derivative spectrophotometric method was used for the determination of MET in the range of 2-12 μg mL(-1) and STG in the range of 50-300 μg mL(-1) by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2-12 μg mL(-1). The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL(-1). The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.
El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.
2011-01-01
Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL-1. The first derivative spectrophotometric method was used for the determination of MET in the range of 2–12 μg mL-1 and STG in the range of 50-300 μg mL-1 by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2–12 μg mL-1. The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL-1. The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675222
NASA Astrophysics Data System (ADS)
Abdel-Ghany, Maha F.; Hussein, Lobna A.; Ayad, Miriam F.; Youssef, Menatallah M.
2017-01-01
New, simple, accurate and sensitive UV spectrophotometric and chemometric methods have been developed and validated for determination of Entacapone (ENT), Levodopa (LD) and Carbidopa (CD) in ternary mixture. Method A is a derivative ratio spectra zero-crossing spectrophotometric method which allows the determination of ENT in the presence of both LD and CD by measuring the peak amplitude at 249.9 nm in the range of 1-20 μg mL- 1. Method B is a double divisor-first derivative of ratio spectra method, used for determination of ENT, LD and CD at 245, 239 and 293 nm, respectively. Method C is a mean centering of ratio spectra which allows their determination at 241, 241.6 and 257.1 nm, respectively. Methods B and C could successfully determine the studied drugs in concentration ranges of 1-20 μg mL- 1 for ENT and 10-90 μg mL- 1 for both LD and CD. Methods D and E are principal component regression and partial least-squares, respectively, used for the simultaneous determination of the studied drugs by using seventeen mixtures as calibration set and eight mixtures as validation set. The developed methods have the advantage of simultaneous determination of the cited components without any pre-treatment. All the results were statistically compared with the reported methods, where no significant difference was observed. The developed methods were satisfactorily applied to the analysis of the investigated drugs in their pure form and in pharmaceutical dosage forms.
Liquid-liquid equilibria for 2,3-butanediol + water + organic solvents at 303. 15 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.; Pandya, G.; Chakrabarti, T.
1994-10-01
2, 3-Butanediol, an important industrial chemical, is of interest because of its application as a solvent and liquid fuel additive. Liquid-liquid equilibria at 303.15 [+-] 0.5 K were measured for water + 2, 3-butanediol + butan-1-ol, + 3-methyl-1-butanol, + 4-methyl-2-pentanone, + tributyl phosphate, and + butyl acetate. Complete phase diagrams were obtained by evaluating the solubility and tie-line results for each ternary mixture. The consistency of the tie-line results was ascertained using an Othmer-Tobias plot. The distribution coefficient and separation factors were evaluated over the immiscibility region. Among the solvents studied, butan-1-ol is the most effective one though tributyl phosphatemore » and 3-methyl-1-butanol may be preferred because of their low solubility and high selectivity.« less
Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.
Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue
2014-10-01
The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.
Multiphase, multicomponent phase behavior prediction
NASA Astrophysics Data System (ADS)
Dadmohammadi, Younas
Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.
Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J
2014-02-12
Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.
Gas mixtures for gas-filled radiation detectors
Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.
1982-01-05
Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.
Improved gas mixtures for gas-filled radiation detectors
Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.
1980-03-28
Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.
Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆
Kleinhans, F.W.; Mazur, Peter
2009-01-01
Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609
Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.
Kleinhans, F W; Mazur, Peter
2007-04-01
Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.
Marti-Mestres, G; Nielloud, F; Fortuné, R; Fernandez, C; Maillols, H
2000-03-01
The formulation of sunscreen products requires understanding of the solubilization of these products in different vehicles to obtain aesthetic preparations and to evaluate long-term stability. For this study, two different ultraviolet (UV) filters were selected: oxybenzone (powder) and octyl-methoxycinnamate (liquid). First, the solubility of these UV filters was tested using a three-component simplex-centroid design strategy. The mixtures were prepared with three oily phases used in this field of cosmetics: liquid paraffin, isopropyl myristate, and coconut oil. A phase diagram method was used to carry out a systematic study of submicron oil-in-water emulsions. Phase diagrams were produced by diluting fixed binary mixtures with water. The surfactant consisted of polyoxyethylene-20-sorbitan monostearate/sorbitan monostearate (50/50, w/w). The oily phase contained equal quantities of each oil studied. From this water/surfactant/oil ternary system, we selected two reference emulsions with receptively 75/5/20 and 68/7/25 proportions. Photon correlation spectroscopy (PCS) was used to investigate the influence of these two UV filters at several concentrations on droplet size and distribution of the oil droplets in the material. All emulsions were stored and checked every month for 6 months.
Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong
2014-12-08
In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.
Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina
2017-02-01
Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane.
Yang, Yong; Zhang, Zhi-Cheng; Wang, Peng-Peng; Zhang, Jing-Chao; Nosheen, Farhat; Zhuang, Jing; Wang, Xun
2013-08-19
We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.
NASA Astrophysics Data System (ADS)
Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans
2009-02-01
For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.
Carles, Louis; Joly, Muriel; Bonnemoy, Frédérique; Leremboure, Martin; Donnadieu, Florence; Batisson, Isabelle; Besse-Hoggan, Pascale
2018-04-21
The prediction of chemical mixture toxicity is a major concern regarding unintentional mixture of pesticides from agricultural lands treated with various such compounds. We focused our work on a mixture of three herbicides commonly applied on maize crops within a fortnight, namely mesotrione (β-triketone), nicosulfuron (sulfonylurea) and S-metolachlor (chloroacetanilide). The metabolic pathways of mesotrione and nicosulfuron were qualitatively and quantitatively determined with a bacterial strain (Bacillus megaterium Mes11). This strain was isolated from an agricultural soil and able to biotransform both these herbicides. Although these pathways were unaffected in the case of binary or ternary herbicide mixtures, kinetics of nicosulfuron disappearance and also of mesotrione and nicosulfuron metabolite formation was strongly modulated. The toxicity of the parent compounds and metabolites was evaluated for individual compounds and mixtures with the standardized Microtox® test. Synergistic interactions were evidenced for all the parent compound mixtures. Synergistic, antagonistic or additive toxicity was obtained depending on the metabolite mixture. Overall, these results emphasize the need to take into account the active ingredient and metabolites all together for the determination of environmental fate and toxicity of pesticide mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...
Humans are concurrently exposed to xenoestrogens and to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in infants to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with...
1985-03-07
hydroboration of alkynes with BHBr 2 .SMe2 react with water , giving the corresponding alkenylboronic acids and with alcohols and glycols to give the...of ester by carrying out the reaction in pentane from which the water component separates. This procedure does away with the necessity of azeotrope... distillation of a ternary mixture, extensively used previously for the esterification of boronic acids. We previously demonstrdted that treatment of
Towards custom-made microemulsions
NASA Astrophysics Data System (ADS)
Hofsäss, T.; Kleinert, H.
1988-04-01
With the goal of finding the optimal properties of soaps used for tertiary oil recovery we show which properties control the position and shape of the three-phase regime in ternary mixtures of oil, water, and soap. We determine the conditions for the existence of large and multiple three-phase regimes in the phase prism formed by the Gibbs triangle of compositions and the temperature axis.
Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Capelli, E.; Beneš, O.; Konings, R. J. M.
2018-04-01
The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all the common-ion binary and ternary sub-systems of the LiF-ThF4-CsF-LiI-ThI4-CsI system has been performed and the optimized parameters are presented in this work. New equilibrium data have been measured using Differential Scanning Calorimetry and were used to assess the reciprocal ternary systems and confirm the extrapolated phase diagrams. The developed database significantly contributes to the understanding of the behaviour of cesium and iodine in the MSR, which strongly depends on their concentration and chemical form. Cesium bonded with fluorine is well retained in the fuel mixture while in the form of CsI the solubility of these elements is very limited. Finally, the influence of CsI and CsF on the physico-chemical properties of the fuel mixture was calculated as function of composition.
Pressure-Responsive, Surfactant-Free CO2-Based Nanostructured Fluids
2017-01-01
Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. “Water-rich” nanodomains embedded into a “water-depleted” matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the “water-rich” nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering. PMID:28846386
Poulsen, Tjalfe G; Adelard, Laetitia; Wells, Mona
2017-03-01
Sixteen data sets (two of which were measured in this study) with a combined total of 145 measurements of ultimate methane yield (UMY) during mono- and co-digestion of ternary biomass mixtures were used to assess impact of co-digestion on the relative change in UMY (ΔUMY) as a function of biomass mix composition. The data involved 9 biomass materials (brewery spent grains, chicken manure, cow manure, fresh grass clippings, pig manure, primary sewage sludge, vegetable food waste, wheat straw, and rice straw). Results of the assessment shows that co-digestion in 85% of yields positive values of ΔUMY regardless of the biomass materials used, however, a smaller fraction (15%) resulted in negative ΔUMY during co-digestion. The data further indicate that for each set of ternary biomass material mixtures there exists an optimal biomass mix composition at which ΔUMY is at a maximum. Statistical analyses based on the data used here indicate that the maximum value of ΔUMY (ΔUMY max ) is always positive regardless of biomass materials being co-digested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohamed, Heba M; Lamie, Nesrine T
2016-02-15
Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohamed, Heba M.; Lamie, Nesrine T.
2016-02-01
Telmisartan (TL), Hydrochlorothiazide (HZ) and Amlodipine besylate (AM) are co-formulated together for hypertension management. Three smart, specific and precise spectrophotometric methods were applied and validated for simultaneous determination of the three cited drugs. Method A is the ratio isoabsorptive point and ratio difference in subtracted spectra (RIDSS) which is based on dividing the ternary mixture of the studied drugs by the spectrum of AM to get the division spectrum, from which concentration of AM can be obtained by measuring the amplitude values in the plateau region at 360 nm. Then the amplitude value of the plateau region was subtracted from the division spectrum and HZ concentration was obtained by measuring the difference in amplitude values at 278.5 and 306 nm (corresponding to zero difference of TL) while the total concentration of HZ and TL in the mixture was measured at their isoabsorptive point in the division spectrum at 278.5 nm (Aiso). TL concentration is then obtained by subtraction. Method B; double divisor ratio spectra derivative spectrophotometry (RS-DS) and method C; mean centering of ratio spectra (MCR) spectrophotometric methods. The proposed methods did not require any initial separation steps prior the analysis of the three drugs. A comparative study was done between the three methods regarding their; simplicity, sensitivity and limitations. Specificity was investigated by analyzing the synthetic mixtures containing different ratios of the three studied drugs and their tablets dosage form. Statistical comparison of the obtained results with those found by the official methods was done, differences were non-significant in regard to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for TL, HZ and AM.
Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo
2016-01-20
The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.
Structure and effective interactions in three-component hard sphere liquids.
König, A; Ashcroft, N W
2001-04-01
Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Myoung-Youl; Lee, Jae-Yong; Chung, Chul-Woo
2012-01-12
In this research, the possible applicability of fine aggregates blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to bemore » an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.« less
Liu, W.; Montana, Vedrana; Parpura, Vladimir; Mohideen, U.
2010-01-01
We use an Atomic Force Microscope based single molecule measurements to evaluate the activation free energy in the interaction of SNARE proteins syntaxin 1A, SNAP25B and synaptobrevin 2 which regulate intracellular fusion of vesicles with target membranes. The dissociation rate of the binary syntaxin-synaptobrevin and the ternary syntaxin-SNAP25B-synaptobrevin complex was measured from the rupture force distribution as a function of the rate of applied force. The temperature dependence of the spontaneous dissociation rate was used to obtain the activation energy to the transition state of 19.8 ± 3.5 kcal/mol = 33 ± 6 kBT and 25.7 ± 3.0 kcal/mol = 43 ± 5 kBT for the binary and ternary complex, respectively. They are consistent with those measured previously for the ternary complex in lipid membranes and are of order expected for bilayer fusion and pore formation. The ΔG was 12.4–16.6 kcal/mol = 21–28 kBT and 13.8–18.0 kcal/mol = 23–30 kBT for the binary and ternary complex, respectively. The ternary complex was more stable by 1.4 kcal/mol = 2.3 kBT, consistent with the spontaneous dissociation rates. The higher adhesion energies and smaller molecular extensions measured with SNAP25B point to its possible unique and important physiological role in tethering/docking the vesicle in closer proximity to the plasma membrane and increasing the probability for fusion completion. PMID:20107522
Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.
Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter
2018-06-05
Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoang, Vu Dang; Hue, Nguyen Thu; Tho, Nguyen Huu; Nguyen, Hue Minh Thi
2015-03-01
The application of chemometrics-assisted UV spectrophotometry and RP-HPLC to the simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures is presented. The spectrophotometric procedure is based on the first-order derivative and wavelet transforms of ratio spectra using single, double and successive divisors. The ratio spectra were differentiated and smoothed using Savitzky-Golay filter; whereas wavelet transform realized with wavelet functions (i.e. db6, gaus5 and coif3) to obtain highest spectral recoveries. For the RP-HPLC procedure, the separation was achieved on a ZORBAX SB-C18 (150 × 4.6 mm; 5 μm) column at ambient temperature and the total run time was less than 7 min. A mixture of acetonitrile - 25 mM phosphate buffer pH 3 (27:73, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min and the effluent monitored by measuring absorbance at 220 nm. Calibration graphs were established in the range 20-70 mg/L for chloramphenicol, 6-14 mg/L for dexamethasone and 3-8 mg/L for naphazoline (R2 > 0.990). The RP-HPLC and ratio spectra transformed by a combination of derivative-wavelet algorithms proved to be able to successfully determine all analytes in commercial eye drop formulations without sample matrix interference (mean percent recoveries, 97.4-104.3%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter R. Zalupski; Rocklan McDowell; Simon L. Clegg
Isopiestic vapor pressures were measured at 298.15 K for aqueous NaNO3 + Eu(NO3)3 solutions, using NaCl(aq) as the reference standard. Measurements were made for both binary (single salt) solutions and for ternary solutions of the following NaNO3 ionic strength fractions: 0.05995, 0.08749, 0.16084, 0.27709, and 0.36313 over the water activity range 0.8951 = aw = 0.9832. (These ionic strength fractions correspond to NaNO3 molality fractions 0.27675, 0.36519, 0.53489, 0.69695, and 0.77381, respectively.) The results, and those of other studies for the two pure aqueous solutions, were used to determine the Pitzer model parameters for aqueous Eu(NO3)3 for molalities up tomore » 3 mol kg–1 and the two ternary (mixture) parameters ?Eu,Na = 0.367 ± 0.0035 and ?Eu,Na,NO3 = -0.0743 ± 0.0014. Some deviations of the measurements from the fitted model, of the order of +0.0075 in the osmotic coefficient, were noted for mixtures containing less than about 1 mol kg–1 total NO3–. The use of the mixture parameters in the Pitzer model yields predicted trace activity coefficients of Eu3+ in 1 mol kg–1 aqueous NaNO3 almost a factor of 2 greater than if they are omitted.« less
NASA Astrophysics Data System (ADS)
Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein
2017-08-01
In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yesavage, V.F.; Kidnay, A.J.
Enthalpy measurements for the m-cresol/tetralin binary system, and the quinoline/tertralin binary system have been completed and are included. A calibration check on the calorimeter was performed and is presented in Appendix C. Vapor liquid equilibria measurements for the quinoline/tetralin system have been completed for four isotherms; 250, 275, 300, and 325/sup 0/C. These results and a summary of progress to date for the VLE apparatus are in the appendix at the end of this report. Also, preliminary work has begun on the quinoline/m-cresol/tetralin ternary system. Correlational work has consisted of the development of mathematical expressions for fugacity and enthalpy usingmore » various combinations of mixing rules and equations of state discussed in earlier reports. Also maximum likelihood routines has been written to determine the necessary parameters for binary data obtained in this investigation.« less
Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle
Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue
2014-01-01
Objective(s): The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Materials and Methods: Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. Results: The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm2/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. Conclusion: These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen. PMID:25729544
New type of nonglossy image-receiving sheet
NASA Astrophysics Data System (ADS)
Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada
1990-07-01
We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.
Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat
2012-09-01
Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L
2016-05-10
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.; ...
2016-04-20
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, Wade F.; Rystov, Alice; Sasaki, Darryl Y.
In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu 2+, chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domainsmore » of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10 –22 to 1.5 × 10 –20 J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. Furthermore, the mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.« less
Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong
2017-07-01
Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Portnova, N. M.; Smirnov, Yu B.
2017-11-01
A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.
Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning
2018-02-01
Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.
Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte
2017-01-01
The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus ® (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb ® ), sulfobutylether-β-cyclodextrin (Captisol ® ) and methyl-β-cyclodextrin (Crysmeb ® ). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol ® and Crysmeb ® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb ® even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina; Rank, Jette
2015-01-01
Assessment of genotoxic properties of chemicals is mainly conducted only for single chemicals, without taking mixture genotoxic effects into consideration. The current study assessed mixture effects of the three known genotoxic chemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), acrylamide (AA), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH, respectively. Mixture toxicity was tested with a fixed ratio design at a 10:23:77% ratio for 2.4-D:AA:MH. Results indicated that the three chemicals yielded a synergistic mixture effect. It is not clear which mechanisms are responsible for this interaction. A few possible interactions are discussed, but further investigations including in vivo studies are needed to clarify how important these more-than-additive effects are for risk assessment.
Bisphenol A is a ubiquitous monomer used to manufacture polycarbonate plastics. Exposure ofhuman and wildlife populations to bisphenol A and its analogs is widespread and well documented. Bisphenol A is hypothesized to be estrogenic in both in vivo and in vitro studies and has be...
Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J
2016-11-01
Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sekar, Ramanan; Taillefert, Martial
2016-01-01
ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). PMID:27542932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Juranek, Stefan; Li, Haitao
Here we report on a 3.0 {angstrom} crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formationmore » of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.« less
Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons
NASA Astrophysics Data System (ADS)
Xu, H.; Wu, J.; Shi, X.; Sun, Y.
2014-12-01
Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study could advance our understanding of HMW PAHs biodegradation and help to develop successful bioremediation strategies. This work was supported by the National Natural Science Foundation of China (41102148), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110091120063).
Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys
NASA Astrophysics Data System (ADS)
Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri
2016-12-01
The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.
Systematic Proteomic Approach to Characterize the Impacts of ...
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of
Predictions of glass transition temperature for hydrogen bonding biomaterials.
van der Sman, R G M
2013-12-19
We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.
A study on flammability limits of fuel mixtures.
Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira
2008-07-15
Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.
Simultaneous determination of some artificial sweeteners in ternary formulations by FT-IR and EI-MS
NASA Astrophysics Data System (ADS)
Tosa, Nicoleta; Moldovan, Zaharie; Bratu, Ioan
2012-02-01
Artificial sweeteners are widely used in food, beverage and pharmaceutical industries all over the world. In this study some non-nutritive sweeteners such as aspartame, acesulfame-K, sodium cyclamate and sodium saccharin were simultaneously determined in ternary mixtures using FT-IR and EI-MS measurements. FT-IR method is based on direct measurements of the peak height values and area centered on 1736 cm-1, 836 cm-1, 2854 cm-1 and 1050 cm-1 for aspartame, acesulfame-K, sodium cyclamate and sodium saccharin, respectively. Mass spectrometry determinations show the characteristic peaks at m/z 91 and 262 for aspartame,m/z 43 and 163 acesulfame-K,m/z 83 and 97 for sodium cyclamate andm/z 104 and 183 for sodium saccharin. The results obtained by EI-MS in different formulations are in agreement with the FT-IR ones and provide also essential data concerning the purity grade of the components. It is concluded that FT-IR and EI-MS procedures developed in this work represent a fast, sensitive and low cost alternative in the quality control of such sweeteners in different ternary formulations.
Nucleation and Spinodal Decomposition in Ternary-Component Alloys
2009-07-30
at a high temperature and then rapidly quenching or cooling the mixture to form a solid. During the process of quenching , the components undergo a...Barbara Stoth, and Thomas Wanner, Spinodal Decomposition for Multicomponent Cahn-Hilliard Systems, Journal of Statistical Physics 98 (1999), 871–895...Avenue, New York, New York, 1988. 12 C. ACKERMANN AND W. HARDESTY Department of Mathematics, Virgina Tech Department of Mathematics and Statistics
Mohamed, Heba M; Lamie, Nesrine T
2016-09-01
In the past few decades the analytical community has been focused on eliminating or reducing the usage of hazardous chemicals and solvents, in different analytical methodologies, that have been ascertained to be extremely dangerous to human health and environment. In this context, environmentally friendly, green, or clean practices have been implemented in different research areas. This study presents a greener alternative of conventional RP-HPLC methods for the simultaneous determination and quantitative analysis of a pharmaceutical ternary mixture composed of telmisartan, hydrochlorothiazide, and amlodipine besylate, using an ecofriendly mobile phase and short run time with the least amount of waste production. This solvent-replacement approach was feasible without compromising method performance criteria, such as separation efficiency, peak symmetry, and chromatographic retention. The greenness profile of the proposed method was assessed and compared with reported conventional methods using the analytical Eco-Scale as an assessment tool. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and production of waste. The proposed method can be safely used for the routine analysis of the studied pharmaceutical ternary mixture with a minimal detrimental impact on human health and the environment.
Abdelwahab, Nada S
2012-01-01
Determination of ternary mixtures of ambroxol hydrochloride, guaifenesin, and theophylline with minimum sample pretreatment and without analyte separation has been successfully achieved by using chemometric and RP-HPLC methods. The developed chemometric models are partial least squares (PLS) and genetic algorithm coupled with PLS. Data of the analyses were obtained from UV-Vis spectra of the studied drugs in different concentration ranges. These models have been successfully updated to be applied for determination of the proposed drugs in Farcosolvin syrup and in the presence of a syrup excipient (methyl paraben). In the developed RP-HPLC method, chromatographic runs were performed on an RP-C18 analytical column with the isocratic mobile phase 0.05 M phosphate buffer-methanol-acetonitrile-triethylamine (63.5 + 27.5 + 9 + 0.25, v/v/v/v, pH 5.5 adjusted with orthophosphoric acid) at a flow rate of 1.2 mL/min. The analytes were detected and quantified at 220 nm. The method was optimized in order to obtain good resolution between the studied components and to prevent interference from methyl paraben. Method validation was performed with respect to International Conference on Harmonization guidelines and the validation acceptance criteria were met in all cases. The proposed methods can be considered acceptable for QC of the studied drugs in pharmaceutical capsules and syrup. The results obtained by the suggested chemometric methods for determination of the studied mixture in different pharmaceutical preparations were statistically compared to those obtained by applying the developed RP-HPLC method, and no significant difference was found.
Site specific solubility improvement using solid dispersions of HPMC-AS/HPC SSL--mixtures.
Zecevic, Damir Elmar; Meier, Robin; Daniels, Rolf; Wagner, Karl-Gerhard
2014-07-01
Many upcoming drug candidates are pH-dependent poorly soluble weak bases in the pH range of the gastrointestinal tract. This often leads to a high in vivo variability and bioavailability issues. Aiming to overcome these limitations, the design of solid dispersions for site specific dissolution improvement or maintenance of a potent supersaturation over the entire gastro-intestinal pH-range, is proposed to assure a reliable drug therapy. Solid dispersions containing different ratios of Dipyridamole (DPD) or Griseofulvin (GRI) and the enteric polymer hydroxypropylmethylcellulose-acetate succinate (HPMC-AS) and the water soluble low-viscosity hydroxypropylcellulose (HPC-SSL) were prepared by hot melt extrusion (HME). The solid dispersions were evaluated for their solid state, dissolution characteristics applying a three pH-step dissolution method following an acidic to neutral pH transition and stability. The use of HPMC-AS in binary mixtures with DPD and GRI facilitated increased solubility and supersaturation at pH-controlled release of the preserved amorphous state of the dispersed drug, which even inverted the pH-dependent solubility profile of the weakly basic model drug (Dipyridamole). I.e. a potent site specific delivery system was created. With ternary solid dispersions of API, HPMC-AS and HPC-SSL, tailored release profiles with superior supersaturation over the applied pH-range could be obtained. At the same time, binary and ternary mixtures showed favorable stability properties at a temperature difference between glass transition temperature and the applied storage temperature of down to 16°C. Copyright © 2014 Elsevier B.V. All rights reserved.
Maurya, Manish; Singh, Jayant K
2017-01-28
Grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption of pure SO 2 using a functionalized bilayer graphene nanoribbon (GNR) at 303 K. The functional groups considered in this work are OH, COOH, NH 2 , NO 2 , and CH 3 . The mole percent of functionalization considered in this work is in the range of 3.125%-6.25%. GCMC simulation is further used to study the selective adsorption of SO 2 from binary and ternary mixtures of SO 2 , CO 2 , and N 2 , of variable composition using the functionalized bilayer graphene nanoribbon at 303 K. This study shows that the adsorption and selectivity of SO 2 increase after the functionalization of the nanoribbon compared to the hydrogen terminated nanoribbon. The order of adsorption capacity and selectivity of the functionalized nanoribbon is found to follow the order COOH > NO 2 > NH 2 > CH 3 > OH > H. The selectivity of SO 2 is found to be maximum at a pressure less than 0.2 bar. Furthermore, SO 2 selectivity and adsorption capacity decrease with increase in the molar ratio of SO 2 /N 2 mixture from 1:1 to 1:9. In the case of ternary mixture of SO 2 , CO 2 , N 2 , having compositions of 0.05, 0.15, 0.8, the selectivity of SO 2 over N 2 is higher than that of CO 2 over N 2 . The maximum selectivity of SO 2 over CO 2 is observed for the COOH functionalized GNR followed by NO 2 and other functionalized GNRs.
NASA Astrophysics Data System (ADS)
Issa, Mahmoud Mohamed; Nejem, R.'afat Mahmoud; Shanab, Alaa Abu; Hegazy, Nahed Diab; Stefan-van Staden, Raluca-Ioana
2014-07-01
Three novel numerical methods were developed for the spectrophotometric multi-component analysis of capsules and synthetic mixtures of aspirin, atorvastatin and clopedogrel without any chemical separation. The subtraction method is based on the relationship between the difference in absorbance at four wavelengths and corresponding concentration of analyte. In this method, the linear determination ranges were 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 0.5-30 μg mL-1 clopedogrel. In the quotient method, 0.8-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 1.0-30 μg mL-1 clopedogrel were determine from spectral data at the wavelength pairs that show the same ratio of absorbance for other two species. Standard addition method was used for resolving ternary mixture of 1.0-40 μg mL-1 aspirin, 0.8-30 μg mL-1 atorvastatin and 2.0-30 μg mL-1 clopedogrel. The proposed methods were validated. The reproducibility and repeatability were found satisfactory which evidence was by low values of relative standard deviation (<2%). Recovery was found to be in the range (99.6-100.8%). By adopting these methods, the time taken for analysis was reduced as these methods involve very limited steps. The developed methods were applied for simultaneous analysis of aspirin, atorvastatin and clopedogrel in capsule dosage forms and results were in good concordance with alternative liquid chromatography.
Daar, Junaid; Khan, Ahmad; Khan, Jallat; Khan, Amjad; Khan, Gul Majid
2017-03-01
The aim of the study was to successfully design, formulate and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of poorly aqueous soluble drug viz. flurbiprofen using long (LCT), medium (MCT) and short chain triglycerides (SCT). The SNEDDS are thermodynamically stable lipid based drug delivery systems which consist of mixture of oil, surfactant and co-surfactant. Upon aqueous dilution, this mixture produces nano-emulsion spontaneously on slight agitation. The excipients intended to be used were screened for their potential to dissolve the drug and to form clear dispersion upon aqueous dilution. Labrafil M 1944 CS, capryol-90 and triacetin were selected as long, medium and short chain triglycerides, respectively, as lipids while tween-80 and polyethylene glycol-400 (PEG-400)/ethanol (3:1 ratio) were selected as surfactant and co-surfactant, respectively. The excipients were studied at every possible combination ratios using pseudo-ternary diagram. The LCT, MCT and SCT-SNEDDS were optimized using thermodynamic studies, percentage transmittance value, viscosity, refractive index (RI), electrical conductivity, globule size analysis and in-vitro drug release studies. The drug release profiles of optimized SNEDDS were then compared with market product at different pH mediums. The LCT-SNEDDS was considered to be superior for enhancement of the drug bioavailability when compared with other SNEDDS formulations and market product.
Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R
2006-12-28
Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.
de Oliveira, Tiago E.; Netz, Paulo A.; Kremer, Kurt; ...
2016-05-03
We present a coarse-graining strategy that we test for aqueous mixtures. The method uses pair-wise cumulative coordination as a target function within an iterative Boltzmann inversion (IBI) like protocol. We name this method coordination iterative Boltzmann inversion (C–IBI). While the underlying coarse-grained model is still structure based and, thus, preserves pair-wise solution structure, our method also reproduces solvation thermodynamics of binary and/or ternary mixtures. In addition, we observe much faster convergence within C–IBI compared to IBI. To validate the robustness, we apply C–IBI to study test cases of solvation thermodynamics of aqueous urea and a triglycine solvation in aqueous urea.
Gaspari, Marco; Chiesa, Luca; Nicastri, Annalisa; Gabriele, Caterina; Harper, Valeria; Britti, Domenico; Cuda, Giovanni; Procopio, Antonio
2016-12-06
The ability of tandem mass spectrometry to determine the primary structure of proteolytic peptides can be exploited to trace back the organisms from which the corresponding proteins were extracted. This information can be important when food products, such as protein powders, can be supplemented with lower-quality starting materials. In order to dissect the origin of proteinaceous material composing a given unknown mixture, a two-step database search strategy for bottom-up nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) data was implemented. A single nanoLC-MS/MS analysis was sufficient not only to determine the qualitative composition of the mixtures under examination, but also to assess the relative percent composition of the various proteomes, if dedicated calibration curves were previously generated. The approach of two-step database search for qualitative analysis and proteome total ion current (pTIC) calculation for quantitative analysis was applied to several binary and ternary mixtures which mimic the composition of milk replacers typically used in calf feeding.
Modified method to improve the design of Petlyuk distillation columns.
Zapiain-Salinas, Javier G; Barajas-Fernández, Juan; González-García, Raúl
2014-01-01
A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads.
Fabrication of wide-band-gap Mg{sub x}Zn{sub 1-x}O quasi-ternary alloys by molecular-beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Hiroshi; Fujita, Shigeo; Fujita, Shizuo
2005-05-09
A series of wurtzite MgZnO quasi-ternary alloys, which consist of wurtzite MgO/ZnO superlattices, were grown by molecular-beam epitaxy on sapphire substrates. By changing the thicknesses of ZnO layers and/or of MgO layers of the superlattice, the band-gap energy was artificially tuned from 3.30 to 4.65 eV. The highest band gap, consequently realized by the quasi-ternary alloy, was larger than that of the single MgZnO layer, we have ever reported, keeping the wurtzite structure. The band gap of quasi-ternary alloys was well analyzed by the Kronig-Penny model supposing the effective masses of wurtzite MgO as 0.30m{sub 0} and (1-2)m{sub 0} formore » electrons and holes, respectively.« less
Thin films of mixed metal compounds
Mickelsen, R.A.; Chen, W.S.
1985-06-11
Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.
NASA Astrophysics Data System (ADS)
Matthews, G. P.; Dowdell, D. C.; Wells, I.
1997-07-01
A capillary gas flow viscometer has been used to measure the shear viscosity of the ternary blend refrigerant MP-39 (52% chlorodifluoromethane; 15% 1,1-difluoroethane and 33% 2-chloro-1,1,1,2-tetrafluoroethane) in the gaseous phase at pressures up to 0.1 MPa, relative to a nitrogen standard in the temperature range 308 - 403 K. Recorded flow times were corrected for small temperature drifts, kinetic energy effects, gas imperfection effects and slip flow. The pressure and temperature conditions were chosen such that curved pipe flow and turbulence effects were negligible. The resulting viscosities agree to within 3.1% with predictions based on the semi-empirical equations of Wilke and of Herning and Zipperer. Potential parameters for the three mixture components are presented, but the incompatibility of these parameters precludes their use in the more sophisticated Brokaw approximation.
NASA Technical Reports Server (NTRS)
Mckeown, A B; Belles, Frank E
1954-01-01
Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.
NASA Astrophysics Data System (ADS)
Loh, C. W.
1980-03-01
A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.
Analysis of Minor Component Segregation in Ternary Powder Mixtures
NASA Astrophysics Data System (ADS)
Asachi, Maryam; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew
2017-06-01
In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.
Brestrich, Nina; Briskot, Till; Osberghaus, Anna; Hubbuch, Jürgen
2014-07-01
Selective quantification of co-eluting proteins in chromatography is usually performed by offline analytics. This is time-consuming and can lead to late detection of irregularities in chromatography processes. To overcome this analytical bottleneck, a methodology for selective protein quantification in multicomponent mixtures by means of spectral data and partial least squares regression was presented in two previous studies. In this paper, a powerful integration of software and chromatography hardware will be introduced that enables the applicability of this methodology for a selective inline quantification of co-eluting proteins in chromatography. A specific setup consisting of a conventional liquid chromatography system, a diode array detector, and a software interface to Matlab® was developed. The established tool for selective inline quantification was successfully applied for a peak deconvolution of a co-eluting ternary protein mixture consisting of lysozyme, ribonuclease A, and cytochrome c on SP Sepharose FF. Compared to common offline analytics based on collected fractions, no loss of information regarding the retention volumes and peak flanks was observed. A comparison between the mass balances of both analytical methods showed, that the inline quantification tool can be applied for a rapid determination of pool yields. Finally, the achieved inline peak deconvolution was successfully applied to make product purity-based real-time pooling decisions. This makes the established tool for selective inline quantification a valuable approach for inline monitoring and control of chromatographic purification steps and just in time reaction on process irregularities. © 2014 Wiley Periodicals, Inc.
Isopycnic Phases and Structures in H2O/CO2/Ethoxylated Alcohol Surfactant Mixtures
NASA Technical Reports Server (NTRS)
Paulaitis, Michael E.; Zielinski, Richard G.; Kaler, Eric W.
1996-01-01
Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(i)E(j)) surfactants can form three coexisting liquid phases at conditions where two of the phases have the same density (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing the surfactants C8E5, C10E6, and C12E6, but not for those mixtures containing either C4E1 or CgE3. Pressure-temperature (PT) projections for this isopycnic three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. As a preliminary to measuring the microstructure in isopycnic three component mixtures, phase behavior and small angle neutron scattering (SANS) experiments were performed on mixtures of D2O/CO2/ n-hexaethyleneglycol monododecyl ether (C12E6) as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%). Parameters extracted from model fits of the SANS spectra indicate that, while micellar structure remains essentially unchanged, critical concentration fluctuations increase as the phase boundary and plait point are approached.
Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa
2013-01-18
An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.
Soliman, Y S; Al Ansari, E M S; Wade, T L
2014-08-30
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Modeling unstable alcohol flooding of DNAPL-contaminated columns
NASA Astrophysics Data System (ADS)
Roeder, Eberhard; Falta, Ronald W.
Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.
Zhang, Shiming; Liu, Bin; Chen, Shengli
2013-11-14
A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.
Song, Xiaofei; Cai, Yibing; Huang, Cong; Gu, Ying; Zhang, Junhao; Qiao, Hui; Wei, Qufu
2018-04-01
A novel form-stable phase change materials (FSPCMs) was fabricated by incorporating fatty acid eutectics with electrospun carbon nanofibers (CNFs) surface-attached with copper (Cu) nanoparticles. Three different Cu/CNFs mats were made through combining the technique and principle of electrospinning, pre-oxidation/carbonization and in-situ reduction, while lauric-myristic-stearic acid (LA-MA-SA) ternary eutectic mixture was prepared as the model PCM. The morphology and crystal structure of Cu/CNFs were characterized by Fourier transfer infrared (FT-IR) spectra, Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectroscopy (EDS), respectively. The results showed that Cu nanoparticles dispersed uniformly on the surface of CNFs mats without agglomeration, and Cu/CNFs mats could provide the mechanical support for FSPCMs and effectively prevent the flow/leakage of molten fatty acid. Morphological structures, as well as the properties of thermal energy storage and thermal energy storage/retrieval rates, of the resulting FSPCMs were investigated by SEM, Differential scanning calorimetry (DSC), and measurement of melting/freezing times, respectively. The results indicated that the fabricated FSPCMs exhibited desired structural morphology, and LA-MA-SA well dispersed in three-dimensional porous structure of Cu/CNFs mats. The melting and crystallization enthalpies of the fabricated FSPCMs were in the range of 117.1-140.7 kJ/kg and 117.2-142.4 kJ/kg, respectively. In comparison with melting/freezing times of LA-MA-SA ternary eutectic mixture, the melting/freezing times of fabricated FSPCMs were respectively decreased ~27.0-49.2% and ~44.1-63.0%. The fabricated FSPCMs possessed good thermal energy storage/retrieval property, and might have great potential for renewable energy storage applications.
NASA Astrophysics Data System (ADS)
Teyssier, A.; Lagneau, V.; Schmitt, J. M.; Counioux, J. J.; Goutaudier, C.
2017-04-01
During the acid processing of aluminosilicate ores, the precipitation of a solid phase principally consisting of hydrated aluminium hydroxysulfates may be observed. The experimental study of the H2O-Al2O3-SO3 ternary system at 25 ∘C and 101 kPa enabled to describe the solid-liquid equilibra and to identify the nature, the composition and the solubility of the solid phases which may form during the acid leaching. To predict the appearance of these aluminium hydroxysulfates in more complex systems, their solubility constants were calculated by modelling the experimental solubility results, using a geochemical reaction modelling software, CHESS. A model for non-ideality correction, based on the B-dot equation, was used as it was suitable for the considered ion concentration range. The solubility constants of three out of four solid phases were calculated: 104.08 for jurbanite (Al(SO4)(OH).5H2O), 1028.09 for the solid T (Al8(SO4)5(OH)14.34H2O) and 1027.28 for the solid V (Al10(SO4)3(OH)24.20H2O). However the activity correction model was not suitable to determine the solubility constant of alunogen (Al2(SO4)3.15.8H2O), as the ion concentrations of the mixtures were too high and beyond the allowable limits of the model. Another ionic activity correction model, based on the Pitzer equation for example, must be applied to calculate the solubility constant of alunogen.
NASA Astrophysics Data System (ADS)
Nithiyanantham, S.; Palaniappan, L.
2011-03-01
Ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out in three ternary mixtures of glucose with amylase in aqueous medium at 298.15 K. The experimental data have been used to calculate some derived parameters such as acoustical impedance (Z), relative association (RA), Rao's constant (R), Wada's constant (W), relaxation time (τ), relaxation amplitude (α/f2), relaxation strength (r), and some excess thermodynamical properties like excess adiabatic compressibility (βE), excess free length (LfE) excess free volume (VfE), excess internal pressure (πiE) and excess acoustical impedance (ZE). The above parameters have been evaluated and discussed in light of molecular interactions in the mixture.
Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge.
Borowski, Sebastian; Domański, Jarosław; Weatherley, Laurence
2014-02-01
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bioethanol production optimization: a thermodynamic analysis.
Alvarez, Víctor H; Rivera, Elmer Ccopa; Costa, Aline C; Filho, Rubens Maciel; Wolf Maciel, Maria Regina; Aznar, Martín
2008-03-01
In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.
A New Fiber-Optic-Based Phase-Resolved Phosphorescence Spectrometer.
1988-02-15
microcomputer employing least-squares programs described elsewhere (24). Reagents and Materials. Anthracene, acridine, phenazine , 7,8-benzoquinoline, and...Resolution. In an effort to more thoroughly evaluate the new fiber-optic-based spectrometer, ternary mixtures of anthracene, phenazine , and acridine were...eq. 2) Value Anthracene 0.094(0.013) 0.096(0.008) 0.09 NO Phenazine 0.321(0.007) 0.317(0.002) - NO Acridine 0.012(0.006) 0.013(0.004) - NO p
Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea
2015-05-01
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna
2009-06-01
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (< or =10%, class-I) and moderately (10< d < or =30 %, class-II), highly (30< d < or =50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.
Modified method to improve the design of Petlyuk distillation columns
2014-01-01
Background A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. Results The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. Conclusions The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads. PMID:25061476
A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2012-12-01
The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauh, R.D.; Rose, T.L.; Scoville, A.N.
1980-04-01
The work reported was directed towards evaluation of new amorphous compounds for application in solar cells. The ternary A/sup II/B/sup IV/C/sub 2//sup V/ chalcopyrite systems were selected because of their inexpensive constituent elements and tetrahedral geometry. Polycrystalline samples of the ternary arsenides with Cd and Zn as the group II element and Ge, Si, Sn as the group IV element were synthesized. Thin films were deposited by vacuum evaporation of the bulk ternary arsenides. The stoichiometries of the films were irreproducible and were usually deficient in the lower vapor pressure group IV element. Films made by evaporating polycrystalline ZnAs/sub 2/,more » which also has a tetrahedral bonding structure, had stoichiometries generally in the range from Zn/sub 3/As/sub 2/ to ZnAs/sub 2/. The former compound is formed by the decomposition of ZnAs/sub 2/ to Zn/sub 3/As/sub 2/ and As/sub 4/. The intermediate stoichiometries are thought to be mixtures of the decomposition products. Preliminary results from annealing of the films indicate that heat treatment produces the stoichiometries expected for one of the two forms of zinc arsenide. The as-deposited films are amorphous when the substrate temperature is kept below 100/sup 0/C. The a-ZnAs/sub x/ films were characterized. EDAX and Auger analysis showed that films were homogeneous in the plane of the substrate, but that some variation occurred in the depth profile of the films. This change in composition is consistent with the sample decomposition which occurs during the evaporation. The as-prepared films were p-type with room temperature resistivities on the order of 10/sup 2/-10/sup 4/..cap omega..-cm. Optical absorption measurements gave optical band gap values of 1.2 eV for a-Zn/sub 3/As/sub 2/ and 1.5 eV for a-ZnAs/sub 2/. The ZnAs/sub x/ films were photoconductive.« less
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
Study of a ternary blend system for bulk heterojunction thin film solar cells
NASA Astrophysics Data System (ADS)
Ahmad, Zubair; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.
2016-08-01
In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively. This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.
High-mass heterogeneous cluster formation by ion bombardment of the ternary alloy Au 7Cu 5Al 4
Zinovev, Alexander V.; King, Bruce V.; Veryovkin, Igor V.; ...
2016-02-04
The ternary alloy Au 7Cu 5Al 4 was irradiated with 0.1–10 keV Ar + and the surface composition analyzed using laser sputter neutral mass spectrometry. Ejected clusters containing up to seven atoms, with masses up to 2000 amu, were observed. By monitoring the signals from sputtered clusters, the surface composition of the alloy was seen to change with 100 eV Ar + dose, reaching equilibrium after 10 nm of the surface was eroded, in agreement with TRIDYN simulation and indicating that the changes were due to preferential sputtering of Al and Cu. Ejected gold containing clusters were found to increasemore » markedly in intensity while aluminum containing clusters decreased in intensity as a result of Ar sputtering. Such an effect was most pronounced for low energy (<1 keV) Ar + sputtering and was consistent with TRIDYN simulations of the depth profiling. As a result, the component sputter yields from the ternary alloy were consistent with previous binary alloy measurements but showed greater Cu surface concentrations than expected from TRIDYN simulations.« less
Electrocatalyst for alcohol oxidation in fuel cells
Adzic, Radoslav R.; Marinkovic, Nebojsa S.
2001-01-01
Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.
Ferromagnetic superconductors: A vortex phase in ternary rare-earth compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuper, C.G.; Revzen, M.; Ron, A.
1980-06-09
It is shown that the generalized Ginzburg-Landau free-energy functional of Blount and Varma admits self-consistent solutions with quantized-flux vortices, magnetized in a region about the cores. There is a temperature range where the new phase has a lower free energy than either the pure superconducting or ferromagnetic phases; it represents true coexistence of ferromagnetism and superconductivity. The main features of the specific heat and magnetic properties of some rare-earth ternary compounds can be explained qualitatively.
2012-01-01
interesting property, eutectic melting-point depression. Recrystallization of ternary salts 12–14 was not attempted because of a concern that a cation... recrystallization solvent mixture for these powders, and while some individual successes resulted, a general efficient solvent system for all salt...product recrystallizations could not be found. So, rather than recrystallizing each individual adduct, spectroscopic examination of the amorphous solids was
Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.
2016-01-01
We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069
Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors
Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro
2015-01-01
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017
Chun, P W; Brumbaugh, E E; Shiremann, R B
1986-12-31
Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.
Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro
2015-09-29
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.
Closed compact Taylor's droplets in a phase-separated lamellar-sponge mixture under shear flow
NASA Astrophysics Data System (ADS)
Courbin, L.; Cristobal, G.; Rouch, J.; Panizza, P.
2001-09-01
We have studied by optical microscopy, small-angle light scattering, and rheology, the behavior under shear flow of a phase-separated lamellar-sponge (Lα - L3) ternary mixture. We observe in the Lα-rich region (ΦLα > 80%) the existence of a Newtonian assembly made of closed compact monodisperse lamellar droplets immersed in the sponge phase. Contrary to the classical onion glassy texture obtained upon shearing Lα phases, the droplet size scales herein as dot gamma-1, the inverse of the shear rate. This result is in good agreement with Taylor's picture. Above a critical shear rate, dot gammac, the droplets organize to form a single colloidal crystal whose lattice size varies as dot gamma-1/3. To the memory of Tess Melissa P.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
The effect of hydrostatic pressure on model membrane domain composition and lateral compressibility.
Barriga, H M G; Law, R V; Seddon, J M; Ces, O; Brooks, N J
2016-01-07
Phase separation in ternary model membranes is known to occur over a range of temperatures and compositions and can be induced by increasing hydrostatic pressure. We have used small angle X-ray scattering (SAXS) to study phase separation along pre-determined tie lines in dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) mixtures. We can unequivocally distinguish the liquid ordered (Lo) and liquid disordered (Ld) phases in diffraction patterns from biphasic mixtures and compare their lateral compressibility. The variation of tie line endpoints with increasing hydrostatic pressure was determined, at atmospheric pressure and up to 100 MPa. We find an extension and shift of the tie lines towards the DOPC rich region of the phase diagram at increased pressure, this behaviour differs slightly from that reported for decreasing temperature.
Okpala, Laura C; Okoli, Eric C
2014-10-01
Cookies were produced from blends of cocoyam, fermented sorghum and germinated pigeon pea flours. The study was carried out to evaluate the effects of varying the proportions of these components on the sensory and protein quality of the cookies. The sensory attributes studied were colour, taste, texture, crispness and general acceptability while the protein quality indices were biological value (BV) and net protein utilization (NPU). Mixture response surface methodology was used to model the sensory and protein quality with single, binary and ternary combinations of germinated pigeon pea, fermented sorghum and cocoyam flours. Results showed that BV and NPU of most of the cookies were above minimum acceptable levels. With the exception of cookies containing high levels of pigeon pea flour, cookies had acceptable sensory scores. Increase in pigeon pea flour resulted in increase in the BV and NPU. Regression equations suggested that the ternary blends produced the highest increase in all the sensory attributes (with the exception of colour).
Li, Tianyang; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B
2018-06-29
Lead-free antimony-based mixed sulfide and iodide perovskite phases have recently been reported to be synthesized experimentally and to exhibit reasonable photovoltaic performance. Through a combination of experimental validation and computational analysis, we show no evidence of the formation of the mixed sulfide and iodide perovskite phase, MASbSI 2 (MA = CH 3 NH 3 + ), and instead that the main products are a mixture of the binary and ternary compounds (Sb 2 S 3 and MA 3 Sb 2 I 9 ). Density functional theory calculations also indicate that such a mixed sulfide and iodide perovskite phase should be thermodynamically less stable compared with binary/ternary anion-segregated secondary phases and less likely to be synthesized under equilibrium conditions. Additionally, band structure calculations show that this mixed sulfide and iodide phase, if possible to synthesize (e.g., under nonequilibrium conditions), should have a suitable direct band gap for photovoltaic application.
Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites
NASA Astrophysics Data System (ADS)
Bai, Dezhong; Feng, Huixia; Chen, Nali; Tan, Lin; Qiu, Jianhui
2018-07-01
In this paper, we introduced attapulgite (ATP) into the system of ferrite composites for the first time. By sol-gel self-propagating combustion method, attapulgite/barium ferrite (ATP/BaFe12O19) was prepared, and then ternary composites of attapulgite/barium ferrite/polyaniline (ATP/BaFe12O19/PANI) were obtained by in-situ oxidative polymerization of aniline on ATP/BaFe12O19 mixture. The phase composition, morphology and electromagnetic properties of the as-prepared composites were characterized by X-ray diffraction (XRD), Transmission election microscope (TEM), Fourier transform infrared (FTIR), vibrating sample magnetometer (VSM) and vector network analyzer (VNA). We found that the ATP/BaFe12O19/PANI composites at a thickness of 2 mm have the minimum reflection loss of -11.89 dB at 11.28 GHz, besides the effective absorption bandwidth (less than -5 dB) reached 6.39 GHz (from 8.42 GHz to 14.81 GHz).
NASA Astrophysics Data System (ADS)
Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede
2017-05-01
The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagewiesche, D.P.; Ashour, S.S.; Sandall, O.C.
1995-05-01
Recently, several researchers have suggested using aqueous mixtures of small amounts of monoethanolamine and much larger amounts of N-methyldiethanolamine for the absorption of CO{sub 2} and for the selective removal of H{sub 2}S from gas streams of mixtures of CO{sub 2} and H{sub 2}S. The densities and viscosities of aqueous N-methyldiethanolamine/monoethanolamine (MDEA/MEA) blends containing 30 and 40 mass % total amine with MEA concentrations of 5, 10, and 15 mass % of the total amine concentration were measured at temperatures of 303, 313, and 323 K. The diffusion coefficients and Henry`s law constants of N{sub 2}O in these solutions weremore » also measured and were used to estimate the diffusion coefficients and Henry`s law constants of CO{sub 2} in these solutions according to the N{sub 2}O/CO{sub 2} analogy technique.« less
Hassan, Wafaa S; Elmasry, Manal S; Elsayed, Heba M; Zidan, Dalia W
2018-09-05
In accordance with International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines, six novel, simple and precise sequential spectrophotometric methods were developed and validated for the simultaneous analysis of Ribavirin (RIB), Sofosbuvir (SOF), and Daclatasvir (DAC) in their mixture without prior separation steps. These drugs are described as co-administered for treatment of Hepatitis C virus (HCV). HCV is the cause of hepatitis C and some cancers such as liver cancer (hepatocellular carcinoma) and lymphomas in humans. These techniques consisted of several sequential steps using zero, ratio and/or derivative spectra. DAC was first determined through direct spectrophotometry at 313.7 nm without any interference of the other two drugs while RIB and SOF can be determined after ratio subtraction through five methods; Ratio difference spectrophotometric method, successive derivative ratio method, constant center, isoabsorptive method at 238.8 nm, and mean centering of the ratio spectra (MCR) at 224 nm and 258 nm for RIB and SOF, respectively. The calibration curve is linear over the concentration ranges of (6-42), (10-70) and (4-16) μg/mL for RIB, SOF, and DAC, respectively. This method was successfully applied to commercial pharmaceutical preparation of the drugs, spiked human urine, and spiked human plasma. The above methods are very simple methods that were developed for the simultaneous determination of binary and ternary mixtures and so enhance signal-to-noise ratio. The method has been successfully applied to the simultaneous analysis of RIB, SOF, and DAC in laboratory prepared mixtures. The obtained results are statistically compared with those obtained by the official or reported methods, showing no significant difference with respect to accuracy and precision at p = 0.05. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, Hua; Shen, Jin-Ni; Zhu, Wei-Wei; Liu, Yi; Wu, Xin-Tao; Zhu, Qi-Long; Wu, Li-Ming
2017-10-17
Two novel ternary rare-earth chalcogenides, Yb 6 Ga 4 S 15 and Lu 5 GaS 9 , have been prepared by solid-state reactions of an elemental mixture at high temperatures. Their structures were determined on the basis of single-crystal X-ray diffraction. Yb 6 Ga 4 S 15 crystallizes in the monoclinic space group C2/m (no.12) [a = 23.557(2) Å, b = 3.7664(4) Å, c = 12.466(1) Å, β = 90.915(9)°, V = 1105.9(2) Å 3 and Z = 2], whereas Lu 5 GaS 9 crystallizes in the triclinic space group P1[combining macron] (no.2) [a = 7.735(3) Å, b = 10.033(4) Å, c = 10.120(4) Å, α = 106.296(4)°, β = 100.178(5)°, γ = 101.946(3)°, V = 714.1(5) Å 3 and Z = 2]. Both the structures feature complicated three dimensional frameworks with the unique interlinkages of GaS 4 as basic building units. Significantly, photo-electrochemical measurements indicated that title compounds were photoresponsive under visible-light illumination. Furthermore, the UV-visible-near IR diffuse reflectance spectra, thermal stabilities, electronic structures, physical properties as well as a structure change trend of the ternary rare-earth/gallium/sulfur compounds have been evaluated.
Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T
2016-01-01
Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060
Electron-ion recombination in low temperature hydrogen/deuterium plasma
NASA Astrophysics Data System (ADS)
Glosík, Juraj; Dohnal, Petr; Kálosi, Ábel; Augustovičová, Lucie D.; Shapko, Dmytro; Roučka, Štěpán; Plašil, Radek
2018-01-01
The stationary afterglow with cavity ring down spectrometer (SA-CRDS) was used to study the recombination of H3+, H2D+, HD2+ and D3+ ions with electrons in low temperature (77-300 K) plasmas in He/Ar/H2/D2 gas mixtures. By measuring effective recombination rate coefficients (αeff) in plasma with mixtures of ions and their dependences on temperature and partial densities of He, H2 and D2, αeff (T, [He],[H2],[D2]), we determined binary (αbinH3, αbinH2D, αbinHD2, αbinD3) and ternary (KH3, KH2D, KHD2, KD3) recombination rate coefficients for H3+, H2D+, HD2+ and D3+ ions. For all four ions we observed very efficient He assisted ternary recombination which is comparable with binary recombination already at [He] =1 × 1017 cm-3. The removal of excited particles in afterglow plasma was monitored to obtain the plasma thermalisation rate at given experimental conditions. The inferred deexcitation rates for reaction of helium metastable atoms with D2 are kD2 (300 K)=(2.1 ± 0.3) × 10-10 cm3 s-1 and kD2 (140 K)=(1.3 ± 0.3) × 10-10 cm3 s-1. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea.
NASA Astrophysics Data System (ADS)
Valeev, R. G.; Romanov, E. A.; Vorobiev, V. L.; Mukhgalin, V. V.; Kriventsov, V. V.; Chukavin, A. I.; Robouch, B. V.
2015-02-01
Interest to ZnSxSe1-x alloys is due to their band-gap tunability varying S and Se content. Films of ZnSxSe1-x were grown evaporating ZnS and ZnSe powder mixtures onto SiO2, NaCl, Si and ITO substrates using an original low-cost method. X-ray diffraction patterns and Raman spectroscopy, show that the lattice structure of these films is cubic ZnSe-like, as S atoms replace Se and film compositions have their initial S/Se ratio. Optical absorption spectra show that band gap values increase from 2.25 to 3 eV as x increases, in agreement with the literature. Because S atomic radii are smaller than Se, EXAFS spectra confirm that bond distances and Se coordination numbers decrease as the Se content decreases. The strong deviation from linearity of ZnSe coordination numbers in the ZnSxSe1-x indicate that within this ordered crystal structure strong site occupation preferences occur in the distribution of Se and S ions. The behavior is quantitatively confirmed by the strong deviation from the random Bernoulli distribution of the three sight occupation preference coefficients of the strained tetrahedron model. Actually, the ternary ZnSxSe1-x system is a bi-binary (ZnS+ZnSe) alloy with evanescent formation of ternary configurations throughout the x-range.
Methane, Ethane, and Nitrogen Stability on Titan
NASA Astrophysics Data System (ADS)
Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.
2017-12-01
Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.
Determination of the design space of the HPLC analysis of water-soluble vitamins.
Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y
2013-06-01
Analysis of water-soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water-soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical R(s) were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the analysis of water-soluble vitamins by HPLC, which would help the regulatory authorities to judge the validity of presented analytical methods for approval. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin.
Christen, Verena; Crettaz, Pierre; Fent, Karl
2014-09-15
Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated. Copyright © 2014 Elsevier Inc. All rights reserved.
Adeyeye, M C; Mwangi, E; Katondo, B; Jain, A; Ichikawa, H; Fukumori, Y
2005-06-01
The aim was to evaluate possible interaction in solid and liquid state of the drug with formulation excipients consequent to very fast drug release of diclofenac-Eudragit prolonged release microcapsules. The microcapsules were prepared by drug layering on calcium carbonate cores and coated with Eudragit RS 30D and L30D-55 as previously reported. Suspension of the microcapsules was prepared using microcrystalline cellulose/sodium carboxymethyl cellulose (Avicel CL-611) as medium. In vitro dissolution testing of the suspension was done, and, based on the dissolution results, possible interaction between diclofenac and Eudragit and Avicel in the medium was studied. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses were performed using 1:1 binary, 1:1:1 ternary mixtures and a ratio equivalent to that in the formulation. The mixtures were prepared by mixing the dispersions--Eudragit RS 30D or L30D-55 with the drug or other components, followed by drying at 60 degrees C for 48 h. Dry mixing was done using the powder equivalents of the polymers, Eudragit RS PO and L100-55, Avicel and calcium carbonate. In vitro dissolution of the suspended microcapsules showed a very fast release after 48 h (T50 = <1 h) compared to the solid microcapsules (T50 = 6 h). DSC curves of the formulation components or microcapsules did not show the characteristic endothermic peak of diclofenac at 287 degrees C. Powder X-ray diffraction of the binary or ternary mixtures of diclofenac and Eudragit polymers indicated reduction, shift or modification of the crystalline peaks of the drug or excipients at 2theta of 12 degrees and 18 degrees , suggestive of interaction. Some changes in drug peak characteristics at 18 degrees and 23 degrees were observed for Avicel/drug mixture, though not significant. The DSC curves of the binary mixture of diclofenac co-dried with liquid forms of Eudragit (i.e. RS 30D or L30D-55) revealed greater interaction compared to the curves of drug and powdered forms of Eudragit (RS PO or L100-55). This was depicted by greater shift in fusion points of the mixtures relative to the drug. However, comparing the RS and L-type Eudragit, the latter generally showed greater interaction with the drug. Interaction between diclofenac and L-type Eudragit polymers can occur in liquid formulations.
From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.
Gavish, Nir; Elad, Doron; Yochelis, Arik
2018-01-04
The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.
NASA Astrophysics Data System (ADS)
Steckloff, Jordan; Soderblom, Jason M.
2017-10-01
Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations.
Analysis of the improvement of selenite retention in smectite by adding alumina nanoparticles.
Mayordomo, Natalia; Alonso, Ursula; Missana, Tiziana
2016-12-01
Smectite clay is used as barrier for hazardous waste retention and confinement. It is a powerful material to retain cations, but less effective for retaining anionic species like selenite. This study shows that the addition of a small percentage of γ-Al 2 O 3 nanoparticles to smectite significantly improves selenite sorption. γ-Al 2 O 3 nanoparticles provide high surface area and positively charged surface sites within a wide range of pH, since their point of zero charge is at pH8-9. An addition of 20wt% of γ-Al 2 O 3 to smectite is sufficient to approach the sorption capacity of pure alumina. To analyze the sorption behavior of the smectite/oxide mixtures, a nonelectrostatic surface complexation model was considered, accounting for the surface complexation of HSeO 3 - and SeO 3 2- , the anion competition, and the formation of surface ternary complexes with major cations present in the solution. Selenite sorption in mixtures was satisfactorily described with the surface parameters and complexation constants defined for the pure systems, accounting only for the mixture weight fractions. Sorption in mixtures was additive despite the particle heteroaggregation observed in previous stability studies carried out on smectite/γ-Al 2 O 3 mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.
Brito, Isabelle L; de Souza, Evandro Leite; Felex, Suênia Samara Santos; Madruga, Marta Suely; Yamashita, Fábio; Magnani, Marciane
2015-09-01
The aim of this study was to develop a gluten-free formulation of quinoa (Chenopodium quinoa Willd.)-based cookies using experimental design of mixture to optimize a ternary mixture of quinoa flour, quinoa flakes and corn starch for parameters of colour, specific volume and hardness. Nutritional and sensory aspects of the optimized formulation were also assessed. Corn starch had a positive effect on the lightness of the cookies, but increased amounts of quinoa flour and quinoa flakes in the mixture resulted in darker product. Quinoa flour showed a negative effect on the specific volume, producing less bulky cookies, and quinoa flour and quinoa flakes had a positive synergistic effect on the hardness of the cookies. According the results and considering the desirability profile for colour, hardness and specific volume in gluten-free cookies, the optimized formulation contains 30 % quinoa flour, 25 % quinoa flakes and 45 % corn starch. The quinoa-based cookie obtained was characterized as a product rich in dietary fibre, a good source of essential amino acids, linolenic acid and minerals, with good sensory acceptability. These findings reports for the first time the application of quinoa processed as flour and flakes in mixture with corn starch as an alternative ingredient for formulations of gluten-free cookies-type biscuits.
New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuwei; Zhang, Lijun; Singh, David J.
The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less
New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2
Li, Yuwei; Zhang, Lijun; Singh, David J.
2017-10-16
The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less
Thermodiffusion in multicomponent n-alkane mixtures.
Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier
2017-01-01
Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.
Mixture quantification using PLS in plastic scintillation measurements.
Bagán, H; Tarancón, A; Rauret, G; García, J F
2011-06-01
This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications
NASA Technical Reports Server (NTRS)
Misra, A. K.; Whittenberger, J. D.
1986-01-01
The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Tawakkol, Shereen M.; Fahmy, Nesma M.; Shehata, Mostafa A.
2014-03-01
A novel spectrophotometric technique was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This technique was called successive spectrophotometric resolution technique. The technique was based on either the successive ratio subtraction or successive derivative subtraction. The mathematical explanation of the procedure was illustrated. In order to evaluate the applicability of the methods a model data as well as an experimental data were tested. The results from experimental data related to the simultaneous spectrophotometric determination of lidocaine hydrochloride (LH), calcium dobesilate (CD) and dexamethasone acetate (DA); in the presence of hydroquinone (HQ), the degradation product of calcium dobesilate were discussed. The proposed drugs were determined at their maxima 202 nm, 305 nm, 239 nm and 225 nm for LH, CD, DA and HQ respectively; by successive ratio subtraction coupled with constant multiplication method to obtain the zero order absorption spectra, while by applying successive derivative subtraction they were determined at their first derivative spectra at 210 nm for LH, 320 nm or P292-320 for CD, 256 nm or P225-252 for DA and P220-233 for HQ respectively. The calibration curves were linear over the concentration range of 2-20 μg/mL for both LH and DA, 6-50 μg/mL for CD, and 3-40 μg/mL for HQ. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs with no interference from other dosage form additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with those of the official BP methods for LH, DA, and CD, and with the official USP method for HQ; using student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.-S.; Green, M. L.; Suehle, J.
2006-10-02
The authors have fabricated combinatorial Ni-Ti-Pt ternary metal gate thin film libraries on HfO{sub 2} using magnetron co-sputtering to investigate flatband voltage shift ({delta}V{sub fb}), work function ({phi}{sub m}), and leakage current density (J{sub L}) variations. A more negative {delta}V{sub fb} is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller {phi}{sub m} near the Ti-rich corners and higher {phi}{sub m} near the Ni- and Pt-rich corners. In addition, measured J{sub L} values can be explained consistently with the observed {phi}{sub m} variations. Combinatorial methodologies prove to be useful in surveying the large compositionalmore » space of ternary alloy metal gate electrode systems.« less
Evaluation of ternary cementitious combinations : tech summary.
DOT National Transportation Integrated Search
2012-02-01
Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...
Salek, R N; Černíková, M; Maděrová, S; Lapčík, L; Buňka, F
2016-05-01
The scope of this work was to investigate the dependence of selected textural (texture profile analysis, TPA) and viscoelastic properties of processed cheese on the composition of ternary mixtures of emulsifying salts [disodium hydrogenphosphate, DSP; tetrasodium diphosphate, TSPP; sodium salt of polyphosphate (with mean length n ≈ 20), P20; and trisodium citrate, TSC] during a 60-d storage period (6±2°C). The processed cheese samples [40% wt/wt dry matter (DM) content, 50% wt/wt fat in DM content] were manufactured using Swiss-type cheese (as the main raw material) with 4 different maturity degrees (4, 8, 12, and 16 wk of ripening). Moreover, the pH of the samples was adjusted (the target values within the range of 5.60-5.80), corresponding to the standard pH values of spreadable processed cheese. With respect to the individual application of emulsifying salts (regardless of the maturity degree of the Swiss-type cheese applied), the samples prepared with P20 were the hardest, followed by those prepared with TSPP, TSC, and DSP. Furthermore, a specific ratio of DSP:TSPP (1:1) led to a significant increase in the hardness of the samples. On the whole, the hardness of all processed cheese samples increased with the prolonging storage period, whereas their hardness significantly dropped with the rising ripening stage of the raw material utilized. In all of the cases, the trends of hardness development remained analogous, and only the absolute values differed significantly. Moreover, the findings of TPA were in accordance with those of the rheological analysis. In particular, the specific ratio of DSP:TSPP (1:1) resulted in the highest gel strength and interaction factor values, followed by P20, TSPP, TSC, and DSP (used individually), reporting the same trend which was demonstrated by TPA. The monitored values of the gel strength and interaction factor decreased with the increasing maturity degree of the Swiss-type cheese used. The intensity of the rigidity of the samples showed an analogous relationship to the intensity of the gel strength; the higher the gel strength of the sample, the more inflexible the product is expected to be. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib
2013-02-04
A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing
2015-03-01
It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.
Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.
Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang
2017-06-01
Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paduszyński, Kamil
2018-04-12
A conductor-like screening model for real solvents (COSMO-RS) is nowadays one of the most popular and commonly applied tools for the estimation of thermodynamic properties of complex fluids. The goal of this work is to provide a comprehensive review and analysis of the performance of this approach in calculating liquid-liquid equilibrium (LLE) phase diagrams in ternary systems composed of ionic liquid and two molecular compounds belonging to diverse families of chemicals (alkanes, aromatics, S/N-compounds, alcohols, ketones, ethers, carboxylic acid, esters, and water). The predictions are presented for extensive experimental database, including 930 LLE data sets and more than 9000 data points (LLE tie lines) reported for 779 unique ternary mixtures. An impact of the type of molecular binary subsystem on the accuracy of predictions is demonstrated and discussed on the basis of representative examples. The model's capability of capturing qualitative trends in the LLE distribution ratio and selectivity is also checked for a number of structural effects. Comparative analysis of two levels of quantum chemical theory (BP-TZVP-COSMO vs BP-TZVPD-FINE) for the input molecular data for COSMO-RS is presented. Finally, some general recommendations for the applicability of the model are indicated based on the analysis of the global performance as well as on the results obtained for systems relevant from the point of view of important separation problems.
A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.
Croce, Annamaria; Battistel, Ezio; Chiaberge, Stefano; Spera, Silvia; De Angelis, Francesco; Reale, Samantha
2017-01-10
Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and 13 C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gaudette, Nicole J; Pickering, Gary J
2012-06-01
The use of flavor-modifying strategies are important to improving the sensory profile of some excessively bitter and astringent functional ingredients, such as (+)-catechin (CAT). Two bitter blockers (ß-cyclodextrin [CYCLO], homoeriodictyol sodium salt [HED]), two sweeteners (sucrose [SUC], rebaudioside A [REB]), and two odorants (vanillin [VAN], black tea aroma [TEA]) were assessed for their efficacy at modifying the bitterness and astringency of CAT in model aqueous solutions. The intensity of oral sensations elicited by CAT was determined in duplicate in binary, ternary, and quaternary mixtures of these stimuli by a trained panel (n = 15) using a 15 cm visual analogue scale. Overall, bitterness and astringency were most effectively reduced by ternary solutions containing CYCLO + REB or CYCLO + SUC (68%, 60%, and 45%, 43% for bitterness and astringency, respectively). Odorants were not effective at modifying the bitterness or astringency of CAT. We conclude that the use of select bitter blockers and sweeteners may be of value in optimizing the flavor and acceptance of functional food and beverages fortified with phenolic compounds. (+)-Catechin is a bitter-tasting plant-derived health-promoting phenolic compound of interest to functional food and beverage manufacturers. We investigated the efficacy of bitter blockers, plant-based sweeteners, and odorants in decreasing the bitterness and astringency elicited by (+)-catechin. Some of these additives, both alone and in combination, reduced bitterness and astringency, and may therefore assist in optimizing the flavor and consumer acceptance of some phenolic-based functional foods and beverages. © 2012 Institute of Food Technologists®
SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION
NASA Technical Reports Server (NTRS)
Panda, Binayak; Hickman, Robert R.; Shah, Sandeep
2005-01-01
Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.
Marquês, Joaquim T; Viana, Ana S; De Almeida, Rodrigo F M
2011-01-01
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization. Copyright © 2010 Elsevier B.V. All rights reserved.
Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys
Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361
Synthesis of ternary Si clathrates in the A-Al-Si (A = Na and K) system
NASA Astrophysics Data System (ADS)
Imai, Motoharu; Singh, Shiva Kumar; Nishio, Mitsuaki; Yamada, Takahiro; Yamane, Hisanori
2015-07-01
With the aim of producing functional materials based on earth-abundant elements, we examined the synthesis of the ternary type-I clathrates A8AlxSi46-x (A = Na and K). The type-I Si clathrate K7.9(1)Al7.1(1)Si38.9(4), having a lattice parameter of 10.434(1) Å, was successfully synthesized via the direct reaction of K, Al, and Si by optimization of both the synthesis temperature and the molar ratios among the raw ingredients. K8Al7Si39 exhibited metallic conduction: its electrical resistivity increased with increasing temperature. The high pressure synthesis of Na8AlxSi46-x was also examined, using a belt-type apparatus and employing a mixture of NaSi, Al, and Si as the reagents. In this manner, the type-I Si clathrate Na8.7(9)Al0.5(1)Si45(2), having a lattice parameter of 10.211(1) Å, was synthesized at 5.5 GPa and 1570 K.
Lu, Shao Hua; Li, Bao Qiong; Zhai, Hong Lin; Zhang, Xin; Zhang, Zhuo Yong
2018-04-25
Terahertz time-domain spectroscopy has been applied to many fields, however, it still encounters drawbacks in multicomponent mixtures analysis due to serious spectral overlapping. Here, an effective approach to quantitative analysis was proposed, and applied on the determination of the ternary amino acids in foxtail millet substrate. Utilizing three parameters derived from the THz-TDS, the images were constructed and the Tchebichef image moments were used to extract the information of target components. Then the quantitative models were obtained by stepwise regression. The correlation coefficients of leave-one-out cross-validation (R loo-cv 2 ) were more than 0.9595. As for external test set, the predictive correlation coefficients (R p 2 ) were more than 0.8026 and the root mean square error of prediction (RMSE p ) were less than 1.2601. Compared with the traditional methods (PLS and N-PLS methods), our approach is more accurate, robust and reliable, and can be a potential excellent approach to quantify multicomponent with THz-TDS spectroscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preparation of proton conducting membranes containing bifunctional titania nanoparticles
NASA Astrophysics Data System (ADS)
Aslan, Ayşe; Bozkurt, Ayhan
2013-07-01
Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10-15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA-TS-(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA-TS-(NMPA)3 as 0.003 S cm-1 at 150 °C.
Detection of superlattice domain formation in ternary lipid mixtures using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Mutlu, Burcin; Lopez, Stephanie; Vaughn, Mark; Huang, Juyang; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying the structures and functions of cell membranes. At present, the lateral organization of lipid components, particularly the formation of regular distribution, in lipid membranes containing charged lipid, e.g., phosphatidylserine, is not clear. Using a ternary phosphatidylcholine/phosphatidylserine/cholesterol lipid bilayer system, the presence of ordered domain formation was examined by measuring the fluorescence anisotropy of the embedded fluorescent probe, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol- 4-yl)amino)-23,24-bisnor-5-cholen-3β- ol (NBD-CHOL), with structure similar to that of a cholesterol, as a function of phospatidylserine composition. The plot of the anisotropy vs. phosphatidylserine revealed abrupt changes at certain critical compositions of phosphatidylserine. Some of these critical compositions agree favorably with those predicted by the headgroup superlattice model suggesting that the charged phosphatidylserine lipid molecules adopt a superlattice-like distribution in the lipid bilayer at some predicted compositions. The ordered distribution of charged lipids may play an important role in the regulation of the composition of the biological membranes.
NASA Astrophysics Data System (ADS)
Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey
2018-03-01
The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.
Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.
Abdessameud, S; Mezbahul-Islam, M; Medraj, M
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.
Determination of solvents permeating through chemical protective clothing with a microsensor array.
Park, J; Zellers, E T
2000-08-01
The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.
Influence of lipids on the interfacial disposition of respiratory syncytical virus matrix protein.
McPhee, Helen K; Carlisle, Jennifer L; Beeby, Andrew; Money, Victoria A; Watson, Scott M D; Yeo, R Paul; Sanderson, John M
2011-01-04
The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.
Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki
2017-08-01
Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.
Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christen, Verena; Crettaz, Pierre; Fent, Karl, E-mail: karl.fent@fhnw.ch
Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach.more » Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of pyrethroids and azole fungizides. • Many azole fungicides showed significant antiandrogenic activity . • Many binary mixtures of antiandrogenic azole fungicides showed synergistic interactions. • Concentration addition of pesticides in mixtures should be considered.« less
NASA Astrophysics Data System (ADS)
Ll, Jin; Sato, Haruki; Watanabe, Koichi
On the basis of critically-evaluated thermodynamic property data among those recently published, a new Peng-Robinson equation of state for the HFC refrigerants,R-32,R-125 and R-134a,has be end eveloped so as to represent the VLE properties in the vapor-liquid coexisting phase at temperatures 223K-323K. In accord with a challenge to correlate the binary and/or ternary interatction parameters as functions of temperature, we have also applied the present modified Peng-Robinson equation of state to the promising alternative HFC refrigerant mixtures, i.e., R-32/125,R-32/134a and R-32/125/134a systems. The developed equation of state improves significantly its effectiveness for practical engineering property calculations at refrigerantion and air-conditioning industries in comparison with conventional Peng-Robinson equation.
Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.
1994-03-15
Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.
2017-08-01
We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.
Gonzalo-Lumbreras, R; Izquierdo-Hornillos, R
2000-05-26
An HPLC separation of a complex mixture containing 13 urinary anabolics and corticoids, and boldenone and bolasterone (synthetic anabolics) has been carried out. The applied optimization method involved the use of binary, ternary and quaternary mobile phases containing acetonitrile, methanol or tetrahydrofuran as organic modifiers. The effect of different reversed-phase packings and temperature on the separation was studied. The optimum separation was achieved by using a water-acetonitrile (60:40, v/v) mobile phase in reversed-phase HPLC at 30 degrees C, allowing the separation of all the analytes in about 24 min. Calibration graphs were obtained using bolasterone or methyltestosterone as internal standards. Detection limits were in the range 0.012-0.107 microg ml(-1). The optimized separation was applied to the analysis, after liquid-liquid extraction, of human urine samples spiked with steroids.
Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas
2013-01-01
Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368
Luo, Zhi; Marson, Domenico; Ong, Quy K; Loiudice, Anna; Kohlbrecher, Joachim; Radulescu, Aurel; Krause-Heuer, Anwen; Darwish, Tamim; Balog, Sandor; Buonsanti, Raffaella; Svergun, Dmitri I; Posocco, Paola; Stellacci, Francesco
2018-04-09
The ligand shell (LS) determines a number of nanoparticles' properties. Nanoparticles' cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS' morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles' core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles' LS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, N.A.; Baidin, I.I.; Bondarev, V.A.
This article describes the recovery of low-molecular-weight acids (LMAs) in the form of a purified 70% concentrate, with subsequent utilization as a preservative for fodder in the agricultural industry. The acid water is distilled azeotropically, with butyl alcohol as the azeotropic agent. The entrainer is a mixture of butyl alcohol and butyl formate, which forms a ternary azeotrope with a boiling point of 83.6/sup 0/C. The purified 70% LMA concentrate that is obtained is a transparent liquid at 20/sup 0/C, clear or light yellow, with an odor of acetic acid. The addition of 0.4% of the LMA concentrate to amore » silage mixture with a moisture content of 84.12% (harvested in rainy weather) resulted in the reduction of the contents of protein and ash in the silage after four months, whereas the content of cellulose increased in comparison with the content in the original green mass.« less
Numerical simulation of field scale cosolvent flooding for LNAPL remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeder, E.; Brame, S.E.; Falta, R.W.
1995-12-31
This paper describes a modeling study which will support remediation of contaminated soils at Hill Air Force Base in Utah. The site is contaminated with a mixture of solvents, jet fuel, and other organic substances which form a separate phase of low density on top of the water table. A test cell within the contaminant zone will be flooded with a cosolvent/water mixture to drive the nonaqueous phase liquids (NAPLs) out. The modeling study is designed to deterine if buoyancy of the flooding solution will cause it to float on top, if heterogeneity of the ground will channel the cosolventmore » around pockets of NAPL, and the sensitivity of the predicted remediation effectiveness to the uncertainty in ternary information. The modeling effort will use UTCHEM, a 3-dimensional finite-difference flooding simulator which solves mass balance equations for up to 21 components in up to 4 phases.« less
Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae.
Wang, Yanhua; Yang, Guiling; Dai, Dejiang; Xu, Zhenlan; Cai, Leiming; Wang, Qiang; Yu, Yijun
2017-02-01
In the present study, we evaluated the individual and mixture toxicities of imidacloprid and other four pesticides (atrazine, chlorpyrifos, butachlor, and λ-cyhalothrin) to the zebrafish (Danio rerio) larvae in order to clarify the interactive effects of pesticides on aquatic organisms. Results from the 96-h semi-static toxicity test indicated that chlorpyrifos, λ-cyhalothrin, and butachlor had the highest toxicities to D. rerio with an LC 50 value ranging from 0.28 (0.13∼0.38) to 0.45 (0.31∼0.59) mg AI L -1 , followed by atrazine with an LC 50 value of 15.63 (10.71∼25.76) mg AI L -1 , while imidacloprid exhibited the least toxicity to the organisms with an LC 50 value of 143.7 (99.98∼221.6) mg AI L -1 . Seven pesticide mixtures (two binary mixtures of imidacloprid + atrazine and imidacloprid + λ-cyhalothrin, two ternary mixtures of imidacloprid + atrazine + λ-cyhalothrin and imidacloprid + butachlor + λ-cyhalothrin, two quaternary mixtures of imidacloprid + atrazine + chlorpyrifos + λ-cyhalothrin and imidacloprid + chlorpyrifos + butachlor + λ-cyhalothrin, and one quinquenary mixture of imidacloprid + atrazine + chlorpyrifos + butachlor + λ-cyhalothrin) exhibited synergistic effects with equitoxic ratio and equivalent concentration on the zebrafish. Our results highlighted that the simultaneous presence of several pesticides in the aquatic environment might lead to increased toxicity, causing serious damage to the aquatic ecosystems compared with their individual toxicities. Therefore, the toxic effects of both individual pesticides and their mixtures should be incorporated into the environmental risk evaluation of pesticides.
Heat transfer degradation during condensation of non-azeotropic mixtures
NASA Astrophysics Data System (ADS)
Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col
2017-11-01
International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
Fabrication Studies of Ternary Rare Earth Sulfides for Infrared Applications.
1981-05-01
sulfides. 1 The initial thrust of this investigation has been two-fold. The first objective was to satisfy a need for small , fully dense samples of...0I 60 55.50 45 40 15 30 25 20 28, CuKa Figure 3. X-ray diffraction pattern of CaLa 2S 4fired for 100 hours at 10600C. Small amounts of CaS (and...been increased 9 PBN-81-511 100 urn Figure 4. SEM micrograph of a mixture of La O and CaCO 3 before firing. The small cubes are CaCO The Ia2ോ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, J.; Saint-James, R.
1959-01-01
A collection is presented of references dealing with the physicochemical studies of fused salts, in partictular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thoriuna are examined, and the physical properties, density, viscosity, and vapor pressure going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recovery after irradiation in a nuclear reactor is discussed. (auth)
Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...
2016-03-15
We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
Increasing arsenic sorption on red mud by phosphogypsum addition.
Lopes, G; Guilherme, L R G; Costa, E T S; Curi, N; Penha, H G V
2013-11-15
Mining by-products have been tested as adsorbents for arsenic in order to reduce As bioavailability. This study evaluated a red mud (RM) treated with or without phosphogypsum (G) in order to improve its As retention. Red mud and G samples and their mixtures were chemically and mineralogically characterized to gather information concerning their composition, which is key for a better understanding of the adsorbent properties. Phosphogypsum was added to RM in the following proportions: 0, 1, 2, 5, 10, and 25% by weight. These mixtures were subjected to As adsorption and desorption and tested for their maximum adsorption capacity of As (AsMAC). Arsenic adsorption increased upon increasing the proportion of G added to RM. The AsMAC at pure RM reached 909 mg kg(-1), whereas the 75%-RM+25%-G mixture sorbed up to 3333 mg kg(-1) of As, i.e., a 3.5-fold increase in AsMAC. Using G in mixtures with RM increases the efficiency of As adsorption due to the presence of Ca(2+), which alters the charge balance of the adsorbent, leading to the formation of ternary complexes. Addition of G to RM is thus a promising technique to improve As retention, while providing additional value to both by-products, G and RM. Copyright © 2012 Elsevier B.V. All rights reserved.
Martín-Calvo, Ana; García-Pérez, Elena; García-Sánchez, Almudena; Bueno-Pérez, Rocío; Hamad, Said; Calero, Sofia
2011-06-21
We have used interatomic potential-based simulations to study the removal of carbon tetrachloride from air at 298 K, using Cu-BTC metal organic framework. We have developed new sets of Lennard-Jones parameters that accurately describe the vapour-liquid equilibrium curves of carbon tetrachloride and the main components from air (oxygen, nitrogen, and argon). Using these parameters we performed Monte Carlo simulations for the following systems: (a) single component adsorption of carbon tetrachloride, oxygen, nitrogen, and argon molecules, (b) binary Ar/CCl(4), O(2)/CCl(4), and N(2)/CCl(4) mixtures with bulk gas compositions 99 : 1 and 99.9 : 0.1, (c) ternary O(2)/N(2)/Ar mixtures with both, equimolar and 21 : 78 : 1 bulk gas composition, (d) quaternary mixture formed by 0.1% of CCl(4) pollutant, 20.979% O(2), 77.922% N(2), and 0.999% Ar, and (e) five-component mixtures corresponding to 0.1% of CCl(4) pollutant in air with relative humidity ranging from 0 to 100%. The carbon tetrachloride adsorption selectivity and the self-diffusivity and preferential sitting of the different molecules in the structure are studied for all the systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, Leonidas E.; Costales, Maya; Gosztola, David J.
2015-12-10
Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic, developer for exposed PMMA. We also have found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show howmore » powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data shows that there both tightly bonded –OH groups and non-hydrogen bonded –OH groups play a role in the development of PMMA. Tightly hydrogen bonded –OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA. The impact of the understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.« less
Siebers, Nina; Kruse, Jens; Eckhardt, Kai-Uwe; Hu, Yongfeng; Leinweber, Peter
2012-07-01
Cadmium (Cd) has a high toxicity and resolving its speciation in soil is challenging but essential for estimating the environmental risk. In this study partial least-square (PLS) regression was tested for its capability to deconvolute Cd L(3)-edge X-ray absorption near-edge structure (XANES) spectra of multi-compound mixtures. For this, a library of Cd reference compound spectra and a spectrum of a soil sample were acquired. A good coefficient of determination (R(2)) of Cd compounds in mixtures was obtained for the PLS model using binary and ternary mixtures of various Cd reference compounds proving the validity of this approach. In order to describe complex systems like soil, multi-compound mixtures of a variety of Cd compounds must be included in the PLS model. The obtained PLS regression model was then applied to a highly Cd-contaminated soil revealing Cd(3)(PO(4))(2) (36.1%), Cd(NO(3))(2)·4H(2)O (24.5%), Cd(OH)(2) (21.7%), CdCO(3) (17.1%) and CdCl(2) (0.4%). These preliminary results proved that PLS regression is a promising approach for a direct determination of Cd speciation in the solid phase of a soil sample.
NASA Astrophysics Data System (ADS)
Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.
2018-04-01
Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.
NASA Astrophysics Data System (ADS)
Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr
2010-01-01
A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.
NASA Astrophysics Data System (ADS)
Bobák, A.; Abubrig, F. O.; Balcerzak, T.
2003-12-01
The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Shuangluo; Vashishtha, Ashwani; Bulkley, David
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold dependingmore » on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.« less
Gabka, Grzegorz; Bujak, Piotr; Kotwica, Kamil; Ostrowski, Andrzej; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2017-01-04
Ternary Ag-In-S or quaternary Ag-In-Zn-S nanocrystals were prepared from simple precursors (silver nitrate, indium(iii) chloride, zinc stearate in a mixture of DDT and ODE) by injecting a solution of elemental sulfur into OLA. Ternary nanocrystals were modified by depositing either a ZnS or a CdS shell, yielding type I and type II core/shell systems exhibiting photoluminescence QY in the range of 12-16%. Careful optimization of the reaction conditions allowed alloyed quaternary Ag-In-Zn-S nanocrystals exhibiting tunable photoluminescence in the spectral range of 520-720 nm with a QY of 48% and 59% for green and red radiations, respectively, to be obtained. 1 H NMR analysis of the nanocrystal organic shell, after dissolution of its inorganic core, indicated that surfacial sulfur atoms were covalently bonded to aliphatic chains whereas surfacial cations were coordinated by amines and carboxylate anions. No thiol-type ligands were detected. Transfer of the prepared nanocrystals to water could be achieved in one step by exchanging the initial ligands for 11-mercaptoundecanoic ones resulting in a QY value of 31%. A new Ag-In-Zn-S nanocrystal preparation method was elaborated in which indium and zinc salts of fatty acids were used as cation precursors and DDT was replaced by thioacetamide. This original DDT-free method enabled similar tuning of the photoluminescence properties of the nanocrystals as in the previous method; however the measured photoluminescence QYs were three times lower. Hence, further optimization of the new method is required.
Chemical mixtures in potable water in the U.S.
Ryker, Sarah J.
2014-01-01
In recent years, regulators have devoted increasing attention to health risks from exposure to multiple chemicals. In 1996, the US Congress directed the US Environmental Protection Agency (EPA) to study mixtures of chemicals in drinking water, with a particular focus on potential interactions affecting chemicals' joint toxicity. The task is complicated by the number of possible mixtures in drinking water and lack of toxicological data for combinations of chemicals. As one step toward risk assessment and regulation of mixtures, the EPA and the Agency for Toxic Substances and Disease Registry (ATSDR) have proposed to estimate mixtures' toxicity based on the interactions of individual component chemicals. This approach permits the use of existing toxicological data on individual chemicals, but still requires additional information on interactions between chemicals and environmental data on the public's exposure to combinations of chemicals. Large compilations of water-quality data have recently become available from federal and state agencies. This chapter demonstrates the use of these environmental data, in combination with the available toxicological data, to explore scenarios for mixture toxicity and develop priorities for future research and regulation. Occurrence data on binary and ternary mixtures of arsenic, cadmium, and manganese are used to parameterize the EPA and ATSDR models for each drinking water source in the dataset. The models' outputs are then mapped at county scale to illustrate the implications of the proposed models for risk assessment and rulemaking. For example, according to the EPA's interaction model, the levels of arsenic and cadmium found in US groundwater are unlikely to have synergistic cardiovascular effects in most areas of the country, but the same mixture's potential for synergistic neurological effects merits further study. Similar analysis could, in future, be used to explore the implications of alternative risk models for the toxicity and interaction of complex mixtures, and to identify the communities with the highest and lowest expected value for regulation of chemical mixtures.
Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L
2010-11-25
A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.
Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts
NASA Astrophysics Data System (ADS)
Yan, Xiao Y.
2008-04-01
A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhardt, M.; Köhler, W., E-mail: werner.koehler@uni-bayreuth.de
A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into themore » concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.« less
Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen
2017-05-25
Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.
Zhu, Wanyi; Schmehl, Daniel R; Mullin, Christopher A; Frazier, James L
2014-01-01
Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.
Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase
Oneyama, Chitose; Suzuki, Takashi; Okada, Masato
2014-01-01
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Schmidt, Susanne; Busch, Wibke; Altenburger, Rolf; Küster, Eberhard
2016-06-01
Three water contaminants were selected to be tested in the zebrafish embryo toxicity test (DarT) in order to investigate the sensitivity of the zebrafish embryo toxicity test with respect to mixture effect detection. The concentration-response curves for the observed effects lethality and hypo-pigmentation were calculated after an exposure of the embryos for 96 h with a fungicide (carbendazim), a plasticizer or propellent precursor (2,4-DNT: 2,4- dinitrotoluene) and an aromatic compound (AαC: 2-amino-9H-pyrido[2,3-b]indol), respectively. Follow-up mixture tests were based on the calculated LC50 or EC50 of the single compounds and combined effects were predicted according to the mixture concepts of concentration addition (CA) and independent action (IA). The order of toxicity for the single substances was carbendazim (LC50 = 1.25 μM) < AαC (LC50 = 8.16 μM) < 2,4-DNT (LC50 = 177.05 μM). For AαC and 2,4 DNT hypo-pigmentation was observed in addition (AαC EC50 = 1.81 μM; 2,4-DNT EC50 = 8.81 μM). Two binary and one ternary mixture were studied on lethality and one on hypo-pigmentation: 2,4-DNT/AαC (LC50 = 119.21 μM, EC50 = 5.37 μM), carbendazim/AαC (LC50 = 4.49 μM) and AαC/Carbendazim/2,4 DNT (LC50 = 108.62 μM). Results showed that the effects were in agreement with the CA model when substances were tested in mixtures. Therefore, in a reasonable worst case scenario substance combination effects in fish embryos were at maximum only prone to overestimation when using CA as the mixture concept. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.
2015-06-01
The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, Leonidas E.; Costales, Maya; Gosztola, David J.
Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic, developer for exposed PMMA. We also have found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show howmore » powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data shows that there both tightly bonded –OH groups and non-hydrogen bonded –OH groups play a role in the development of PMMA. Tightly hydrogen bonded –OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA. The impact of the understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.« less
NASA Astrophysics Data System (ADS)
Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.
2015-04-01
Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.
Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I
2015-04-05
Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05. Copyright © 2015 Elsevier B.V. All rights reserved.
Extraction of benzene and cyclohexane using [BMIM][N(CN)2] and their equilibrium modeling
NASA Astrophysics Data System (ADS)
Ismail, Marhaina; Bustam, M. Azmi; Man, Zakaria
2017-12-01
The separation of aromatic compound from aliphatic mixture is one of the essential industrial processes for an economically green process. In order to determine the separation efficiency of ionic liquid (IL) as a solvent in the separation, the ternary diagram of liquid-liquid extraction (LLE) 1-butyl-3-methylimidazolium dicyanamide [BMIM][N(CN)2] with benzene and cyclohexane was studied at T=298.15 K and atmospheric pressure. The solute distribution coefficient and solvent selectivity derived from the equilibrium data were used to evaluate if the selected ionic liquid can be considered as potential solvent for the separation of benzene from cyclohexane. The experimental tie line data was correlated using non-random two liquid model (NRTL) and Margules model. It was found that the solute distribution coefficient is (0.4430-0.0776) and selectivity of [BMIM][N(CN)2] for benzene is (53.6-13.9). The ternary diagram showed that the selected IL can perform the separation of benzene and cyclohexane as it has extractive capacity and selectivity. Therefore, [BMIM][N(CN)2] can be considered as a potential extracting solvent for the LLE of benzene and cyclohexane.
Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.
Putzel, G Garbès; Schick, M
2008-11-15
We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one that describes both liquid and gel phases. It leads to the following description of the mechanism of the phase behavior: In a binary system of the lipids, phase separation occurs when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase, the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. Our theory addresses this last mechanism-the means by which cholesterol-mediated ordering of membrane lipids leads to liquid-liquid immiscibility. It produces, for the system above the main chain transition of the saturated lipid, phase diagrams in which there can be liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature it yields the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Zhang, Mingyi; Lai, Qingbo; Lu, Yanli; Wang, Yongxin
2009-08-01
Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25- x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.
Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian
2012-07-09
Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.
Nys, Charlotte; Janssen, Colin R; De Schamphelaere, Karel A C
2017-01-01
Recently, several bioavailability-based models have been shown to predict acute metal mixture toxicity with reasonable accuracy. However, the application of such models to chronic mixture toxicity is less well established. Therefore, we developed in the present study a chronic metal mixture bioavailability model (MMBM) by combining the existing chronic daphnid bioavailability models for Ni, Zn, and Pb with the independent action (IA) model, assuming strict non-interaction between the metals for binding at the metal-specific biotic ligand sites. To evaluate the predictive capacity of the MMBM, chronic (7d) reproductive toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia was investigated in four different natural waters (pH range: 7-8; Ca range: 1-2 mM; Dissolved Organic Carbon range: 5-12 mg/L). In each water, mixture toxicity was investigated at equitoxic metal concentration ratios as well as at environmental (i.e. realistic) metal concentration ratios. Statistical analysis of mixture effects revealed that observed interactive effects depended on the metal concentration ratio investigated when evaluated relative to the concentration addition (CA) model, but not when evaluated relative to the IA model. This indicates that interactive effects observed in an equitoxic experimental design cannot always be simply extrapolated to environmentally realistic exposure situations. Generally, the IA model predicted Ni-Zn-Pb mixture toxicity more accurately than the CA model. Overall, the MMBM predicted Ni-Zn-Pb mixture toxicity (expressed as % reproductive inhibition relative to a control) in 85% of the treatments with less than 20% error. Moreover, the MMBM predicted chronic toxicity of the ternary Ni-Zn-Pb mixture at least equally accurately as the toxicity of the individual metal treatments (RMSE Mix = 16; RMSE Zn only = 18; RMSE Ni only = 17; RMSE Pb only = 23). Based on the present study, we believe MMBMs can be a promising tool to account for the effects of water chemistry on metal mixture toxicity during chronic exposure and could be used in metal risk assessment frameworks. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng
2016-09-01
A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.
Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng
2016-01-01
A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254
Jo, Wan-Kuen; Selvam, N Clament Sagaya
2015-09-28
This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity.
Sobral, H; Peña-Gomar, M
2015-10-01
A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.
NASA Astrophysics Data System (ADS)
Golovanova, O. A.; Tropin, O. A.; Volkovich, V. A.
2017-09-01
The redox behavior of samarium, europium and ytterbium ions was investigated in the ternary 6NaCl-9KCl- 5CsCl eutectic based melts between 823 and 1073 K employing cyclic voltammetry on a tungsten working electrode. Ln(II)/Ln(III) (Ln=Sm, Eu, Yb) reduction-oxidation is reversible and controlled by diffusion of the electroactive species at the potential scan rates up to 0.1 V/s. Formal standard redox potentials E*Ln(II)/Ln(III) were determined, and the thermodynamic and transport properties of the corresponding Ln(III) and Ln(II) ions were estimated.
High temperature resistant cermet and ceramic compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.
The aluminosilicate fraction of North Pacific manganese nodules
Bischoff, J.L.; Piper, D.Z.; Leong, K.
1981-01-01
Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.
NASA Astrophysics Data System (ADS)
Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua
2018-03-01
A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.
Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; ,; Lautier, J.C.
2012-01-01
Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansone, M.J.
1979-02-01
On the basis of simple, first approximation calculations, it has been shown that catalytic gasification and hydrogasification are inherently superior to conventional gasification with respect to carbon utilization and thermal efficiency. However, most processes which are directed toward the production of substitute natural gas (SNG) by direct combination of coal with steam at low temperatures (catalytic processes) or with hydrogen (hydrogasification) will require a step for separation of product SNG from a recycle stream. The success or falure of the process could well depend upon the economics of this separation scheme. The energetics for the separation of mixtures of idealmore » gases has been considered in some detail. Minimum energies for complete separation of representative effluent mixtures have been calculated as well as energies for separation into product and recycle streams. The gas mixtures include binary systems of H/sub 2/ and CH/sub 4/ and ternary mixtures of H/sub 2/, CH/sub 4/, and CO. A brief summary of a number of different real separation schemes has also been included. We have arbitrarily divided these into five categories: liquefaction, absorption, adsorption, chemical, and diffusional methods. These separation methods will be screened and the more promising methods examined in more detail in later reports. Finally, a brief mention of alternative coal conversion processes concludes this report.« less
Ethylenediamine salt of 5-nitrotetrazole and preparation
Lee, K.; Coburn, M.D.
1984-05-17
The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.
Ethylenediamine salt of 5-nitrotetrazole and preparation
Lee, Kien-yin; Coburn, Michael D.
1985-01-01
Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.
NASA Astrophysics Data System (ADS)
Benbatta, A.; Bendaoud, A.; Cenki-Tok, B.; Adjerid, Z.; Lacène, K.; Ouzegane, K.
2017-03-01
The In Ouzzal terrane in western Hoggar (Southern Algeria) preserves evidence of ultrahigh temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and greenstone belts, strongly remobilized during the Paleoproterozoic orogeny which was recognized as an UHT event (peak T > 1000 °C and P ≈ 9-12 kbar). This metamorphism was essentially defined locally in Al-Mg granulites, Al-Fe granulites and quartzites outcropping in the Northern part of the In Ouzzal terrane (IOT). In order to test and verify the regional spread of the UHT metamorphism in this terrane, ternary feldspar thermometry on varied rock types (Metanorite, Granulite Al-Mg and Orthogneiss) and samples that crop out in different zones of the In Ouzzal terrane. These rocks contain either perthitic, antiperthitic or mesoperthitic parageneses. Ternary feldspars used in this study have clearly a metamorphic origin. The obtained results combined with previous works show that this UHT metamorphism (>900 °C) affected the whole In Ouzzal crustal block. This is of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism.
Li, Yanyan; Zhao, Manru; Wang, Haiyan
2017-11-01
We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.
Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel
2017-05-01
Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend having no oxygen in a fleet of 12 in-use vehicles. Vehicles that had suffer a normal deterioration of emissions and do not react to oxygenation, and new vehicles with more sophisticated air/fuel control systems do not improve combustion.
Some comments on thermodynamic consistency for equilibrium mixture equations of state
Grove, John W.
2018-03-28
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Europium gallium garnet (Eu3Ga5O12) and Eu3GaO6: Synthesis and material properties
NASA Astrophysics Data System (ADS)
Sawada, Kenji; Nakamura, Toshihiro; Adachi, Sadao
2016-10-01
Eu-Ga-O ternary compounds were synthesized from a mixture of cubic (c-) Eu2O3 and monoclinic Ga2O3 (β-Ga2O3) raw powders using the solid-state reaction method by calcination at Tc = 1200 °C. The structural and optical properties of the Eu-Ga-O ternary compounds were investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and Raman scattering measurements. Stoichiometric compounds such as cubic Eu3Ga5O12 (EGG) and orthorhombic Eu3GaO6 were synthesized using molar ratios of x = 0.375 and 0.75 [x≡Eu2O3/(Eu2O3 + Ga2O3)], respectively, together with the end-point binary compounds β-Ga2O3 (x = 0) and monoclinic (m-) Eu2O3 (x = 1.0). The structural change from "cubic" to "monoclinic" in Eu2O3 is due to the structural phase transition occurring at Tc ≥ 1050 °C. In principle, the perovskite-type EuGaO3 and monoclinic Eu4Ga2O9 can also be synthesized at x = 0.5 and 0.667, respectively; however, such stoichiometric compounds could not be synthesized in this study. The PL and PLE properties of EGG and Eu3GaO6 were studied in detail. The temperature dependence of the PL spectra was observed through measurements carried out between T = 20 and 300 K and explained using a newly developed model. Raman scattering measurements were also performed on the Eu-Ga-O ternary systems over the entire composition range from x = 0 (β-Ga2O3) to 1.0 (m-Eu2O3).
Reimer, Joachim; Vogel, Frédéric; Steele-MacInnis, Matthew
2016-05-18
Aqueous solutions of salts at elevated pressures and temperatures play a key role in geochemical processes and in applications of supercritical water in waste and biomass treatment, for which salt management is crucial for performance. A major question in predicting salt behavior in such processes is how different salts affect the phase equilibria. Herein, molecular dynamics (MD) simulations are used to investigate molecular-scale structures of solutions of sodium and/or potassium sulfate, which show contrasting macroscopic behavior. Solutions of Na-SO4 exhibit a tendency towards forming large ionic clusters with increasing temperature, whereas solutions of K-SO4 show significantly less clustering under equivalent conditions. In mixed systems (Nax K2-x SO4 ), cluster formation is dramatically reduced with decreasing Na/(K+Na) ratio; this indicates a structure-breaking role of K. MD results allow these phenomena to be related to the characteristics of electrostatic interactions between K(+) and SO4 (2-) , compared with the analogous Na(+) -SO4 (2-) interactions. The results suggest a mechanism underlying the experimentally observed increasing solubility in ternary mixtures of solutions of Na-K-SO4 . Specifically, the propensity of sodium to associate with sulfate, versus that of potassium to break up the sodium-sulfate clusters, may affect the contrasting behavior of these salts. Thus, mutual salting-in in ternary hydrothermal solutions of Na-K-SO4 reflects the opposing, but complementary, natures of Na-SO4 versus K-SO4 interactions. The results also provide clues towards the reported liquid immiscibility in this ternary system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Wanyi; Schmehl, Daniel R.; Mullin, Christopher A.; Frazier, James L.
2014-01-01
Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax - fluvalinate, coumaphos, chlorothalonil, and chloropyrifos - tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common ‘inert’ ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated. PMID:24416121
Commentary on the sphalerite geobarometer
Toulmin, P.; Barton, P.B.; Wiggins, L.B.
1991-01-01
The FeS content of sphalerite in assemblages with pyrite and pyrrhotite has been widely used and widely criticized as a geobarometer. The commonly accepted form of the geobarometer is based on the composition of sphalerite being independent of temperature below about 550??C at all pressures up to at least 10 kbar, but strong thermodynamic arguments require a significant temperature dependence in this region. Most minor components have a negligible effect on the relevant equilibria, but the effect of CuS is somewhat more significant. Molar and partial molar volumes for binary (ZnS-FeS) and ternary (ZnS-FeS-CuS) sphalerite solutions are presented; the ternary data are consistent with charge transfer between Cu and Fe. -from Authors
Ma, Min; Pi, Fuwei; Wang, Jiasheng; Ji, Jian; Sun, Xiulan
2017-02-01
Humans are most likely to be exposed to microcystins (MCs) combined with other water pollutants rather than to individual compounds through the consumption of contaminated drinking water or through recreational activities, such as swimming. However, the combined effects of MC-LR, estradiol (EST), and ractopamine (RAC) have not been extensively researched. The goal of this study was to investigate the combined effects of these compounds. For this purpose, cytotoxicity was evaluated in HepG2 cells treated with single or combined doses of MC-LR, EST, and RAC based on concentration addition (CA), independent action (IA), and Chou-Talalay's combination-index (CI) methods. Singly applied MC-LR and EST induced HepG2 cellular proliferation at low-concentration levels (1 × 10 -12 -1 × 10 -9 M), and decreased viability at higher doses of exposure (1 × 10 -9 -1 × 10 -6 M). Exposure to binary or ternary mixtures of MC-LR, EST, and RAC exhibited synergistic effects at high concentrations, irrespective of the models used. In contrast, antagonism was observed for the mixture of MC-LR and EST at relatively low concentrations. A synergistic effect on reactive oxygen species (ROS) generation was observed for the combined drugs at high concentrations. Additionally, the ratio of apoptotic cells was increased more by the combined drugs than the single drugs, consistent with the inhibition of cell viability. The ROS increase after treatment with the combined drugs may enhance cytotoxicity and subsequently lead to cell apoptosis. Given the interactions between MC-LR, EST, and RAC, government regulatory standards for MC-LR should consider the toxicological interactions between MC-LR and other environment pollutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The structure and vibrational frequencies of nitric acid hydrates crystals
NASA Astrophysics Data System (ADS)
Escribano, R.; Fernández, D.; Herrero, V. J.; Maté, B.; Medialdea, A.; Moreno, M. A.; Ortega, I. K.
The relevance of nitric acid hydrates in stratospheric processes has prompted a large number of investigations on the structure and physicochemical properties of these species. We are carrying out in our lab a study on the spectroscopy of crystals of nitric acid and the mono-, di- and trihydrates, NAM, NAD and NAT, respectively, as a first step to addressing more elaborate systems, like binary or ternary mixtures of nitric acid with water, sulphuric acid or halogen compounds of atmospheric interest. Our work consists of a theoretical part, which deals with the determination of the crystalline structure of the species and the prediction of their infrared spectra, and of an experimental part, in which we record Reflection-Absorption infrared spectra of samples prepared under controlled conditions of low pressure and temperature. The theoretical calculations are carried out with the recently developed program SIESTA (acronym for Spanish Initiative for Electronic Simulation of Thousands of Atoms), which allows the ab initio study of periodic systems of large size, by a method that scales linearly in time and computer memory requirements with the number of atoms in a simulation cell. The experimental work is performed on a cryostat cell built in our laboratory. The cell has a number of inlet devices to allow gases to be expanded within, and infrared radiation from a FTIR spectrometer to enter and exit. Films of the species under study are formed by condensing the appropriate gases or mixtures of them on a polished surface of gold or aluminium, whose temperature is controlled externally and can be varied between 80 and 325 K. Examples of experimental and predicted spectra will be presented at the meeting, with a discussion on the proposed assignments.
Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji
2016-08-17
Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.
Component spectra extraction from terahertz measurements of unknown mixtures.
Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X
2015-10-20
The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.
Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang
2018-01-24
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Soda, H.; McLean, A.
2000-01-01
A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less
On the binding of indeno[1,2-c]isoquinolines in the DNA-topoisomerase I cleavage complex.
Xiao, Xiangshu; Antony, Smitha; Pommier, Yves; Cushman, Mark
2005-05-05
An ab initio quantum mechanics calculation is reported which predicts the orientation of indenoisoquinoline 4 in the ternary cleavage complex formed from DNA and topoisomerase I (top1). The results of this calculation are consistent with the hypothetical structures previously proposed for the indenoisoquinoline-DNA-top1 ternary complexes based on molecular modeling, the crystal structure of a recently reported ternary complex, and the biological results obtained with a pair of diaminoalkyl-substituted indenoisoquinoline enantiomers. The results of these studies indicate that the pi-pi stacking interactions between the indenoisoquinolines and the neighboring DNA base pairs play a major role in determining binding orientation. The calculation of the electrostatic potential surface maps of the indenoisoquinolines and the adjacent DNA base pairs shows electrostatic complementarity in the observed binding orientation, leading to the conclusion that electrostatic attraction between the intercalators and the base pairs in the cleavage complex plays a major stabilizing role. On the other hand, the calculation of LUMO and HOMO energies of indenoisoquinoline 13b and neighboring DNA base pairs in conjunction with NBO analysis indicates that charge transfer complex formation plays a relatively minor role in stabilizing the ternary complexes derived from indenoisoquinolines, DNA, and top1. The results of these studies are important in understanding the existing structure-activity relationships for the indenoisoquinolines as top1 inhibitors and as anticancer agents, and they will be important in the future design of indenoisoquinoline-based top1 inhibitors.
NASA Astrophysics Data System (ADS)
Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei
2018-06-01
It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.
NASA Astrophysics Data System (ADS)
Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath
2017-11-01
Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.
Thermodynamic investigations on the growth of CuAlO2 delafossite crystals
NASA Astrophysics Data System (ADS)
Wolff, Nora; Klimm, Detlef; Siche, Dietmar
2018-02-01
Simultaneous differential thermal analysis (DTA) and thermogravimetric (TG) measurements with copper oxide/aluminum oxide mixtures were performed in atmospheres with varying oxygen partial pressures and with crucibles made of different materials. Only sapphire and platinum crucibles proved to be stable under conditions that are useful for the growth of CuAlO2 delafossite single crystals. Then the ternary phase diagram Al2O3-CuO-Cu and its isopleth section Cu2O-Al2O3 were redetermined. Millimeter sized crystals could be obtained from copper oxide melts with 1-2 mol% addition of aluminum oxide that are stable in platinum crucibles held in oxidizing atmosphere containing 15-21% oxygen.
Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong
2016-03-15
Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.
NASA Astrophysics Data System (ADS)
Young, Nicholas Philip
The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.
Predicting the toxicity of metal mixtures
Balistrieri, Laurie S.; Mebane, Christopher A.
2013-01-01
The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.
Natural deep eutectic solvents: cytotoxic profile.
Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair
2016-01-01
The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.
Rodríguez, N; Ortiz, M C; Sarabia, L; Gredilla, E
2010-04-15
To prevent possible frauds and give more protection to companies and consumers it is necessary to control that the types of milk used in the elaboration of dairy products correspond to those appearing in their label. Therefore, it is greatly interesting to have efficient, quick and cheap methods of analysis to identify them. In the present work, the multivariate data are the protein chromatographic profiles of cheese and milk extracts, obtained by high-performance liquid chromatography with diode-array detection (HPLC-DAD). These data correspond to pure samples of bovine, ovine and caprine milk, and also to binary and ternary mixtures. The structure of the data is studied through principal component analysis (PCA), whereas the percentage of each kind of milk has been determined by a partial least squares (PLS) calibration model. In cheese elaborated with mixtures of milk, the procedure employed allows one to detect 3.92, 2.81 and 1.47% of ovine, caprine and bovine milk, respectively, when the probability of false non-compliance is fixed at 0.05. These percentages reach 7.72, 5.52 and 2.89%, respectively, when both the probability of false non-compliance and false compliance are fixed at 0.05. (c) 2009 Elsevier B.V. All rights reserved.
Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham
2015-01-01
Novel spectrophotometric methods were applied for the determination of the minor component tetryzoline HCl (TZH) in its ternary mixture with ofloxacin (OFX) and prednisolone acetate (PA) in the ratio of (1:5:7.5), and in its binary mixture with sodium cromoglicate (SCG) in the ratio of (1:80). The novel spectrophotometric methods determined the minor component (TZH) successfully in the two selected mixtures by computing the geometrical relationship of either standard addition or subtraction. The novel spectrophotometric methods are: geometrical amplitude modulation (GAM), geometrical induced amplitude modulation (GIAM), ratio H-point standard addition method (RHPSAM) and compensated area under the curve (CAUC). The proposed methods were successfully applied for the determination of the minor component TZH below its concentration range. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J
2018-02-05
This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.
Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Jiménez, Ignacio A; Lorenzo-Morales, Jacob; Piñero, José E; Bouassida-Beji, Maha; Hamdi, Moktar; L Bazzocchi, Isabel
2017-08-01
Oxidation taking place during the use of oil leads to the deterioration of both nutritional and sensorial qualities. Natural antioxidants from herbs and plants are rich in phenolic compounds and could therefore be more efficient than synthetic ones in preventing lipid oxidation reactions. This study was aimed at the valorization of Tunisian aromatic plants and their active compounds as new sources of natural antioxidant preventing oil oxidation. Carnosol, rosmarinic acid and thymol were isolated from Rosmarinus officinalis and Thymus capitatus by column chromatography and were analyzed by nuclear magnetic resonance. Their antioxidant activities were measured by DPPH, ABTS and FRAP assays. These active compounds were added to soybean oil in different proportions using a simplex-centroid mixture design. Antioxidant activity and oxidative stability of oils were determined before and after 20 days of accelerated oxidation at 60 °C. Results showed that bioactive compounds are effective in maintaining oxidative stability of soybean oil. However, the binary interaction of rosmarinic acid and thymol caused a reduction in antioxidant activity and oxidative stability of soybean oil. Optimum conditions for maximum antioxidant activity and oxidative stability were found to be an equal ternary mixture of carnosol, rosmarinic acid and thymol. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Chemometric methods for the simultaneous determination of some water-soluble vitamins.
Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Mohamed, Niveen A; El-Zahery, Marwa R
2011-01-01
Two spectrophotometric methods, derivative and multivariate methods, were applied for the determination of binary, ternary, and quaternary mixtures of the water-soluble vitamins thiamine HCI (I), pyridoxine HCI (II), riboflavin (III), and cyanocobalamin (IV). The first method is divided into first derivative and first derivative of ratio spectra methods, and the second into classical least squares and principal components regression methods. Both methods are based on spectrophotometric measurements of the studied vitamins in 0.1 M HCl solution in the range of 200-500 nm for all components. The linear calibration curves were obtained from 2.5-90 microg/mL, and the correlation coefficients ranged from 0.9991 to 0.9999. These methods were applied for the analysis of the following mixtures: (I) and (II); (I), (II), and (III); (I), (II), and (IV); and (I), (II), (III), and (IV). The described methods were successfully applied for the determination of vitamin combinations in synthetic mixtures and dosage forms from different manufacturers. The recovery ranged from 96.1 +/- 1.2 to 101.2 +/- 1.0% for derivative methods and 97.0 +/- 0.5 to 101.9 +/- 1.3% for multivariate methods. The results of the developed methods were compared with those of reported methods, and gave good accuracy and precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Tribhuwan; Parker, David S.
Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less
Pandey, Tribhuwan; Parker, David S.
2017-10-27
Here, we investigate the thermoelectric properties of the relatively unexplored rare-earth ternary compounds La 3Cu 3X 4 (X= Bi, Sb, As, and P) using first principles electronic structure and Boltzmann transport calculations. These compounds, of which the La 3Cu 3Sb 4 and La 3Cu 3Bi 4 compounds have previously been synthesized, are all predicted to semiconductors and present a wide range of band gaps varying from 0.23 eV (for the Bi compound) to 0.87 eV (for the P compound). We further find a mixture of light and heavy bands, which results in a high thermoelectric power factor. In addition wemore » find that at high temperatures of 1000 K these compounds exhibit lattice thermal conductivity less than 1 W/m-K. The combination of low thermal conductivity and good transport properties results in a predicted ZT as high as ~1.5 for both La 3Cu 3P 4 and La 3Cu 3As 4, under high p-type doping. This predicted high performance makes these compounds promising candidates for high performance thermoelectric performance and thus merits further experimental investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Celine; Courtois, Simone; Nectoux, Didier
2006-12-15
Investigations were carried out in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Several systems comprising Ordinary Portland Cement (OPC), a fast-reacting pozzolan (silica fume (SF) or metakaolin (MK)) and, in some cases, a slow-reacting product (fly ash (FA) or blastfurnace slag (BFS)) were compared. Promising results were obtained with some binary mixtures of OPC and SF, and with some ternary blends of OPC, SF and FA or BFS: pH of water in equilibrium with the fully hydrated cements dropped below 11. Dependence of the properties of standard mortarsmore » on the high contents of FA and SF in the low-pH blends was examined. Combining SF and FA seemed attractive since SF compensated for the low reactivity of FA, while FA allowed to reduce the water demand, and dimensional variations of the mortars. Finally, low-heat ({delta}T < 20 deg. C under semi-adiabatic conditions) and high strength ({approx} 70-80 MPa) concretes were prepared from two low-pH cements: a binary blend made from 60% of OPC and 40% of SF, and a ternary blend including 37.5% OPC, 32.5% SF and 30% FA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; ...
2016-11-02
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Maffie, Jonathon; Blenkinsop, Timothy; Rudy, Bernardo
2009-01-16
The channels mediating most of the somatodendritic A-type K(+) current in neurons are thought to be ternary complexes of Kv4 pore-forming subunits and two types of auxiliary subunits, the K(+) channel interacting proteins (KChIPs) and dipeptidyl-peptidase-like (DPPL) proteins. The channels expressed in heterologous expression systems by mixtures of Kv4.2, KChIP1 and DPP6-S resemble in many properties the A-type current in hippocampal CA1 pyramidal neurons and cerebellar granule cells, neurons with prominent A-type K(+) currents. However, the native currents have faster kinetics. Moreover, the A-type currents in neurons in intermediary layers of the superior colliculus have even faster inactivating rates. We have characterized a new DPP6 spliced isoform, DPP6-E, that produces in heterologous cells ternary Kv4 channels with very fast kinetics. DPP6-E is selectively expressed in a few neuronal populations in brain including cerebellar granule neurons, hippocampal pyramidal cells and neurons in intermediary layers of the superior colliculus. The effects of DPP6-E explain past discrepancies between reconstituted and native Kv4 channels in some neurons, and contributes to the diversity of A-type K(+) currents in neurons.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)
2006-01-01
A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
Microstructure of Mixed Surfactant Solutions by Electron Microscopy
NASA Astrophysics Data System (ADS)
Naranjo, Edward
1995-01-01
Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.
NASA Technical Reports Server (NTRS)
Palumbo, M. E.; Strazzulla, G.; Pendleton, Y. J.; Tielens, A. G.
2000-01-01
We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.
NASA Astrophysics Data System (ADS)
Alizadeh Behjani, Mohammadreza; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew
2017-06-01
Segregation of granules is an undesired phenomenon in which particles in a mixture separate from each other based on the differences in their physical and chemical properties. It is, therefore, crucial to control the homogeneity of the system by applying appropriate techniques. This requires a fundamental understanding of the underlying mechanisms. In this study, the effect of particle shape and cohesion has been analysed. As a model system prone to segregation, a ternary mixture of particles representing the common ingredients of home washing powders, namely, spray dried detergent powders, tetraacetylethylenediamine, and enzyme placebo (as the minor ingredient) during heap formation is modelled numerically by the Discrete Element Method (DEM) with an aim to investigate the effect of cohesion/adhesion of the minor components on segregation quality. Non-spherical particle shapes are created in DEM using the clumped-sphere method based on their X-ray tomograms. Experimentally, inter particle adhesion is generated by coating the minor ingredient (enzyme placebo) with Polyethylene Glycol 400 (PEG 400). The JKR theory is used to model the cohesion/adhesion of coated enzyme placebo particles in the simulation. Tests are carried out experimentally and simulated numerically by mixing the placebo particles (uncoated and coated) with the other ingredients and pouring them in a test box. The simulation and experimental results are compared qualitatively and quantitatively. It is found that coating the minor ingredient in the mixture reduces segregation significantly while the change in flowability of the system is negligible.
Dependence of frictional strength on compositional variations of Hayward fault rock gouges
Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.
2010-01-01
The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.
Palumbo, M E; Strazzulla, G; Pendleton, Y J; Tielens, A G
2000-05-10
We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
The development of a lower heat concrete mixture for mass concrete placement conditions
NASA Astrophysics Data System (ADS)
Crowley, Aaron Martin
The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are considered, contractors should be responsible for monitoring and limiting maximum internal temperature to 150°F and the maximum differential temperature to 35°F. A temperature control plan should be established using various methods, and not limited to only PCC mixture design.
The ternary alloy with a structure of Prussian blue analogs in a transverse field
NASA Astrophysics Data System (ADS)
Dely, J.; Bobák, A.
2007-11-01
The effects of applied transverse field on transition and compensation temperatures of the ABpC1-p ternary alloy consisting of spins SA={3}/{2}, SB=2, and SC={5}/{2} are investigated by the use of a mean-field theory. The structure and the spin values of the model correspond to the Prussian blue analog of the type (FepIIMn1-pII)1.5[CrIII(CN)6]·nH2O. We find that two or even three compensation points may be induced by a transverse field for the system with appropriate values of the parameters in the model Hamiltonian. In particular, the influence of a transverse field on the compensation point in the ground state is examined.
Ternary oxide nanostructures and methods of making same
Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY
2009-09-08
A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University of Buffalo, Buffalo, NY 14260; Pace, Jim
The structures of mouse DHFR holo enzyme and a ternary complex with NADPH and a potent inhibitor are described. It has been shown that 2, 4-diamino-6-arylmethylpteridines and 2, 4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure–activity profile observed for a series of substituted dibenz[b, f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2, 4-diamino-6-(2′-hydroxydibenz[b,more » f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 Å resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2′-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59–64) by 0.6 Å compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.« less
A Four Step Approach to Evaluate Mixtures for Consistency with Dose Addition
We developed a four step approach for evaluating chemical mixture data for consistency with dose addition for use in environmental health risk assessment. Following the concepts in the U.S. EPA mixture risk guidance (EPA 2000a,b), toxicological interaction for a defined mixture (...
Sulfate resistance of high calcium fly ash concrete
NASA Astrophysics Data System (ADS)
Dhole, Rajaram
Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime-fly ash pastes confirmed that fly ash mortar or concrete mixes forming more monosulfate than ettringite before exposure to sulfates would offer poor sulfate resistance and vice versa. During quantitative Rietveld analysis carried out for determining ettringite, monosulfate and gypsum formed in the fly ash pastes, it was observed that fly ash mixtures showing more ettringite after exposures to sulfates, give poor sulfate resistance. A good relationship between the amounts of ettringite formed and expansions of mortar specimens in the ASTM C 1012 test was found.
Khelashvili, George; Weinstein, Harel; Harries, Daniel
2008-01-01
As charged macromolecules adsorb and diffuse on cell membranes in a large variety of cell signaling processes, they can attract or repel oppositely charged lipids. This results in lateral membrane rearrangement and affects the dynamics of protein function. To address such processes quantitatively we introduce a dynamic mean-field scheme that allows self-consistent calculations of the equilibrium state of membrane-protein complexes after such lateral reorganization of the membrane components, and serves to probe kinetic details of the process. Applicable to membranes with heterogeneous compositions containing several types of lipids, this comprehensive method accounts for mobile salt ions and charged macromolecules in three dimensions, as well as for lateral demixing of charged and net-neutral lipids in the membrane plane. In our model, the mobility of membrane components is governed by the diffusion-like Cahn-Hilliard equation, while the local electrochemical potential is based on nonlinear Poisson-Boltzmann theory. We illustrate the method by applying it to the adsorption of the anionic polypeptide poly-Lysine on negatively charged lipid membranes composed of binary mixtures of neutral and monovalent lipids, or onto ternary mixtures of neutral, monovalent, and multivalent lipids. Consistent with previous calculations and experiments, our results show that at steady-state multivalent lipids (such as PIP2), but not monovalent lipid (such as phosphatidylserine), will segregate near the adsorbing macromolecules. To address the corresponding diffusion of the adsorbing protein in the membrane plane, we couple lipid mobility with the propagation of the adsorbing protein through a dynamic Monte Carlo scheme. We find that due to their higher mobility dictated by the electrochemical potential, multivalent lipids such as PIP2 more quickly segregate near oppositely charged proteins than do monovalent lipids, even though their diffusion constants may be similar. The segregation, in turn, slows protein diffusion, as lipids introduce an effective drag on the motion of the adsorbate. In contrast, monovalent lipids such as phosphatidylserine only weakly segregate, and the diffusions of protein and lipid remain largely uncorrelated. PMID:18065451
NASA Astrophysics Data System (ADS)
Zedam, Lemnaouar; Barkat, Omar; De Baets, Bernard
2018-05-01
In this paper, we generalize the notion of traces of a binary relation to the setting of ternary relations. With a given ternary relation, we associate three binary relations: its left, middle and right trace. As in the binary case, these traces facilitate the study and characterization of properties of a ternary relation. Interestingly, the traces themselves turn out to be the greatest solutions of relational inequalities associated with newly introduced compositions of a ternary relation with a binary relation (and vice versa).
Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho
2016-05-04
Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.
Shah, Ankita; Thool, Prajwal; Sorathiya, Komal; Prajapati, Hetal; Dalrymple, Damon; Serajuddin, Abu T M
2018-02-01
The primary objective of this study was to develop lipid-based self-microemulsifying drug delivery systems (SMEDDS) without using any organic cosolvents that would spontaneously form microemulsions upon dilution with water. Cosolvents were avoided to prevent possible precipitation of drug upon dilution and other stability issues. Different polysorbates, namely, Tween 20, Tween 40, Tween 60, and Tween 80, were used as surfactants, and Captex 355 EP/NF (glycerol tricaprylate/caprate) or its 1:1 mixture with Capmul MCM NF (glycerol monocaprylocaprate) were used as lipids. Captex 355-Tween-water ternary phase diagrams showed that oil-in-water microemulsions were formed only when the surfactant content was high (80-90%) and the lipid content low (10-20%). Thus, mixtures of Tweens with Captex 355 alone were not suitable to prepare SMEDDS with substantial lipid contents. However, when Captex 355 was replaced with the 1:1 mixture of Captex 355 and Capmul MCM, clear isotropic microemulsion regions in phase diagrams with sizes in the increasing order of Tween 20 < Tween 40 < Tween 60 < Tween 80 were obtained. Tween 80 had the most profound effect among all surfactants as microemulsions were formed with lipid to surfactant ratios as high as 7:3, which may be attributed to the presence of double bond in its side chain that increased the curvature of surfactant layer. Thus, lipid-surfactant mixtures containing 1:1 mixture of medium chain triglyceride (Captex 355) and monoglyceride (Capmul MCM) and as low as 30% Tween 80 were identified as organic cosolvent-free systems for the preparation of SMEDDS. Formulations with a model drug, probucol, dispersed spontaneously and rapidly upon dilution with water to form microemulsions without any drug precipitation.
Shalash, Ahmed O; Elsayed, Mustafa M A
2017-11-01
The potential of fine excipient materials to improve the performance of carrier-based dry powder inhalation mixtures is well acknowledged. The mechanisms underlying this potential are, however, open to question till date. Elaborate understanding of these mechanisms is a requisite for rational rather than empirical development of ternary dry powder inhalation mixtures. While effects of fine excipient materials on drug adhesion to and detachment from surfaces of carrier particle have been extensively investigated, effects on other processes, such as carrier-drug mixing, capsule/blister/device filling, or aerosolization in inhaler devices, have received little attention. We investigated the influence of fine excipient materials on the outcome of the carrier-drug mixing process. We studied the dispersibility of micronized fluticasone propionate particles after mixing with α-lactose monohydrate blends comprising different fine particle concentrations. Increasing the fine (D < 10.0 μm) excipient fraction from 1.84 to 8.70% v/v increased the respirable drug fraction in the excipient-drug mixture from 56.42 to 67.80% v/v (p < 0.05). The results suggest that low concentrations of fine excipient particles bind to active sites on and fill deep crevices in coarse carrier particles. As the concentration of fine excipient particles increases beyond that saturating active sites, they fill the spaces between and adhere to the surfaces of coarse carrier particles, creating projections and micropores. They thereby promote deagglomeration of drug particles during carrier-drug mixing. The findings pave the way for a comprehensive understanding of contributions of fine excipient materials to the performance of carrier-based dry powder inhalation mixtures.
Quality improvement of melt extruded laminar systems using mixture design.
Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D
2015-07-30
This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E
2011-01-01
Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zeng, C. L.; Liu, Y.
2011-04-01
The ternary carbonate eutectic mixture of Li2CO3, K2CO3 and Na2CO3 as a heat transfer and storage medium has excellent thermophysical properties, but with high viscidity as compared with some other inorganic salts such as chlorides and nitrates. The addition of chlorides or fluorides to molten carbonates may improve their fluidity, but possibly making the melt become more corrosive. In this study, the corrosion behavior of type 304, 310 and 316 stainless steels in an eutectic (Li,Na,K)2CO3 melt with and without an eutectic mixture of NaCl and KCl at 973K in air have been examined. The experimental results indicated that 310 steel shows a much better corrosion resistance in molten carbonates than both 304 and 316 steels, due to the formation of a continuous LiCrO2 scale. The addition of chlorides to carbonates melt accelerated the corrosion of the steels, especially 310 steel, producing scales with more porosity.
Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna
2016-03-07
Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
Biophysical characterization of monofilm model systems composed of selected tear film phospholipids.
Patterson, Matthew; Vogel, Hans J; Prenner, Elmar J
2016-02-01
The tear film protects the eye from foreign particles and pathogens, prevents excess evaporation, provides lubrication, and maintains a high quality optical surface necessary for vision. The anterior layer of tear film consists of polar and non-polar lipid layers. The polar lipids form a monolayer on the aqueous subphase, acting as surfactants for the non-polar lipid multilayer. A tear film polar lipid biomimetic consisting of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM) was characterized using Langmuir monolayers and Brewster angle microscopy (BAM). Lipid combinations formed very stable monolayers, especially those containing DPPC or PSM. Surface experiments and elasticity analyses revealed that PGC resulted in more condensed and rigid mixed monolayers. DPPE provided resistance to large changes in lipid ordering over a wide surface pressure range. Ternary mixtures containing DPPE and PGC with either DPPC or PSM experienced the greatest lipid ordering within the natural tear film surface pressure range suggesting that these lipids are important to maintain tear film integrity during the inter-blink period. Finally, BAM images revealed unique structures within monolayers of DPPC, DPPE, and PGC at the natural tear film surface pressure. 3D analysis of these domains suggested either the formation of multilayers or outward protrusions at surface pressures far below the point of irreversible collapse as seen on the isotherm. This entails that the polar lipids of tear film may be capable of multilayer formation or outward folding as a mechanism to prevent rupture of the tear film during a blink. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys
NASA Astrophysics Data System (ADS)
Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho
2015-12-01
NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux of Ni also has strong influences on the interdiffusion of Mn and Ga with large and negative cross interdiffusion coefficients, tilde{D}_{MnNi}^{Ga} and tilde{D}_{GaNi}^{Mn} . The tilde{D}_{NiNi}^{Ga} and tilde{D}_{MnMn}^{Ga} ternary interdiffusion coefficients exhibited minimum values near 52 at. pct Ni concentration.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
The single-ion anisotropy effects in the mixed-spin ternary-alloy
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2018-04-01
The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath
2015-11-30
X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less
A Phase of Liposomes with Entangled Tubular Vesicles
NASA Astrophysics Data System (ADS)
Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.
1994-11-01
An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.
Moliterno, Antonioni A C; Martins, Camila B C; Szczerbowski, Daiane; Zawadneak, Maria Aparecida C; Zarbin, Paulo H G
2017-06-01
The nitidulid beetle Lobiopa insularis is an important pest of strawberry crops in the United States and Brazil. Both larvae and adults feed on ripe strawberries, causing 20-70% loss in production during serious infestations. Aiming at the development of efficient, clean, and highly specific pest management systems, semiochemicals, especially pheromones, are particularly useful. Analyses of the extracts of both males and females obtained from aeration of live beetles showed the presence of three male specific compounds, 2-nonanone, 2-undecanone, and 2-undecanol (in an enantiomeric ratio of S:R = 3.5:1). This is the first record of ketones and an alcohol as pheromone components in Nitidulidae. These compounds were emitted by males in amounts of 0.3:6:1.5 ng per insect within 24 h (1:30:3), respectively, during the scotophase, indicating nocturnal sexual activity. Field tests with pitfall traps containing different mixtures of compounds and ripe strawberries as a co-attractant summed up to five treatments with 25 replications. As a result, 59% males and 41% females (1:0.7) were caught, indicating the L. insularis pheromone to cause aggregation of both sexes. Results of the field tests showed that the attractivity of the binary mixture of ketones (T3) differed from the control (T5), from traps with 2-undecanone alone (T4), and from the mixture of 2-undecanone and racemic 2-undecanol (T2). Moreover, the activity of the ternary mixture of compounds (T1) was not different from that of T3, indicating that the racemic alcohol did not positively influence trap catches. In future applications, a mixture of synthetic strawberry-derived compounds that are attractive to L. insularis may substitute rapidly decaying fruit in the field, maintaining catches for longer periods. Because of its efficiency and low cost, a mixture of 2-undecanone and 2-nonanone is recommended to catch adult L. insularis in the field.
Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β
Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo
2016-01-01
Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions. PMID:26812056
The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biteau, H.; Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte; Fuentes, A.
2010-04-15
The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations weremore » observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)« less
Stavenes Andersen, Ingrid; Voie, Oyvind Albert; Fonnum, Frode; Mariussen, Espen
2009-11-01
Regulatory limit values for toxicants are in general determined by the toxicology of the single compounds. However, little is known about their combined effects. Methyl mercury (MeHg), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs) are dominant contaminants in the environment and food. MeHg is a well known neurotoxicant, especially affecting the developing brain. There is increasing evidence that PCB and BFRs also have neurotoxic effects. An enhanced effect of these toxicants, due to either synergistic or additive effects, would be considered as a risk for the fetal development. Here we studied the combinatorial effects of MeHg in combination with PCB or BFR on the reuptake of glutamate in synaptosomes. To provide the optimal conclusion regarding type of interaction, we have analyzed the data using two mathematical models, the Löewe model of additivity and Bliss' model of independent action. Binary and ternary mixtures in different proportions were made. The toxicants had primarily additive effects, as shown with both models, although tendencies towards synergism were observed. MeHg was by far the most potent inhibitor of uptake with an EC(50) value of 0.33 microM. A reconstituted mixture from a relevant fish sample was made in order to elucidate which chemical was responsible for the observed effect. Some interaction was experienced between PCB and MeHg, but in general MeHg seemed to explain the observed effect. We also show that mixture effects should not be assessed by effect addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, S.K.; Naik, Y.P.; Parida, S.C.
Three ternary oxides LiAl{sub 5}O{sub 8}(s), LiAlO{sub 2}(s) and Li{sub 5}AlO{sub 4}(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO{sub 2}(g) over the three-phase mixtures {l_brace}LiAl{sub 5}O{sub 8}(s)+Li{sub 2}CO{sub 3}(s)+5Al{sub 2}O{sub 3}(s){r_brace}, {l_brace}LiAl{sub 5}O{sub 8}(s)+5LiAlO{sub 2}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} and {l_brace}LiAlO{sub 2}(s)+Li{sub 5}AlO{sub 4}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of thesemore » three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of {delta}{sub f}H{sup 0}(298.15 K), S{sup 0}(298.15 K) S{sup 0}(T), C{sub p}{sup 0}(T), H{sup 0}(T), {l_brace}H{sup 0}(T)-H{sup 0}(298.15 K){r_brace}, G{sup 0}(T), {delta}{sub f}H{sup 0}(T), {delta}{sub f}G{sup 0}(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software. - Graphical abstract: Comparison of {delta}{sub f}G{sub m}{sup 0} of ternary oxides determined from KEQMS and solid-state galvanic cell techniques. (O) KEQMS, (9632;) solid-state galvanic cell and solid line: combined fit of both the experimental data.« less
EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.
Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca
2014-11-11
With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge obtained from this study is applicable to understand the role of interfaces in ternary nanocomposites with different combinations of nanofillers.
Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William
2006-08-01
Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.
Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems
NASA Astrophysics Data System (ADS)
D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.
2018-02-01
The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.
Del Campo, A; de León, A S; Rodríguez-Hernández, J; Muñoz-Bonilla, A
2017-03-21
Herein, we propose a strategy to fabricate core-shell microstructures ordered in hexagonal arrays by combining the breath figures approach and phase separation of immiscible ternary blends. This simple strategy to fabricate these structures involves only the solvent casting of a ternary polymer blend under moist atmosphere, which provides a facile and low-cost fabrication method to obtain the porous structures with a core-shell morphology. For this purpose, blends consisting of polystyrene (PS) as a major component and PS 40 -b-P(PEGMA300) 48 amphiphilic copolymer and polydimethylsiloxane (PDMS) as minor components were dissolved in tetrahydrofuran and cast onto glass wafers under humid conditions, 70% of relative humidity. The resulting porous morphologies were characterized by optical and confocal Raman microscopy. In particular, confocal Raman results demonstrated the formation of core-shell morphologies into the ordered pores, in which the PS forms the continuous matrix, whereas the other two phases are located into the cavities (PDMS is the core while the amphiphilic copolymer is the shell). Besides, by controlling the weight ratio of the polymer blends, the structural parameters of the porous structure such as pore diameter and the size of the core can be effectively tuned.
Cheong, Ai M; Tan, Chin P; Nyam, Kar L
2018-01-01
Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.
NASA Astrophysics Data System (ADS)
Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.
2017-04-01
The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.
NASA Astrophysics Data System (ADS)
Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan
2016-04-01
In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.
NASA Astrophysics Data System (ADS)
Schwarz, B.; Rossi, P. J.; Straßberger, L.; Jörg, F.; Meka, S. R.; Bischoff, E.; Schacherl, R. E.; Mittemeijer, E. J.
2014-09-01
Specimens of iron-based binary Fe-Si alloy and ternary Fe-Me-Si alloys (with Me = Ti, Cr and V) were nitrided at 580 °C in a NH3/H2-gas mixture applying a nitriding potential of 0.1 atm-1/2 until nitrogen saturation in the specimens was attained. In contrast with recent observations in other Fe-Me1-Me2 alloys, no "mixed" (Me1, Me2) nitrides developed in Fe-Me-Si alloys upon nitriding: first, all Me precipitates as MeN; and thereafter, all Si precipitates as Si3N4. The MeN precipitates as crystalline, finely dispersed, nanosized platelets, obeying a Baker-Nutting orientation relationship (OR) with respect to the ferrite matrix. The Si3N4 precipitates as cubically, amorphous particles; the incoherent (part of the) MeN/α-Fe interface acts as heterogeneous nucleation site for Si3N4. The Si3N4-precipitation rate was found to be strongly dependent on the degree of coherency of the first precipitating MeN. The different, even opposite, kinetic effects observed for the various Fe-Me-Si alloys could be ascribed to the different time dependences of the coherent → incoherent transitions of the MeN particles in the different Fe-Me-Si alloys.
Orlandi, Silvina; Priotti, Josefina; Diogo, Hermínio P; Leonardi, Dario; Salomon, Claudio J; Nunes, Teresa G
2018-04-01
Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.
NASA Astrophysics Data System (ADS)
Zia, Shahneel; Banerjee, Anirudh
2016-05-01
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu
2016-05-06
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
2014-01-01
A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
FUSED SALT METHOD FOR COATING URANIUM WITH A METAL
Eubank, L.D.
1959-02-01
A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distillation of cadmium from uranium plutonium cadmium alloy
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo
2005-04-01
Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.
Homomorphisms in C*-ternary algebras and JB*-triples
NASA Astrophysics Data System (ADS)
Park, Choonkil; Rassias, Themistocles M.
2008-01-01
In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation
NASA Astrophysics Data System (ADS)
Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young
To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.
Davies, James F; Wilson, Kevin R
2016-02-16
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.
Davies, James F.; Wilson, Kevin R.
2016-01-11
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less
Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas
NASA Astrophysics Data System (ADS)
Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.
2003-04-01
Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.
Zhang, Genyi; Maladen, Michelle; Campanella, Osvaldo H; Hamaker, Bruce R
2010-08-25
The self-assembly of a ternary complex, which is formed through heating and cooling of a mixture of amylose (1.0 mg/mL), whey protein isolate (50 μg/mL), and free fatty acids (FFAs, 250 μg/mL) was investigated. High-performance size-exclusion chromatography-multi-angle laser light scattering (HPSEC-MALLS) analysis showed that the complex is a water-soluble supramolecule (Mw = 6-7 × 10(6)), with a radius of gyration of 20-100 nm, indicating a nanoscale complex. Experimental results using 1-monostearyl-rac-glycerol (MSG) or cetyl alcohol that is similar to FFA in structure (except the headgroup) indicate that FFAs are the bridge between thermodynamically incompatible amylose and protein molecules and their functional carboxyl group is essential to the formation of the complex. Additionally, the effects of pH and salt treatments suggest that electrostatic interactions between negatively charged carboxyl groups of FFAs and polyionic protein are the foundation for the self-assembly of the complex. The fact that FFA is one important component in the self-assembled complex with an estimated molar ratio of 6:1:192 (amylose/protein/FFA, ∼4-5% FFA) demonstrates that it might be used as a nanocarrier for the controlled release of lipophilic functional materials to maintain their stability, bioactivity, and more importantly water solubility.
Near azeotropic mixture substitute for dichlorodifluoromethane
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1998-01-01
A refrigerant and a process of formulating thereof that consists of a mixture of a first mole fraction of CH.sub.2 FCF.sub.3 and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 and CH.sub.3 CClF.sub.2 ; a mixture of CHF.sub.2 CH.sub.3 and CH.sub.3 CClF.sub.2 ; and a mixture of CHClFCF.sub.3, CH.sub.3 CClF.sub.2 and CHF.sub.2 CH.sub.3.
Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.