Single Crystal Fibers of Yttria-Stabilized Cubic Zirconia with Ternary Oxide Additions
NASA Technical Reports Server (NTRS)
Ritzert, F. J.; Yun, H. M.; Miner, R. V.
1997-01-01
Single crystal fibers of yttria (Y2O3)-stabilized cubic zirconia, (ZrO2) with ternary oxide additions were grown using the laser float zone fiber processing technique. Ternary additions to the ZrO2-Y2O3 binary system were studied aimed at increasing strength while maintaining the high coefficient of thermal expansion of the binary system. Statistical methods aided in identifying the most promising ternary oxide candidate (Ta2O5, Sc2O3, and HfO2) and optimum composition. The yttria, range investigated was 14 to 24 mol % and the ternary oxide component ranged from 1 to 5 mol %. Hafnium oxide was the most promising ternary oxide component based on 816 C tensile strength results and ease of fabrication. The optimum composition for development was 81 ZrO2-14 Y203-5 HfO2 based upon the same elevated temperature strength tests. Preliminary results indicate process improvements could improve the fiber performance. We also investigated the effect of crystal orientation on strength.
Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao
2018-01-01
Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775
Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.
Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S
2013-05-02
We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.
Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria
NASA Astrophysics Data System (ADS)
Stein, Frank; Philips, Noah
2018-03-01
High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh
A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less
Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems
NASA Astrophysics Data System (ADS)
Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen
2016-12-01
This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.
Prediction of novel stable Fe-V-Si ternary phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
Prediction of novel stable Fe-V-Si ternary phase
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin; ...
2018-10-28
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
McSwiggen, P.L.
1993-01-01
The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.
Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K
NASA Astrophysics Data System (ADS)
Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long
2015-12-01
Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.
Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong
2017-09-06
Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.
NASA Astrophysics Data System (ADS)
Anani, A.; Huggins, R. A.
The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.
Burton, B. P.; Rawn, C. J.; Roth, R. S.; Hwang, N. M.
1993-01-01
New data are presented on the phase equilibria and crystal chemistry of the binary systems CaO-Bi2O3 and CaO-CuO and the ternary CaO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for several of the binary CaO-Bi2O3 phases, including corrected compositions for Ca4Bi6O13 and Ca2Bi2O5. The ternary system contains no new ternary phases which can be formed in air at ~700–900 °C. PMID:28053484
Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites
NASA Technical Reports Server (NTRS)
Mackey, Jon A.; Dynys, Frederick W.; Sehirlioglu, Alp
2014-01-01
Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K.
First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asta, M.; Ormeci, A.; Wills, J.M.
The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less
An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.
Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J
2018-05-01
A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.
Metal biosorption equilibria in a ternary system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.H.; Volesky, B.
Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data andmore » with conclusions postulated from the three possible binary subsystems.« less
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.
Large field-induced-strain at high temperature in ternary ferroelectric crystals
Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.
2016-01-01
The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908
NASA Astrophysics Data System (ADS)
Xie, Yunsong; Chen, Ru
Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.
Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2011-01-01
A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.
High-field superconductivity in the Nb-Ti-Zr ternary system
NASA Astrophysics Data System (ADS)
Ralls, K. M.; Rose, R. M.; Wulff, J.
1980-06-01
Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nagasaka, Y.
2018-02-01
We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).
NASA Astrophysics Data System (ADS)
Schudlo, Larissa C.; Chau, Tom
2015-12-01
Objective. The majority of near-infrared spectroscopy (NIRS) brain-computer interface (BCI) studies have investigated binary classification problems. Limited work has considered differentiation of more than two mental states, or multi-class differentiation of higher-level cognitive tasks using measurements outside of the anterior prefrontal cortex. Improvements in accuracies are needed to deliver effective communication with a multi-class NIRS system. We investigated the feasibility of a ternary NIRS-BCI that supports mental states corresponding to verbal fluency task (VFT) performance, Stroop task performance, and unconstrained rest using prefrontal and parietal measurements. Approach. Prefrontal and parietal NIRS signals were acquired from 11 able-bodied adults during rest and performance of the VFT or Stroop task. Classification was performed offline using bagging with a linear discriminant base classifier trained on a 10 dimensional feature set. Main results. VFT, Stroop task and rest were classified at an average accuracy of 71.7% ± 7.9%. The ternary classification system provided a statistically significant improvement in information transfer rate relative to a binary system controlled by either mental task (0.87 ± 0.35 bits/min versus 0.73 ± 0.24 bits/min). Significance. These results suggest that effective communication can be achieved with a ternary NIRS-BCI that supports VFT, Stroop task and rest via measurements from the frontal and parietal cortices. Further development of such a system is warranted. Accurate ternary classification can enhance communication rates offered by NIRS-BCIs, improving the practicality of this technology.
Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong
2017-07-01
Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atomistic modeling for interfacial properties of Ni-Al-V ternary system
NASA Astrophysics Data System (ADS)
Dong, Wei-ping; Lee, Byeong-Joo; Chen, Zheng
2014-05-01
Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.
Ternary bulk heterojunction for wide spectral range organic photodetectors
NASA Astrophysics Data System (ADS)
Shin, Hojung; Kim, Jaehoon; Lee, Changhee
2017-08-01
Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.
Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.
Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang
2017-06-01
Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ternary and Quaternary Composition Diagrams: An Overview of the Subject.
ERIC Educational Resources Information Center
MacCarthy, Patrick
1983-01-01
Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom
2017-01-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725
NASA Astrophysics Data System (ADS)
Moussa, Chantal; Berche, Alexandre; Barbosa, José; Pasturel, Mathieu; Stepnik, Bertrand; Tougait, Olivier
2018-02-01
The phase relations in the binary U-Ga and ternary U-Al-Ga systems were established as an isopleth section and two isothermal sections at 900 K and 1150 K for the whole concentration range, respectively. They were experimentally determined by means of powder and single crystal XRD, SEM-EDS analyses on both as-cast and heat-treated samples and DTA measurements. Both systems were thermodynamically assessed using the Calphad method based on the available data, i.e. phase relations and thermodynamic properties. The new description of the U-Ga phase diagram improves the composition-temperature description for most of invariant reactions. The U-Al-Ga system is characterized by large ternary extensions of the binary phases and the absence of ternary intermediate phase at both 900 K and 1150 K. These experimental results are nicely reproduced by the Calphad assessment, allowing to extract the thermodynamic parameters further used to calculate the liquidus projection and the invariant reactions along with their temperature.
Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A
2012-09-03
Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.
Xu, Qun; Wang, Xianchao; Xu, Chao
2017-06-01
Multiplication with traditional electronic computers is faced with a low calculating accuracy and a long computation time delay. To overcome these problems, the modified signed digit (MSD) multiplication routine is established based on the MSD system and the carry-free adder. Also, its parallel algorithm and optimization techniques are studied in detail. With the help of a ternary optical computer's characteristics, the structured data processor is designed especially for the multiplication routine. Several ternary optical operators are constructed to perform M transformations and summations in parallel, which has accelerated the iterative process of multiplication. In particular, the routine allocates data bits of the ternary optical processor based on digits of multiplication input, so the accuracy of the calculation results can always satisfy the users. Finally, the routine is verified by simulation experiments, and the results are in full compliance with the expectations. Compared with an electronic computer, the MSD multiplication routine is not only good at dealing with large-value data and high-precision arithmetic, but also maintains lower power consumption and fewer calculating delays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; University of Chinese Academy of Sciences, Beijing 100049; Long, Xifa, E-mail: lxf@fjirsm.ac.cn
2014-03-01
Graphical abstract: - Highlights: • Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-based ternary ferroelectric ceramics were prepared by solid-state synthesis method. • Morphotropic phase boundary region has been determined by XRD, di-/piezoelectric properties. • The compositions near MPB region exhibit excellent piezoelectric properties. - Abstract: A new compositional system of relaxor ferroelectrics was investigated based on the high piezoelectricity Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} ferroelectric perovskite family. Compositions were fabricated near an estimated morphotropic phase boundary (MPB) of the Pb(Lu{sub 1/2}Nb{sub 1/2})O{sub 3}–Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PLZNT) ternary system by a two-step synthetic process. Their structures have been analyzed by means ofmore » X-ray diffraction technique. On the basis of X-ray powder diffraction, the morphotropic phase boundary (MPB) region for the ternary system was obtained. The Curie temperature T{sub C} of ternary system varied from 240 °C to 330 °C and the coercive fields E{sub c}s > 10 kV/cm. The values of piezoelectric coefficients d{sub 33} vary in the range of 260–450 pC/N with different PZN contents. It is worth noting that the optimum compositions were located at MPB region but near the tetragonal phase. The new PLZNT ceramics exhibit wider range of T{sub C}s and E{sub c}s, making it a promising material for high-powder ultrasound transducers using in a large temperature range.« less
Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza
2015-12-01
Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.
NASA Astrophysics Data System (ADS)
Azhniuk, Yu. M.; Hutych, Yu. I.; Lopushansky, V. V.; Prymak, M. V.; Gomonnai, A. V.; Zahn, D. R. T.
2016-12-01
A one- and multiphonon Raman scattering study is performed for an extensive set of CdS1-xSex, Cd1-yZnyS, Cd1-yZnySe, and CdSe1-xTex nanocrystals to investigate the applicability of first- and second-order Raman spectra for the determination of the matrix-embedded ternary nanocrystal composition. For one-mode ternary systems both the LO and 2LO phonon frequencies in the Raman spectra are shown to be a good measure of the nanocrystal composition. For two-mode systems, the approaches based on the difference of the LO phonon frequencies (first-order Raman spectra) or double LO overtone and combination tone frequencies (second-order Raman spectra) as well as on the LO phonon band intensity ratios are analysed. The weak electron-phonon coupling in the II-VI nanocrystals and the polaron constant values for the nanocrystal sublattices are discussed.
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Silk flame retardant finish by ternary silica sol containing boron and nitrogen
NASA Astrophysics Data System (ADS)
Zhang, Qiang-hua; Chen, Guo-qiang; Xing, Tie-ling
2017-11-01
A ternary flame retardant sol system containing Si, B and N was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor, boric acid (H3BO3) and urea (CO(NH2)2) as flame retardant additives and then applied to silk fabric flame retardant finish. The FT-IR and SEM results showed that the nitrogen-boron-silica ternary sol was successfully prepared and entrapped onto the surface of silk fibers. The limiting oxygen index (LOI) test indicated that the silk fabric treated with 24% boric acid and 6% urea (relative to the TEOS) doped ternary silica sol system performed excellent flame retardancy with the LOI value of 34.6%. Furthermore, in order to endow silk fabric with durable flame retardancy, the silk fabric was pretreated with 1,2,3,4-butanetetracarboxylic acid (BTCA) before the ternary sol system treatment. The BTCA pretreat ment applied to silk could effectively promote the washing durability of the ternary sol, and the LOI value of the treated sample after 10 times washing could still maintain at 30.8% compared with that of 31.0% before washing. Thermo gravimetric (TG), micro calorimeter combustion (MCC) and smoke density test results demonstrated that the thermal stability, heat release and smoke suppression of the nitrogen-boron-silica ternary system decreased somewhat compared with the boron-silica binary flame retardant system.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng
2016-09-01
A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.
Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng
2016-01-01
A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254
NASA Astrophysics Data System (ADS)
Minakshi, M.; Watcharatharapong, T.; Chakraborty, S.; Ahuja, R.
2018-04-01
Sustainable energy sources require an efficient energy storage system possessing excellent electrochemical properties. The better understanding of possible crystal configurations and the development of a new ternary metal oxide in molybdate composite as an electrode for hybrid capacitors can lead to an efficient energy storage system. Here, we reported a new ternary metal oxide in molybdate composite [(Mn1/3Co1/3Ni1/3)MoO4] prepared by simple combustion synthesis with an extended voltage window (1.8 V vs. Carbon) resulting in excellent specific capacity 35 C g-1 (58 F g-1) and energy density (50 Wh kg-1 at 500 W kg-1) for a two electrode system in an aqueous NaOH electrolyte. The binding energies measured for Mn, Co, and Ni 2p are consistent with the literature, and with the metal ions being present as M(II), implying that the oxidation states of the transition metals are unchanged. The experimental findings are correlated well through density functional theory based electronic structure calculations. Our reported work on the ternary metal oxide studies (Mn1/3Co1/3Ni1/3)MoO4 suggests that will be an added value to the materials for energy storage.
Wu, Jinglan; Zhuang, Wei; Ying, Hanjie; Jiao, Pengfei; Li, Renjie; Wen, Qingshi; Wang, Lili; Zhou, Jingwei; Yang, Pengpeng
2015-01-01
Separation of butanol based on sorption methodology from acetone-butanol-ethanol (ABE) fermentation broth has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. In this work a chromatographic column model based on the solid film linear driving force approach and the competitive Langmuir isotherm equations was used to predict the competitive sorption behaviors of ABE single, binary, and ternary mixture. It was observed that the outlet concentration of weaker retained components exceeded the inlet concentration, which is an evidence of competitive adsorption. Butanol, the strongest retained component, could replace ethanol almost completely and also most of acetone. In the end of this work, the proposed model was validated by comparison of the experimental and predicted ABE ternary breakthrough curves using the real ABE fermentation broth as a feed solution. © 2014 American Institute of Chemical Engineers.
Using a Ternary Diagram to Display a System's Evolving Energy Distribution
ERIC Educational Resources Information Center
Brazzle, Bob; Tapp, Anne
2016-01-01
A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…
NASA Astrophysics Data System (ADS)
Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua
2018-03-01
A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.
NASA Astrophysics Data System (ADS)
Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.
Prasad, Dev; Chauhan, Harsh; Atef, Eman
2014-11-01
The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Valoppi, Fabio; Calligaris, Sonia; Barba, Luisa; Nicoli, Maria Cristina
2015-08-01
The structure at different length scales and the viscoelastic properties of ternary mixtures composed of saturated monoglycerides, sunflower oil and aqueous solutions of weak bases (KHCO 3 , NaHCO 3 , and NH 4 HCO 3 ) or strong bases (NaOH and KOH) were investigated. The characteristics of ternary mixtures were studied systematically by using polarized light microscopy, differential scanning calorimetry (DSC), synchrotron X-ray diffraction (XRD) and rheological analysis. Results showed that the base type and concentration greatly affected the structure of the mixtures. The use of strong bases allowed gelled systems to be obtained only at low concentrations (<10mM). On the contrary, the presence of weak bases induced gelling at all concentrations considered (from 1 to 1000mM). The increase of base concentration led to a reduction of the mean droplet diameter and melting temperature. At the same time, the viscoelastic characteristics as a function of base concentration followed a more complex behavior: G' and G″ progressively decreased as the salt concentration increased in a concentration range from 1 to 100mM, while the rheological parameters increased when salt concentration increased from 100 to 1000mM. The structural and viscoelastic behavior of systems prepared with different salts were commonly independent of the cation present in the medium. Results highlight that it is possible to tailor the structure of these gels by using specific bases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luzi, Francesca; Fortunati, Elena; Di Michele, Alessandro; Pannucci, Elisa; Botticella, Ermelinda; Santi, Luca; Kenny, José Maria; Torre, Luigi; Bernini, Roberta
2018-08-01
Novel ternary films have been realized by using poly(vinyl alcohol) (PVA) as polymeric matrix, nanostructured starch as reinforcement phase and hydroxytyrosol (HTyr), a low-molecular phenolic compound present in olive oil, as antioxidant agent. Nanostructured starch, in the form of starch nanocrystals (NC) and nanoparticles (NP) obtained by acid hydrolysis and ultrasound irradiation of starch derived from the bread wheat variety Cadenza (WT, amylose content 33%) and a derived-high amylose line (HA, amylose content 75%), was considered. The developed multifunctional films were characterized in terms of morphological, thermal and optical properties, water absorption capacity, overall and specific migration into a food simulant and antioxidant properties. Experimental data showed a prolonged release of HTyr from all ternary films and the released HTyr retained a strong antioxidant activity. The data, compared to those of PVA/HTyr binary films, demonstrated the key role of nanostructured starch in the ternary formulations in promoting a gradual release of HTyr. Overall, PVA fillm combined with nanoparticles from low amylose starch and hydroxytyrosol resulted as the most promising ternary formulation for food packaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Johnson, David Ray
1994-01-01
In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.
Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems
NASA Astrophysics Data System (ADS)
Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.
2016-10-01
The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.
The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu
2015-04-01
The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.
Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C
NASA Astrophysics Data System (ADS)
Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen
2016-12-01
The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Kim, H.
1995-03-01
Sulfolane is widely used as a solvent for the extraction of aromatic hydrocarbons. Ternary phase equilibrium data are essential for the proper understanding of the solvent extraction process. Liquid-liquid equilibrium data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene were determined at 298.15, 308.15, and 318.15 K. Tie line data were satisfactorily correlated by the Othmer and Tobias method. The experimental data were compared with the values calculated by the UNIQUAC and NRTL models. Good quantitative agreement was obtained with these models. However, the calculated values based on themore » NRTL model were found to be better than those based on the UNIQUAC model.« less
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Kan, Hyo; Tsukagoshi, Kazuhiko
2017-07-01
Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib
2013-02-04
A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).
Ren, Hu-Bo; Yan, Xiu-Ping
2012-08-15
An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitsuya, Takuro; Takahashi, Kyohei; Nagashima, Kazushige
2014-09-01
"Storm glass" is a hermetically sealed glass tube containing a solution of camphor. In 19th-century England, the pattern and quantity of the crystals were observed and interpreted as a weather forecasting tool. In the present study, the appearance of camphor crystals under cyclic temperature change was studied in three sample solutions, the storm glass solution (quinary system), camphor-ethanol-water (ternary system), and camphor-ethanol (binary system), to elucidate the effect of components in the storm glass on the appearance of camphor crystals. Equilibrium temperatures of camphor crystals as a function of the camphor concentration were also obtained to estimate the quantity of camphor crystals precipitated in the solutions. During the temperature cycles, the crystal height increased and decreased. The ranges (local maxima and minima) of crystal heights gradually decreased to approximately a constant range. Not only the crystal height but also the amplitude of the height variation in the quinary and ternary systems were much larger than those in the binary system, although the estimated weights of crystals precipitated in the quinary and ternary systems were smaller than that in the binary system. This fact resulted from the formation of dendrites in the quinary and ternary systems, which caused high porosity of sedimented crystals.
NASA Astrophysics Data System (ADS)
Premović, Milena; Tomović, Milica; Minić, Duško; Manasijević, Dragan; Živković, Dragana; Ćosović, Vladan; Grković, Vladan; Đorđević, Aleksandar
2017-04-01
Ternary Al-Ag-Ga system at 200 °C was experimentally and thermodynamically assessed. Isothermal section was extrapolated using optimized thermodynamic parameters for constitutive binary systems. Microstructure and phase composition of the selected alloy samples were analyzed using light microscopy, scanning electron microscopy combined with energy-dispersive spectrometry and x-ray powder diffraction technique. The obtained experimental results were found to be in a close agreement with the predicted phase equilibria. Hardness and electrical conductivity of the alloy samples from four vertical sections Al-Ag80Ga20, Al-Ag60Ga40, Ag-Al80Ga20 and Ag-Al60Ga40 of the ternary Al-Ag-Ga system at 200 °C were experimentally determined using Brinell method and eddy current measurements. Additionally, hardness of the individual phases present in the microstructure of the studied alloy samples was determined using Vickers microhardness test. Based on experimentally obtained results, isolines of Brinell hardness and electrical conductivity were calculated for the alloys from isothermal section of the ternary Al-Ag-Ga system at 200 °C.
McSwiggen, P.L.
1993-01-01
Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
Enthalpies of mixing of liquid systems for lead free soldering: Al-Cu-Sn system.
Flandorfer, Hans; Rechchach, Meryem; Elmahfoudi, A; Bencze, László; Popovič, Arkadij; Ipser, Herbert
2011-11-01
The present work refers to high-temperature drop calorimetric measurements on liquid Al-Cu, Al-Sn, and Al-Cu-Sn alloys. The binary systems have been investigated at 973 K, up to 40 at.% Cu in case of Al-Cu, and over the entire concentrational range in case of Al-Sn. Measurements in the ternary Al-Cu-Sn system were performed along the following cross-sections: x(Al)/x(Cu) = 1:1, x(Al)/x(Sn) = 1:1, x(Cu)/x(Sn) = 7:3, x(Cu)/x(Sn) = 1:1, and x(Cu)/x(Sn) = 3:7 at 1273 K. Experimental data were used to find ternary interaction parameters by applying the Redlich-Kister-Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1273 K. The ternary system shows an exothermic enthalpy minimum of approx. -18,000 J/mol in the Al-Cu binary and a maximum of approx. 4000 J/mol in the Al-Sn binary system. The Al-Cu-Sn system is characterized by considerable repulsive ternary interactions as shown by the positive ternary interaction parameters.
Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, B. William; Chiu, Ing L.
Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Ofmore » particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.« less
Evaluation of ternary blended cements for use in transportation concrete structures
NASA Astrophysics Data System (ADS)
Gilliland, Amanda Louise
This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make designing ternary blended cements more acceptable by eliminating arbitrary limitations for supplementary cementitious materials (SCMs) use and changing to performance-based standards. Performance-based standards require trial batching of concrete mixture designs, which can be used to optimize ternary combinations of portland cement and SCMs. States should be aware of various SCMs that are appropriate for the project type and its environment.
High temperature behavior of B2-based ruthenium aluminide systems
NASA Astrophysics Data System (ADS)
Cao, Fang
Ru-modified NiAl-based bond coats have the potential to improve the durability of Superalloy-Thermal Barrier Coating systems (TBCs) for advanced gas turbine engines. A fundamental understanding of the high temperature mechanical behavior across the Ni-Al-Ru B2 phase field can provide direction for the development of these new bond coats for TBCs. The purpose of this study has been to describe the fundamental processes of creep deformation in single phase B2 Ru-Al-Ni ternary alloys which would form the basis for the bond coats. To accomplish this, five ternary alloys with compositions located within the B2 field across the NiAl-RuAl phase region were fabricated and investigated. Special emphasis was placed on characterizing creep deformation and describing the operative creep mechanisms in these alloys. At room temperature, brittle failure was observed in the Ni-rich alloys in compression, while improved strength and ductility were displayed in two Ru-rich ternary alloys at temperatures up to 700°C. Exceptional creep strength was observed in these alloys, as compared to other high melting temperature B2 intermetallics. A continuous increase of the melting temperature and creep resistance with the increasing of the Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Ni-rich alloys, while uniformly distributed jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. A transition of the creep mechanism from viscous glide controlled to jogged screw motion in these Ru-Al-Ni ternary B2 alloys with increasing Ru/Ni ratio is demonstrated by the characteristics of the creep deformation process, stress change creep tests, post-creep dislocation analyses, and numerical modeling. Additionally, the knowledge of the cyclic oxidation behavior of ruthenium aluminide-based alloy is essential, as many high-temperature applications for which this intermetallic might be utilized undergo repeated severe thermal cycling. Thus the second portion of this thesis focuses on the characterization of the cyclic oxidation properties of RuAl-based alloys. The cyclic oxidation behavior of six RuAl-based alloys was studied in air over the temperature range of 1000°C to 1300°C. Oxidation kinetics have been shown to be influenced by microstructure as well as the addition of platinum.
Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Kien; Justnes, Harald; SINTEF Building and Infrastructure
The applicability of a combination of sodium thiocyanate (NaSCN), diethanolamine (DEA) and glycerol (Gly) with small dosages as a ternary hardening accelerating admixture for fly ash blended cement (OPC-FA) was studied. The ternary admixture induced higher early and later age mortar strength at both low (5 °C) and normal (20 °C) temperature. Despite used in lower dosage the ternary admixture led to higher strength of the investigated OPC-FA system than other chemicals (e.g. sodium sulfate). Results obtained from isothermal calorimetry, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) showed that the ternary admixture accelerated the cement hydration and increased the amountmore » of AFm (notably calcium hemicarboaluminate hydrate) in the hydration products. A synergistic effect between the three components of the accelerator on the hydration of OPC-FA system was observed.« less
The Ni-rich part of the Al–Ge–Ni phase diagram
Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.
2013-01-01
The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754
NASA Astrophysics Data System (ADS)
Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei
2018-05-01
High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.
NASA Astrophysics Data System (ADS)
Zia, Shahneel; Banerjee, Anirudh
2016-05-01
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu
2016-05-06
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
O-Pu-U (Oxygen-Plutonium-Uranium)
NASA Astrophysics Data System (ADS)
Materials Science International Team MSIT
This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.
First principles study of surface stability and segregation of PdRuRh ternary metal alloy system
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki
2018-05-01
The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.
Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase
Oneyama, Chitose; Suzuki, Takashi; Okada, Masato
2014-01-01
The tyrosine kinase c-Src is upregulated in numerous human cancers, implying a role for c-Src in cancer progression. Previously, we have shown that sequestration of activated c-Src into lipid rafts via a transmembrane adaptor, Cbp/PAG1, efficiently suppresses c-Src-induced cell transformation in Csk-deficient cells, suggesting that the transforming activity of c-Src is spatially regulated via Cbp in lipid rafts. To dissect the molecular mechanisms of the Cbp-mediated regulation of c-Src, a combined analysis was performed that included mathematical modeling and in vitro experiments in a c-Src- or Cbp-inducible system. c-Src activity was first determined as a function of c-Src or Cbp levels, using focal adhesion kinase (FAK) as a crucial c-Src substrate. Based on these experimental data, two mathematical models were constructed, the sequestration model and the ternary model. The computational analysis showed that both models supported our proposal that raft localization of Cbp is crucial for the suppression of c-Src function, but the ternary model, which includes a ternary complex consisting of Cbp, c-Src, and FAK, also predicted that c-Src function is dependent on the lipid-raft volume. Experimental analysis revealed that c-Src activity is elevated when lipid rafts are disrupted and the ternary complex forms in non-raft membranes, indicating that the ternary model accurately represents the system. Moreover, the ternary model predicted that, if Cbp enhances the interaction between c-Src and FAK, Cbp could promote c-Src function when lipid rafts are disrupted. These findings underscore the crucial role of lipid rafts in the Cbp-mediated negative regulation of c-Src-transforming activity, and explain the positive role of Cbp in c-Src regulation under particular conditions where lipid rafts are perturbed. PMID:24675741
Polytherm of the CO(NH2)2-KNO3-H2O phase diagram
NASA Astrophysics Data System (ADS)
Yulina, I. V.; Trunin, A. S.
2017-05-01
The crystallization polytherm of the ternary CO(NH2)2-KNO3-H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2-KNO3-H2O diagram by a dashed outline.
Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth
NASA Astrophysics Data System (ADS)
Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.
2004-09-01
Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.
NASA Astrophysics Data System (ADS)
Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh
2016-09-01
In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.
Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.
Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui
2017-01-01
Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced performance of polymer solar cells by employing a ternary cascade energy structure.
An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Zhuo, Zuliang; Zhang, Jian; Tang, Weihua; Teng, Feng
2014-08-14
We present a route to successfully tackle the two main limitations, low open circuit voltage (Voc) and limited short circuit-density (Jsc), of polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) as an electron-donor. The indene-C60 bisadduct (ICBA) was selected as an electron acceptor to improve the open circuit voltage (Voc). The narrow band gap polymer poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), as a complementary electron-donor material, was doped into the host system of P3HT:ICBA to form ternary cascade energy structured PSCs with increased Jsc. The power conversion efficiency (PCE) of P3HT:ICBA-based cells was improved from 3.32% to 4.38% by doping with 3 wt% PBDTTT-C with 1 min 150 °C annealing treatment. The 4.38% PCE of ternary PSCs is still larger than the 3.79% PCE of PSCs based on P3HT:ICBA with 10 minutes 150 °C annealing treatment.
García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique
2011-03-01
The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.
Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G
2013-06-01
The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.
Jiang, Weigang; Yu, Runnan; Liu, Zhiyang; Peng, Ruixiang; Mi, Dongbo; Hong, Ling; Wei, Qiang; Hou, Jianhui; Kuang, Yongbo; Ge, Ziyi
2018-01-01
A novel small-molecule acceptor, (2,2'-((5E,5'E)-5,5'-((5,5'-(4,4,9,9-tetrakis(5-hexylthiophen-2-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-(2-ethylhexyl)thiophene-5,2-diyl))bis(methanylylidene)) bis(3-hexyl-4-oxothiazolidine-5,2-diylidene))dimalononitrile (ITCN), end-capped with electron-deficient 2-(3-hexyl-4-oxothiazolidin-2-ylidene)malononitrile groups, is designed, synthesized, and used as the third component in fullerene-free ternary polymer solar cells (PSCs). The cascaded energy-level structure enabled by the newly designed acceptor is beneficial to the carrier transport and separation. Meanwhile, the three materials show a complementary absorption in the visible region, resulting in efficient light harvesting. Hence, the PBDB-T:ITCN:IT-M ternary PSCs possess a high short-circuit current density (J sc ) under an optimal weight ratio of donors and acceptors. Moreover, the open-circuit voltage (V oc ) of the ternary PSCs is enhanced with an increase of the third acceptor ITCN content, which is attributed to the higher lowest unoccupied molecular orbital energy level of ITCN than that of IT-M, thus exhibits a higher V oc in PBDB-T:ITCN binary system. Ultimately, the ternary PSCs achieve a power conversion efficiency of 12.16%, which is higher than the PBDB-T:ITM-based PSCs (10.89%) and PBDB-T:ITCN-based ones (2.21%). This work provides an effective strategy to improve the photovoltaic performance of PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Alamelu, K.; Ali, B. M. Jaffar
2018-04-01
We demonstrate a hydrothermal method combined with polyol reduction process for the synthesis of an Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites in which the Ag, Pt and TiO2 nanoparticles are dispersed on the Sulfonated graphene oxide nanosheets. The structural and optical properties of obtained nanocomposites were characterized by XRD, UV-DRS, Raman, FTIR and Photoluminescence spectroscopy. The nanocomposites shows increased light absorption ability in the visible region due to surface plasmon resonance effect of noble metal. The rate of electron-hole pair recombination was significating reduced for nanocomposites system compare to pure. Also, their Performance for the photocatalytic degradation of Rhodamine B as a model organic pollutant is explored. The results showed that Ag-TiO2-SGO and Pt-TiO2-SGO nanocomposites could degrade 95% of the dye within 90 min, under natural sunlight irradiation. The reaction kinetics of ternary nanocomposites exhibit more than 2.2 fold increased photocatalytic activity compared to pristine TiO2. Sulfonated graphene based ternary photocatalyst are potential candidates for wastewater treatment in real time application, due to this ability degrade cationic and anionic dyes.
An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo
2015-02-18
We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.
Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.
Roth, R. S.; Rawn, C. J.; Burton, B. P.; Beech, F.
1990-01-01
New data are presented on the phase equilibria and crystal chemistry of the binary systems Sr0-Bi203 and SrO-CuO and the ternary system SrO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for all the binary SrO-Bi2O3 phases, including a new phase identified as Sr6Bi2O9. The ternary system contains at least four ternary phases which can be formed in air at ~900 °C. These are identified as Sr2Bi2CuO6, Sr8Bi4Cu5O19+x, Sr3Bi2Cu2O8 and a solid solution (the Raveau phase) which, for equilibrium conditions at ~900 °C, corresponds approximately to the formula Sr1.8−xBi2.2+xCu1±x/2Oz.(0.0⩽x⩽~0.15). Superconductivity in this phase apparently occurs only in compositions that correspond to negative values of x. Compositions that lie outside the equilibrium Raveau-phase field often form nearly homogeneous Raveau-phase products. Typically this occurs after relatively brief heat treatments, or in crystallization of a quenched melt. PMID:28179779
NASA Astrophysics Data System (ADS)
Sherje, Atul P.; Patel, Forum; Murahari, Manikanta; Suvarna, Vasanti; Patel, Kavitkumar
2018-02-01
The present study demonstrated the binary and ternary complexes of Zaltoprofen (ZPF) with β-CD and HP-β-CD. The products were characterized using solubility, in vitro dissolution, and DSC studies. The mode of interaction of guest and host was revealed through 1H NMR and FT-IR studies. A significant increase was noticed in the stability constant (Kc) and complexation efficiency (CE) of β-CD and HP-β-CD due to addition of L-Arg in ternary complexes. The ternary complexes showed greater increase in solubility and dissolution of ZPF than binary complexes. Thus, ternary system of ZPF could be an innovative approach for its solubility and dissolution enhancement.
Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedl, H., E-mail: helmut.riedl@tuwien.ac.at; Zálešák, J.; Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben
2015-09-28
The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required tomore » implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.« less
Phase equilibrium modeling for high temperature metallization on GaAs solar cells
NASA Technical Reports Server (NTRS)
Chung, M. A.; Davison, J. E.; Smith, S. R.
1991-01-01
Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.
ERIC Educational Resources Information Center
Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.
2017-01-01
A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…
Calisto, Vânia; Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Esteves, Valdemar I
2017-05-01
This work describes the adsorptive removal of three widely consumed psychiatric pharmaceuticals (carbamazepine, paroxetine and oxazepam) from ultrapure water. Two different adsorbents were used: a commercial activated carbon and a non-activated waste-based carbon (PS800-150-HCl), produced by pyrolysis of primary paper mill sludge. These adsorbents were used in single, binary and ternary batch experiments in order to determine the adsorption kinetics and equilibrium isotherms of the considered pharmaceuticals. For the three drugs and both carbons, the equilibrium was quickly attained (with maximum equilibrium times of 15 and 120 min for the waste-based and the commercial carbons, respectively) even in binary and ternary systems. Single component equilibrium data were adequately described by the Langmuir model, with the commercial carbon registering higher maximum adsorption capacities (between 272 ± 10 and 493 ± 12 μmol g -1 ) than PS800-150-HCl (between 64 ± 2 and 74 ± 1 μmol g -1 ). Multi-component equilibrium data were also best fitted by the single component Langmuir isotherm, followed by the Langmuir competitive model. Overall, competitive effects did not largely affect the performance of both adsorbents. Binary and ternary systems maintained fast kinetics, the individual maximum adsorption capacities were not lower than half of the single component systems and both carbons presented improved total adsorption capacities for multi-component solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho
2016-05-04
Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott
2014-12-01
This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistancemore » to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Juranek, Stefan; Li, Haitao
Here we report on a 3.0 {angstrom} crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formationmore » of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.« less
The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme
Flandorfer, Hans
2016-01-01
The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries. PMID:27788175
Sierpe, R; Noyong, Michael; Simon, Ulrich; Aguayo, D; Huerta, J; Kogan, Marcelo J; Yutronic, N
2017-12-01
As a novel strategy to overcome some of the therapeutic disadvantages of 6-thioguanine (TG) and 6-mercaptopurine (MP), we propose the inclusion of these drugs in βcyclodextrin (βCD) to form the complexes βCD-TG and βCD-MP, followed by subsequent interaction with gold nanoparticles (AuNPs), generating the ternary systems: βCD-TG-AuNPs and βCD-MP-AuNPs. This modification increased their solubility and improved their stability, betting by a site-specific transport due to their nanometric dimensions, among other advantages. The formation of the complexes was confirmed using powder X-ray diffraction, thermogravimetric analysis and one and two-dimensional NMR. A theoretical study using DFT and molecular modelling was conducted to obtain the more stable tautomeric species of TG and MP in solution and confirm the proposed inclusion geometries. The deposition of AuNPs onto βCD-TG and βCD-MP via sputtering was confirmed by UV-vis spectroscopy. Subsequently, the ternary systems were characterized by TEM, FE-SEM and EDX to directly observe the deposited AuNPs and evaluate their sizes, size dispersion, and composition. Finally, the in vitro permeability of the ternary systems was studied using parallel artificial membrane permeability assay (PAMPA). Copyright © 2017 Elsevier Ltd. All rights reserved.
Gobalasingham, Nemal S; Noh, Sangtaik; Howard, Jenna B; Thompson, Barry C
2016-10-05
The compositional dependence of the open-circuit voltage (V oc ) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT 75 -co-EHT 25 ), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT 50 -co-3HET 50 ), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC 61 BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned V oc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the V oc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.
NASA Astrophysics Data System (ADS)
Devyatkin, Sergei V.
2007-09-01
Electrochemical synthesis of binary and ternary compounds in the system Ti-Si-B from chloridefluoride melts has been investigated by voltammetry and electrolysis. Electrochemical syntheses of titanium diboride, four titanium silicides (TiSi2, TiSi, Ti5Si4, Ti5Si3), silicon tetraboride and a new ternary compound, Ti5Si3B3, have been found to be one-step processes. The stoichiometry of the deposited compounds has been found to correlate with the bulk concentration of Ti, Si and B ions in the melt.
Novel Optical Fiber Materials With Engineered Brillouin Gain Coefficients SSL 1: Novel Fiber Lasers
2015-12-29
strontium aluminosilicate glasses . A zero-p12 composition is calculated to be at a SiO2 content of about 41.5 mol%, SrO content of about 22.5 mol...ternary, glasses that are needed for this program. These include the BaO- SiO2 system as an example binary glass , and the MgO-Al2O3- SiO2 and BaO-Al2O3... SiO2 systems as example ternary glasses (with the addition of a rare earth 16 resulting in a quaternary glass ). Complex ternary compositions were
NASA Astrophysics Data System (ADS)
Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua
2014-04-01
New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications.
Patel, Parth; Agrawal, Y K; Sarvaiya, Jayrajsinh
2016-03-01
Modafinil is an approved drug for the treatment of narcolepsy and have a strong market presence in many countries. The drug is widely consumed for off-label uses and currently listed as a restricted drug. Modafinil has very low water solubility. To enhance the aqueous solubility of modafinil by the formation of a ternary complex with Hydroxypropyl-β-cyclodextrin and two hydrophilic polymers was the main objective of the present study. Pyrrolidone (PVP K30) and a water soluble chitosan derivative, trimethyl chitosan (TMC) were studied by solution state and solid state characterization methods for their discriminatory efficiency in solubility enhancement of modafinil. Phase solubility study depicted the highest complexation efficiency (2.22) of cyclodextrin derivative in the presence of TMC compared to the same in the presence of PVP K30 (0.08) and in the absence of any polymer (0.92). FT-IR analysis of binary and ternary complex expressed comparable contribution of both polymers in formation of inclusion complex. The thermal behaviour of binary and ternary complex, involving individual polymers disclosed the influence of TMC on polymorphism of the drug. DSC study revealed efficiency of TMC to prevent conversion of metastable polymorphic form to stable polymorphic form. Ternary complex, involving TMC enhanced water solubility of the drug 1.5 times more compared to the binary complex of the drug whereas PVP K30 reduced the Solubility. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system
Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao
2008-01-01
Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.
NASA Astrophysics Data System (ADS)
Shukla, Adarsh
In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO system has been built quite satisfactorily. The aim of the present work was to improve the applicability of this five component database by adding SrO and BaO to it. The databases prepared in this work will be of special importance to the glass and steel industries. In the SiO2-B2O3-Al2O 3-CaO-MgO-BaO-SrO system there are 11 binary systems and 25 ternary systems which contain either BaO or SrO or both. For most of these binary systems, and for none of these ternary systems, is there a previous thermodynamic optimization available in the literature. In this thesis, thermodynamic evaluation and optimization for the 11 binary, 17 ternary and 5 quaternary BaO- and SrO- containing systems in the SiO2-B2O3-Al 2O3-CaO-MgO-BaO-SrO system is presented. All these thermodynamic optimizations were performed based on the experimental data available in the literature, except for the SrO-B2O3-SiO2 system. This latter system was optimized on the basis of a few experimental data points generated in the present work together with the data from the literature. In the present work, all the calculations were performed using the FactSage™ thermochemical software. The Modified Quasichemical Model (MQM), which is capable of taking short-range ordering into account, was used for the liquid phase. All the binary systems were critically evaluated and optimized using available phase equilibrium and thermodynamic data. The model parameters obtained as a result of this simultaneous optimization were used to represent the Gibbs energies of all phases as functions of temperature and composition. Optimized binary model parameters were used to estimate the thermodynamic properties of phases in the ternary systems. Proper “geometric” models were used for these estimations. Ternary phase diagram were calculated and compared with available experimental data. Wherever required, ternary interaction parameters were also added. The first part of this thesis comprises a general literature review on the subject of thermodynamic modeling and experimental techniques for phase diagram determination. The next chapters include the literature review and the thermodynamic optimizations of the various systems. The last part of the thesis is the presentation of experiments performed in the present work, by quenching and EPMA, in the SrO-B2O3-SiO2 system. The experiments were designed to generate the maximum amount of information with the minimum number of experiments using the thermodynamic optimization, based only on the data available in the literature, as a guide. These newly-obtained data improved the (preceding) thermodynamic optimization, based on the experimental data in the literature, of this ternary system.
NASA Astrophysics Data System (ADS)
Jordan, Jennifer Lynn
The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is indicative of the transformation of the Ti3 SiC2 ceramic to a high pressure, high density phase.
Multicomponent ionic liquid CMC prediction.
Kłosowska-Chomiczewska, I E; Artichowicz, W; Preiss, U; Jungnickel, C
2017-09-27
We created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (V m ), solvent-accessible surface (Ŝ), solvation enthalpy (Δ solv G ∞ ), concentration of salt (C s ) or alcohol (C a ) and their molecular volumes (V ms and V ma , respectively) were chosen as descriptors, and Kernel Support Vector Machine (KSVM) and Evolutionary Algorithm (EA) as regression methodologies to create the models. Data was split into training and validation set (80/20) and subjected to bootstrap aggregation. KSVM provided better fit with average R 2 of 0.843, and MSE of 0.608, whereas EA resulted in R 2 of 0.794 and MSE of 0.973. From the sensitivity analysis it was shown that V m and Ŝ have the highest impact on ILs micellization in both binary and ternary systems, however surprisingly in the presence of alcohol the V m becomes insignificant/irrelevant. Micelle stabilizing or destabilizing influence of the descriptors depends upon the additives. Previous attempts at modelling the CMC of ILs was generally limited to small number of ILs in simplified (binary) systems. We however showed successful prediction of the CMC over a range of different systems (binary and ternary).
Enthalpy of mixing of liquid systems for lead free soldering: Ni-Sb-Sn system.
Elmahfoudi, A; Fürtauer, S; Sabbar, A; Flandorfer, H
2012-04-20
The partial and integral enthalpies of mixing of liquid ternary Ni-Sb-Sn alloys were determined along five sections x Sb / x Sn = 3:1, x Sb / x Sn = 1:1, x Sb / x Sn = 1:3, x Ni / x Sn = 1:4, and x Ni / x Sb = 1:4 at 1000 °C in a large compositional range using drop calorimetry techniques. The mixing enthalpy of Ni-Sb alloys was determined at the same temperature and described by a Redlich-Kister polynomial. The other binary data were carefully evaluated from literature values. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Toop is given. The entire ternary system shows exothermic values of Δ mix H ranging from approx. -1300 J/mol, the minimum in the Sb-Sn binary system down to approx. -24,500 J/mol towards Ni-Sb. No significant ternary interaction could be deduced from our data.
Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing
NASA Astrophysics Data System (ADS)
Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey
Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.
Hafnium-Based Bulk Metallic Glasses for Kinetic Energy Penetrators
2004-12-01
uranium -based (DU) and tungsten- nickel -iron (W-Ni-Fe) composite kinetic energy (KE) munitions is primarily ascribed to their high densities (U: ρ...based on an invariant point identified in the hafnium- copper- nickel ternary system. They are denser than zirconium-based glass-forming compositions...depleted- uranium penetrators. 1. INTRODUCTION 1.1 Criterion for Effective Kinetic Energy Penetrator Performance The lethality of depleted
Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; ,; Lautier, J.C.
2012-01-01
Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional systems.
Lu, Luyao; Chen, Wei; Xu, Tao; ...
2015-06-04
The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less
Directional Solidification and Liquidus Projection of the Sn-Co-Cu System
NASA Astrophysics Data System (ADS)
Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei
2013-04-01
This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.
Some Geometric Aspects of the Ternary Diagram.
ERIC Educational Resources Information Center
Philip, G. M.; Watson, D. F.
1989-01-01
Uses the process of normalization in the Cartesian coordinate system which entails radial projection onto a transect to compare different compositions of minerals. Warns that the ternary diagram should not be used as a framework for calculations. (MVL)
Han, Guangqiang; Liu, Yun; Zhang, Lingling; Kan, Erjun; Zhang, Shaopeng; Tang, Jian; Tang, Weihua
2014-01-01
New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in supercapacitors. The ternary composite with 70% MnO2 exhibits a highest specific capacitance reaching 512 F/g and outstanding cycling performance, with ~97% capacitance retained over 5000 cycles. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. PMID:24769835
2012-05-01
noise (AGN) [1] and [11]. We focus on threshold communication systems due to the underwater environment, noncoherent communication techniques are...the threshold level. In the context of the underwater communications, where noncoherent communication techniques are affected both by noise and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Shuangluo; Vashishtha, Ashwani; Bulkley, David
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold dependingmore » on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.« less
Wang, Bei; Fu, Yingying; Yan, Chi; Zhang, Rui; Yang, Qingqing; Han, Yanchun; Xie, Zhiyuan
2018-01-01
The development of non-fullerene acceptor molecules have remarkably boosted power conversion efficiency (PCE) of polymer solar cells (PSCs) due to the improved spectral coverage and reduced energy loss. An introduction of fullerene molecules into the non-fullerene acceptor-based blend may further improve the photovoltaic performance of the resultant ternary PSCs. However, the underlying mechanism is still debatable. Herein, the ternary PSCs based on PBDB-T:ITIC:PC 71 BM blend were fabricated and its PCE was increased to 10.2% compared to 9.2% for the binary PBDB-T:ITIC devices and 8.1% for the PBDB-T:PC 71 BM PSCs. Systematic investigation was carried out to disclose the effect of PC 71 BM on the blend morphology and charge transport behavior. It is found that the PC 71 BM tends to intermix with the PBDB-T donor compared to the ITIC counterpart. A small amount of PC 71 BM in the ternary blend is helpful for ITIC to aggregate and form efficient electron-transport pathways. Accordingly, the electron mobility is increased and the density of electron traps is decreased in the ternary blend in comparison with the PBDB-T:ITIC blend. Finally, the suppressed bimolecular recombination and enhanced charge collection lead to high PCE for the ternary solar cells.
Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias
2015-08-26
The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less
NASA Astrophysics Data System (ADS)
Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan
2018-03-01
In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.
Yin, Xiong; Xu, Zhongzhong; Guo, Yanjun; Xu, Peng; He, Meng
2016-11-02
Perovskite solar cells, which utilize organometal-halide perovskites as light-harvesting materials, have attracted great attention due to their high power conversion efficiency (PCE) and potentially low cost in fabrication. A compact layer of TiO 2 or ZnO is generally applied as electron-transport layer (ETL) in a typical perovskite solar cell. In this study, we explored ternary oxides in the TiO 2 -ZnO system to find new materials for the ETL. Compact layers of titanium zinc oxides were readily prepared on the conducting substrate via spray pyrolysis method. The optical band gap, valence band maximum and conduction band minimum of the ternary oxides varied significantly with the ratio of Ti to Zn, surprisingly, in a nonmonotonic way. When a zinc-rich ternary oxide was applied as ETL for the device, a PCE of 15.10% was achieved, comparable to that of the device using conventional TiO 2 ETL. Interestingly, the perovskite layer deposited on the zinc-rich ternary oxide is stable, in sharp contrast with that fabricated on a ZnO layer, which will turn into PbI 2 readily when heated. These results indicate that potentially new materials with better performance can be found for ETL of perovskite solar cells in ternary oxides, which deserve more exploration.
Mennini, Natascia; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola
2016-09-10
The influence of l-arginine on the complexing and solubilizing power of randomly-methylated-β-cyclodextrin (RameβCD) towards oxaprozin, a very poorly soluble anti-inflammatory drug, was examined. The interactions between the components were investigated both in solution, by phase-solubility analysis, and in the solid state, by differential scanning calorimetry, FTIR and X-ray powder diffractometry. The morphology of the solid products was examined by Scanning Electron Microscopy. Results of phase-solubility studies indicated that addition of arginine enhanced the RameβCD complexing and solubilizing power of about 3.0 and 4.5 times, respectively, in comparison with the binary complex (both at pH≈6.8). The effect of arginine was not simply additive, but synergistic, being the ternary system solubility higher than the sum of those of the respective drug-CD and drug-arginine binary systems. Solid equimolar ternary systems were prepared by physical mixing, co-grinding, coevaporation and kneading techniques, to explore the effect of the preparation method on the physicochemical properties of the final products. The ternary co-ground product exhibited a dramatic increase in both drug dissolution efficiency and percent dissolved at 60min, whose values (83.6 and 97.1, respectively) were about 3 times higher than the sum of those given by the respective drug-CD and drug-aminoacid binary systems. Therefore, the ternary co-ground system with arginine and RameβCD appears as a very valuable product for the development of new more effective delivery systems of oxaprozin, with improved safety and bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Ono, N; Hirayama, F; Arima, H; Uekama, K
2001-01-01
The competitive inclusion complexations in the ternary phenacetin/competitors/beta-cyclodextrin (beta-CyD) systems were investigated by the solubility method, where m-bromobenzoic acid (m-BBA) and o-toluic acid (o-TA) were used as competitors. The solubility changes of the drug and competitors as a function of beta-CyD concentration in the ternary systems were formulated using their stability constants and intrinsic solubilities. The decrease in solubility of phenacetin by the addition of competitors could be quantitatively simulated by the formulation, when both drug and competitor give A(L) type solubility diagrams. On the other hand, when one of the guests gives a B(S) type solubility diagram, its solubility change was clearly reflected in that of the another guest, i.e., phenacetin gave an A(L) type solubility diagram in the binary phenacetin/beta-CyD system and o-TA gave a B(S) type diagram in the binary o-TA/beta-CyD system, but in the ternary phenacetin/o-TA/beta-CyD system, a new plateau region appeared in the original A(L) type diagram of phenacetin. This was explained by the solubilization theory of Higuchi and Connors. The solubility analysis of the ternary drug/competitor/CyD systems may be particularly useful for determination of the stability constant of a drug whose physicochemical and spectroscopic analyses are difficult, because they can be calculated by monitoring the solubility change of a competitor, without monitoring that of a drug. Furthermore, the present results suggest that attention should be paid to the type of the phase solubility diagram, as well as the magnitude of the stability constant and the solubility of the complex, for a rational formulation design of CyD complexes.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-01-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-11
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
NASA Astrophysics Data System (ADS)
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less
Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C
2013-05-10
Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.
NASA Astrophysics Data System (ADS)
Peatfield, M.; Brett, N. H.; Potter, P. E.
1980-03-01
The ternary system U-Ba-C has been examined at 1400°C and the solid-state compatibility lines established. No compound formation was found to occur and solubility effects were found to be minimal. A tentative examination of compositions in the U-Sr-C system indicates that it is of a similar form to that of the U-Ba-C system.
NASA Astrophysics Data System (ADS)
Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian
2015-03-01
Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications. Electronic supplementary information (ESI) available: 1H NMR assay, synthetic route of Ad-FA, AFM images and cellular internalization rate can be found in ESI. See DOI: 10.1039/c4nr07515c
Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method
NASA Astrophysics Data System (ADS)
Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia
2018-01-01
Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.
Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar
2016-04-01
The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and L-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job's plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p < 0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p < 0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.
Drop-in substitute for dichlorodifluoromethane refrigerant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goble, G.H.
1993-06-01
A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.
Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.
1992-01-01
The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.
Singh, Sachin Kumar; Srinivasan, K K; Singare, Dhananjay S; Gowthamarajan, K; Prakash, Dev
2012-11-01
Glyburide, a sulfonylurea derivative, widely used as hypoglycaemic agent. In the present study, an attempt has been made to investigate the most effective third component which can be used with hydroxylpropyl-β-cyclodextrin (HPβCd) to form a ternary complex with glyburide in order to enhance its dissolution rate, as well as reduce the amount of HPβCd used for formulating the binary complex with glyburide. Moreover, the objective of this study was also to develop a discriminatory dissolution media in order to discriminate the effect of the different solubilizing agents used for formulating the ternary complex system. Sodium lauryl sulphate, Poloxamer-188, Polyvinylpyrrolidone K-30, lactose and L-arginine were used to formulate ternary system along with HPβCd and glyburide. The ternary system formulated with glyburide:HPβCd:L-arginine in a proportion of 1:1:0.5 has shown the fastest dissolution rate when compared to other solubilizing agents. Unbuffered aqueous media with stirring speed 50 rpm has produced the most discriminatory dissolution profiles. The DSC thermograms and the powder X-ray analysis revealed the decrease in crystallinity of the drug. This was an indication of amorphous solid dispersion or molecular encapsulation of the drug into the cyclodextrin cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.
Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael
2015-10-14
Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.
Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.
2013-01-01
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861
Gao, Xue; Niu, Lu; Su, Xingguang
2012-01-01
This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study
Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong
2018-01-01
Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification. PMID:29419753
Abdollahpour, Nooshin; Soheili, Vahid; Saberi, Mohammad Reza; Chamani, Jamshidkhan
2016-12-01
Human serum albumin (HSA) is the most frequent protein in blood plasma. Albumin transports various compounds, preserves osmotic pressure, and buffers pH. A unique feature of albumin is its ability to bind drugs and other bioactive molecules. However, it is important to consider binary and ternary systems of two pharmaceuticals to estimate the effect of the first drug on the second one and physicochemical properties. Different techniques including time-resolved, second-derivative and anisotropy fluorescence spectroscopy, resonance light scattering (RLS), critical induced aggregation concentration (C CIAC ), particle size, zeta potential and stability analysis were employed in this assessment to elucidate the binding behavior of Amlodipine and Aspirin to HSA. Moreover, isothermal titration calorimetric techniques were performed and the QSAR properties were applied to analyze the hydration energy and log P. Multiple sequence alignments were also used to predict the structure and biological characteristics of the HSA binding site. Time-resolved fluorescence spectroscopy showed interaction of both drugs to HSA based on a static quenching mechanism. Subsequently, second-derivative fluorescence spectroscopy presented different values of parameter H in binary and ternary systems, which were suggested that tryptophan was in a more polar environment in the ternary system than in a binary system. Moreover, the polydispersity index and results from mean number measurements revealed that the presence of the second drug caused a decrease in the stability of systems and increased the heterogeneity of complex. It is also, observed that the gradual addition of HSA has led to a marked increase in fluorescence anisotropy (r) of Amlodipine and Aspirin which can be suggested that the drugs were located in a restricted environment of the protein as confirmed by Red Edge Excitation Shift (REES) studies. The isothermal titration calorimetric technique demonstrated that the interaction of the drugs with HSA was an enthalpically-driven process. The present experiment showed that the binding of Amlodipine and Aspirin to HSA induced a conformational change of HSA. It was also identified that the protein binding of the first drug could be affected by the second drug. Such results can be of great use for understanding the pharmacokinetic and pharmacodynamic mechanisms of drugs.
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue
NASA Astrophysics Data System (ADS)
Banerjee, Soma; Benjwal, Poonam; Singh, Milan; Kar, Kamal K.
2018-05-01
Herein, ternary nanocomposites based on titanium dioxide, ferric oxide and reduced graphene oxide (GO) have been developed for photocatalytic degradation of methylene blue. The nanocomposites are prepared by simple sol-gel and wet assembly methods with varying weight ratio of each components to obtain efficient photocatalytic degradation. Due to the synergistic effect among the three components, a swift removal of methylene blue becomes possible under visible and UV light. The rGO-Fe3O4-TiO2 nanocomposite having composition 1:1:2 has achieved maximum degradation of methylene blue from the aqueous solution. About 99% of the dye has been removed within 6 min under UV irradiation, while in presence of visible light, 94% has been degraded from the wastewater. The enhancement of photocatalytic activity in this ternary system is attributed to the efficient separation of charge carriers from TiO2 to rGO under the exposure of light and the initiation of photo-Fenton reaction due to the incorporated Fe3O4 nanoparticles in presence of H2O2, which provides highly reactive hydroxyl ions that mineralize the pollutants. All these results indicate that these ternary nanocomposites possess great potential for both UV and visible light driven methylene blue destruction from the wastewater.
Microstructure and physical properties of bismuth-lead-tin ternary eutectic alloy
NASA Astrophysics Data System (ADS)
Kamal, M.; Moharram, B. M.; Farag, H.; El-Bediwi, A.; Abosheiasha, H. F.
2006-07-01
Using different experimental techniques, microstructure, electrical resistivity, attenuation coefficient, and mechanical and thermal properties of the quenched Bi-Pb-Sn ternary eutectic alloy have been investigated. From the X-ray analysis, Bi3Pb7 and Bi-Sn meta-stable phases are detected, in addition to rhombohedral bismuth and Sn body-centered tetragonal phases. This study also compared the physical properties of the Bi-Sn-Pb ternary eutectic alloys with the base binary Bi-Sn and Bi-Pb eutectic alloys.
Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming
2016-12-01
Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-12-07
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.
Amarouche, Nassima; Boudesocque, Leslie; Borie, Nicolas; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, Florence; Renault, Jean-Hugues
2014-06-01
A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH-zone refining centrifugal partition chromatography. The protected peptide is an 8-mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N-terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH-zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jing; Cui, Meirong; Zhou, Hong; Zhang, Shusheng
2016-01-01
A novel ternary composite of hemin-graphene-Au nanorods (H-RGO-Au NRs) with high electrocatalytic activity was synthesized by a simple method. And this ternary composite was firstly used in construction of electrochemiluminescence (ECL) immunosensor due to its double-quenching effect of quantum dots (QDs). Based on the high electrocatalytic activity of ternary complexes for the reduction of H2O2 which acted as the coreactant of QDs-based ECL, as a result, the ECL intensity of QDs decreased. Besides, due to the ECL resonance energy transfer (ECL-RET) strategy between the large amount of Au nanorods (Au NRs) on the ternary composite surface and the CdS:Eu QDs, the ECL intensity of QDs was further quenched. Based on the double-quenching effect, a novel ultrasensitive ECL immunoassay method for detection of carcinoembryonic antigen (CEA) which is used as a model biomarker analyte was proposed. The designed immunoassay method showed a linear range from 0.01 pg mL−1 to 1.0 ng mL−1 with a detection limit of 0.01 pg mL−1. The method showing low detection limit, good stability and acceptable fabrication reproducibility, provided a new approach for ECL immunoassay sensing and significant prospect for practical application. PMID:27460868
Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2008-03-01
Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.
Advanced Fault Diagnosis Methods in Molecular Networks
Habibi, Iman; Emamian, Effat S.; Abdi, Ali
2014-01-01
Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670
Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements
Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf
2011-01-01
The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311
NASA Astrophysics Data System (ADS)
Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong
2017-04-01
To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.
NASA Astrophysics Data System (ADS)
Pabalan, Roberto T.; Pitzer, Kenneth S.
1987-09-01
Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.
Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun
2018-02-28
The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.
Leclercq, Loïc; Lubart, Quentin; Aubry, Jean-Marie; Nardello-Rataj, Véronique
2013-05-28
The surface tension equations of binary surfactant mixtures (di-n-decyldimethylammonium chloride and octaethylene glycol monododecyl ether) are established by combining the Szyszkowski equation of surfactant solutions, the ideal or nonideal mixing theory, and the phase separation model. For surfactant mixtures, the surface tension at the air-water interface is calculated using nonideal theory due to synergism between the two adsorbed surfactant types. The incorporation of cyclodextrin complexation model to the surface tension equations gives a robust model for the description of the surface tension isotherms of binary, ternary, and more complex systems involving numerous inclusion complexes. The surface tension data obtained experimentally shows excellent agreement with the theoretical model below and above the formation of micelles. The strong synergistic effect observed between the two surfactants is disrupted by the presence of CDs, leading to ideal behavior of ternary systems. Indeed, depending on the nature of the cyclodextrin (i.e., α, β, or γ), which allows a tuning of the cavity size, the binding constants with the surfactants are modified as well as the surface properties due to strong modification of equilibria involved in the ternary mixture.
High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column
A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
All-optical 10Gb/s ternary-CAM cell for routing look-up table applications.
Mourgias-Alexandris, George; Vagionas, Christos; Tsakyridis, Apostolos; Maniotis, Pavlos; Pleros, Nikos
2018-03-19
We experimentally demonstrate the first all-optical Ternary-Content Addressable Memory (T-CAM) cell that operates at 10Gb/s and comprises two monolithically integrated InP Flip-Flops (FF) and a SOA-MZI optical XOR gate. The two FFs are responsible for storing the data bit and the ternary state 'X', respectively, with the XOR gate used for comparing the stored FF-data and the search bit. The experimental results reveal error-free operation at 10Gb/s for both Write and Ternary Content Addressing of the T-CAM cell, indicating that the proposed optical T-CAM cell could in principle lead to all-optical T-CAM-based Address Look-up memory architectures for high-end routing applications.
Structural evaluation of crystalline ternary γ-cyclodextrin complex.
Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji
2011-01-01
The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Optimization of the gypsum-based materials by the sequential simplex method
NASA Astrophysics Data System (ADS)
Doleželová, Magdalena; Vimmrová, Alena
2017-11-01
The application of the sequential simplex optimization method for the design of gypsum based materials is described. The principles of simplex method are explained and several examples of the method usage for the optimization of lightweight gypsum and ternary gypsum based materials are given. By this method lightweight gypsum based materials with desired properties and ternary gypsum based material with higher strength (16 MPa) were successfully developed. Simplex method is a useful tool for optimizing of gypsum based materials, but the objective of the optimization has to be formulated appropriately.
Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.
Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C
2016-08-17
Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.
Paduszyński, Kamil
2018-04-12
A conductor-like screening model for real solvents (COSMO-RS) is nowadays one of the most popular and commonly applied tools for the estimation of thermodynamic properties of complex fluids. The goal of this work is to provide a comprehensive review and analysis of the performance of this approach in calculating liquid-liquid equilibrium (LLE) phase diagrams in ternary systems composed of ionic liquid and two molecular compounds belonging to diverse families of chemicals (alkanes, aromatics, S/N-compounds, alcohols, ketones, ethers, carboxylic acid, esters, and water). The predictions are presented for extensive experimental database, including 930 LLE data sets and more than 9000 data points (LLE tie lines) reported for 779 unique ternary mixtures. An impact of the type of molecular binary subsystem on the accuracy of predictions is demonstrated and discussed on the basis of representative examples. The model's capability of capturing qualitative trends in the LLE distribution ratio and selectivity is also checked for a number of structural effects. Comparative analysis of two levels of quantum chemical theory (BP-TZVP-COSMO vs BP-TZVPD-FINE) for the input molecular data for COSMO-RS is presented. Finally, some general recommendations for the applicability of the model are indicated based on the analysis of the global performance as well as on the results obtained for systems relevant from the point of view of important separation problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Haifeng; Nanjing Artillery Academy, Nanjing 211132; Liu Shaobin
2012-11-15
In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonicmore » band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.« less
Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades
2014-07-13
determine volume-based diameter distributions of aqueous boron carbide suspensions. Potassium nitrate (MIL-P-156B, 15 μm) and potassium chloride (−50... Potassium chloride was found to be particularly effective in this role. The combustion of certain ternary B4C/KNO3/KCl mixtures (such Distribution A... of unconsolidated mixtures. Five wet binder systems were therefore evaluated. Polyacrylate elastomer and nitro- cellulose (NC) were applied as
Advances in Pb-free solder microstructure control and interconnect design
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.; ...
2016-06-09
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
Bennett, Raffeal; Olesik, Susan V
2018-01-25
The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.
Mutual influence between triel bond and cation-π interactions: an ab initio study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mousavian, Parisasadat
2017-12-01
Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.
The ternary system K2SO4MgSO4CaSO4
Rowe, J.J.; Morey, G.W.; Silber, C.C.
1967-01-01
Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
NASA Astrophysics Data System (ADS)
Wang, Wenjuan; Hao, Qingli; Lei, Wu; Xia, Xifeng; Wang, Xin
2014-12-01
The electrochemical property of graphene can be significantly enhanced due to the incorporating of heteroatoms into graphene. In this article, the ternary nitrogen-doped graphene/nickel ferrite/polyaniline (NGNP) nanocomposite is synthesized by a facile two-step approach and its electrochemical properties as electrodes for supercapacitors are studied by various electrochemical measurements. The specific capacitance of NGNP is 645.0 F g-1 at 1 mV s-1 and 667.0 F g-1 at 0.1 A g-1 in a three- and two-electrode system, respectively, much higher than other binary electrodes. In a two-electrode symmetric system, the energy density of the NGNP electrode is 92.7 W h kg-1 at a power density of 110.8 W kg-1, moreover, that of the supercapacitor based on NGNP can also reach 23.2 W h kg-1 at a power density of 27.7 W kg-1. In addition, the capacitance loses only 5% after repeating test for 5000 cycles, and about 10% after 10,000 cycles at a high current density 5 A g-1. The results demonstrate the novel ternary NGNP electrode produced by the current economical method will gain promising applications in supercapacitors and other devices by virtue of its outstanding characteristics (high specific capacitance, high power and energy density, excellent cycle life).
Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples
NASA Astrophysics Data System (ADS)
Fang, Gu; Chen, Chih-chi
2015-07-01
Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.
Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi
2017-06-01
We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, C.; El Sayah, Z.; Chajewski, G.
The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{submore » 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms below the solidus. A unique ternary phase showing a large homogeneity domain, U{sub 3}Al{sub 2−x}Ge{sub 3+x} for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively has been evidenced. It is best described with the non-centrosymmetric space group I4cm above room temperature. A linear increase of the ferromagnetic ordering is observed with the Al content. - Highlights: • Isothermal sections of the U-Al-Ge system were investigated for 673 K and 1173 K. • An isomorphous solid-solution UAl{sub 3}-UGe{sub 3} forms for the whole composition range. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} the unique ternary phase to form exists for a large homogeneity domain. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} is best described in I4cm space group above room temperature. • The ferromagnetic transition of U{sub 3}Al{sub 2−x}Ge{sub 3+x} linearly increases with the Al content.« less
Alloy Design Data Generated for B2-Ordered Compounds
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.
2003-01-01
Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational method used to establish the table. Details of the computational procedures used to determine the preferred site occupancy can be found in reference 2. As further substantiation of the validity of the technique, and its extension to even more complicated systems, it was applied to two simultaneous alloying additions in an ordered alloy.
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures
ERIC Educational Resources Information Center
Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.
2010-01-01
Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…
Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu
2008-04-01
The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
Ternary carbon composite films for supercapacitor applications
NASA Astrophysics Data System (ADS)
Tran, Minh-Hai; Jeong, Hae Kyung
2017-09-01
A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.
Co(x)Ni(4-x)Sb(12-y)Sn(y) Ternary Skutterudites: Processing and Thermoelectric Properties
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
Skutterudites have proven to be a useful thermoelectric system as a result of their high figure of merit, favorable mechanical properties, and good thermal stability. Binary skutterudites have received the majority of interest in recent years, as a result of successful double and triple filling schemes. Ternary skutterudites, such as Ni4Sb7Sn5, also demonstrate good thermoelectric performance, with high power factor and low thermal conductivity. Ternary skutterudites, as contrasted to binary systems, provide more possibility for tuning electronic structure as substitutions can be studied on three elements. The Co(x)Ni(4-x)Sb(12-y)Sn(y) system has been investigated as both a p- and n-type thermoelectric material, stable up to 200 C. The system is processed through a combination of solidification, mechanical alloying, and hot pressing steps. Rietveld structure refinement has revealed an interesting occupancy of Sn on both the 24g Wyckoff position with Sb as well as the 2a position as a rattler. In addition to thermoelectric properties, detailed processing routes have been investigated on the system.
Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan
2015-07-01
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan
2017-07-01
A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library Fe x Si y Ge 100-x-y (20
Novel stable hard transparent conductors in TiO2-TiC system: Design materials from scratch
Meng, Xiangying; Liu, Dongyan; Dai, Xuefeng; Pan, Haijun; Wen, Xiaohong; Zuo, Liang; Qin, Gaowu
2014-01-01
Two new ternary compounds in the TiO2-TiC system, Ti5C2O6 and Ti3C2O2, are reported for the first time based on ab initio evolutionary algorithm. Ti5C2O6 has a tube-structure in which sp1 hybridized carbon chains run through the lattice along the b-axis; while in the Ti3C2O2 lattice, double TiO6 polyhedral are separated by the non-coplanar sp2 hybridized hexagon graphite layers along the c-axis, forming a sandwich-like structure. At ambient conditions, the two compounds are found to be mechanically and dynamically stable and intrinsic transparent conductors with high hardness (about twice harder than the conventional transparent conducting oxides). These mechanical, electronic, and optical properties make Ti5C2O6 and Ti3C2O2 ternary compounds be promising robust, hard, transparent, and conductive materials. PMID:25511583
Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip
1999-01-01
The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.
NASA Astrophysics Data System (ADS)
d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan
2017-07-01
A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20
Roshanghias, Ali; Vrestal, Jan; Yakymovych, Andriy; Richter, Klaus W.; Ipser, Herbert
2015-01-01
Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. PMID:26082567
NASA Astrophysics Data System (ADS)
Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.
2012-07-01
Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .
Chen, Hao; Zhou, Shuxue; Wu, Limin
2014-06-11
This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.
Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag
NASA Astrophysics Data System (ADS)
Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.
2017-12-01
The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.
On the binding of indeno[1,2-c]isoquinolines in the DNA-topoisomerase I cleavage complex.
Xiao, Xiangshu; Antony, Smitha; Pommier, Yves; Cushman, Mark
2005-05-05
An ab initio quantum mechanics calculation is reported which predicts the orientation of indenoisoquinoline 4 in the ternary cleavage complex formed from DNA and topoisomerase I (top1). The results of this calculation are consistent with the hypothetical structures previously proposed for the indenoisoquinoline-DNA-top1 ternary complexes based on molecular modeling, the crystal structure of a recently reported ternary complex, and the biological results obtained with a pair of diaminoalkyl-substituted indenoisoquinoline enantiomers. The results of these studies indicate that the pi-pi stacking interactions between the indenoisoquinolines and the neighboring DNA base pairs play a major role in determining binding orientation. The calculation of the electrostatic potential surface maps of the indenoisoquinolines and the adjacent DNA base pairs shows electrostatic complementarity in the observed binding orientation, leading to the conclusion that electrostatic attraction between the intercalators and the base pairs in the cleavage complex plays a major stabilizing role. On the other hand, the calculation of LUMO and HOMO energies of indenoisoquinoline 13b and neighboring DNA base pairs in conjunction with NBO analysis indicates that charge transfer complex formation plays a relatively minor role in stabilizing the ternary complexes derived from indenoisoquinolines, DNA, and top1. The results of these studies are important in understanding the existing structure-activity relationships for the indenoisoquinolines as top1 inhibitors and as anticancer agents, and they will be important in the future design of indenoisoquinoline-based top1 inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Minhao; Zhao, Hang; He, Delong
2016-08-15
The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (f{sub c}) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (f{sub CNTs}) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same f{sub CNTs}, the ternary BNNSs/CNTs/PVDFmore » nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (f{sub CNTs} < f{sub c}) shows a 79.59% enhancement from 49 to 88 after the incorporation of 3 vol. % BNNSs. For the other CNTs/PVDF system with 8 vol. % CNTs (f{sub CNTs} > f{sub c}), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.« less
Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu
2014-11-04
Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard
2015-03-21
Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.
Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz.
Vieira, Alexandre Couto Carneiro; Ferreira Fontes, Danilo Augusto; Chaves, Luise Lopes; Alves, Lariza Darlene Santos; de Freitas Neto, José Lourenço; de La Roca Soares, Monica Felts; Soares-Sobrinho, Jose L; Rolim, Larissa Araújo; Rolim-Neto, Pedro José
2015-10-05
Efavirenz (EFZ) is one of the most used drugs in the treatment of AIDS and is the first antiretroviral choice. However, since it has low solubility, it does not exhibit suitable bioavailability, which interferes with its therapeutic action and is classified as a class II drug according Biopharmaceutical Classification System (low solubility and high permeability). Among several drug delivery systems, the multicomponent systems with cyclodextrins and hydrophilic polymers are a promising alternative for increasing the aqueous solubility of the drug. The present study aimed to develop and characterize in a ternary system of EFZ, MβCD and PVP K30. The results showed that the solid ternary system provided a large increase in the dissolution rate which was greater than 80% and was characterized by DSC, TG, XRD, FT-IR and SEM. The use of the ternary system (EFZ, MβCD and PVP K30 1%) proved to be a viable, effective and safe delivery of the drug. The addition of the hydrophilic polymer appeared to be suitable for the development of a solid oral pharmaceutical product, with possible industrial scale-up and with low concentration of CDs (cyclodextrins). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Peng; Jiang, Deli; Ju, Lixin; Jing, Junjie; Chen, Min
2018-03-01
Although RGO shows great advantage in promoting charge separation and transfer of semiconductor, construction of an efficient RGO-incorporated photocatalyst is still challenging. Herein, RGO was employed to construct novel RGO/CdIn2S4/g-C3N4 (donated as RGO/CIS/CN) ternary photocatalyst by a facile hydrothermal method for the degradation of tetracycline hydrochloride (TC). The RGO/CIS/CN ternary photocatalyst showed significantly enhanced photocatalytic activity towards the degradation of TC as compared to the binary CIS/CN, CIS/CN, and CN/RGO. The photoluminescence and photocurrent response results indicate that this enhanced photocatalytic activity can be mainly ascribed to the improved charge separation and transfer efficiency. Based on the radical trapping and electron spin resonance results, the superoxide radicals and holes are proposed to play an important role in the degradation of TC over RGO/CIS/CN ternary photocatalyst. This work paves new opportunities for the synthesis of RGO-incorporated ternary photocatalyst as an efficient photocatalyst for the degradation of organic contaminant.
Gong, Shanshan; Cui, Wei; Zhang, Qi; Cao, Anyuan; Jiang, Lei; Cheng, Qunfeng
2015-12-22
With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.
Phase transformations and phase equilibria in the Co–Sn–Ti system in the crystallization interval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fartushna, Iu.; Bulanova, M.; National Technical University of Ukraine, Kiev Polytechnical Institute, Kiev
2016-12-15
The Co–Sn–Ti system was studied in the crystallization interval (below ~50 at% Sn) by the methods of Scanning Electron Microscopy, microprobe analysis, Differential Thermal Analysis, X-ray diffraction. The liquidus and solidus projections and the melting diagram were constructed. Only Co{sub 2}TiSn(τ1) ternary compound (Heusler phase-L1{sub 2}) was found in equilibria with the liquid in the concentration interval studied. Taking into account our recent data, the liquidus projection is characterized by the fields of primary crystallization of (βTi), (Co), binary-based phases Ti{sub 3}Sn, Ti{sub 2}Sn, Ti{sub 5}Sn{sub 3}, Ti{sub 6}Sn{sub 5}, Ti{sub 2}Co, TiCo, TiCo{sub 2} (c), TiCo{sub 2} (h), TiCo{submore » 3}, βCo{sub 3}Sn{sub 2}, CoSn and ternary τ1. The solidus projection is characterized by thirteen three-phase fields, which result from invariant four-phase equilibria, five are of eutectic type (E) and eight of transition type (U) and the existence of one more region Ti{sub 2}Sn{sub 3}+βCoSn{sub 3}+(Sn) in the solidus projection is discussed. - Graphical abstract: Liquidus projection of the Ti–Ð ÐŽÐ Ñ• –Sn system. Fields of crystallization, isotherms and monovariant lines. - Highlights: • The Ti–Co–Sn system is first studied in the composition range up to 50% of Sn. • Liquidus and solidus projections, melting diagram and reaction scheme are constructed. • One ternary compound form in the studied temperature interval: (Co{sub 2}TiSn(τ1)).« less
Convective instabilities in a ternary alloy mushy layer
NASA Astrophysics Data System (ADS)
Anderson, Daniel; Guba, Peter
2014-11-01
We investigate a mathematical model of convection, thermal and solutal diffusion in a primary mushy layer during the solidification of a ternary alloy. In particular, we explore the influence of phase-change effects, such as solute rejection, latent heat and background solidification, in a linear stability analysis of a non-convecting base state solution. We identify how different rates of diffusion (e.g. double diffusion) as well as how different rates of solute rejection (double solute rejection) play a role in this system. Novel modes of instability that can be present under statically stable conditions are identified. Parcel arguments are proposed to explain the physical mechanisms that give rise to the instabilities. This work was supported in part by the U.S. National Science Foundation, DMS-1107848 (D.M.A.) and by the Slovak Scientific Grant Agency, VEGA 1/0711/12 (P.G.).
Pressure-Responsive, Surfactant-Free CO2-Based Nanostructured Fluids
2017-01-01
Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. “Water-rich” nanodomains embedded into a “water-depleted” matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the “water-rich” nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering. PMID:28846386
The Solidification of Multicomponent Alloys
Boettinger, William J.
2017-01-01
Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348
NASA Astrophysics Data System (ADS)
Toropova, L. V.; Alexandrov, D. V.
2018-05-01
The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
Equilibrium study for ternary mixtures of biodiesel
NASA Astrophysics Data System (ADS)
Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.
2017-11-01
The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.
Ternary Magnesium-Lithium Base Constitution Diagrams and Magnesium Alloys of Low Alloy Additions
1951-03-01
progress In eperimental development of mgmesiu-bease &alls with low alloy additions. The primry purpose of this investiptiU is to obtain alloys baving a...Casting Magnesium-Lithium Base Ternary Alloys Melting and Castirg Technigue The design , construction and operation of equipment for melting and...protection during heat treatment were: 1. Design and construction of a specimen container to hold a number of specimens in an inert atmosphere in order to WAC
NASA Astrophysics Data System (ADS)
Eric, H.
1982-12-01
The liquidus curves of the Sn-Te and Sn-SnS systems were evaluated by the regular associated solution model (RAS). The main assumption of this theory is the existence of species A, B and associated complexes AB in the liquid phase. Thermodynamic properties of the binary A-B system are derived by ternary regular solution equations. Calculations based on this model for the Sn-Te and Sn-SnS systems are in agreement with published data.
Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn
Elmahfoudi, A.; Sabbar, A.; Flandorfer, H.
2012-01-01
The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, xSb/xSn ≈ 1:1, xSb/xSn ≈ 1:3, xSb/xSn ≈ 3:1, xCo/xSn ≈ 1:4, and xCo/xSb ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data. PMID:27087752
Enthalpies of mixing of liquid systems for lead free soldering: Co-Sb-Sn.
Elmahfoudi, A; Sabbar, A; Flandorfer, H
2012-04-01
The partial and integral enthalpy of mixing of molten ternary Co-Sb-Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, x Sb / x Sn ≈ 1:1, x Sb / x Sn ≈ 1:3, x Sb / x Sn ≈ 3:1, x Co / x Sn ≈ 1:4, and x Co / x Sb ≈ 1:5. Additionally, binary alloys of the constituent systems Co-Sb and Co-Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich-Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.
Bak, J H; Yoo, B
2018-04-12
The effect of CMC on the steady and dynamic shear rheological properties of binary mixtures of XG and GG was examined at different mixing ratios. All XG-GG-CMC ternary mixtures had high shear-thinning behavior and the n value of the sample with 5% CMC was the smallest compared with those of other samples. A marked increase in K and η a,50 values was observed for ternary mixtures at a lower content (5%) of CMC, indicating that the synergistic interactions of the XG-GG binary mixture were affected by the content of CMC. The effect of temperature on the η a,50 was well described by the Arrhenius equation for all samples. The activation energy values of all ternary gum mixtures are higher than that of binary gum mixture, and these values also decreased with an increase in CMC content from 5 to 15%. The dynamic moduli of ternary gum mixtures decreased with an increase in CMC content. The tan δ value of the ternary gum mixture with 5% CMC was much lower than those of other ternary mixtures. In general, these results suggest that the flow and dynamic shear rheological properties of XG-GG binary mixtures are strongly influenced by a small addition of CMC. Copyright © 2018. Published by Elsevier B.V.
Guo, Yiming; Fredrickson, Daniel C.
2016-04-01
Intermetallic crystal structures offer an enormous structural diversity, with an endless array of structural motifs whose connection to stability and physical properties are often mysterious. Making sense of the often complex crystal structures that arise here, developing a clear structural description, and identifying connections to other phases can be laborious and require an encyclopedic knowledge of structure types. In this Article, we present PRINCEPS, an algorithm based on a new coordination environment projection scheme that facilitates the structural analysis and comparison of such crystal structures. We demonstrate the potential of this approach by applying it to the complex Ce-Ni-Si ternarymore » system, whose 17 binary and 21 ternary phases would present a daunting challenge to one seeking to understand the system by manual inspection (but has nonetheless been well-described through the heroic efforts of previous researchers). With the help of PRINCEPS, most of the ternary phases in this system can be rationalized as intergrowths of simple structural fragments, and grouped into a handful of structural series (with some outliers). Lastly, these results illustrate how the PRINCEPS approach can be used to organize a vast collection of crystal structures into structurally meaningful families, and guide the description of complex atomic arrangements.« less
Investigations on the system boron-carbon silicon
NASA Technical Reports Server (NTRS)
Kieffer, R.; Gugel, E.; Leimer, G.; Ettmayer, P.
1983-01-01
The above elements form with each other binary compounds which are very interesting from the point of view of their structure and their chemistry and which are important for technology. The present investigation is concerned with the three-component system and the behavior of the binary compounds occurring in it. Investigations employing various techniques, such as X-ray, chemical analysis, microscopy and fusion experiments showed that no ternary phase exists within the boundary of the ternary system. There is no compound with a higher abrasion capacity than boron carbide. The probable phase field divisions at two isothermic intersections and the fusion isotherms are indicated.
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Bolla, Geetha; Nangia, Ashwini
2016-01-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778
Bolla, Geetha; Nangia, Ashwini
2016-03-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).
Sun, Enwei; Cao, Wenwu; Han, Pengdi
2011-08-01
The frequency dispersion of ultrasonic velocity and attenuation in [001](c)-poled 0.24Pb(in(1/2)Nb(1/2))O(3)-0.45Pb(Mg(1/3)Nb(2/3))o(3)-0.31PbTio(3) (PIN-0.45PMN-0.31PT) ternary single crystal were measured by ultrasonic spectroscopy from 25 to 100 MHz for the longitudinal wave. It was found that the velocity has a linear relationship with the frequency f, but the attenuation has a quadratic relation with f. The attenuation and frequency dispersion of the ternary system are lower than that of the (1-x)Pb(Mg(1/3)Nb(2/3))O(3)-xPbTiO(3) (PMN-PT) binary system and the coercive field also increased by a factor of 2.5, hence, the ternary single system is superior to the corresponding binary single-crystal system for high-frequency and high-power transducer applications.
Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki
2016-07-19
We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.
NASA Astrophysics Data System (ADS)
Ahmadov, G. S.; Kopatch, Yu. N.; Telezhnikov, S. A.; Ahmadov, F. I.; Granja, C.; Garibov, A. A.; Pospisil, S.
2015-07-01
The silicon based pixel detector Timepix is a multi-parameter detector which gives simultaneously information about position, energy and arrival time of a particle hitting the detector. Applying the ΔE-E method with these detectors makes it possible to determine types of detected particles, separating them by charge. Using a thin silicon detector with thickness of 12 μm combined with a Timepix (300 μm), a ΔE-E telescope has been constructed. The telescope provides information about position, energy, time and type of registered particles. The emission probabilities and the energy distributions of ternary particles (He, Li, Be) from 252Cf spontaneous fission source were determined using this telescope. Besides the ternary particles, a few events were collected, which were attributed to the "pseudo" quaternary fission.
NASA Astrophysics Data System (ADS)
Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu
2018-04-01
We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.
NASA Astrophysics Data System (ADS)
Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.
2018-01-01
We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.
Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L
2003-07-01
Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel
2017-05-01
Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend having no oxygen in a fleet of 12 in-use vehicles. Vehicles that had suffer a normal deterioration of emissions and do not react to oxygenation, and new vehicles with more sophisticated air/fuel control systems do not improve combustion.
Atomistic study of ternary oxides as high-temperature solid lubricants
NASA Astrophysics Data System (ADS)
Gao, Hongyu
Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the understanding of lubricious mechanisms of solid lubricants in general. Molecular dynamics (MD) simulations was used as the primary tool in this research, complemented by density-functional theory and experiments from our colleagues. In this research, we first developed empirical potential parameters for AgTaO3 and later Cu- Ta-O ternaries using the modified embedded-atom method (MEAM) formalism. With those parameters, we explored the sliding mechanisms of AgTaO3, CuTaO3 and CuTa2O6 at elevated temperatures. Particularly on AgTaO3, we investigated the effects of applied loads as well as surface terminations on friction and wear as functions of temperature. In addition, to optimize the tribological performance of AgTaO3, film reconstruction mechanisms were investigated on Ta2O5/Ag films with varying amounts of Ag. For the potassium chloride-iron system, we studied the effect of contact pressure on interfacial structure, based on which the origin of the commonly observed pressure-dependent shear strengths was explored. We hope this research will benefit the design and development of solid lubricant materials for a wide range of applications.
Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires
NASA Astrophysics Data System (ADS)
Ghasemi, Masoomeh; Johansson, Jonas
2017-04-01
Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.
NASA Astrophysics Data System (ADS)
Cao, Hongbo
In this thesis, the application of the computational thermodynamics has been explored on two subjects, the study of magnesium alloys (Chapter 1-5) and bulk metallic glasses (BMGs) (Chapter 6-9). For the former case, a strategy of experiments coupled with the CALPHAD approach was employed to establish a thermodynamic description of the quaternary system Mg-Al-Ca-Sr focusing on the Mg-rich phase equilibria. Multicomponent Mg-rich alloys based on the MgAl-Ca-Sr system are one of the most promising candidates for the high temperature applications in the transportation industry. The Mg-Al-Ca-Sr quaternary consists of four ternaries and six binaries. Thermodynamic descriptions of all constituent binaries are available in the literature. Thermodynamic descriptions of the two key ternaries, Mg-Al-Sr and Mg-Al-Ca, were obtained by an efficient and reliable methodology, combining computational thermodynamics with key experiments. The obtained thermodynamic descriptions were validated by performing extensive comparisons between the calculations and experimental information. Thermodynamic descriptions of the other two ternaries, MgCa-Sr and Al-Ca-Sr, were obtained by extrapolation. For the later case, a computational thermodynamic strategy was formulated to obtain a minor but optimum amount of additional element into a base alloy to improve its glass forming ability (GFA). This was done through thermodynamically calculating the maximum liquidus depressions caused by various alloying addition (or replacement) schemes. The success of this approach has been examined in two multicomponent systems, Zr-based Zr-Cu-Ni-Al-Ti and Cu-rich Cu-Zr-Ti-Y. For both cases, experimental results showed conclusively that the GFA increases more than 100% from the base alloy to the one with minor but optimal elemental addition. Furthermore, a thermodynamic computational approach was employed to identify the compositions of Zr-Ti-Ni-Cu-Al alloys exhibiting low-lying liquidus surfaces, which tend to favor the BMG formation. Guided by these calculations, several series of new Zr-based alloys with excellent GFA were synthesized. The approach using the thermodynamically calculated liquidus temperatures was proved to be robust in locating BMGs and can be considered as a universal method to predict novel BMGs not only of scientific interest but also potential technological applications.
NASA Astrophysics Data System (ADS)
Hattori, Y.; Ushiki, H.; Engl, W.; Courbin, L.; Panizza, P.
2005-08-01
Within the framework of an effective medium approach and a mean-field approximation, we present a simple lattice model to treat electrical percolation in the presence of attractive interactions. We show that the percolation line depends on the magnitude of interactions. In 2 dimensions, the percolation line meets the binodal line at the critical point. A good qualitative agreement is observed with experimental results on a ternary AOT-based water-in-oil microemulsion system.
Ternary gradient metal-organic frameworks.
Liu, Chong; Rosi, Nathaniel L
2017-09-08
Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
NASA Astrophysics Data System (ADS)
Ranganathaiah, C.
2015-06-01
A miscible blend is a single-phase system with compact packing of the polymeric chains/segments due configuration/conformational changes upon blending. Differential Scanning Calorimetry (DSC) is the most employed method to ascertain whether the blend is miscible or immiscible. Positron Lifetime Spectroscopy (PLS) has been employed in recent times to study miscibility properties of polymer blends by monitoring the ortho-Positronium annihilation lifetimes as function of composition. However, just free volume monitoring and the DSC methods fail to provide the composition dependent miscibility of blends. To overcome this limitation, an alternative approach based on hydrodynamic interactions has been developed to derive this information using the same o-Ps lifetime measurements. This has led to the development of a new method of measuring composition dependent miscibility level in binary and ternary polymer blends. Further, the new method also provides interface characteristics for immiscible blends. The interactions between the blend components has a direct bearing on the strength of adhesion at the interface and hence the hydrodynamic interaction. Understanding the characteristic of interfaces which decides the miscibility level of the blend and their end applications is made easy by the present method. The efficacy of the present method is demonstrated for few binary and ternary blends.
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma
2009-01-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys
NASA Astrophysics Data System (ADS)
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Gill, Puneet K. Singh; Amruthaluri, Sushma
2009-08-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys.
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K; Amruthaluri, Sushma
2009-08-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivetić, T.B., E-mail: tamara.ivetic@df.uns.ac.rs; Finčur, N.L.; Đačanin, Lj. R.
2015-02-15
Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{submore » 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. M.; Xu, G. Z.; Liu, E. K.
Based on first-principles calculations, we investigate the influence of tetrahedral covalent-hybridization between main-group and transition-metal atoms on the topological band structures of binary HgTe and ternary half-Heusler compounds, respectively. Results show that, for the binary HgTe, when its zinc-blend structure is artificially changed to rock-salt one, the tetrahedral covalent-hybridization will be removed and correspondingly the topologically insulating band character lost. While for the ternary half-Heusler system, the strength of covalent-hybridization can be tuned by varying both chemical compositions and atomic arrangements, and the competition between tetrahedral and octahedral covalent-hybridization has been discussed in details. As a result, we found thatmore » a proper strength of tetrahedral covalent-hybridization is probably in favor to realizing the topologically insulating state with band inversion occurring at the Γ point of the Brillouin zone.« less
Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni
NASA Astrophysics Data System (ADS)
Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.
2013-06-01
Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.
Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique
NASA Astrophysics Data System (ADS)
Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei
2016-01-01
Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
NASA Astrophysics Data System (ADS)
Xiong, Pan; Huang, Huajie; Wang, Xin
2014-01-01
A ternary cobalt ferrite/graphene/polyaniline nanocomposite (CGP) is designed and fabricated via a facile two-step approach: cobalt ferrite nanoparticles dispersed on graphene sheets are achieved by a hydrothermal method, followed by coating with polyaniline (PANI) through in situ polymerization process. Electrochemical measurements demonstrate that the specific capacitance of the resulting ternary hybrid (CGP) is up to 1133.3 F g-1 at a scan rate of 1 mV s-1 and 767.7 F g-1 at a current density of 0.1 A g-1 using a three-electrode system, while 716.4 F g-1 at a scan rate of 1 mV s-1 and 392.3 F g-1 at a current density of 0.1 A g-1 using a two-electrode system, which are significantly higher than those of pure CoFe2O4, graphene and PANI, or binary CoFe2O4/graphene, CoFe2O4/PANI and graphene/PANI hybrids. In addition, over 96% of the initial capacitance can be retained after repeating test for 5000 cycles, demonstrating a high cycling stability. The extraordinary electrochemical performance of the ternary CGP nanocomposite can be attributed to its well-designed nanostructure and the synergistic effects of the individual components.
Sher Shah, Md Selim Arif; Zhang, Kan; Park, A Reum; Kim, Kwang Su; Park, Nam-Gyu; Park, Jong Hyeok; Yoo, Pil J
2013-06-07
With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction of AgNO3 and graphene oxide and the hydrolysis of titanium tetraisopropoxide were spontaneously performed in a mixed solvent system of ethylene glycol, N,N-dimethylformamide and a stoichiometric amount of water without resorting to the use of typical reducing agents. The nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, along with different microscopic and spectroscopic techniques, enabling us to confirm the successful reduction of AgNO3 and graphite oxide to metallic Ag and reduced graphene oxide, respectively. Due to the highly facilitated electron transport of well distributed Ag nanoparticles, the synthesized ternary nanocomposite showed enhanced photocatalytic activity for degradation of rhodamine B dye under visible light irradiation.
kW-level commercial Yb-doped aluminophosphosilicate ternary laser fiber
NASA Astrophysics Data System (ADS)
Sun, Shihao; Zhan, Huan; Li, Yuwei; Liu, Shuang; Jiang, Jiali; Peng, Kun; Wang, Yuying; Ni, Li; Wang, Xiaolong; Jiang, Lei; Yu, Juan; Liu, Gang; Lu, Pengfei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2018-03-01
Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.
Smith, K.F.; Van Thyne, R.J.
1959-05-12
This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.
Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa
2013-01-18
An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.
Multiphase, multicomponent phase behavior prediction
NASA Astrophysics Data System (ADS)
Dadmohammadi, Younas
Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.
Hirano, Yoshiaki; Tateno, Shinsuke; Yamashita, Yoshihide; Ozaki, Yukihiro
2008-11-13
We have investigated the thermal behavior of H-aggregate in a mixed Langmuir-Blodgett (LB) film of the merocyanine dye (MS18)-arachidic acid (C20)- n-octadecane (AL18) ternary system by means of UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR spectra indicate that the temperature-dependent variation in MS 18 aggregation state is linked not only with the degree of intramolecular charge transfer and the behavior of packing, orientation, conformation, and thermal mobility of the MS18 hydrocarbon chain but also with the presence and absence of AL18. The H-aggregate dissociates from 25 up to 50 degrees C, which is caused by the AL18 evaporation from the mixed LB film and the increment of thermal mobility of the MS18 hydrocarbon chain. From 110 to 160 degrees C, blue-shifted bands, attributed to the oligomeric MS18 aggregation, appear near 515 nm in the MS18-C 20-AL18 ternary system as well. The temperature at which the 515 nm band occurs is identical for both present ternary system and previously investigated MS18-deuterated arachidic acid (C20- d) binary system, and it is in good agreement with the melting point (110 degrees C) of cadmium arachidate (CdC20). Therefore, it is indicated that the driving force which induces the 515 nm band comes from the melting phenomenon of CdC20 molecules which are phase-separated from MS 18 molecules in as-deposited LB films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Y.W.; Lee, Y.Y.
1996-03-01
Isothermal vapor-liquid equilibria for the three binary systems 1-chloro-1,1-difluoroethane + 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane + 1,1,1-trichloroethane, and 1,1-dichloro-1-fluoroethane + 1,1,1-trichloroethane and the ternary system 1-chloro-1,1-difluoromethane + 1,1-dichloro-1-fluoroethane + 1,1,1-trichloroethane have been measured at 50.1 C. The experimental data for the binary systems are correlated with the Peng-Robinson equation of state, and the relevant parameters are presented. The predicted results for the ternary system were found to be in good agreement with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yiming; Fredrickson, Daniel C.
Intermetallic crystal structures offer an enormous structural diversity, with an endless array of structural motifs whose connection to stability and physical properties are often mysterious. Making sense of the often complex crystal structures that arise here, developing a clear structural description, and identifying connections to other phases can be laborious and require an encyclopedic knowledge of structure types. In this Article, we present PRINCEPS, an algorithm based on a new coordination environment projection scheme that facilitates the structural analysis and comparison of such crystal structures. We demonstrate the potential of this approach by applying it to the complex Ce-Ni-Si ternarymore » system, whose 17 binary and 21 ternary phases would present a daunting challenge to one seeking to understand the system by manual inspection (but has nonetheless been well-described through the heroic efforts of previous researchers). With the help of PRINCEPS, most of the ternary phases in this system can be rationalized as intergrowths of simple structural fragments, and grouped into a handful of structural series (with some outliers). Lastly, these results illustrate how the PRINCEPS approach can be used to organize a vast collection of crystal structures into structurally meaningful families, and guide the description of complex atomic arrangements.« less
Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2015-09-18
Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation of solution characteristics using in situ evaluation techniques will lead to the formation of useful solid dispersion and nanoparticle formulations, resulting in improved drug absorption. Copyright © 2015 Elsevier B.V. All rights reserved.
High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.
Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L
2014-01-24
The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.
NASA Astrophysics Data System (ADS)
He, Hongcai; Jiang, Zhuolin; He, Zhaoling; Liu, Tao; Li, Enzhu; Li, Bao-Wen
2018-01-01
An excellent ternary composite photocatalyst consisting of silver orthophosphate (Ag3PO4), attapulgite (ATP), and TiO2 was synthesized, in which heterojunction was formed between dissimilar semiconductors to promote the separation of photo-generated charges. The ATP/TiO2/Ag3PO4 composite was characterized by SEM, XRD, and UV-vis diffuse reflectance spectroscopy. The co-deposition of Ag3PO4 and TiO2 nanoparticles onto the surface of ATP forms a lath-particle structure. Compared with composite photocatalysts consisting of two phases, ATP/TiO2/Ag3PO4 ternary composite exhibits greatly improved photocatalytic activity for degradation of rhodamine B under simulated solar irradiation. Such ternary composite not only improves the stability of Ag3PO4, but also lowers the cost by reducing application amount of Ag3PO4, which provides guidance for the design of Ag3PO4- and Ag-based composites for photocatalytic applications.
Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariyawansa, Gamini, E-mail: gamini.ariyawansa.2@us.af.mil; Reyner, Charles J.; Duran, Joshua M.
2016-07-11
Growth and characteristics of mid-wave infrared (MWIR) InGaAs/InAsSb strained layer superlattice (SLS) detectors are reported. InGaAs/InAsSb SLSs, identified as ternary SLSs, not only provide an extra degree of freedom for superlattice strain compensation but also show enhanced absorption properties compared to InAs/InAsSb SLSs. Utilizing In{sub 1-y}Ga{sub y}As/InAs{sub 0.65}Sb{sub 0.35} ternary SLSs (y = 0, 5, 10, and 20%) designed to have the same bandgap, a set of four unipolar detectors are investigated. These demonstrate an enhancement in the detector quantum efficiency due to the increased absorption coefficient. The detectors exhibit dark current performance within a factor of 10 of Rule 07 atmore » temperatures above 120 K, and external quantum efficiencies in the 15%–25% range. This work demonstrates ternary SLSs are a potential absorber material for future high performance MWIR detectors.« less
Ternary solution-processed organic solar cells incorporating 2D materials
NASA Astrophysics Data System (ADS)
Stylianakis, Minas M.; Konios, Dimitrios; Petridis, Constantinos; Kakavelakis, George; Stratakis, Emmanuel; Kymakis, Emmanuel
2017-12-01
Recently, the study of ternary organic solar cells (OSCs) has attracted the efforts of the scientific community, leading to significantly higher performance due to the enhanced harvesting of incoming irradiation. Here, for the first time, and in order to promote this OSC architecture, we review the progress implemented by the application of two-dimensional (2D) materials in the field of blend bulk heterojunction ternary OSCs. Power conversion efficiency (PCE) improvements of the order of 40% compared to the reference binary devices, and PCEs in excess of 8% have been reported by incorporating graphene-based or other 2D materials as a third element inside the active layer. These OSCs combine the synergetic advantages of ternary devices and the superb properties of the 2D material family. In conclusion, the incorporation of the unique properties of graphene and other 2D materials inside the active layer opens up a very promising pathway in the design and construction of high-performance, simply fabricated and low- cost photovoltaic devices.
NASA Astrophysics Data System (ADS)
Hassan, Said A.; Elzanfaly, Eman S.; Salem, Maissa Y.; El-Zeany, Badr A.
2016-01-01
A novel spectrophotometric method was developed for determination of ternary mixtures without previous separation, showing significant advantages over conventional methods. The new method is based on mean centering of double divisor ratio spectra. The mathematical explanation of the procedure is illustrated. The method was evaluated by determination of model ternary mixture and by the determination of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) in laboratory prepared mixtures and in a commercial pharmaceutical preparation. For proper presentation of the advantages and applicability of the new method, a comparative study was established between the new mean centering of double divisor ratio spectra (MCDD) and two similar methods used for analysis of ternary mixtures, namely mean centering (MC) and double divisor of ratio spectra-derivative spectrophotometry (DDRS-DS). The method was also compared with a reported one for analysis of the pharmaceutical preparation. The method was validated according to the ICH guidelines and accuracy, precision, repeatability and robustness were found to be within the acceptable limits.
Multicomponent homogeneous alloys and method for making same
Dutta, Partha S.; Miller, Thomas R.
2003-09-02
The present application discloses a method for preparing a homogeneous ternary or quaternary alloy from a quaternary melt. The method includes providing a family of phase diagrams for the quaternary melt which shows (i) composition/temperature data, (ii) tie lines connecting equilibrium liquid and solid compositions, and (iii) isotherms representing boundaries of a miscibility gap. Based on the family of phase diagrams, a quaternary melt composition and an alloy growth temperature is selected. A quaternary melt having the selected quaternary melt composition is provided and a ternary or quaternary alloy is grown from the quaternary melt at the selected alloy growth temperature. A method for making homogeneous ternary or quaternary alloy from a ternary or quaternary melt is also disclosed, as are homogeneous quaternary single-crystal alloys which are substantially free from crystal defects and which have the formula A.sub.x B.sub.1-x C.sub.y D.sub.1-y, x and y being the same or different and in the range of 0.001 to 0.999.
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
Wang, Jialin; Peng, Jiajun; Liu, Xiaoyu; Liang, Ziqi
2017-06-21
Planar perylene diimides (PDIs), when used as nonfullerene acceptors for organic photovoltaics, are constrained by their large π-aggregation in solid state. To tackle this issue, another planar nonfullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) with weak crystallinity and near-infrared light absorption is introduced into the PTB7-Th:PDI binary blend to fabricate efficient and stable ternary solar cells. We have finely tuned the PDI/ITIC weight ratio to investigate the influences of individual ITIC and PDI on the optical, electronic, and morphological properties of the PTB7-Th:ITIC:PDI ternary blend. Compared to the binary blend, complementary optical absorption is achieved in all ternary blends. More importantly, it is found that ITIC plays a critical role on largely suppressing the PDI aggregates in the PTB7-Th:PDI blend, while PDI aids to form an interpenetrating network morphology to facilitate charge transport in the PTB7-Th:ITIC blend. Consequently, when the PDI/ITIC ratio is 3:7 (w/w), the PTB7-Th:ITIC:PDI based inverted solar cells exhibit the highest power conversion efficiency of 8.64% due to their favorable out-of-plane π-π stacking, finest phase-separation morphology, and highest charge mobility. Remarkably, the optimal cells that are solution-processed in air show the promising efficiency of 7.09%, suggesting good ambient stability of such ternary solar cells.
Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films.
Mishra, R K; Ramasamy, K; Lim, S M; Ismail, M F; Majeed, A B A
2014-08-01
The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
Spiteri, Jasmine M A; Mallia, Carl J; Scerri, Glenn J; Magri, David C
2017-12-06
A novel fluorescent molecular logic gate with a 'fluorophore-spacer 1 -receptor 1 -spacer 2 -receptor 2 ' format is demonstrated in 1 : 1 (v/v) methanol/water. The molecule consists of an anthracene fluorophore, and tertiary alkyl amine and N-(2-methoxyphenyl)aza-15-crown-5 ether receptors. In the presence of threshold concentrations of H + and Na + , the molecule switches 'on' as an AND logic gate with a fluorescence quantum yield of 0.21 with proton and sodium binding constants of log β H+ = 9.0 and log β Na+ = 3.2, respectively. At higher proton levels, protonation also occurs at the anilinic nitrogen atom ether with a log β H+ = 4.2, which allows for Na + , H + -enabled OR (OR + AND circuit) and H + -driven ternary logic functions. The reported molecule is compared and contrasted to classic anthracene-based Na + and H + logic gates. We propose that such logic-based molecules could be useful tools for probing the vicinity of Na + , H + antiporters in biological systems.
Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials.
Shim, Jaewoo; Jo, Seo-Hyeon; Kim, Minwoo; Song, Young Jae; Kim, Jeehwan; Park, Jin-Hong
2017-06-27
Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (V TH s). Here, we report a finding: the photoinduced drain current in graphene/WSe 2 heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon. We also prove that such L-NDT phenomenon in specific bias ranges originates from a variable potential barrier at a graphene/WSe 2 junction due to a gate-controllable graphene electrode. This finding allows us to conceive graphene/WSe 2 -based MVL logic circuits by using the I D -V G characteristics with two distinctive V TH s. Based on this finding, we further demonstrate a light-triggered ternary inverter circuit with three stable logical states (ΔV out of each state <0.05 V). Our study offers the pathway to substantialize MVL systems.
Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.
Kilbride, P; Morris, G J
2017-06-01
This study determined the viscous conditions experienced by cells in the unfrozen freeze concentrated channels between ice crystals in slow cooling protocols. This was examined for both the binary Me 2 SO-water and the ternary Me 2 SO-NaCl-water systems. Viscosity increases from 6.9 ± 0.1 mPa s at -14.4 ± 0.3 °C to 958 ± 27 mPa s at -64.3 ± 0.4 °C in the binary system, and up to 55387 ± 1068 mPa s at -75 ± 0.5 °C in the ternary (10% Me 2 SO, 0.9% NaCl by weight) solution were seen. This increase in viscosity limits molecular diffusion, reducing adsorption onto the crystal plane. These viscosities are significantly lower than observed in glycerol based systems and so cells in freeze concentrated channels cooled to between -60 °C and -75 °C will reside in a thick fluid not a near-solid state as is often assumed. In addition, the viscosities experienced during cooling of various Me 2 SO based vitrification solutions is determined to below -70 °C, as is the impact which additional solutes exert on viscosity. These data show that additional solutes in a cryopreservation system cause disproportionate increases in viscosity. This in turn impacts diffusion rates and mixing abilities of high concentrations of cryoprotectants, and have applications to understanding the fundamental cooling responses of cells to Me 2 SO based cryopreservation solutions. Copyright © 2017 Elsevier Inc. All rights reserved.
Experimental study of the Er-Zr-O ternary system at 800 °C and 1100 °C
NASA Astrophysics Data System (ADS)
Mascaro, A.; Jourdan, J.; Toffolon-Masclet, C.; Joubert, J.-M.
2012-08-01
The Er-O-Zr ternary system has been investigated experimentally along two isothermal sections at 800 °C and 1100 °C. In order to obtain pure and homogeneous samples, powder metallurgy has been used. The samples have been synthesized using pure Er and Zr powder obtained by the hydride route. The study has been focused on the Zr rich corner and the results allow defining the co-solubility domains at both temperatures and the nature of the phases in equilibrium with αZr and βZr.
Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling
2014-08-14
Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.
New analytical technique for carbon dioxide absorption solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouryousefi, F.; Idem, R.O.
2008-02-15
The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less
Domańska, Urszula; Królikowski, Marek; Wlazło, Michał; Więckowski, Mikołaj
2018-05-30
Ionic liquids (ILs) are important new solvents proposed for applications in different separation processes. Herein, an idea of possible use of high pressure in a general strategy of production of 2-phenylethanol (PEA) is discussed. In this work, we present the influence of pressure on the density in binary systems of {1-hexyl-1-methylpyrrolidynium bis{(trifluoromethyl)sulfonyl}imide, [HMPYR][NTf 2 ], or 1-dodecyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [DoMIM][NTf 2 ] + PEA} in a wide range of temperatures (298.15-348.15 K) and pressures (0.1-40 MPa). The densities at ambient and high pressures are measured to present the physicochemical properties of the ILs used in the process of separation of PEA from aqueous phase. The Tait equation was used for the correlation of density of one-component and two-component systems as a function of mole fraction, temperature, and pressure. The influence of pressure is not significant. These systems exhibit mainly negative molar excess volumes, V E . The solid-liquid phase equilibrium (SLE) of [DoMIM][NTf 2 ] in PEA at atmospheric pressure was measured and compared to the SLE high-pressure results. Additionally, the ternary liquid-liquid phase equilibrium (LLE) at ambient pressure in the {[DoMIM][NTf 2 ] (1) + PEA (2) + water (3)} at temperature T = 308.15 K was investigated. The solubility of water in the [DoMIM][NTf 2 ] is quite high in comparison with that measured by us earlier for ILs ( x 3 = 0.403) at T = 308.15 K, which results in not very successful average selectivity of extraction of PEA from the aqueous phase. The [DoMIM][NTf 2 ] has shown strong interaction with PEA without the immiscibility region. The ternary system revealed Treybal's type phase equilibrium in which two partially miscible binaries ([DoMIM][NTf 2 ] + water) and (PEA + water) exist. From the results of LLE in the ternary system, the selectivity and the solute distribution ratio of separation of water/PEA were calculated and compared to the results obtained for the ILs measured earlier by us. The popular NRTL model was used to correlate the experimental tie-lines in ternary LLE. These results may help in a new technological project of "in situ" extraction of PEA from aqueous phase during the biosynthesis.
NASA Astrophysics Data System (ADS)
Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader
2016-06-01
Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.
Bargar, John R.; Reitmeyer, Rebecca; Lenhart, John J.; Davis, James A.
2000-01-01
We have measured U(VI) adsorption on hematite using EXAFS spectroscopy and electrophoresis under conditions relevant to surface waters and aquifers (0.01 to 10 μM dissolved uranium concentrations, in equilibrium with air, pH 4.5 to 8.5). Both techniques suggest the existence of anionic U(VI)-carbonato ternary complexes. Fits to EXAFS spectra indicate that U(VI) is simultaneously coordinated to surface FeO6 octahedra and carbonate (or bicarbonate) ligands in bidentate fashions, leading to the conclusion that the ternary complexes have an inner-sphere metal bridging (hematite-U(VI)-carbonato) structure. Greater than or equal to 50% of adsorbed U(VI) was comprised of monomeric hematite-U(VI)-carbonato ternary complexes, even at pH 4.5. Multimeric U(VI) species were observed at pH ≥ 6.5 and aqueous U(VI) concentrations approximately an order of magnitude more dilute than the solubility of crystalline β-UO2(OH)2. Based on structural constraints, these complexes were interpreted as dimeric hematite-U(VI)-carbonato ternary complexes. These results suggest that Fe-oxide-U(VI)-carbonato complexes are likely to be important transport-limiting species in oxic aquifers throughout a wide range of pH values.
A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution
NASA Astrophysics Data System (ADS)
Wei, Guo; Shida, Katsunori
This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.
Calculation of Gallium-metal-Arsenic phase diagrams
NASA Technical Reports Server (NTRS)
Scofield, J. D.; Davison, J. E.; Ray, A. E.; Smith, S. R.
1991-01-01
Electrical contacts and metallization to GaAs solar cells must survive at high temperatures for several minutes under specific mission scenarios. The determination of which metallizations or alloy systems that are able to withstand extreme thermal excursions with minimum degradation to solar cell performance can be predicted by properly calculated temperature constitution phase diagrams. A method for calculating a ternary diagram and its three constituent binary phase diagrams is briefly outlined and ternary phase diagrams for three Ga-As-X alloy systems are presented. Free energy functions of the liquid and solid phase are approximated by the regular solution theory. Phase diagrams calculated using this method are presented for the Ga-As-Ge and Ga-As-Ag systems.
NASA Astrophysics Data System (ADS)
Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong
2016-10-01
Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm-2 and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs.
NASA Astrophysics Data System (ADS)
Cheng, Feiyue; Yin, Hui; Xiang, Quanjun
2017-01-01
Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.
NASA Astrophysics Data System (ADS)
Boghaei, Davar M.; Gharagozlou, Mehrnaz
2007-07-01
A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa
Using a new simulative technique developed by us, we systematically investigated new ternary or quaternary molten salt systems, which are based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr binary systems, for use as electrolytes in thermal batteries, and evaluated their ionic conductivities and melting points experimentally. It was confirmed experimentally that LiF-LiBr-KF (melting point: 425 °C, ionic conductivity at 500 °C: 2.52 S cm -1), LiCl-LiBr-KF (405 °C, 2.56 S cm -1), LiCl-LiBr-NaF-KF (425 °C, 3.11 S cm -1), LiCl-LiBr-NaCl-KCl (420 °C, 2.73 S cm -1), and LiCl-LiBr-NaBr-KBr (420 °C, 2.76 S cm -1) meet our targets for both melting point (350-430 °C) and ionic conductivity (2.0 S cm -1 and higher at 500 °C). A single cell using the newly developed LiCl-LiBr-NaCl-KCl molten salt as an electrolyte was prepared, and the DC-IR of the cell decreased by 20% than that of a single cell using the conventional LiCl-KCl molten salt. It was therefore concluded that the use of new quaternary molten salt systems can improve the discharge rate-capability in practical battery applications because of their high ionic conductivities.
Phase Equilibria of Sn-Co-Cu Ternary System
NASA Astrophysics Data System (ADS)
Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih
2012-10-01
Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).
Ménigot, Sébastien; Girault, Jean-Marc
2013-01-01
Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR) is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.
Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H
2015-12-21
Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and intact cells. In turn, this study further supports the formation of sensor-Zn-protein adducts as the principal observed fluorescent product during experiments employing these two sensors.
NASA Astrophysics Data System (ADS)
Arif Sher Shah, Md. Selim; Zhang, Kan; Park, A. Reum; Kim, Kwang Su; Park, Nam-Gyu; Park, Jong Hyeok; Yoo, Pil J.
2013-05-01
With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction of AgNO3 and graphene oxide and the hydrolysis of titanium tetraisopropoxide were spontaneously performed in a mixed solvent system of ethylene glycol, N,N-dimethylformamide and a stoichiometric amount of water without resorting to the use of typical reducing agents. The nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, along with different microscopic and spectroscopic techniques, enabling us to confirm the successful reduction of AgNO3 and graphite oxide to metallic Ag and reduced graphene oxide, respectively. Due to the highly facilitated electron transport of well distributed Ag nanoparticles, the synthesized ternary nanocomposite showed enhanced photocatalytic activity for degradation of rhodamine B dye under visible light irradiation.With growing interest in the photocatalytic performance of TiO2-graphene composite systems, the ternary phase of TiO2, graphene, and Ag is expected to exhibit improved photocatalytic characteristics because of the improved recombination rate of photogenerated charge carriers and potential contribution of the generation of localized surface plasmon resonance at Ag sites on a surface of the TiO2-graphene binary matrix. In this work, Ag-TiO2-reduced graphene oxide ternary nanocomposites were successfully synthesized by a simple solvothermal process. In a single-step synthetic procedure, the reduction of AgNO3 and graphene oxide and the hydrolysis of titanium tetraisopropoxide were spontaneously performed in a mixed solvent system of ethylene glycol, N,N-dimethylformamide and a stoichiometric amount of water without resorting to the use of typical reducing agents. The nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, along with different microscopic and spectroscopic techniques, enabling us to confirm the successful reduction of AgNO3 and graphite oxide to metallic Ag and reduced graphene oxide, respectively. Due to the highly facilitated electron transport of well distributed Ag nanoparticles, the synthesized ternary nanocomposite showed enhanced photocatalytic activity for degradation of rhodamine B dye under visible light irradiation. Electronic supplementary information (ESI) available: XRD of GO, EDX analysis of AgTG composites, tables show the size of graphitic domains and peak area analysis, dye adsorption plot, UV-visible absorption spectra of dye at different times, and plots of ln(Ct/C0) vs. time with the corresponding fitting curves of different samples. See DOI: 10.1039/c3nr00579h
New crystals of the CsHSO{sub 4}–CsH{sub 2}PO{sub 4}–H{sub 2}O system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, I. P., E-mail: makarova@crys.ras.ru; Grebenev, V. V.; Komornikov, V. A.
2016-11-15
Cs{sub 6}H(HSO{sub 4}){sub 3}(H{sub 2}PO{sub 4}){sub 4} crystals, grown for the first time based on an analysis of the phase diagram of the CsHSO{sub 4}–CsH{sub 2}PO{sub 4}–H{sub 2}O ternary system, have been investigated by structural analysis using synchrotron radiation. The atomic structure of the crystals is determined and its specific features are analyzed.
Liu, W.; Montana, Vedrana; Parpura, Vladimir; Mohideen, U.
2010-01-01
We use an Atomic Force Microscope based single molecule measurements to evaluate the activation free energy in the interaction of SNARE proteins syntaxin 1A, SNAP25B and synaptobrevin 2 which regulate intracellular fusion of vesicles with target membranes. The dissociation rate of the binary syntaxin-synaptobrevin and the ternary syntaxin-SNAP25B-synaptobrevin complex was measured from the rupture force distribution as a function of the rate of applied force. The temperature dependence of the spontaneous dissociation rate was used to obtain the activation energy to the transition state of 19.8 ± 3.5 kcal/mol = 33 ± 6 kBT and 25.7 ± 3.0 kcal/mol = 43 ± 5 kBT for the binary and ternary complex, respectively. They are consistent with those measured previously for the ternary complex in lipid membranes and are of order expected for bilayer fusion and pore formation. The ΔG was 12.4–16.6 kcal/mol = 21–28 kBT and 13.8–18.0 kcal/mol = 23–30 kBT for the binary and ternary complex, respectively. The ternary complex was more stable by 1.4 kcal/mol = 2.3 kBT, consistent with the spontaneous dissociation rates. The higher adhesion energies and smaller molecular extensions measured with SNAP25B point to its possible unique and important physiological role in tethering/docking the vesicle in closer proximity to the plasma membrane and increasing the probability for fusion completion. PMID:20107522
Basile, Madeline; Unruh, Daniel K; Flores, Erin; Johns, Adam; Forbes, Tori Z
2015-02-14
Organic acids are important metal chelators in environmental systems and tend to form soluble complexes in aqueous solutions, ultimately influencing the transport and bioavailability of contaminants in surface and subsurface waters. This is particularly true for the formation of uranyl citrate complexes, which have been utilized in advanced photo- and bioremediation strategies for soils contaminated with nuclear materials. Given the complexity of environmental systems, the formation of ternary or heterometallic uranyl species in aqueous solutions are also expected, particularly with Al(iii) and Fe(iii) cations. These ternary forms are reported to be more stable in aqueous solutions, potentially enhancing contaminant mobility and uptake by organisms, but the exact coordination geometries of these soluble molecular complexes have not been elucidated. To provide insight into the nature of these species, we have developed a series of geochemical model compounds ([(UO(2))(2)Al(2)(C(6)H(4)O(7))(4)](6-) (U(2)Al(2)), [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)](6-) (U(2)Fe(2)-1) and [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)(H(2)O)(2)](6-) (U(2)Fe(2)-2) and [(UO(2))(2)Fe(4)(OH)(4)(C(6)H(4)O(7))(4)](8-) (U(2)Fe(4))) that were characterized by single-crystal X-ray diffraction and vibrational spectroscopy. Mass spectroscopy was then employed to compare the model compounds to species present in aqueous solutions to provide an enhanced understanding of the ternary uranyl citrate complexes that could be relevant in natural systems.
Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph
2010-01-01
A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023
Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph
2010-11-01
A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.
Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy
NASA Astrophysics Data System (ADS)
John, Cédric M.
2004-04-01
Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.
Ternary compound electrode for lithium cells
Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.
1980-07-30
Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.
Ternary compound electrode for lithium cells
Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.
1982-01-01
Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.
Infrared target recognition based on improved joint local ternary pattern
NASA Astrophysics Data System (ADS)
Sun, Junding; Wu, Xiaosheng
2016-05-01
This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.
Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction
Zhang, Jianyu; Kulik, Heather J.; Martinez, Todd J.; Klinman, Judith P.
2015-01-01
Enzymatic methyl transfer, catalyzed by catechol-O-methyltransferase (COMT), is investigated using binding isotope effects (BIEs), time-resolved fluorescence lifetimes, Stokes shifts, and extended graphics processing unit (GPU)-based quantum mechanics/molecular mechanics (QM/MM) approaches. The WT enzyme is compared with mutants at Tyr68, a conserved residue that is located behind the reactive sulfur of cofactor. Small (>1) BIEs are observed for an S-adenosylmethionine (AdoMet)-binary and abortive ternary complex containing 8-hydroxyquinoline, and contrast with previously reported inverse (<1) kinetic isotope effects (KIEs). Extended GPU-based computational studies of a ternary complex containing catecholate show a clear trend in ground state structures, from noncanonical bond lengths for WT toward solution values with mutants. Structural and dynamical differences that are sensitive to Tyr68 have also been detected using time-resolved Stokes shift measurements and molecular dynamics. These experimental and computational results are discussed in the context of active site compaction that requires an ionization of substrate within the enzyme ternary complex. PMID:26080432
(Energetics of silicate melts from thermal diffusion studies)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less
Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses
Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.
2015-01-01
For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale. PMID:26592568
Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses
NASA Astrophysics Data System (ADS)
Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.
2015-11-01
For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)
2006-01-01
A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, V.; Kosek, J.; Giner, J.
The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it wasmore » discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.« less
NASA Astrophysics Data System (ADS)
Pahari, D.; Das, N. S.; Das, B.; Howli, P.; Chattopadhyay, K. K.; Banerjee, D.
2017-12-01
Amorphous carbon nanotubes (a-CNTs) manganese di oxide (MnO2)-poly pyrrole (PPy) ternary nanocomposites have been synthesized by a simple chemical route. The as prepared samples have been characterized with different characterization tools that include field emission scanning and high resolution transmission electron microscopy, Raman, Fourier transformed infrared as well as UV-Vis spectroscopy. The electrochemical performance of all the as prepared pure and hybrid samples have been studied in detail. It has been seen that the ternary hybrid shows efficient electrochemical performance with high value of specific capacitance with good stability even up to 2000 cycles. The superior performance of the hybrid samples can be attributed to the strong synergistic effect between the components resulting electron shuttling along PPy main chains and inter-chain raising built-in continuous conductive network. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. These studies can well speculate the existence of another supercapacitor hybrid for the use in environment friendly electrode and thus a pollution free nature.
Facet-Specific Ligand Interactions on Ternary AgSbS 2 Colloidal Quantum Dots
Choi, Hyekyoung; Kim, Sungwoo; Luther, Joseph M.; ...
2017-11-07
Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated withmore » the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.« less
Refractive index of B1-xGaxN semiconductors
NASA Astrophysics Data System (ADS)
Vyas, P. S.; Baria, J. K.; Jivani, A. R.; Gajjar, P. N.; Jani, A. R.
2013-06-01
A theoretical procedure is presented for the study of refractive index of ternary alloy B1-xGaxN. The calculations based on the pseudopotential formalism in which local potential coupled with the virtual crystal approximation (VCA) is applied to evaluate energy band gap at point X on the Jones-zone face, refractive index for the entire range of the alloy composition x of the ternary alloy B1-xGaxN. To include exchange and correlation effects, local field correction function due to Nagy is employed. Our results for parent compounds are compared to experiment and other available theoretical findings and showed generally good agreement. During present study it is found that the refractive index of the ternary alloy B1-xGaxN has minimum value at gallium concentration x = 0.4.
Jump resonant frequency islands in nonlinear feedback control systems
NASA Technical Reports Server (NTRS)
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; ...
2016-01-11
Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less
NASA Astrophysics Data System (ADS)
Lux, Simon F.; Schmuck, Martin; Appetecchi, Giovanni B.; Passerini, Stefano; Winter, Martin; Balducci, Andrea
In this paper we report the results about the use of ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. Mixtures of N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide, PYR 13FSI, and N-butyl- N-methylpyrrolidinium bis(trifluoromethansulfonyl) imide, PYR 14TFSI, with lithium hexafluorophosphate, LiPF 6 and lithium bis(trifluoromethansulfonyl) imide, LiTFSI, containing 5 wt.% of vinylene carbonate (VC) as additive, have been used in combination with a commercial graphite, KS6 TIMCAL. The performance of the graphite electrodes has been considered in term of specific capacity, cycling efficiency and cycling stability. The results clearly show the advantage of the use of ternary mixtures on the performance of the graphite electrode.
Method for preparing homogeneous single crystal ternary III-V alloys
Ciszek, Theodore F.
1991-01-01
A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.
Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors
Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro
2015-01-01
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017
Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro
2015-09-29
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.
First-principles study of the amorphous In3SbTe2 phase change compound
NASA Astrophysics Data System (ADS)
Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco
2013-11-01
Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.
High-throughput search of ternary chalcogenides for p-type transparent electrodes
Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.
2017-01-01
Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes. PMID:28266587
Li, Guangmao; Zhen, Ni; Chu, Yu; Zhou, Zhongxiang
2017-12-21
Li 3 Ge 3 Se 6 , the first compound of the ternary Li/Ge/Se system, has been synthesized. Note that interesting 1D ∞ [Ge 6 Se 12 ] n chains constructed by ethane-like [Ge 2 Se 6 ] 6- clusters were discovered in its structure. Investigations on the structures of all the [Ge 2 Se 6 ] 6- cluster-containing compounds have shown that only in Li 3 Ge 3 Se 6 are there 1D chains composed of [Ge 2 Se 6 ] 6- clusters, which result from the space limitation within the tunnels surrounded by LiSe 6 octahedra. Raman spectrum was obtained to demonstrate the existence of Ge-Ge bonds. UV-visible-NIR diffuse reflection spectrum showed an optical bandgap of 2.08 eV. Theoretical calculations based on first principles have also been performed for its band structure and density of states to analyze its structure-property relationship.
Symmetric and asymmetric ternary fission of hot nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.
1993-07-01
Emission of [alpha] particles accompanying fusion-fission processes in the [sup 40]Ar +[sup 232]Th reaction at [ital E]([sup 40]Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of [alpha] particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission,more » and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7[times]10[sup [minus]20] s) and the motion during the descent to scission almost completely damped.« less
NASA Astrophysics Data System (ADS)
Xie, Mingyuan; Zhang, Tailiang
2018-04-01
Ag3PO4 can-not be widely used as an efficient photocatalyst in practical applications because of its susceptibility to photocorrosion. In this study, a novel, ternary Z-scheme photocatalytic system containing graphene oxide (GO), Ag3PO4 and SnS2 was fabricated by a one-pot, mild, in-situ precipitation method successfully. Using Rhodamine B (RhB) as the target of elimination, GO/Ag3PO4/SnS2 exhibited outstanding photocatalytic and anti-photocorrosion properties compared with those of Ag3PO4, Ag3PO4/SnS2 and GO/Ag3PO4. RhB was thoroughly degraded over the optimized GO/Ag3PO4/SnS2 nanocomposite after only 15 min under visible-light irradiation; this result is approximately 2.14, 3.33 and 5.83 times faster than that of GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. After three reuses, the photocatalytic activity of the ternary composite slightly decreased but remained 2.36, 4.08 and 12.70 times higher than those of the reused GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. In this system, the efficient separation and migration of the photoinduced current carriers in Ag3PO4 was realized through a double Z-scheme electron-transfer mechanism in which the GO nanosheets acted as the photocatalyst and electron mediator, thereby enhancing the photoactivity and stability of Ag3PO4. The present study provides a new perspective for enhancing photocatalytic and anti-photocorrosion performances in perishable photocatalysts for organic sewage and other environmental contamination treatments.
Effect of humic acid & bacterial exudates on sorption-desorption interactions of 90Sr with brucite.
Ashworth, Hollie; Abrahamsen-Mills, Liam; Bryan, Nick; Foster, Lynn; Lloyd, Jonathan R; Kellet, Simon; Heath, Sarah
2018-05-18
One of the nuclear fuel storage ponds at Sellafield (United Kingdom) is open to the air, and has contained a significant inventory of corroded magnox fuel and sludge for several decades. As a result, some fission products have also been released into solution. 90Sr is known to constitute a small mass of the radionuclides present in the pond, but due to its solubility and activity, it is at risk of challenging effluent discharge limits. The sludge is predominantly composed of brucite (Mg(OH)2), and organic molecules are known to be present in the pond liquor with occasional algal blooms restricting visibility. Understanding the chemical interactions of these components is important to inform ongoing sludge retrievals and effluent management. Additionally, interactions of radionuclides with organics at high pH will be an important consideration for the evolution of cementitious backfilled disposal sites in the UK. Batch sorption-desorption experiments were performed with brucite, 90Sr and natural organic matter (NOM) (humic acid (HA) and Pseudanabaena catenata cyanobacterial growth supernatant) in both binary and ternary systems at high pH. Ionic strength, pH and order of addition of components were varied. 90Sr was shown not to interact strongly with the bulk brucite surface in binary systems under pH conditions relevant to the pond. HA in both binary and ternary systems demonstrated a strong affinity for the brucite surface. Ternary systems containing HA demonstrated enhanced sorption of 90Sr at pH 11.5 and vice versa, likely via formation of strontium-humate complexes regardless of the order of addition of components. The distribution coefficients show HA sorption to be reversible at all pH values studied, and it appeared to control 90Sr behaviour at pH 11.5. Ternary systems containing cyanobacterial supernatant demonstrated a difference in 90Sr behaviour when the culture had been subjected to irradiation in the first stages of its growth.
Zolali, Ali M; Favis, Basil D
2017-04-12
In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.
Study of a ternary blend system for bulk heterojunction thin film solar cells
NASA Astrophysics Data System (ADS)
Ahmad, Zubair; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.
2016-08-01
In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively. This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.
A Visual Basic program to plot sediment grain-size data on ternary diagrams
Poppe, L.J.; Eliason, A.H.
2008-01-01
Sedimentologic datasets are typically large and compiled into tables or databases, but pure numerical information can be difficult to understand and interpret. Thus, scientists commonly use graphical representations to reduce complexities, recognize trends and patterns in the data, and develop hypotheses. Of the graphical techniques, one of the most common methods used by sedimentologists is to plot the basic gravel, sand, silt, and clay percentages on equilateral triangular diagrams. This means of presenting data is simple and facilitates rapid classification of sediments and comparison of samples.The original classification scheme developed by Shepard (1954) used a single ternary diagram with sand, silt, and clay in the corners and 10 categories to graphically show the relative proportions among these three grades within a sample. This scheme, however, did not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme was later modified by the addition of a second ternary diagram with two categories to account for gravel and gravelly sediment (Schlee, 1973). The system devised by Folk (1954, 1974)\\ is also based on two triangular diagrams, but it has 21 categories and uses the term mud (defined as silt plus clay). Patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition as is the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2005).The program described herein (SEDPLOT) generates verbal equivalents and ternary diagrams to characterize sediment grain-size distributions. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The inputs for the sediment fractions are percentages of gravel, sand, silt, and clay in the Wentworth (1922) grade scale, and the program permits the user to select output in either the Shepard (1954) classification scheme, modified as described above, or the Folk (1954, 1974) scheme. Users select options primarily with mouse-click events and through interactive dialogue boxes. This program is intended as a companion to other Visual Basic software we have developed to process sediment data (Poppe et al., 2003, 2004).
Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C
2015-02-04
Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.
NASA Astrophysics Data System (ADS)
Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj.; Zainal, Zulkarnain
2009-11-01
Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D) intercalated into the interlayer of Zn-Al-layered double hydroxide (ZAN) have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree, Hevea brasiliensis.
NASA Astrophysics Data System (ADS)
Chou, George; Vaughn, Mark; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying cell membranes. At present, an ordered multicomponent phospholipid/cholesterol bilayer system involving charged lipid is still not available. Using a lipid superlattice (SL) model, a 13 x 15 x 15 nm^3 ternary phosphatidylcholine/phosphatidylserine/cholesterol bilayer system in water with simultaneous headgroup SL and acyl chain SL at different depths, or epitaxial SL, of the bilayer has been designed with atomistic detail. The arrangements of this epitaxial SL system were optimized by only two molecular parameters, lattice space and rotational angle of the lipids. Using atomistic MD simulations, we demonstrated the stability of the ordered structures for more than 100 ns. A positional restrained system was also used as a control. This system will provide new insights into understanding the nanodomain structures of cell membranes at the molecular level.
Research opportunities in salt hydrates for thermal energy storage
NASA Astrophysics Data System (ADS)
Braunstein, J.
1983-11-01
The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.
NASA Astrophysics Data System (ADS)
Zedam, Lemnaouar; Barkat, Omar; De Baets, Bernard
2018-05-01
In this paper, we generalize the notion of traces of a binary relation to the setting of ternary relations. With a given ternary relation, we associate three binary relations: its left, middle and right trace. As in the binary case, these traces facilitate the study and characterization of properties of a ternary relation. Interestingly, the traces themselves turn out to be the greatest solutions of relational inequalities associated with newly introduced compositions of a ternary relation with a binary relation (and vice versa).
Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao
2016-09-07
A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.
Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors
NASA Astrophysics Data System (ADS)
Jolodosky, Alejandra
The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically any quantity of interest. This allows multiple responses to be calculated by perturbing the input parameter without having to directly perform separate calculations. The approach is strictly created for critical systems, but was utilized as the basis of a new methodology implemented for fixed source problems, known as Exact Perturbation Theory (EPT). EPT can calculate the tritium breeding ratio response, caused by a perturbation in the composition of the ternary alloy. The downfall of EPT methodology is that it cannot account for the collision history at large perturbations and thus, produces results with high uncertainties. Preliminary analysis for EPT with Serpent for a LiPbBa alloy demonstrated that 25 simulations per ternary must be completed so that most uncertainties calculated at large perturbations do not exceed 0.05. To reduce the uncertainties of the results, generalized least squares (GSL) method was implemented, to replace imprecise TBR results with more accurate ones. It was demonstrated that a combination of EPT Serpent calculations with the application of GLS for results with high uncertainties is the most effective and produces values with the highest fidelity. The scheme finds an alloy composition that has a TBR within a range of interest, while imposing constraint on the EMF, and a requirement to minimize lithium concentration. It involved a three-level iteration process with each level zooming in closer on the area of interest to fine tune the correct composition. Both alloys studied, LiPbBa and LiSnZn, had optimized compositions close to the leftmost edge of the ternary, increasing the complexity of optimization due to the highly uncertain results found in these regions. Additional GPT methodologies were considered for optimization studies, specifically with the use of deterministic codes. Currently, an optimization deterministic code, SMORES, is available in the SCALE code package, but only for critical systems. Subsequently, it was desired to change this code to solve problems for fusion reactors similarly to what was done in SWAN. So far, the fixed and adjoint source declaration and definition was added to the input file. As a result, alterations were made to the source code so that it can read in and utilize the new input information. Due to time constraints, only a detailed outline has been created that includes the steps one has to take to make the transition of SMORES from critical systems to fixed source problems. Additional time constraints limited the goal to perform chemical reactivity experiments on candidate alloys. Nevertheless, a review of past experiments was done and it was determined that large-scale experiments seem more appropriate for the purpose of this work, as they would better depict how the alloys would behave in the actual reactor environment. Both air and water reactions should be considered when examining the potential chemical reactions of the lithium alloy.
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.; ...
2016-11-21
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces
Arai, Yuji; Fuller, C.C.
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.
Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema
2011-09-01
Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. © 2011 American Chemical Society
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.
Arai, Yuji; Fuller, C C
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.
Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian
1997-01-01
An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.
Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure
NASA Astrophysics Data System (ADS)
Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian
2017-10-01
We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.
Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production
NASA Astrophysics Data System (ADS)
Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin
2018-02-01
In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.
C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering upmore » of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.« less
Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites
Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun
2016-01-01
Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640
Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells.
Yu, Runnan; Zhang, Shaoqing; Yao, Huifeng; Guo, Bing; Li, Sunsun; Zhang, Hao; Zhang, Maojie; Hou, Jianhui
2017-07-01
High-performance ternary organic solar cells are fabricated by using a wide-bandgap polymer donor (bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymer, J52) and two well-miscible nonfullerene acceptors, methyl-modified nonfullerene acceptor (IT-M) and 2,2'-((2Z,2'Z)-((5,5'-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydros-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO). The two acceptors with complementary absorption spectra and similar lowest unoccupied molecular orbital levels show excellent compatibility in the blend due to their very similar chemical structures. Consequently, the obtained ternary organic solar cells (OSC) exhibits a high efficiency of 11.1%, with an enhanced short-circuit current density of 19.7 mA cm -2 and a fill factor of 0.668. In this ternary system, broadened absorption, similar output voltages, and compatible morphology are achieved simultaneously, demonstrating a promising strategy to further improve the performance of ternary OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple IMU system hardware interface design, volume 2
NASA Technical Reports Server (NTRS)
Landey, M.; Brown, D.
1975-01-01
The design of each system component is described. Emphasis is placed on functional requirements unique in this system, including data bus communication, data bus transmitters and receivers, and ternary-to-binary torquing decision logic. Mechanization drawings are presented.
Identifying patients for clinical trials using fuzzy ternary logic expressions on HL7 messages.
Majeed, Raphael W; Röhrig, Rainer
2011-01-01
Identifying eligible patients is one of the most critical parts of any clinical trial. The process of recruiting patients for the third phase of any clinical trial is usually done manually, informing relevant physicians or putting notes on bulletin boards. While most necessary information is already available in electronic hospital information systems, required data still has to be looked up individually. Most university hospitals make use of a dedicated communication server to distribute information from independent information systems, e.g. laboratory information systems, electronic health records, surgery planning systems. Thus, a theoretical model is developed to formally describe inclusion and exclusion criteria for each clinical trial using a fuzzy ternary logic expression. These expressions will then be used to process HL7 messages from a communication server in order to identify eligible patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com
2014-03-15
This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) aremore » treated as the input substances in this report. The literature has been covered through the end of 2013.« less
NASA Astrophysics Data System (ADS)
Kudo, Shoji; Takiyama, Hiroshi
2014-04-01
In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.
Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M
2017-03-01
Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.-S.; Green, M. L.; Suehle, J.
2006-10-02
The authors have fabricated combinatorial Ni-Ti-Pt ternary metal gate thin film libraries on HfO{sub 2} using magnetron co-sputtering to investigate flatband voltage shift ({delta}V{sub fb}), work function ({phi}{sub m}), and leakage current density (J{sub L}) variations. A more negative {delta}V{sub fb} is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller {phi}{sub m} near the Ti-rich corners and higher {phi}{sub m} near the Ni- and Pt-rich corners. In addition, measured J{sub L} values can be explained consistently with the observed {phi}{sub m} variations. Combinatorial methodologies prove to be useful in surveying the large compositionalmore » space of ternary alloy metal gate electrode systems.« less
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.
1998-01-01
A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV
Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system
Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.
1998-06-23
A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-05
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-01
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.
Li, Yanyan; Zhao, Manru; Wang, Haiyan
2017-11-01
We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.
NASA Astrophysics Data System (ADS)
Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans
2009-02-01
For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.
Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques
Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...
2016-01-25
This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less
NASA Astrophysics Data System (ADS)
Bocchini, Peter J.
High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x-ray spectroscopy (EDS) in alloys with coarse microstructures. High-temperature mechanical properties are determined with compression creep at 850 °C and flow stress tests conducted between room temperature and 900 °C. gamma'(L12)-solvus temperature, as well as solidus and liquidus temperatures, are measured with differential thermal analysis (DTA). B and Zr strongly segregate to GBs in Co-Al-W-B-Zr alloys. B additions of 0.05 at. % result in micron-sized GB-precipitates that improve creep strength by two orders of magnitude. Segregation of B or Zr in amounts where GB-precipitates do not form, have no effect on creep strength over a ternary Co-Al-W alloy. The concurrent addition of B and Zr improves creep strength, though to a lesser degree than in alloys containing GB-borides. Ti is an effective substitute for W and Al in Co-Ni-Al-W alloys where density is decreased by 9 % and solvus is increased to 1137 °C in a Co-10Ni-5Al-5W-8Ti at. % alloy compared to 982 °C in a Co-10Ni-9Al-9W at. % alloy. Further investigation of reducing W in a Co-10Ni-6Al-xW-6Ti at. % (x=6, 4, 2, 0) alloys ascertain that, with the addition of Ti, gamma'(L12)-precipitates can form in a wider composition range than in ternary Co-Al-W alloys. 2-D dislocation dynamics simulations are in good agreement with experimental measurements for binary Ni-Al and ternary Co-Al-W alloys. General trends in strengthening are captured for higher order Ni-Al-Cr and Ni-Al-Cr-W alloys.
Self-Assembly in Systems Containing Silicone Compounds
NASA Astrophysics Data System (ADS)
Ferreira, Maira Silva; Loh, Watson
2009-01-01
Chemical systems formed by silicone solvents and surfactants have potential applications in a variety of industrial products. In spite of their technological relevance, there are few reports on the scientific literature that focus on characterizing such ternary systems. In this work, we have aimed to develop a general, structural investigation on the phase diagram of one system that typically comprises silicone-based chemicals, by means of the SAXS (small-angle X-ray scattering) technique. Important features such as the presence of diverse aggregation states in the overall system, either on their own or in equilibrium with other structures, have been detected. As a result, optically isotropic chemical systems (direct and/or reversed microemulsions) and liquid crystals with lamellar or hexagonal packing have been identified and characterized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing
2015-03-01
It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.
Lv, Peng; Wang, Yaru; Ji, Chenglong; Yuan, Jiajiao
2017-01-01
Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/MnO2 ternary composite, SEGA provides the compressible backbone and conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PEDOT not only reduces the interface resistance between MnO2 and graphene, but also further reinforces the strength of graphene cellar walls. The synergistic effect of the three components in the ternary composite electrode leads to high electrochemical performances and good compression-tolerant ability. The gravimetric capacitance of the compressible ternary composite electrodes reaches 343 F g−1 and can retain 97% even at 95% compressive strain. And a volumetric capacitance of 147.4 F cm−3 is achieved, which is much higher than that of other graphene-based compressible electrodes. This value of volumetric capacitance can be preserved by 80% after 3500 charge/discharge cycles under various compression strains, indicating an extreme durability.
GaSb and Ga1-xInxSb Thermophotovoltaic Cells using Diffused Junction Technology in Bulk Substrates
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Borrego, J. M.; Ehsani, H.; Rajagopalan, G.; Bhat, I. B.; Gutmann, R. J.; Nichols, G.; Baldasaro, P. F.
2003-01-01
This paper presents results of experimental and theoretical research on antimonide- based thermophotovoltaic (TPV) materials and cells. The topics discussed include: growth of large diameter ternary GaInSb bulk crystals, substrate preparation, diffused junction processes, cell fabrication and characterization, and, cell modeling. Ternary GaInSb boules up to 2 inches in diameter have been grown using the vertical Bridgman technique with a novel self solute feeding technique. A single step diffusion process followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency, p-n junction GaSb and GaInSb thermophotovoltaic cells. The optimum junction depth to obtain the highest quantum efficiency and open circuit voltage has been identified based on diffusion lengths (or minority carrier lifetimes), carrier mobility and experimental diffused impurity profiles. Theoretical assessment of the performance of ternary (GaInSb) and binary (GaSb) cells fabricated by Zn diffusion in bulk substrates has been performed using PC-1D one-dimensional computer simulations. Several factors affecting the cell performances such as the effects of emitter doping profile, emitter thickness and recombination mechanisms (Auger, radiative and Shockley-Read-Hall), the advantages of surface passivation and the impact of dark current due to the metallic grid will be discussed. The conditions needed for diffused junction cells on ternary and binary substrates to achieve similar performance to the epitaxially grown lattice- matched quaternary cells are identified.
NASA Astrophysics Data System (ADS)
France, Lydéric; Nicollet, Christian
2010-06-01
MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.
How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
Wu, Wen-Jin; Su, Mei-I; Wu, Jian-Li; Kumar, Sandeep; Lim, Liang-Hin; Wang, Chun-Wei Eric; Nelissen, Frank H T; Chen, Ming-Chuan Chad; Doreleijers, Jurgen F; Wijmenga, Sybren S; Tsai, Ming-Daw
2014-04-02
A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.
Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
2014-01-01
A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.
Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng
2015-03-01
Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao
2017-12-29
Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
NASA Astrophysics Data System (ADS)
Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.
2016-05-01
Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new method for the spectroscopy of transition states (J ,K ) near the fission barrier. Implications of collective rotation on fragment angular momenta are discussed.
Symmetric weak ternary quantum homomorphic encryption schemes
NASA Astrophysics Data System (ADS)
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Extension of photonic band gap in one-dimensional ternary metal-dielectric photonic crystal
NASA Astrophysics Data System (ADS)
Pandey, G. N.; Thapa, Khem B.
2018-05-01
In this paper, the photonic band gap structure in the visible and near infrared for a ternary metal dielectric photonic crystal has been theoretically investigated. At the normal incidence, the high reflectance range can be significantly enlarged at a thicker metal film. The transmission of the structure containing Cu has large compared to the other metals like Al and Ag metals. The transmission properties of the metal are dependent upon the value of the plasma frequency. In this paper we consider the effect of the variation of the thickness of the metal on the reflection bands of ternary metallic-dielectric photonic crystal (MDPC). Finally we find that the enlargement of band gap in MDPC is due to the addition of increase of the thickness of metallic film at normal incidence. All the theoretical calculations are made based on the transfer matrix method together with the Drude model of metal.
Sheng, Gang; Zhao, Hongtu; Wang, Jiuyu; Rao, Yu; Tian, Wenwen; Swarts, Daan C.; van der Oost, John; Patel, Dinshaw J.; Wang, Yanli
2014-01-01
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand. PMID:24374628
NASA Astrophysics Data System (ADS)
Teyssier, A.; Lagneau, V.; Schmitt, J. M.; Counioux, J. J.; Goutaudier, C.
2017-04-01
During the acid processing of aluminosilicate ores, the precipitation of a solid phase principally consisting of hydrated aluminium hydroxysulfates may be observed. The experimental study of the H2O-Al2O3-SO3 ternary system at 25 ∘C and 101 kPa enabled to describe the solid-liquid equilibra and to identify the nature, the composition and the solubility of the solid phases which may form during the acid leaching. To predict the appearance of these aluminium hydroxysulfates in more complex systems, their solubility constants were calculated by modelling the experimental solubility results, using a geochemical reaction modelling software, CHESS. A model for non-ideality correction, based on the B-dot equation, was used as it was suitable for the considered ion concentration range. The solubility constants of three out of four solid phases were calculated: 104.08 for jurbanite (Al(SO4)(OH).5H2O), 1028.09 for the solid T (Al8(SO4)5(OH)14.34H2O) and 1027.28 for the solid V (Al10(SO4)3(OH)24.20H2O). However the activity correction model was not suitable to determine the solubility constant of alunogen (Al2(SO4)3.15.8H2O), as the ion concentrations of the mixtures were too high and beyond the allowable limits of the model. Another ionic activity correction model, based on the Pitzer equation for example, must be applied to calculate the solubility constant of alunogen.
Effect of water content on partial ternary phase diagram water-in-diesel microemulsion fuel
NASA Astrophysics Data System (ADS)
Mukayat, Hastinatun; Badri, Khairiah Haji; Raman, Ismail Ab.; Ramli, Suria
2014-09-01
Introduction of water in the fuel gave a significant effect to the reduction of pollutant such as NOx emission. In this work, water/diesel microemulsion fuels were prepared using compositional method by mixing water and diesel in the presence of non-ionic surfactant and co-surfactant. The effects of water composition on the partial ternary phase diagram were studied at 5%, 10%, 15% and 20% (w/w). The physical stability of the microemulsion was investigated at 45°C over a period of one month. The optimum formulae obtained were diesel/T80/1-penthanol/water 60:20:15:5 wt% (System 1), 55:20:15:10 wt% (System 2), 50:20:15:15 wt% (System 3) and 45:20:15:20 wt% (System 4). Physicochemical characterizations of optimum formulae were studied. The results showed that water content has a significant effect to the formation of microemulsion, its stability, droplet size and viscosity.
Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...
2014-11-25
In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao
2018-01-01
Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.
Si-Ge-metal ternary phase diagram calculations
NASA Technical Reports Server (NTRS)
Fleurial, J. P.; Borshchevsky, A.
1990-01-01
Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).
NASA Astrophysics Data System (ADS)
Sukharev, V.; Sukhanova, E.; Mozhevitina, E.; Sadovsky, A.; Avetissov, I.
2017-06-01
Li2O - ZnO - MoO3 pseudo ternary system was used for the growth of Li2Zn2(MoO4)3 crystals by the top seeded solution growth technique in which MoO3 was used as a solvent. Properties of the melts (density, viscosity) have been experimentally measured at different temperatures and compositions of Li2O - ZnO - MoO3 pseudo ternary system. Heat mass transfer in the crystal growth setup was numerically simulated. Using the simulation results a real growth setup was made, Li2Zn2(MoO4)3 crystals were grown and their properties were studied.
NASA Astrophysics Data System (ADS)
Palkin, V. A.; Igoshin, I. S.
2017-01-01
The separation potentials suggested by various researchers for separating multicomponent isotopic mixtures are considered. An estimation of their applicability to determining the parameters of the efficiency of enrichment of a ternary mixture in a cascade with an optimum scheme of connection of stages made up of elements with three takeoffs is carried out. The separation potential most precisely characterizing the separative power and other efficiency parameters of stages and cascade schemes has been selected based on the results of the estimation made.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
Cambaz, Musa Ali; Vinayan, Bhaghavathi P; Euchner, Holger; Johnsen, Rune E; Guda, Alexander A; Mazilkin, Andrey; Rusalev, Yury V; Trigub, Alexander L; Gross, Axel; Fichtner, Maximilian
2018-06-20
Cation-disordered oxides have been ignored as positive electrode material for a long time due to structurally limited lithium insertion/extraction capabilities. In this work, a case study is carried out on nickel-based cation-disordered Fm3 ̅m LiNi 0.5 M 0.5 O 2 positive electrode materials. The present investigation targets tailoring the electrochemical properties for nickel-based cation-disordered rock-salt by electronic considerations. The compositional space for binary LiM +3 O 2 with metals active for +3/+4 redox couples is extended to ternary oxides with LiA 0.5 B 0.5 O 2 with A = Ni 2+ and B = Ti 4+ , Zr 4+ , and V +4 to assess the impact of the different transition metals in the isostructural oxides. The direct synthesis of various new unknown ternary nickel-based Fm3̅ m cation-disordered rock-salt positive electrode materials is presented with a particular focus on the LiNi 0.5 V 0.5 O 2 system. This positive electrode material for Li-ion batteries displays an average voltage of ∼2.55 V and a high discharge capacity of 264 mAhg -1 corresponding to 0.94 Li. For appropriate cutoff voltages, a long cycle life is achieved. The charge compensation mechanism is probed by XANES, confirming the reversible oxidation and reduction of V 4+ /V 5+ . The enhancement in the electrochemical performances within the presented compounds stresses the importance of mixed cation-disordered transition metal oxides with different electronic configuration.
Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites
NASA Astrophysics Data System (ADS)
Willemsen, T.; Schlichting, S.; Gyamfi, M.; Jupé, M.; Ehlers, H.; Morgner, U.; Ristau, D.
2016-12-01
The present contribution is addressed to an improved method to fabricate dielectric dispersive compensating mirrors (CMs) with an increased laser induced damage threshold (LIDT) by the use of ternary composite layers. Taking advantage of a novel in-situ phase monitor system, it is possible to control the sensitive deposition process more precisely. The study is initiated by a design synthesis, to achieve optimum reflection and GDD values for a conventional high low stack (HL)n. Afterwards the field intensity is analyzed, and layers affected by highest electric field intensities are exchanged by ternary composites of TaxSiyOz. Both designs have similar target specifications whereby one design is using ternary composites and the other one is distinguished by a (HL)n. The first layers of the stack are switched applying in-situ optical broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by a novel in-situ white light interferometer operating in the infrared spectral range. Finally the CMs are measured in a 10.000 on 1 procedure according to ISO 21254 applying pulses with a duration of 130 fs at a central wavelength of 775 nm to determine the laser induced damage threshold.
Paul, Subrata; Paul, Sandip
2015-07-30
To provide the underlying mechanism of the inhibiting effect of trehalose on the urea denatured protein, we perform classical molecular dynamics simulations of N-methylacetamide (NMA) in aqueous urea and/or trehalose solution. The site-site radial distribution functions and hydrogen bond properties indicate in binary urea solution the replacement of NMA-water hydrogen bonds by NMA-urea hydrogen bonds. On the other hand, in ternary urea and trehalose solution, trehalose does not replace the NMA-urea hydrogen bonds significantly; rather, it forms hydrogen bonds with the NMA molecule. The calculation of a preferential interaction parameter shows that, at the NMA surface, trehalose molecules are preferred and the preference for urea decreases slightly in ternary solution with respect to the binary solution. The exclusion of urea molecules in the ternary urea-NMA-trehalose system causes alleviation in van der Waals interaction energy between urea and NMA molecules. Our findings also reveal the following: (a) trehalose and urea induced second shell collapse of water structure, (b) a reduction in the mean trehalose cluster size in ternary solution, and (c) slowing down of translational motion of solution species in the presence of osmolytes. Implications of these results for the molecular explanations of the counteracting mechanism of trehalose on urea induced protein denaturation are discussed.
NASA Astrophysics Data System (ADS)
Regupathy, Sthanumoorthy; Nair, Madhavan Sivasankaran
2010-02-01
Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm -3 (NaClO 4) show the presence of CuABH, CuAB and CuAB 2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB 2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.
Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags
NASA Astrophysics Data System (ADS)
Muhmood, Luckman; Seetharaman, Seshadri
2010-08-01
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.
Beck, John J; Alborn, Hans; Block, Anna; Christensen, Shawn A; Hunter, Charles T; Rering, Caitlin C; Seidl-Adams, Irmgard; Stuhl, Charles; Torto, Baldwyn; Tumlinson, James H
2018-06-12
The last two decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires non-trivial planning. This planning can include: an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system; correctly identifying and understanding unexpected observations that may occur during the experiment; and, thorough interpretation of the resultant data. This challenge of planning, performing and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles, but also include and understand the biochemistry of the plant's response to these stressors. In this paper, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants, can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra
2013-04-01
The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.
True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.
2012-10-20
In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign ,more » the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.« less
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.
2017-11-01
Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.
Synthesis of ternary Si clathrates in the A-Al-Si (A = Na and K) system
NASA Astrophysics Data System (ADS)
Imai, Motoharu; Singh, Shiva Kumar; Nishio, Mitsuaki; Yamada, Takahiro; Yamane, Hisanori
2015-07-01
With the aim of producing functional materials based on earth-abundant elements, we examined the synthesis of the ternary type-I clathrates A8AlxSi46-x (A = Na and K). The type-I Si clathrate K7.9(1)Al7.1(1)Si38.9(4), having a lattice parameter of 10.434(1) Å, was successfully synthesized via the direct reaction of K, Al, and Si by optimization of both the synthesis temperature and the molar ratios among the raw ingredients. K8Al7Si39 exhibited metallic conduction: its electrical resistivity increased with increasing temperature. The high pressure synthesis of Na8AlxSi46-x was also examined, using a belt-type apparatus and employing a mixture of NaSi, Al, and Si as the reagents. In this manner, the type-I Si clathrate Na8.7(9)Al0.5(1)Si45(2), having a lattice parameter of 10.211(1) Å, was synthesized at 5.5 GPa and 1570 K.
Homomorphisms in C*-ternary algebras and JB*-triples
NASA Astrophysics Data System (ADS)
Park, Choonkil; Rassias, Themistocles M.
2008-01-01
In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation
Modeling of Materials for Energy Storage: A Challenge for Density Functional Theory
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
Hollandite α-MnO2 is a promising material for rechargeable batteries and is studied extensively in the community because of its interesting tunnel structure and the corresponding large capacity for lithium as well as sodium ions. However, the presence of partially reduced Mn ions due to doping with Ag or during lithiation makes hollandite a challenging system for density functional theory and the conventionally employed PBE+U method. A naive attempt to model the ternary system LixAgyMnO2 with density functionals, similar to those employed for the case y = 0 , fails and predicts a strong monoclinic distortion of the experimentally observed tetragonal unit cell for Ag2Mn8O16. Structure and binding energies are compared with experimental data and show the importance of van der Waals interactions as well as the necessity for an accurate description of the cooperative Jan-Teller effects for silver hollandite AgyMnO2. Based on these observations a ternary phase diagram is calculated allowing to predict the physical and chemical properties of LixAgyMnO2, such as stable stoichiometries, open circuit voltages, the formation of Ag metal and the structural change during lithiation. Department of Energy (DOE) under award #DE-SC0012673.
NASA Astrophysics Data System (ADS)
Gao, Baojiao; Zhang, Dandan; Li, Yanbin
2018-03-01
Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-11-01
Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald
2016-01-01
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680
Thongnopkoon, Thanu; Puttipipatkhachorn, Satit
2016-01-01
Modification of polymorphic forms of poorly water-soluble drugs is one way to achieve the desirable properties. In this study, glibenclamide (GBM) particles with different polymorphic forms, including a new metastable form, were obtained from redispersion of ternary solid dispersion systems. The ternary solid dispersion systems, consisting of GBM, polyvinylpyrrolidone-K30 (PVP-K30) and sodium lauryl sulfate (SLS), were prepared by solvent evaporation method and subsequently redispersed in deionized water. The precipitated drug particles were then collected at a given time period. The drug particles with different polymorphic forms could be achieved depending on the polymer/surfactant ratio. Amorphous drug nanoparticles could be obtained by using a high polymer/surfactant ratio, whereas two different crystalline forms were obtained from the systems containing low polymer/surfactant ratios. Interestingly, a new metastable form IV of GBM with improved dissolution behavior could be obtained from the system of GBM:PVP-K30:SLS with the weight ratio of 2:2:4. This new polymorphic form IV of GBM was confirmed by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffractometry (PXRD) and solid state 13 C nuclear magnetic resonance (NMR) spectroscopy. The molecular arrangement of the new polymorphic form IV of GBM was proposed. The GBM particles with polymorphic form IV also showed an improved dissolution behavior. In addition, it was found that the formation of the new polymorphic form IV of GBM by this process was reproducible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jianjun; Wang, Jian; Pan, Weinan
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less
Yang, Jianjun; Wang, Jian; Pan, Weinan; ...
2016-05-23
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less
Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan
2018-05-01
A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.
Electrocatalyst for alcohol oxidation at fuel cell anodes
Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL
2011-11-02
In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.
Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage.
Jin, Jiao; Ouyang, Jing; Yang, Huaming
2017-12-01
Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.
Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage
NASA Astrophysics Data System (ADS)
Jin, Jiao; Ouyang, Jing; Yang, Huaming
2017-03-01
Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.
NASA Astrophysics Data System (ADS)
Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.
2012-12-01
Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.
Gui, Xin; Zhao, Xin; Sobczak, Zuzanna; ...
2018-02-14
A combination of theoretical calculation and the experimental synthesis to explore the new ternary compound is demonstrated in the Sr–Pt–Bi system. Because Pt–Bi is considered as a new critical charge-transfer pair for superconductivity, it inspired us to investigate the Sr–Pt–Bi system. With a thorough calculation of all the known stable/metastable compounds in the Sr–Pt–Bi system and crystal structure predictions, the thermodynamic stability of hypothetical stoichiometry, SrPtBi2, is determined. Following the high-temperature synthesis and crystallographic analysis, the first ternary bismuthide in Sr–Pt–Bi, SrPtBi2 was prepared, and the stoichiometry was confirmed experimentally. SrPtBi 2 crystallizes in the space group Pnma (S.G. 62,more » Pearson Symbol oP48), which matches well with theoretical prediction using an adaptive genetic algorithm. Using first-principles calculations, we demonstrate that the orthorhombic structure has lower formation energies than other 112 structure types, such as tetragonal BaMnBi 2 (CuSmP 2) and LaAuBi 2 (CuHfSi 2) structure types. The bonding analysis indicates that the Pt–Bi interactions play a critical role in structural stability. The physical property measurements show the metallic properties at the low temperature, which agrees with the electronic structure assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, Yu Kee, E-mail: Yu.Kee.Ooi@rit.edu; Zhang, Jing, E-mail: Jing.Zhang@rit.edu
2015-05-15
Phosphor-free monolithic white light emitting diodes (LEDs) based on InGaN/ InGaN multiple quantum wells (MQWs) on ternary InGaN substrates are proposed and analyzed in this study. Simulation studies show that LED devices composed of multi-color-emitting InGaN/ InGaN quantum wells (QWs) employing ternary InGaN substrate with engineered active region exhibit stable white color illumination with large output power (∼ 170 mW) and high external quantum efficiency (EQE) (∼ 50%). The chromaticity coordinate for the investigated monolithic white LED devices are located at (0.30, 0.28) with correlated color temperature (CCT) of ∼ 8200 K at J = 50 A/cm{sup 2}. A referencemore » LED device without any nanostructure engineering exhibits green color emission shows that proper engineered structure is essential to achieve white color illumination. This proof-of-concept study demonstrates that high-efficiency and cost-effective phosphor-free monolithic white LED is feasible by the use of InGaN/ InGaN MQWs on ternary InGaN substrate combined with nanostructure engineering, which would be of great impact for solid state lighting.« less
On the decoding process in ternary error-correcting output codes.
Escalera, Sergio; Pujol, Oriol; Radeva, Petia
2010-01-01
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
NASA Astrophysics Data System (ADS)
Han, Weijia; Ren, Long; Qi, Xiang; Liu, Yundan; Wei, Xiaolin; Huang, Zongyu; Zhong, Jianxin
2014-04-01
A novel ternary CdS/ZnO/graphene composite has been successfully prepared by loading ZnO and CdS nanoparticles in graphene nanosheets via a facile one-step hydrothermal method. The microstructures and properties have been examined by X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive spectroscope (EDS), transmission electron microscopy, Raman and UV-vis diffuse reflectance spectra (DRS). The characterization results reveal that the crystalline of the composite is very well, the graphene sheets were tightly coated with ZnO and CdS nanoparticles, and the light-harvesting was effectively strengthened. Taking photoelectrochemical test, the ternary CdS/ZnO/graphene composite exhibits enhanced photocatalytic activity compared with its foundation matrix binary composites and pure ZnO and CdS. The improved photocatalytic performance can be attributed to the enhanced light absorption, the extremely efficient charge separation, as well as superior durability of the ternary composite. It is proposed that graphene-based composites by coupling graphene to suitable, multiple semiconductors can not only greatly improve the capacity for photocatalytic, but also expand the exploration and utilization of graphene-based nanocomposites for energy conversion.
Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.
Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin
2018-05-09
Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.
DNA-programmed dynamic assembly of quantum dots for molecular computation.
He, Xuewen; Li, Zhi; Chen, Muzi; Ma, Nan
2014-12-22
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD-based bio-interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA-programmed dynamic assembly of multi-color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)-based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half-adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD-biocomputing-based intelligent molecular diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Benamara, Omar; Cherif, Maya; Duffar, Thierry; Lebbou, Kheirreddine
2015-11-01
The directional solidification of Al2O3-YAG-ZrO2 eutectic ceramic by a micro-pulling down (μ-PD) technique is investigated. The effect of the pulling rate (0.1-1 mm min-1) on the crystallography and the microstructure is discussed. This ternary eutectic system has a Chinese script microstructure and the eutectic spacing λ depends on the pulling rate υ following the law: λ = 6.5υ-1/2 where λ is in μm and υ in μm/s as derived from the Jackson-Hunt model. With the lower pulling rates, all phases are oriented with the <100> direction parallel to the growth direction; however other orientations appear at the higher pulling rates. The Cr3+ ions R-lines emission in the sapphire phase in the ternary eutectic composite is measured to estimate the stress in the alumina phase which is also shown to depend on the pulling rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadias, G.; Koutsokeras, L. E.; Dub, S. N.
2010-07-15
Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by eithermore » Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.« less
Beigi, Saeed; Yeganeh, Hamid; Atai, Mohammad
2013-07-01
Study and evaluation of fracture toughness, flexural and dynamic mechanical properties, and crosslink density of ternary thiol-ene-methacrylate systems and comparison with corresponding conventional methacrylate system were considered in the present study. Urethane tetra allyl ether monomer (UTAE) was synthesized as ene monomer. Different formulations were prepared based on combination of UTAE, BisGMA/TEGDMA and a tetrathiol monomer (PETMP). The photocuring reaction was conducted under visible light using BD/CQ combination as photoinitiator system. Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Scanning electron microscopy (SEM) was utilized to study the morphology of the fractured specimen's cross section. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The same study was performed on a conventional methacrylate system. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvement in fracture toughness of the specimens containing thiol-ene moieties. DMTA revealed a lower glass transition temperature and more homogenous structure for thiol-ene containing specimens in comparison to the system containing merely methacrylate monomer. The flexural modulus and flexural strength of the specimens with higher thiol-ene content were lower than the neat methacrylate system. The SEM micrographs of the fractured surface of specimens with higher methacrylate content were smooth and mirror-like (shiny) which represent brittle fracture. The thiol-ene-methacrylate system can be used as resin matrix of dental composites with enhanced fracture toughness in comparison to the methacrylate analogous. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zhu, Ying; Fournial, Anne-Gaëlle; Molinier, Valérie; Azaroual, Nathalie; Vermeersch, Gaston; Aubry, Jean-Marie
2009-01-20
In the context of environmental concerns for the production of surface active species, the introduction of a carbonyl function into the skeleton of ethyleneglycol-derived solvo-surfactants is a way to access cleavable compounds with presumed enhanced biodegradability. Ethylene glycol monobutyrate (C(3)COE(1)) was synthesized and compared to its ether counterparts, ethylene glycol monopropyl (C(3)E(1)) and monobutyl ethers (C(4)E(1)), to assess the effect of the insertion of a carbonyl function in the skeleton of short-chain ethoxylated amphiphilic compounds. In aqueous solutions, the ester has intermediate behavior between that of the two ethers with regard to surface tension, solubilization of Me-naphtalene in water, and self-diffusion by PGSE NMR. In ternary systems, C(3)COE(1) and C(3)E(1) have the same optimal oil (EACN = 2.8), which is much more polar than that of C(4)E(1) (EACN = 8.5). With regard to the ability to form structured systems, the behavior in water does not differ significantly for the three compounds, and the transition between nonassociating solvents and amphiphilic solvents, sometimes called solvo-surfactants, is gradual. In ternary systems, however, only C(4)E(1) and C(3)COE(1) form a third phase near the optimal formulation, which tends to show that C(3)COE(1) possesses the minimum amphiphilicity to get a structuration. Self-diffusion NMR studies of the one-phase domains do not, however, allow us to distinguish between different degrees of organization in the three systems.
Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder
2017-05-01
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.
NASA Astrophysics Data System (ADS)
Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai
2017-09-01
In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.
Study on interaction of mangiferin to insulin and glucagon in ternary system
NASA Astrophysics Data System (ADS)
Lin, Hui; Chen, Rui; Liu, Xiaoyan; Sheng, Fenling; Zhang, Haixia
2010-05-01
The binding of mangiferin to insulin and glucagon was investigated in the presence and absence of another Peptide by optical spectroscopy. Fluorescence titration experiments revealed that mangiferin quenched the intrinsic fluorescence of insulin and glucagon by static quenching. The ratios of binding constants of glucagon-mangiferin to insulin-mangiferin at different temperatures were calculated in "pure" and ternary system, respectively. The results indicated that the Peptides were competitive with each other to act on mangiferin. Values of the thermodynamic parameters and the experiments of pH effect proved that the key interacting forces between mangiferin and the Peptides were hydrophobic interaction. In addition, UV-vis absorption, synchronous fluorescence and Fourier transform infrared measurements showed that the conformation of insulin and glucagon were changed after adding mangiferin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakimov, M.A.; Nosova, N.F.; Degtyarev, A.Ya.
1963-01-01
Solubility in ternary systems TlNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/-- H/sub 2/ O and CsNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/--H/sub 2/O at 0 to 25 c- C was studi ed by the isothermal method. The first system did not form solid phase compounds; the second system formed two compounds Cs/sub 2/UO/ sub 2/(NO/sub 3/)/sub 4/ and CsUO/sub 2/(NO/sub 3/)/sub 3/ at 25 c- and of water vapor pressure over the systems at 25 c- showed that water activity in the ternary systems at certain concentrations does not exceed the water activity in binary uranyl nitratewater system (at identical uranyl nitrate concentrations) confirmingmore » the observed complex formation in the solution. The mechanism of complex formation was analyzed and expanded for alkali metal - metal salt-complexing agent water systems. (R.V.J.)« less
Woods, E J; Zieger, M A; Gao, D Y; Critser, J K
1999-06-01
The present study describes the H(2)O-NaCl-ethylene glycol ternary system by using a differential scanning calorimeter to measure melting points (T(m)) of four different ratios (R) of ethylene glycol to NaCl and then devising equations to fit the experimental measurements. Ultimately an equation is derived which characterizes the liquidus surface above the eutectic for any R value in the system. This study focuses on ethylene glycol in part because of recent evidence indicating it may be less toxic to pancreatic islets than Me(2)SO, which is currently used routinely for islet cryopreservation. The resulting physical data and previously determined information regarding the osmotic characteristics of canine pancreatic islets are combined in a mathematical model to describe the volumetric response to equilibrium-rate freezing in varying initial concentrations of ethylene glycol. Copyright 1999 Academic Press.
LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugga, R.V.; Fultz, B.; Bowman, R.
1999-03-30
An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with themore » predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.« less
LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells
Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian
1999-01-01
An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.
LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells
Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.
1999-03-30
An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.
Implementation of DFT application on ternary optical computer
NASA Astrophysics Data System (ADS)
Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei
2018-03-01
As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.
Feng, Tao; Wang, Ke; Liu, Fangfang; Ye, Ran; Zhu, Xiao; Zhuang, Haining; Xu, Zhimin
2017-06-01
Naringin is a bioflavonoid that is rich in citrus plants and possesses enormous health benefits. However, the use of naringin as a nutraceutical is significantly limited by its low bioavailability. In this study, a novel water-soluble ternary nanoparticle material consisting of amylose, α-linoleic acid and β-lactoglobulin was developed to encapsulate naringin to improve its bioavailability. The physicochemical characteristics of the ternary nanoparticle-naringin inclusion complex were analysed by ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), high-resolution transmission electron microscopy (TEM), X-ray diffractometry (XRD) and particle size distribution. The results confirmed the formation of the ternary nanoparticle-naringin inclusion complex. The encapsulation efficiency (EE) and loading content (LC) of the ternary nanoparticle-naringin inclusion complex were 78.73±4.17% and 14.51±3.43%, respectively. In addition, the results of the ternary nanoparticle-naringin inclusion complex in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that naringin can be gradually released from the complex. In conclusion, ternary nanoparticles are considered promising carriers to effectively improve the bioavailability of naringin. Copyright © 2017 Elsevier B.V. All rights reserved.
Pb-free Sn-Ag-Cu ternary eutectic solder
Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.
1996-06-18
A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).
Pb-free Sn-Ag-Cu ternary eutectic solder
Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.
1996-06-18
A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.
Ternary particle yields in 249Cf(nth,f)
NASA Astrophysics Data System (ADS)
Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.
2003-03-01
An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.
Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2011-12-01
Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
Lomozik, Lechoslaw; Jastrzab, Renata
2003-01-15
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.
Zhao, Yantao; Han, Liwei; Yan, Jun; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning
2017-01-01
Injectable gelatin gels offer an attractive option for filling bone defects. The challenge is to fabricate gelatin gels with optimal gelation properties, which can be irradiation sterilized. Here, a gelatin-water-glycerol (GWG) gel is reported for use as a broad-spectrum injectable carrier. This ternary gel is high in glycerol and low in water, and remains stable after gamma irradiation at doses (25 kGy). As an injectable gel, it remains a viscous solution at gelatin concentrations ≤2.0%, at room temperature. Its storage modulus increases dramatically and eventually exceeds the loss modulus around 46-50 °C, indicating a transition from a liquid-like state to an elastic gel-like state. This ternary gel ranges significantly in terms of storage modulus (12-1700 Pa) while demonstrating a narrow pH range (5.58-5.66), depending on the gelatin concentration. Therefore, it can be loaded with a variety of materials. It is highly cytocompatible compared with saline in vivo and culture media in vitro. When loaded with demineralized bone matrix, the composites show favorable injectability, and excellent osteogenesis performance, after irradiation. These features can be attributed to high hydrophilicity and fast degradability. These findings justify that this ternary gel is promising as an irradiation-sterilized and universal injectable delivery system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.
2018-04-01
Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi
2016-11-02
In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.
Dubey, Ritesh; Desiraju, Gautam R.
2015-01-01
The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyekyoung; Kim, Sungwoo; Luther, Joseph M.
Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated withmore » the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng
2016-07-01
The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.
NASA Astrophysics Data System (ADS)
Bobák, A.; Abubrig, F. O.; Balcerzak, T.
2003-12-01
The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Qiurong; Zhu, Chengzhou; Li, Yijing
2016-11-08
Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect,more » geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.« less
A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures
NASA Astrophysics Data System (ADS)
Youssef, Rasha M.; Maher, Hadir M.
2008-10-01
A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.
Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.
2016-05-06
Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.
Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems
NASA Astrophysics Data System (ADS)
D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.
2018-02-01
The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.
Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.; Peters, C.A.; Jaffe, P.R.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less
NASA Astrophysics Data System (ADS)
Sathish Kumar, V.; Ganesan, N.; Indira, P. V.
2017-07-01
Concrete plays a vital role in the development of infrastructure and buildings all over the world. Geopolymer based cement-less concrete is one of the current findings in the construction industry which leads to a green environment. This research paper deals with the results of the use of Fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin (MK) as a ternary blend source material in Geopolymer concrete (GPC). The aspects that govern the compressive strength of GPC like the proportion of source material, Molarity of Sodium Hydroxide (NaOH) and Curing methods were investigated. The purpose of this research is to optimise the local waste material and use them effectively as a ternary blend in GPC. Seven combinations of binder were made in this study with replacement of FA with GGBS and MK by 35%, 30%, 25%, 20%, 15%, 10%, 5% and 5%, 10%, 15%, 20%, 25%, 30%, 35% respectively. The molarity of NaOH solution was varied by 12M, 14M and 16M and two types of curing method were adopted, viz. Hot air oven curing and closed steam curing for 24 hours at 60°C (140°F). The samples were kept at ambient temperature till testing. The compressive strength was obtained after 7 days and 28 days for the GPC cubes. The test data reveals that the ternary blend GPC with molarity 14M cured by hot air oven produces the maximum compressive strength. It was also observed that the compressive strength of the oven cured GPC is approximately 10% higher than the steam cured GPC using the ternary blend.
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Qingyan; Liu, Baicheng
2015-06-01
In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.
A study of interdiffusion in beta + gamma/gamma + gamma prime Ni-Cr-Al. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Carol, L. A.
1985-01-01
Ternary diffusion in the NiCrAl system at 1200 C was studied with beta + gamma/gamma + gamma prime infinite diffusion couples. Interdiffusion resulted in the formation of complex, multiphase diffusion zones. Concentration/distance profiles for Cr and Al in the phases present in the diffusion zone were measured after 200 hr. The Ni-rich portion of the NiCrAl phase diagram (1200 C) was also determined. From these data, bulk Cr and Al profiles were calculated and translated to diffusion paths on the ternary isotherm. Growth layer kinetics of the layers present in the diffusion zone were also measured.
Sequential character of low-energy ternary and quaternary nuclear fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O.
2016-09-15
An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collectivemore » deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.« less
2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R
2015-02-15
Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.
Experimental Investigation of the 1073 K (800 °C) Isothermal Section of the Al-V-Zr Ternary System
NASA Astrophysics Data System (ADS)
Zhu, Yude; Ouyang, Xuemei; Yin, Fucheng; Zhao, Manxiu; Lou, Jia
2018-03-01
This work is focused on an experimental investigation of the phase equilibria of the Al-V-Zr system at 1073 K (800 °C). The phase equilibria were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry and X-ray diffraction. The results confirmed the presence of twelve three-phase regions and one ternary compound, Τ, which contains 10.0 to 16.5 at. pct Zr, 52.8 to 55.2 at. pct Al, and 29.3 to 36.3 at. pct V. The T phase can be in equilibrium with Al8V5, Al3Zr, Al2Zr, and α-V. The T phase belongs to the tetragonal crystal system with confirmed lattice parameters of a = 0.658531 nm and c = 0.517334 nm. The Al2Zr phase region is extraordinarily large and can be in equilibrium with all the compounds in the Al-Zr and V-Zr systems, with the exception of the AlZr phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.
2012-09-17
Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further ourmore » understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.« less
Square lattice honeycomb reactor for space power and propulsion
NASA Astrophysics Data System (ADS)
Gouw, Reza; Anghaie, Samim
2000-01-01
The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .
Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys
Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361
Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.
Abdessameud, S; Mezbahul-Islam, M; Medraj, M
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.
NASA Astrophysics Data System (ADS)
Petrishcheva, E.; Abart, R.
2012-04-01
We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.
Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O
Christ, C.L.; Truesdell, A.H.; Erd, Richard C.
1967-01-01
he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.
Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems
Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.
2010-01-01
Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041
Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams.
Bolla, Geetha; Nangia, Ashwini
2015-11-04
SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.
Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Smart, Marshall C. (Inventor); Surampudi, Subbarao (Inventor); Bugga, Ratnakumar V. (Inventor)
2002-01-01
Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.
Composition dependent band offsets of ZnO and its ternary alloys
NASA Astrophysics Data System (ADS)
Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong
2017-01-01
We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Gong, Maoguo; Yang, Hailun; Zhang, Puzhao
2017-07-01
Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.
Progress in the Modeling of NiAl-Based Alloys Using the BFS Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita
1997-01-01
The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.
Montalbán, Mercedes G; Collado-González, Mar; Lozano-Pérez, A Abel; Baños, F Guillermo Díaz; Víllora, Gloria
2018-08-01
This data article is related to the subject of the research article "Extraction of Organic Compounds Involved in the Kinetic Resolution of rac-2-Pentanol from n-Hexane by Imidazolium-based Ionic Liquids: Liquid-Liquid Equilibrium" (Montalbán et al., 2018) [1]. It contains experimental data of density and refractive index of binary and ternary mixtures of imidazolium-based ionic liquids, n -hexane and organic compounds involved in the kinetic resolution of rac -2-pentanol ( rac -2-pentanol, vinyl butyrate, rac -2-pentyl butyrate or butyric acid) measured at 303.15 K and 1 atm. These data are presented as calibration curves which help to determine the composition of the ionic liquid-rich phase knowing its density or refractive index.
Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin
2015-11-01
The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic properties of the ternary alloy with a structure of Prussian blue analogs
NASA Astrophysics Data System (ADS)
Dely, J.; Bobák, A.
2007-01-01
The magnetic properties (phase diagram, compensation temperature, magnetic susceptibility, and magnetization) of the ABpC1-p ternary alloy in the presence of a single-ion anisotropy on the B ions only are investigated by the use of a mean-field theory. Depending on the values of the parameters in the model Hamiltonian, the present system may exhibit one, two or even three compensation temperatures Tk. It is shown that the total magnetic susceptibility of the ferrimagnetic system can generally take a finite value at transition temperature Tc only if the relation Tc=Tk is exactly satisfied. Also, by using this model, some characteristics observed in the Prussian blue analog of the type (FepIIMn1-pII)1.5[CrIII(CN)6]·nH2O are quantitatively or qualitatively well reproduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupinetti, F.
1988-01-01
This paper outlines a video communication system capable of non-line-of-sight (NLOS), secure, low-probability of intercept (LPI), antijam, real time transmission and reception of video information in a tactical enviroment. An introduction to a class of ternary PN sequences is presented to familiarize the reader with yet another avenue for spreading and despreading baseband information. The use of the high frequency (HF) band (1.5 to 30 MHz) for real time video transmission is suggested to allow NLOS communication. The spreading of the baseband information by means of multiple nontrivially different ternary pseudonoise (PN) sequence is used in order to assure encryptionmore » of the signal, enhanced security, a good degree of LPI, and good antijam features. 18 refs., 3 figs., 1 tab.« less
The single-ion anisotropy effects in the mixed-spin ternary-alloy
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2018-04-01
The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.
Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás
2015-07-22
We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.
Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A
2016-12-01
Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hoffmann, S K; Goslar, J; Bregier-Jarzebowska, R; Gasowska, A; Zalewska, A; Lomozik, L
2017-12-01
The mode of interaction and thermodynamic stability of complexes formed in binary and ternary Cu(II)/ATP/triamines systems were studied using potentiometric and spectroscopic (NMR, EPR, UV-Vis) methods. It was found that in binary metal-free systems ATP/H x PA species are formed (PA: Spd=spermidine or 3,3-tri=1,7-diamino-4-azaheptane) where the phosphate groups from nucleotides are preferred negative centers and protonated amine groups of amines are positive centers of reaction. In the ternary systems Cu/ATP/H x (PA) as well as Cu/(ATP)(PA) species are formed. The type of the formed Cu(II) complexes depends on pH of the solution. For a low pH value the complexation appears between Cu(II) and ATP molecules via oxygen atoms of phosphate groups. For a very high pH value, where ATP is hydrolyzed, the Cu(II) ions are bound to the nitrogen atoms of polyamine molecules. We did not detect any direct coordination of the N7 nitrogen atom of adenosine to Cu(II) ions. It means that the CuN7 interaction is an indirect type and can be due to noncovalent interplay including water molecule. EPR studies were performed at glassy state (77K) after a fast freezing both for binary and ternary systems. The glassy state EPR spectra do not reflect species identified in titration studies indicating significant effect of rapid temperature decrease on equilibrium of Cu(II) complexes. We propose the molecular structure of all the studied complexes at the glassy state deduced from EPR and optical spectroscopy results. Copyright © 2017 Elsevier Inc. All rights reserved.
High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system
NASA Astrophysics Data System (ADS)
Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.
2015-12-01
The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yazhen; Musser, Sarah K.; Saleh, Sam
1,N{sup 2}-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-?]purin-10(3H)-one (M{sub 1}dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 {angstrom}. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring templatemore » dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5?-TCACXAAATCCTTACGAGCATCGCCCCC-3'{center_dot}5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the 'type II' structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91--102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M{sub 1}dG adduct formed by malondialdehyde.« less
Li, Juan; Gong, Ji-Lai; Zeng, Guang-Ming; Zhang, Peng; Song, Biao; Cao, Wei-Cheng; Liu, Hong-Yu; Huan, Shuang-Yan
2018-10-01
Treating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process. Neutrally charged Rhodamine B (RB), positively charged Methylene blue (MB), and negatively charged Congo red (CR) were chosen as model pollutants for investigating filtration performance of the membrane. The results of filtration experiments showed that the Zr-MOFs-PUF membrane could simultaneously remove RB, MB, and CR not only from their binary system including RB/MB, RB/CR, and MB/CR mixtures, but also from RB/MB/CR ternary system. The removal of dyes by Zr-MOFs-PUF membrane was mainly attributed to the electrostatic interactions, hydrogen bond interaction, and Lewis acid-base interactions between the membrane and dye molecules. The maximum removal efficiencies by Zr-MOFs-PUF membrane were 98.80% for RB at pH ≈ 7, 97.57% for MB at pH ≈ 9, and 87.39% for CR at pH ≈ 3. Additionally, when the NaCl concentration reached 0.5 mol/L in single dye solutions, the removal efficiencies of RB, MB, and CR by Zr-MOFs-PUF membrane were 93.08%, 79.52%, and 97.82%, respectively. All the results suggested that the as-prepared Zr-MOFs-PUF membrane has great potential in practical treatment of dye wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.
Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun
2016-07-01
Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD-based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2 . However, experimentally it requires systematic approach to form Cox W(1- x ) S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary Cox W(1- x ) S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm(-2) and shows Tafel slope of 67 mV dec(-1) . Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraf, Laxmikant V.
2011-04-01
The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less
NASA Astrophysics Data System (ADS)
Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.
2018-01-01
The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.
Reactive eutectic brazing of nitinol
NASA Astrophysics Data System (ADS)
Low, Ke-Bin
Although NiTiNb alloys are well known as wide-hysteresis shape-memory alloys with important applications as coupling materials, the significance of one aspect of the Ni-Ti-Nb ternary system has not been fully appreciated. Based on the existence of a quasibinary NiTi-Nb eutectic isopleth in this ternary system, a novel braze method has been devised to fabricate metallurgical bonds between functional nitinol (NiTi) sections. When NiTi and pure Nb are brought into contact at temperatures above 1170°C, spontaneous melting occurs, forming a liquid that is extremely reactive and not only wets NiTi surfaces, but also apparently dissolves oxide scales, obviating the need for fluxes and providing for efficient capillary flow into joint crevices. The melting process is diffusion-controlled and rate-limited by the diffusivity of Nb in the liquid. The braze liquid will subsequently solidify into microstructures containing predominantly ordered NiTi and disordered bcc-Nb. Mechanical tests revealed that the braze joints are strong, ductile, and biocompatible. With appropriate post-braze aging, the functional performance of the parent NiTi alloy can be restored. Micro-alloying the Nb fluer metal with Zr or tungsten showed great potential for solution-strengthening of the braze joints. For applications where biocompatibility is not an issue, Nb metal can be substituted by pure vanadium as the braze filler, which is demonstrated to possess tensile strengths that can be potentially superior to the Nb counterparts.
Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells
NASA Astrophysics Data System (ADS)
Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap
2018-04-01
In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.
Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.
Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap
2018-04-05
In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of solute interactions in columbium /Nb/ on creep strength
NASA Technical Reports Server (NTRS)
Klein, M. J.; Metcalfe, A. G.
1973-01-01
The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.
First principle study of UHTC ternary diboride, Cr2AlB2
NASA Astrophysics Data System (ADS)
Rastogi, Anugya; Rajpoot, Priyanka; Verma, U. P.
2018-04-01
In this paper ab-initio study of the structural, electronic and optical properties of ternary metal boride Cr2AlB2 using full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The study of structural properties shows that Cr2AlB2 is metallic in nature and have orthorhombic crystal structure. The optical properties show that it possess anisotropic behavior, which have wide applications in electricity production through concentration of solar power (CSP) technology. To the best of our knowledge, theoretical study of the optical properties of Cr2AlB2 is reported for the first time.
Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo
2016-01-20
The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, H., E-mail: yasuda@nict.go.jp; Hosako, I.
2015-03-16
We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.
NASA Astrophysics Data System (ADS)
Triller, T.; Bataller, H.; Bou-Ali, M. M.; Braibanti, M.; Croccolo, F.; Ezquerro, J. M.; Galand, Q.; Gavaldà, Jna.; Lapeira, E.; Laverón-Simavilla, A.; Lyubimova, T.; Mialdun, A.; Zárate, J. M. Ortiz de; Rodríguez, J.; Ruiz, X.; Ryzhkov, I. I.; Shevtsova, V.; Vaerenbergh, S. Van; Köhler, W.
2018-05-01
We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30∘C and an almost complete data set at 25∘C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations.
NASA Astrophysics Data System (ADS)
Triller, T.; Bataller, H.; Bou-Ali, M. M.; Braibanti, M.; Croccolo, F.; Ezquerro, J. M.; Galand, Q.; Gavaldà, Jna.; Lapeira, E.; Laverón-Simavilla, A.; Lyubimova, T.; Mialdun, A.; Zárate, J. M. Ortiz de; Rodríguez, J.; Ruiz, X.; Ryzhkov, I. I.; Shevtsova, V.; Vaerenbergh, S. Van; Köhler, W.
2018-02-01
We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30∘C and an almost complete data set at 25∘C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations.
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Köhler, W.
2015-02-01
A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into the concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.
Comprehensive thermal and structural characterization of antimony-phosphate glass
NASA Astrophysics Data System (ADS)
Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.
For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.
Terdale, Santosh S; Dagade, Dilip H; Patil, Kesharsingh J
2007-12-06
Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.
Espinoza-Herrera, Shirly J; Gaur, Vineet; Suo, Zucai; Carey, Paul R
2013-07-23
Y-Family DNA polymerases are known to bypass DNA lesions in vitro and in vivo. Sulfolobus solfataricus DNA polymerase (Dpo4) was chosen as a model Y-family enzyme for investigating the mechanism of DNA synthesis in single crystals. Crystals of Dpo4 in complexes with DNA (the binary complex) in the presence or absence of an incoming nucleotide were analyzed by Raman microscopy. (13)C- and (15)N-labeled d*CTP, or unlabeled dCTP, were soaked into the binary crystals with G as the templating base. In the presence of the catalytic metal ions, Mg(2+) and Mn(2+), nucleotide incorporation was detected by the disappearance of the triphosphate band of dCTP and the retention of *C modes in the crystal following soaking out of noncovalently bound C(or *C)TP. The addition of the second coded base, thymine, was observed by adding cognate dTTP to the crystal following a single d*CTP addition. Adding these two bases caused visible damage to the crystal that was possibly caused by protein and/or DNA conformational change within the crystal. When d*CTP is soaked into the Dpo4 crystal in the absence of Mn(2+) or Mg(2+), the primer extension reaction did not occur; instead, a ternary protein·template·d*CTP complex was formed. In the Raman difference spectra of both binary and ternary complexes, in addition to the modes of d(*C)CTP, features caused by ring modes from the template/primer bases being perturbed and from the DNA backbone appear, as well as features from perturbed peptide and amino acid side chain modes. These effects are more pronounced in the ternary complex than in the binary complex. Using standardized Raman intensities followed as a function of time, the C(*C)TP population in the crystal was maximal at ∼20 min. These remained unchanged in the ternary complex but declined in the binary complexes as chain incorporation occurred.
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
Compression behavior of quaternary and higher order solid-solution L1(2) trialuminides
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.
1992-01-01
Results from preliminary studies undertaken to evaluate the existence of single-phase L1(2) solid solutions between pairs of ternary L1(2) trialuminides are presented. Two-kilogram ingots of selected quaternary compositions were cast, homogenized and forged into pancakes; compression specimens were machined from the forgings and tested as a function of temperature. The results are compared against existing data for the ternary alloys. The ternary L1(2) trialuminides Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 were found to exhibit continuous solubility in one another. The quaternary Cr-Mn composition does not indicate any strength advantage over its ternary counterparts. The continuous replacement of Mn with Fe enhances the strength of the quaternary compound over the ternary Al66Ti25 Mn9.
Enyedy, Eva Anna; Horváth, László; Gajda-Schrantz, Krisztina; Galbács, Gábor; Kiss, Tamás
2006-12-01
The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.
Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys
NASA Astrophysics Data System (ADS)
Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan
2018-04-01
In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.
Passos, Helena; Dinis, Teresa B V; Cláudio, Ana Filipa M; Freire, Mara G; Coutinho, João A P
2018-05-23
Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.
Droplet formation at the non-equilibrium water/water (w/w) interface
NASA Astrophysics Data System (ADS)
Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung
2017-11-01
The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.
NASA Astrophysics Data System (ADS)
Ermoline, Alexandre
The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser beam. The follow-up on-ground experiments were conducted to study phase relations in the Zr-O-N system at high-temperatures. Samples with specific compositions were laser-heated above the melt formation and naturally cooled. Recovered samples were characterized using electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Results of these analyses combined with the interpretations of the binary Zr-O and Zr-N phase diagrams enabled us to outline the liquidus and the subsolidus equilibria for the ternary Zr-ZrO2-ZrN phase diagrams. Further research is suggested to develop the microgravity techniques for detailed characterization of high-temperature relations in the reactive, metal based systems.
Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications
NASA Astrophysics Data System (ADS)
Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.
2006-12-01
Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.
Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics
NASA Astrophysics Data System (ADS)
Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin
2018-03-01
In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.
NASA Astrophysics Data System (ADS)
Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo
2014-03-01
To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.
Abdolmohammad-Zadeh, Hossein; Tavarid, Keyvan; Talleb, Zeynab
2012-01-01
Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed. PMID:22619590
The influence of arene-ring size on stacking interaction with canonical base pairs
NASA Astrophysics Data System (ADS)
Formánek, Martin; Burda, Jaroslav V.
2014-04-01
Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.
Evolution of cellular automata with memory: The Density Classification Task.
Stone, Christopher; Bull, Larry
2009-08-01
The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.
Liu, Nan; Higashi, Kenjirou; Ueda, Keisuke; Moribe, Kunikazu
2017-10-15
Various ternary Guest 2/(Guest 1/γ-cyclodextrin (CD)) complexes were prepared using a cogrinding and subsequent heating method, wherein Guest 1 was incorporated in the cavity of γ-CD and Guest 2 was incorporated into the intermolecular spaces between γ-CD columns. Dissolution fluxes of Guest 1 and Guest 2 from all ternary complexes were almost identical. The dissolution flux of flurbiprofen (Guest 1) from the ternary complexes depended on the solubility of Guest 2 drugs (naproxen
Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.
Wang, Long-Feng; Rhim, Jong-Whan
2015-09-01
Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.
Santos da Silva, Francisco Vitor; Seidel-Morgenstern, Andreas
2016-07-22
Different multi-column options to perform continuous chromatographic separations of ternary mixtures have been proposed in order to overcome limitations of batch chromatography. One attractive option is given by simulated moving bed chromatography (SMB) with 8 zones, a process that offers uninterrupted production, and, potentially, improved economy. As in other established ternary separation processes, the separation sequence is crucial for the performance of the process. This problem is addressed here by computing and comparing optimal performances of the two possibilities assuming linear adsorption isotherms. The conclusions are presented in a decision tree which can be used to guide the selection of system configuration and operation. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of absorption and re-emission processes in a ternary liquid scintillation system
NASA Astrophysics Data System (ADS)
Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan
2010-11-01
Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.
Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong
2015-11-01
In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Causa, Andrea; Acierno, Domenico; Filippone, Giovanni
We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimizemore » the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.« less
Luo, Jiwei; Li, Xue; Ge, Chengjun; Müller, Karin; Yu, Huamei; Huang, Peng; Li, Jiatong; Tsang, Daniel C W; Bolan, Nanthi S; Rinklebe, Jörg; Wang, Hailong
2018-05-08
Pollution of water by single antibiotics has been investigated in depth. However, in reality, a wide range of different contaminants is often mixed in the aquatic environment (contaminant cocktail). Here, single and competitive sorption dynamics of ionizable norfloxacin (NOR), sulfamerazine (SMR) and oxytetracycline (OTC) by both pristine and modified biochars were investigated. Sorption kinetics of the three antibiotics was faster in ternary-solute than single-solute system. Sorption efficiency was enhanced in the competitive system for NOR by the pristine biochar, and for OTC by both the pristine biochar and the modified biochar, while SMR sorption by the pristine biochar and the KOH-modified biochar was inhibited. Sorption was governed by electrostatic interactions, π-π EDA and H-bonds for antibiotics sorption by biochar. SMR and OTC sorption by biochar was influenced by cation bridging and surface complexation, respectively. This research finding will guide the development of treatment procedures for water polluted by multiple antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede
2017-05-01
The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.
Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.
Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A
2014-04-30
From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.
Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites
Wang, Jinwu
2018-01-01
Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315
Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline
NASA Astrophysics Data System (ADS)
Li, Juanbi; Xiao, Qiushi; Li, Liangchao; Shen, Junhai; Hu, Diqiong
2015-03-01
A series of ZnFe2O4/TiO2/polyaniline ternary composites with excellent photocatalytic activity were successfully synthesized by chemical method. The phase composition, morphology, conductivity, electrical and magnetic performances of the as-samples were characterized by means of modern measurement technology. And the photocatalytic degradation activity tests for the samples were estimated using rhodamine B (RhB) and methyl orange (MO) as targeted pollutants. The results indicated that there existed some interactions between each component in the ternary composites, and the electrical conductivities and photocatalytic degradation activities of the ternary composites were improved due to the coating of polyaniline. Moreover, when the mass fraction of aniline was up to 50%, the ternary composite exhibited a great decontaminating (including photocatalytic degradation and adsorption) activity of on both MO and RhB and displayed an excellent reusability.
Peel, Hannah R; Martin, David P; Bednar, Anthony J
2017-06-01
Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.
Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More.
Yang, Liqiang; Yan, Liang; You, Wei
2013-06-06
Ternary solar cells enjoy both an increased light absorption width, and an easy fabrication process associated with their simple structures. Significant progress has been made for such solar cells with demonstrated efficiencies over 7%; however, their fundamental working principles are still under investigation. This Perspective is intended to offer our insights on the three major governing mechanisms in these intriguing ternary solar cells: charge transfer, energy transfer, and parallel-linkage. Through careful analysis of exemplary cases, we summarize the advantages and limitations of these three major mechanisms and suggest future research directions. For example, incorporating additional singlet fission or upconversion materials into the energy transfer dominant ternary solar cells has the potential to break the theoretical efficiency limit in single junction organic solar cells. Clearly, a feedback loop between fundamental understanding and materials selection is in urgent need to accelerate the efficiency improvement of these ternary solar cells.
CuSb(S,Se)2 thin film heterojunction photovoltaic devices
NASA Astrophysics Data System (ADS)
Welch, Adam W.
Thin film heterojunction solar cells based on CuSb(S,Se)2 absorbers are investigated for two primary reasons. First, antimony is more abundant and less expensive than elements used in current thin film photovoltaics, In, Ga, and Te, and so, successful integration of Sb based materials offers greater diversification and scalability of solar energy. Second, the CuSb(S,Se) 2 ternary is chemically, electronically, and optically similar to the well-known, high efficiency, CuIn(S,Se)2 based materials. It is therefore postulated that the copper antimony ternaries will have similar defect tolerant electronic transport that may allow for similar highly efficient photoconversion. However, CuSb(S,Se)2 forms a layered crystal structure, different from the tetrahedral coordination found in conventional solar absorbers, due to the non-bonding lone pair of electrons on the antimony site. Thus examination of 2D antimony ternaries will lend insight into the role of structure in photoconversion processes. To address these questions, the semiconductors of interest (CuSbS 2 & CuSbSe2) were first synthesized on glass by combinatorial methods, to more quickly optimize process condi- tions. Radio-frequency (RF) magnetron co-sputtering from Sb2(S,Se)3 and Cu 2(S,Se) targets were used, without rotation, to produce chemical and flux graded libraries which were then subjected to high throughput characterization of structure (XRD), composition (XRF), conductivity (4pp), and optical absorption (UV/Vis/NIR). This approach rapidly identified processes that generated phase pure material with tunable carrier concentration by applying excess Sb 2(S,Se)3 within a temperature window bound by the volatility of Sb2(S,Se)3 and stability of the ternary phase. The resulting phase pure thin films were then incor- porated into the traditional CuInGaSe2 (CIGS) substrate photovoltaic (PV) architecture, and the resulting device performance was correlated to gradients in composition, sputter flux, absorber thickness, and grain orientation. This combinatorial work was complimented by individual measurements of photoluminescence (PL), capacitance-voltage (CV), external quantum efficiency (EQE), terahertz (THz) spectroscopy, and photoelectrochemical (PEC) measurements. CuSbS2-based libraries produced devices with just 1% power conversion efficiency, mainly limited by high levels of recombination associated with high density of shallow trap states. Conversely, the selenide variant showed more promise, with initial cells producing significantly more photocurrent, nearly 60% of the theoretical maximum, and likewise 5% efficient devices, mainly due to fewer trap states. However, the selenide is still limited by short carrier diffusion lengths, therefore demonstrating that structure does seem to play limiting role in photoconversion processes. Overall, the CuSb(S,Se)2 material system is only likely to merit further exploration if it can be incorporated into an alternate device structure less dependent on collection by diffusion. There is a small possibility that oriented selenide films with anisotropic carrier lifetimes could improve performance, though this is unlikely considering initial oriented sulfide films did not demonstrate much improved performance. This work demonstrated the utility of the combinatorial device fabrication applied to the search for new, scalable photovoltaic materials. An innovative chemical system was quickly explored in-depth and optimized for devices; continued efforts of this type are likely to produce better materials, or at the very least, quickly expand the library of well-scrutinized photovoltaic materials.