Science.gov

Sample records for terpenes

  1. Terpene synthases from Cannabis sativa.

    PubMed

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  2. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  3. Mapping Terpenes over the Teakettle Experimental Forest

    NASA Astrophysics Data System (ADS)

    Tycner, J.; Ustin, S.; Grigsby, S.

    2015-12-01

    Terpenes are a category of biogenic volatile organic compounds (BVOC) produced by many plants, most notably coniferous plants. Commonly, these terpenes are aromatic compounds. The intensity of terpene emission varies depending greatly on light and temperature. Through remote sensing data as well as ASD spectroradiometry data this study focuses on locating sources of terpene emissions in the Teakettle Experimental Forest. These emissions are of particular concern because of their influence on the chemical concentration of the lower troposphere, as well as being an indicator of tree health. A novel approach has been designed through this study in order to locate and further understand these terpene emissions. Terpenes such as camphene have been reported to have subtle spectral features located at around 1.7 μm. For the first time, a map of terpene sources has been constructed by accentuating this particular feature. A continuum interpolated band ratio (CIBR) was used in order to compute a relative abundance of terpenes from the AVIRIS data. The CIBR equation showed promise, as terpenes were most strongly concentrated in areas of coniferous vegetation (a primary source of terpenes) and were less prominent over bodies of water or industrialized areas. The greatest concentrations were focused over treetops and other woody vegetation. Although it is known that terpenes have weak absorption features in the SWIR, there is little information available regarding the mapping of terpene emissions. This project addresses a novel approach to observing biochemical components in the lower troposphere and could potentially give more information to explain the health of forest ecosystems.

  4. Volatilisation of terpenes from Salvia mellifera

    NASA Technical Reports Server (NTRS)

    Tyson, B. J.; Dement, W. A.; Mooney, H. A.

    1974-01-01

    The study demonstrates significant terpene volatilisation from Salvia mellifera. Net photosynthesis and dark respiration were measured in an intact branch of a potted plant using a gas analysis system. Photosynthesis and respiration rates were determined for various temperatures. The rates were directly proportional to leaf temperature and were the same in both light and dark reactions. Using the temperature curve for the steady-state rate of terpene volatilisation and the gas exchange characteristics, the daily carbon gain and terpene loss were calculated.

  5. Terpene Specialized Metabolism in Arabidopsis thaliana

    PubMed Central

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C5-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C20-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C10-, C15-, and C20-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes. PMID:22303268

  6. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  7. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.

    PubMed

    Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A

    2017-03-01

    Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels

    DOE PAGES

    Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; ...

    2016-09-09

    Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less

  9. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants...

  10. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants...

  11. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resin. 172.280 Section 172.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.280...

  12. The Eucalyptus terpene synthase gene family.

    PubMed

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  13. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    NASA Astrophysics Data System (ADS)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  14. Toxicant Formation in Dabbing: The Terpene Story

    PubMed Central

    2017-01-01

    Inhalable, noncombustible cannabis products are playing a central role in the expansion of the medical and recreational use of cannabis. In particular, the practice of “dabbing” with butane hash oil has emerged with great popularity in states that have legalized cannabis. Despite their growing popularity, the degradation product profiles of these new products have not been extensively investigated. The study herein focuses on the chemistry of myrcene and other common terpenes found in cannabis extracts. Methacrolein, benzene, and several other products of concern to human health were formed under the conditions that simulated real-world dabbing. The terpene degradation products observed are consistent with those reported in the atmospheric chemistry literature. PMID:28983528

  15. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    PubMed

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  16. Deposition Fluxes of Terpenes over Grassland

    PubMed Central

    Bamberger, I.; Hörtnagl, L.; Ruuskanen, T. M.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.

    2013-01-01

    Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction – mass spectrometer (PTR-MS) and a PTR-time of flight – mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant re-emission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1st of April to 1st of November), the cumulative carbon deposition of monoterpenes reached 276 mg C m−2. This is comparable to the net carbon emission of methanol (329 mg C m−2), which is the dominant non methane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed. PMID:24383048

  17. Mass spectrometry analysis of terpene lactones in Ginkgo biloba.

    PubMed

    Ding, Shujing; Dudley, Ed; Song, Qingbao; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth

    2008-01-01

    Terpene lactones are a family of compounds with unique chemical structures, first recognised in an extract of Ginkgo biloba. The discovery of terpene lactone derivatives has recently been reported in more and more plant extracts and even food products. In this study, mass spectrometric characteristics of the standard terpene lactones in Ginkgo biloba were comprehensively studied using both an ion trap and a quadrupole time-of-flight (QTOF) mass spectrometer. The mass spectral fragmentation data from both techniques was compared to obtain the mass spectrometric fragmentation pathways of the terpene lactones with high confidence. The data obtained will facilitate the analysis and identification of terpene lactones in future plant research via the fragmentation knowledge reported here.

  18. Removal of floral microbiota reduces floral terpene emissions

    PubMed Central

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-01-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

  19. Removal of floral microbiota reduces floral terpene emissions

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  20. Removal of floral microbiota reduces floral terpene emissions.

    PubMed

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-22

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  1. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciT

    None

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacitymore » while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.« less

  2. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.

    PubMed

    Gutensohn, M; Dudareva, N

    2016-01-01

    Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.

  3. Antimalarial activity of the terpene nerolidol.

    PubMed

    Saito, Alexandre Y; Marin Rodriguez, Adriana A; Menchaca Vega, Danielle S; Sussmann, Rodrigo A C; Kimura, Emília A; Katzin, Alejandro M

    2016-12-01

    Malaria, an infectious disease that kills more than 438,000 people per year worldwide, is a major public health problem. The emergence of strains resistant to conventional therapeutic agents necessitates the discovery of new drugs. We previously demonstrated that various substances, including terpenes, have antimalarial activity in vitro and in vivo. Nerolidol is a sesquiterpene present as an essential oil in several plants that is used in scented products and has been approved by the US Food and Drug Administration as a food-flavouring agent. In this study, the antimalarial activity of nerolidol was investigated in a mouse model of malaria. Mice were infected with Plasmodium berghei ANKA and were treated with 1000 mg/kg/dose nerolidol in two doses delivered by the oral or inhalation route. In mice treated with nerolidol, parasitaemia was inhibited by >99% (oral) and >80% (inhalation) until 14 days after infection (P <0.0001). On Day 30 post-infection, the survival rate of orally treated mice was 90% compared with 16% in controls (P <0.0001). In contrast, inhalation-treated mice showed a survival rate of 50% vs. 42% in controls (P > 0.05). The toxicity of nerolidol administered by either route was not significant, whilst genotoxicity was observed only at the highest dose tested. These results indicate that combined use of nerolidol and other drugs targeting different points of the same isoprenoid pathway may be an effective treatment for malaria. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    PubMed

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  5. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    PubMed Central

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  6. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    PubMed

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  7. Production of terpenes in the culture of Chlorophyceae and Rhodophyta

    NASA Astrophysics Data System (ADS)

    Abe, M.; Hashimoto, S.

    2014-12-01

    Terpenes show high reactivity in the troposphere, contributing to organic aerosol reactions with OH radicals. One of the main sources of terpenes in the atmosphere is terrestrial plants. It has been recently reported that marine phytoplankton also produce monoterpenes (Yassaa et al: 2008). Because aerosol production of natural origin affects the cloud cover over the open ocean, it is important to investigate the origin of aerosol generation in the open ocean. In this study, we investigated the production of terpenes and isoprene with a focus on Chlamydomonas (Chlorophyceae) and Rhodella maculata (Rhodophyta). Concentrations of terpenes and isoprene were measured using a dynamic headspace (GERSTEL DHS)—gas chromatograph (Agilent 6890N)—mass spectrometer (Agilent 5975C). In addition, chlorophyll a was measured using a fluorometer (Turner TD-700). The results showed that isoprene, α-pinene, and β-pinene were produced by Chlamydomonas sp. and that isoprene, limonene, and camphene were produced by Rhodella maculata. Chlamydomonas sp. produced α-pinene and β-pinene, similar to land plants. The ratio of the pinene/isoprene concentrations in the atmosphere over seawater where phytoplankton are blooming has been reported as approximately 0.7 (Yassaa et al: 2008). In this experiment, the pinene/isoprene concentration ratios in the cultures were approximately 0.1. This result indicates that marine phytoplankton may not be ignored in the marine atmosphere chemistry of terpenes.

  8. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications.

    PubMed

    Singh, Bharat; Sharma, Ram A

    2015-04-01

    The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.

  9. Estimating terpene and terpenoid emissions from conifer oleoresin composition

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2015-07-01

    The following algorithm, which is based on the thermodynamics of nonelectrolyte partitioning, was developed to predict emission rates of terpenes and terpenoids from specific storage sites in conifers: Ei =xoriγoripi∘ where Ei is the emission rate (μg C gdw-1 h-1) and pi∘ is the vapor pressure (mm Hg) of the pure liquid terpene or terpenoid, respectively, and xori and γori are the mole fraction and activity coefficient (on a Raoult's law convention), respectively, of the terpene and terpenoid in the oleoresin. Activity coefficients are calculated with Hansen solubility parameters that account for dispersive, polar, and H-bonding interactions of the solutes with the oleoresin matrix. Estimates of pi∘ at 25 °C and molar enthalpies of vaporization are made with the SIMPOL.1 method and are used to estimate pi∘ at environmentally relevant temperatures. Estimated mixing ratios of terpenes and terpenols were comparatively higher above resin-acid- and monoterpene-rich oleoresins, respectively. The results indicated a greater affinity of terpenes and terpenols for the non-functionalized and carboxylic acid containing matrix through dispersive and H-bonding interactions, which are expressed in the emission algorithm by the activity coefficient. The correlation between measured emission rates of terpenes and terpenoids for Pinus strobus and emission rates predicted with the algorithm were very good (R = 0.95). Standard errors for the range and average of monoterpene emission rates were ±6 - ±86% and ±54%, respectively, and were similar in magnitude to reported standard deviations of monoterpene composition of foliar oils (±38 - ±51% and ±67%, respectively).

  10. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils.

    PubMed

    Irmisch, Sandra; Krause, Sandra T; Kunert, Grit; Gershenzon, Jonathan; Degenhardt, Jörg; Köllner, Tobias G

    2012-06-08

    The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  11. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    PubMed Central

    2012-01-01

    Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils. PMID:22682202

  12. Biotransformation of geosmin by terpene-degrading bacteria.

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  13. Underestimation of terpene exposure in the Nordic wood industry.

    PubMed

    Granström, Karin M

    2010-03-01

    This study determined that emission of sesquiterpenes from processed wood warrants attention in the work environment. Currently, only the monoterpenes in the terpene group are monitored in occupational hygiene studies. Terpene emissions are a work environment issue for industries that process wood, as they are known to cause respiratory difficulties and mucous membrane irritation. Fresh sawdust of the most common boreal conifers, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), was subjected to processing (drying), and the emissions were analyzed with a gas chromatograph-mass spectrometer. The data indicate that workers are exposed to significant amounts of sesquiterpenes, an observation that has not been recorded previously at wood processing plants. On average, the proportion of sesquiterpenes to monoterpenes was 21 +/- 5% (STD, n = 11) for spruce and 15 +/- 5% (STD, n = 13) for pine. The composition of terpenes emitted in air from spruce wood differs from the composition in resin. The sum of monoterpenes and sesquiterpenes can exceed the occupational exposure limit for turpentine for processes where monoterpene concentrations are already close to the occupational exposure limit, and for processes involving the processing of bark. Findings suggest that future studies of health effects from terpenes in air should measure monoterpenes and sesquiterpenes to assess whether the current OELs are appropriate.

  14. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciT

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J.

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  15. Investigation of terpene diversification across multiple sequenced plant genomes

    PubMed Central

    Boutanaev, Alexander M.; Moses, Tessa; Zi, Jiachen; Nelson, David R.; Mugford, Sam T.; Peters, Reuben J.; Osbourn, Anne

    2015-01-01

    Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) “signature” enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots. PMID:25502595

  16. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria.

    PubMed

    Formighieri, Cinzia; Melis, Anastasios

    2016-12-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (k cat  = 4 s -1 or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in Synechocystis for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO 2 to terpene hydrocarbons conversion process.

  17. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    PubMed

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  19. Evidence for a Terpene-Based Food Chain in the Gulf of Alaska

    PubMed Central

    Button, D. K.

    1984-01-01

    A mixture of 14C-terpenes was prepared from conifer seedlings and introduced into fresh seawater samples taken near Seward, Alaska. Initial rates of oxidation by the indigenous bacteria were linear and faster than the rates of toluene oxidation. Turnover times were 4 to 19 days. Autoradiographic measurements with 3H-terpenes indicated that at least 10% of the 0.6 × 109 to 2.7 × 109 bacteria per liter present could catabolize terpenes. The rate of terpene oxidation, 24 μg of terpenes per g of cells per h with 3 μg of terpenes added per liter, was a constant function of bacterial biomass. The specific affinity of the process was estimated to be between 8.1 and 81 liters/g of cells per h, indicating a high state of induction and the probable presence of terpenes. Terpene-oxidizing bacteria were grown on [14C]alanine and added to fresh seawater samples. Transfer of the bacterial radioactivity into larger particles at a rate of 146 pg/liter per h from the 2.3 × 109 organisms added indicated that any terpenes present would participate in the food chain. PMID:16346658

  20. Terpenes as green solvents for extraction of oil from microalgae.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid

    2012-07-09

    Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  1. Negative inotropism of terpenes on guinea pig left atrium: structure-activity relationships.

    PubMed

    Vasconcelos, Carla M L; Oliveira, Ingrid S N; Santos, José N A; Souza, Américo A; Menezes-Filho, José E R; Silva Neto, Júlio A; Lima, Tamires C; de Sousa, Damião P

    2018-06-01

    The aim of this work was to evaluate the pharmacological effect of seven structurally related terpenes on the contractility of cardiac muscle. The effect of terpenes was studied on isolated electrically driven guinea pig left atrium. From concentration-response curves for inotropic effect were determined the EC 50 and relative potency of such terpenes. Our results revealed that all terpenes, except phytol, showed ability to reduce the contractile response of guinea pig left atrium. Further, relative potency was directly related to the number of isoprene units and to the lipophilicity of the compounds. For example, sesquiterpenes farnesol and nerolidol showed higher relative potency when compared with the monoterpenes citronellol, geraniol and nerol. We can conclude that most of the evaluated terpenes showed a promising negative inotropism on the atrial muscle. Future studies are necessary to investigate their action mechanism.

  2. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  3. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  4. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  5. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  6. Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.

    PubMed

    Cal, Krzysztof; Sopala, Monika

    2008-08-01

    The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.

  7. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan.

    PubMed

    Nikolić, Biljana; Ristić, Mihailo; Tešević, Vele; Marin, Petar D; Bojović, Srdjan

    2011-12-01

    Terpenes are often used as ecological and chemotaxonomic markers of plant species, as well as for estimation of geographic variability. Essential oils of relic and Balkan endemic/subendemic conifers, Picea omorika, Pinus heldreichii, and P. peuce, in central part of Balkan Peninsula (Serbia and Montenegro), on the level of terpene classes and common terpene compounds were investigated. In finding terpene combinations, which could show the best diversity between species and their natural populations, several statistical methods were applied. Apart from the content of different terpene classes (P. omorika has the most abundant O-containing monoterpenes and sesquiterpenes; P. heldreichii and P. peuce have the largest abundance of sesquiterpene and monoterpene hydrocarbons, resp.), the species are clearly separated according to terpene profile with 22 common compounds. But, divergences in their populations were established only in combination of several compounds (specific for each species), and they were found to be the results of geomorphologic, climatic, and genetic factors. We found similarities between investigated species and some taxa from literature with respect to terpene composition, possibly due to hybridization and phylogenetic relations. Obtained results are also important regarding to chemotaxonomy, biogeography, phylogeny, and evolution of these taxa. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.

    PubMed

    Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar

    2008-01-01

    The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed.

  9. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  10. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis.

    PubMed

    He, Xueying; Wang, Huan; Yang, Jinfen; Deng, Ke; Wang, Teng

    2018-02-01

    Amomum villosum Lour. is an important Chinese medicinal plant that has diverse medicinal functions, and mainly contains volatile terpenes. This study aims to explore the WRKY transcription factors (TFs) and terpene synthase (TPS) unigenes that might be involved in terpene biosynthesis in A. villosum, and thus providing some new information on the regulation of terpenes in plants. RNA sequencing of A. villosum induced by methyl jasmonate (MeJA) revealed that the WRKY family was the second largest TF family in the transcriptome. Thirty-six complete WRKY domain sequences were expressed in response to MeJA. Further, six WRKY unigenes were highly correlated with eight deduced TPS unigenes. Ultimately, we combined the terpene abundance with the expression of candidate WRKY TFs and TPS unigenes to presume a possible model wherein AvWRKY61, AvWRKY28, and AvWRKY40 might coordinately trans-activate the AvNeoD promoter. We propose an approach to further investigate TF unigenes that might be involved in terpenoid biosynthesis, and identified four unigenes for further analyses.

  11. Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method.

    PubMed

    Liang, Tingfu; Miyakawa, Takuya; Yang, Jinwei; Ishikawa, Tsutomu; Tanokura, Masaru

    2018-06-01

    Ginkgo biloba L. has been used as a herbal medicine in the traditional treatment of insufficient blood flow, memory deficits, and cerebral insufficiency. The terpene trilactone components, the bioactive agents of Ginkgo biloba L., have also been reported to exhibit useful functionality such as anti-inflammatory and neuroprotective effects. Therefore, in the present research, we attempted to analyze quantitatively the terpene trilactone components in Ginkgo biloba leaf extract, with quantitative 1 H NMR (qNMR) and obtained almost identical results to data reported using HPLC. Application of the qNMR method for the analysis of the terpene trilactone contents in commercial Ginkgo extract products, such as soft gel capsules and tablets, produced the same levels noted in package labels. Thus, qNMR is an alternative method for quantification of the terpene trilactone components in commercial Ginkgo extract products.

  12. Essential oil terpenes: adjunctive role in the management of childhood urolithiasis.

    PubMed

    Al-Mosawi, Aamir Jalal

    2010-04-01

    Essential oil preparation of the terpenic type was introduced for the first time in the 1930s for the management of urolithiasis. Although essential oil preparations are registered in 50 countries, including some developed countries such as the United Kingdom, Italy, and Japan, for use in urolithiasis, no literature has been published in a peer-reviewed English (Anglo-American) medical journal. Recently the use of these terpenes has been investigated in children with urolithiasis and underlying metabolic abnormalities. The aim of this article is to extract the useful and worthy information about the use of these terpenes in urolithiasis from the previous literature as many of these articles are now considered of poor quality for a thorough systematic scientific review. The main disadvantages of most of the old literature about terpenes are the treatment was not followed radiologically and most of these articles represent anecdotal reports of spontaneous passage of calculi and symptomatic improvement of colic in association with the use of terpenes. The other aim is to discuss the possible role of essential oil terpenes in the management of childhood urolithiasis.

  13. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  14. Indoor fine particles: the role of terpene emissions from consumer products.

    PubMed

    Sarwar, Golam; Olson, David A; Corsi, Richard L; Weschler, Charles J

    2004-03-01

    Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.

  15. Selecting Microbial Strains from Pine Tree Resin: Biotechnological Applications from a Terpene World

    PubMed Central

    Vilanova, Cristina; Marín, Maria; Baixeras, Joaquín; Latorre, Amparo; Porcar, Manuel

    2014-01-01

    Resin is a chemical and physical defensive barrier secreted by many plants, especially coniferous trees, with insecticidal and antimicrobial properties. The degradation of terpenes, the main components accounting for the toxicity of resin, is highly relevant for a vast range of biotechnological processes, including bioremediation. In the present work, we used a resin-based selective medium in order to study the resin-tolerant microbial communities associated with the galls formed by the moth Retinia resinella; as well as resin from Pinus sylvestris forests, one of the largest ecosystems on Earth and a yet-unexplored source of terpene-degrading microorganisms. The taxonomic and functional diversity of the cultivated, resin-tolerant fraction of the whole microbiota were unveiled by high-throughput sequencing, which resulted in the detection of more than 40 bacterial genera among the terpene-degrading microorganisms, and a range of genes involved in the degradation of different terpene families. We further characterized through culture-based approaches and transcriptome sequencing selected microbial strains, including Pseudomonas sp., the most abundant species in both environmental resin and R. resinella resin-rich galls, and three fungal species, and experimentally confirmed their ability to degrade resin and also other terpene-based compounds and, thus, their potential use in biotechnological applications involving terpene catabolism. PMID:24971580

  16. Chemodiversity in terpene emissions at a boreal Scots pine stand

    NASA Astrophysics Data System (ADS)

    Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.

    2011-10-01

    Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes to the surrounding air. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 47-yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ

  17. Heterologous expression of 2-methylisoborneol / 2 methylenebornane biosynthesis genes in Escherichia coli yields novel C11-terpenes

    PubMed Central

    Wortmann, Hannah; Dickschat, Jeroen S.; Schrader, Jens

    2018-01-01

    The structural diversity of terpenoids is limited by the isoprene rule which states that all primary terpene synthase products derive from methyl-branched building blocks with five carbon atoms. With this study we discover a broad spectrum of novel terpenoids with eleven carbon atoms as byproducts of bacterial 2-methylisoborneol or 2-methylenebornane synthases. Both enzymes use 2-methyl-GPP as substrate, which is synthesized from GPP by the action of a methyltransferase. We used E. coli strains that heterologously produce different C11-terpene synthases together with the GPP methyltransferase and the mevalonate pathway enzymes. With this de novo approach, 35 different C11-terpenes could be produced. In addition to eleven known compounds, it was possible to detect 24 novel C11-terpenes which have not yet been described as terpene synthase products. Four of them, 3,4-dimethylcumene, 2-methylborneol and the two diastereomers of 2-methylcitronellol could be identified. Furthermore, we showed that an E. coli strain expressing the GPP-methyltransferase can produce the C16-terpene 6-methylfarnesol which indicates the condensation of 2-methyl-GPP and IPP to 6-methyl-FPP by the E. coli FPP-synthase. Our study demonstrates the broad range of unusual terpenes accessible by expression of GPP-methyltransferases and C11-terpene synthases in E. coli and provides an extended mechanism for C11-terpene synthases. PMID:29672609

  18. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.

    PubMed

    Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula

    2017-11-01

    Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

  19. Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the TPS-B terpene synthase family.

    PubMed

    Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren

    2013-04-01

    Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  20. Synthesis of terpene and steroid dimers and trimers having cyclobutadienyl-Co and aromatic tethers.

    PubMed

    Sierra, Miguel A; Torres, M Rosario; Torre, María C de la; Alvaro, Elsa

    2007-05-25

    The reaction of natural product derived propargylic alcohols with CpCo(CO)2 produces three new types of natural product hybrids having two or three terpene or steroid fragments. The tether joining the natural product subunits is built during the reaction. Type 1 hybrids have two terpene or steroid moieties joined by a CpCo-cyclobutadiene tether, with the two units disposed in a 1,2-arrangement (9, 14, 22). Type 2 hybrids have a Co-cyclopentadienone tether (10). Type 3 has three units of terpene or steroid joined to a benzene ring (11, 12, 15). An unusual Co-mediated beta-carbon elimination pathway of propargylic alcohols leading to ketones (an unknown process in this chemistry) has been observed.

  1. Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)

    NASA Astrophysics Data System (ADS)

    Loreto, F.; Fares, S.

    2009-12-01

    Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.

  2. Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives.

    PubMed

    Alves-Silva, Jorge M; Zuzarte, Monica; Marques, Carla; Salgueiro, Ligia; Girao, Henrique

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide that seriously affect patient's life quality and are responsible for huge economic and social burdens. It is widely accepted that a plant-based diet may reduce the risk of CVDs by attenuating several risk factors and/or modulating disease's onset and progression. Plants are rich in secondary metabolites, being terpenes the most abundant and structurally diverse group. These compounds have shown broad therapeutic potential as antimicrobial, antiviral, anti-inflammatory and antitumor agents. Despite their popularity, scientific evidence on terpenes cardiovascular effects remains sparse, limiting their potential use as cardioprotective and/or cardiotherapeutic agents. Bearing in mind the lack of comprehensive and systematic studies, the present review aims to gather the knowledge and some of the most scientific evidence accumulated over the past years on the effect of terpenes in the cardiovascular field with focus on CVDs namely ischemic heart disease, heart failure, arrhythmias and hypertension. Several popular search engines including PubMed, Science Direct, Scopus and Google Scholar were consulted. The bibliographic research focused primarily on English written papers published over the last 15 years. A systematic and comprehensive update on the cardiovascular effects of terpenes is provided. Moreover, whenever known, the possible mechanisms of action underlying the cardiovascular effects are pointed out as well as an attempt to identify the most relevant structure- activity relationships of the different classes of terpenes. Overall, this review enables a better understanding of the cardiovascular effects of terpenes, thus paving the way towards future research in medicinal chemistry and rational drug design.

  3. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    PubMed Central

    Hegazy, Mohamed Elamir F.; Mohamed, Tarik A.; Alhammady, Montaser A.; Shaheen, Alaa M.; Reda, Eman H.; Elshamy, Abdelsamed I.; Aziz, Mina; Paré, Paul W.

    2015-01-01

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species. PMID:26006713

  5. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates.

    PubMed

    Hegazy, Mohamed Elamir F; Mohamed, Tarik A; Alhammady, Montaser A; Shaheen, Alaa M; Reda, Eman H; Elshamy, Abdelsamed I; Aziz, Mina; Paré, Paul W

    2015-05-20

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  6. Temporal effects of prescribed burning on terpene production in Mediterranean pines.

    PubMed

    Valor, Teresa; Ormeño, Elena; Casals, Pere

    2017-12-01

    Prescribed burning is used to reduce fuel hazard but underburning can damage standing trees. The effect of burning on needle terpene storage, a proxy for secondary metabolism, in fire-damaged pines is poorly understood despite the protection terpenes confer against biotic and abiotic stressors. We investigated variation in needle terpene storage after burning in three Mediterranean pine species featuring different adaptations to fire regimes. In two pure-stands of Pinus halepensis Mill. and two mixed-stands of Pinus sylvestris L. and Pinus nigra ssp. salzmanni (Dunal) Franco, we compared 24 h and 1 year post-burning concentrations with pre-burning concentrations in 20 trees per species, and evaluated the relative contribution of tree fire severity and physiological condition (δ13C and N concentration) on temporal terpene dynamics (for mono- sesqui- and diterpenes). Twenty-four hours post-burning, monoterpene concentrations were slightly higher in P. halepensis than at pre-burning, while values were similar in P. sylvestris. Differently, in the more fire-resistant P. nigra monoterpene concentrations were lower at 24 h, compared with pre-burning. One year post-burning, concentrations were always lower compared with pre- or 24 h post-burning, regardless of the terpene group. Mono- and sesquiterpene variations were negatively related to pre-burning δ13C, while diterpene variations were associated with fire-induced changes in needle δ13C and N concentration. At both post-burning times, mono- and diterpene concentrations increased significantly with crown scorch volume in all species. Differences in post-burning terpene contents as a function of the pine species' sensitivity to fire suggest that terpenic metabolites could have adaptive importance in fire-prone ecosystems in terms of flammability or defence against biotic agents post-burning. One year post-burning, our results suggest that in a context of fire-induced resource availability, pines likely prioritize

  7. Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development.

    PubMed

    Guitton, Yann; Nicolè, Florence; Moja, Sandrine; Valot, Nadine; Legrand, Sylvain; Jullien, Frédéric; Legendre, Laurent

    2010-02-01

    Despite the commercial importance of Lavandula angustifolia Mill. and L. x intermedia Emeric ex Loisel floral essential oils (EOs), no information is currently available on potential changes in individual volatile organic compound (VOC) content during inflorescence development. Calyces were found to be the main sites of VOC accumulation. The 20 most abundant VOCs could be separated into three sub-groups according to their patterns of change in concentration The three groups of VOCs sequentially dominated the global scent bouquet of inflorescences, the transition between the first and second groups occurring around the opening of the first flower of the inflorescence and the one between the second and third groups at the start of seed set. Changes in calyx VOC accumulation were linked to the developmental stage of individual flowers. Leaves accumulated a smaller number of VOCs which were a subset of those seen in preflowering inflorescences. Their nature and content remained constant during the growing season. Quantitative real time polymerase chain reaction assessments of the expression of two terpene synthase (TPS) genes, LaLIMS and LaLINS, revealed similar trends between their patterns of expression and those of their VOC products. Molecular and chemical analyses suggest that changes in TPS expression occur during lavender inflorescence development and lead to changes in EO composition. Both molecular data and terpene analysis support the findings that changes in biosynthesis of terpene occurred during inflorescence development.

  8. Needle Terpenes as Chemotaxonomic Markers in Pinus: Subsections Pinus and Pinaster.

    PubMed

    Mitić, Zorica S; Jovanović, Snežana Č; Zlatković, Bojan K; Nikolić, Biljana M; Stojanović, Gordana S; Marin, Petar D

    2017-05-01

    Chemical compositions of needle essential oils of 27 taxa from the section Pinus, including 20 and 7 taxa of the subsections Pinus and Pinaster, respectively, were compared in order to determine chemotaxonomic significance of terpenes at infrageneric level. According to analysis of variance, six out of 31 studied terpene characters were characterized by a high level of significance, indicating statistically significant difference between the examined subsections. Agglomerative hierarchical cluster analysis has shown separation of eight groups, where representatives of subsect. Pinaster were distributed within the first seven groups on the dendrogram together with P. nigra subsp. laricio and P. merkusii from the subsect. Pinus. On the other hand, the eighth group included the majority of the members of subsect. Pinus. Our findings, based on terpene characters, complement those obtained from morphological, biochemical, and molecular parameters studied over the past two decades. In addition, results presented in this article confirmed that terpenes are good markers at infrageneric level. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. HS-SPME/GC analysis reveals the population variability of terpene contents in Juniperus communis needles.

    PubMed

    Filipowicz, Natalia; Madanecki, Piotr; Gołebiowski, Marek; Stepnowski, Piotr; Ochocka, J Renata

    2009-12-01

    Juniperus communis var. communis L. is an aromatic plant - typical boreal element of flora. In the extensive literature concerning J. communis, there is much data on the composition and the content of essential oil of needles and coneberries, but a detailed analysis of terpene distribution within and between populations is missing. A representative pool of 74 J. communis individuals originating from ten populations of Northern Poland was investigated in order to evaluate the intra- and interpopulational variability of the terpene pattern. Headspace solid-phase microextraction (HS-SPME) coupled with GC/MS and GC/FID was applied in achiral and enantioselective analysis. The majority of the samples (85%), despite different origin, were similar in the terpene pattern. High diversity of terpenes was observed within the populations and low diversity between them. High variation of enantiomeric composition was in accordance with large variation of individual compounds in general (achiral analysis). J. communis samples from Northern Poland could be distinguished by the alpha-pinene/sabinene ratio, and they were divided into three chemical races.

  10. Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae

    SciT

    Wu, Weihua; Tran, William; Taatjes, Craig A.

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs)more » derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Lastly, out of the 26 TPS’s profiled, 12 TPS’s were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.« less

  11. Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI.

    PubMed

    Nazari, Milad; Malico, Alexandra A; Ekelöf, Måns; Lund, Sean; Williams, Gavin J; Muddiman, David C

    2018-01-01

    Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.

  12. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum.

    PubMed

    Pontin, Mariela; Bottini, Rubén; Burba, José Luis; Piccoli, Patricia

    2015-07-01

    This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae

    DOE PAGES

    Wu, Weihua; Tran, William; Taatjes, Craig A.; ...

    2016-02-17

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs)more » derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Lastly, out of the 26 TPS’s profiled, 12 TPS’s were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.« less

  14. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes.

    PubMed

    Zhang, Pangzhen; Fuentes, Sigfredo; Siebert, Tracey; Krstic, Mark; Herderich, Markus; Barlow, Edward William R; Howell, Kate

    2016-08-01

    The flavour of wine is derived, in part, from the flavour compounds present in the grape, which change as the grapes accumulate sugar and ripen. Grape berry terpene concentrations may vary at different stages of berry development. This study aimed to investigate terpene evolution in grape berries from four weeks post-flowering to maturity. Grape bunches were sampled at fortnightly intervals over two vintages (2012-13 and 2013-14). In total, five monoterpenoids, 24 sesquiterpenes, and four norisoprenoids were detected in grape samples. The highest concentrations of total monoterpenoids, total sesquiterpenes, and total norisoprenoids in grapes were all observed at pre-veraison. Terpenes derived from the same biosynthetic pathway had a similar production pattern during berry development. Terpenes in grapes at harvest might not necessarily be synthesised at post-veraison, since the compounds or their precursors may already exist in grapes at pre-veraison, with the veraison to harvest period functioning to convert these precursors into final products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Concurrent and supercritical fluid chromatographic analysis of Terpene Lactones and ginkolic acids in Ginko biloba

    Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1 and C17:1) was carried out by ESI (-) mass detection. The ESI (-) spectra of...

  16. Mechanism-based post-translational modification and inactivation in terpene synthases

    DOE PAGES

    Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.; ...

    2015-09-17

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less

  17. CCN activity of secondary aerosols from terpene ozonolysis under atmospheric relevant conditions

    NASA Astrophysics Data System (ADS)

    Yuan, Cheng; Ma, Yan; Diao, Yiwei; Yao, Lei; Zhou, Yaoyao; Wang, Xing; Zheng, Jun

    2017-04-01

    Gas-phase ozonolysis of terpenes is an important source of atmospheric secondary organic aerosol. The contribution of terpene-derived aerosols to the atmospheric cloud condensation nucleus (CCN) burden under atmospheric conditions, however, remains highly uncertain. The results obtained in previous studies under simple laboratory conditions may not be applicable to atmospheric relevant conditions. Here we present that CCN activities of aerosols from terpene ozonolysis can be significantly affected by atmospheric relevant species that can act as stabilized Criegee intermediate (SCI) or OH scavengers. Ozonolysis reactions of α-pinene, limonene, α-cedrene, and α-humulene were conducted in a 4.5 m3 collapsible fluoropolymer chamber at near-atmospheric concentrations in the presence of different OH scavengers (cyclohexane, 2-butanol, or CO) and SCI scavengers (CH3COOH, H2O, or SO2). The number size distribution and CCN activity of aerosol particles formed during ozonolysis were simultaneously determined. Additionally, particulate products were chemically analyzed by using a Filter Inlet for Gases and AEROsols High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer. Results showed that aerosol CCN activity following monoterpene ozonolysis was more sensitive to the choice of OH scavengers, while that from sesquiterpene ozonolysis was significantly affected by SCI scavengers. Combined with chemical analysis results, it was concluded that the unimolecular decomposition of CIs giving hygroscopic organic products can be largely suppressed by bimolecular reactions during sesquiterpene ozonolysis but was not significantly impacted in monoterpene ozonolysis. Our study underscores the key role of CIs in the CCN activity of terpene ozonolysis-derived aerosols. The effects of atmospheric relevant species (e.g., SO2, H2O, and CO) need to be considered when assessing the contribution of biogenic terpenes to the atmospheric CCN burden under ambient conditions.

  18. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems.

    PubMed

    El-Kattan, A F; Asbill, C S; Michniak, B B

    2000-04-05

    The percutaneous permeation of hydrocortisone (HC) was investigated in hairless mouse skin after application of an alcoholic hydrogel using a diffusion cell technique. The formulations contained one of 12 terpenes, the selection of which was based on an increase in their lipophilicity (log P 1.06-5.36). Flux, cumulative receptor concentrations, skin content, and lag time of HC were measured over 24 h and compared with control gels (containing no terpene). Furthermore, HC skin content and the solubility of HC in the alcoholic hydrogel solvent mixture in the presence of terpene were determined, and correlated to the enhancing activity of terpenes. The in vitro permeation experiments with hairless mouse skin revealed that the terpene enhancers varied in their ability to enhance the flux of HC. Nerolidol which possessed the highest lipophilicity (log P = 5.36+/-0.38) provided the greatest enhancement for HC flux (35.3-fold over control). Fenchone (log P = 2.13+/-0.30) exhibited the lowest enhancement of HC flux (10.1-fold over control). In addition, a linear relationship was established between the log P of terpenes and the cumulative amount of HC in the receptor after 24 h (Q(24)). Nerolidol, provided the highest Q(24) (1733+/-93 microg/cm(2)), whereas verbenone produced the lowest Q(24) (653+/-105 microg/cm(2)). Thymol provided the lowest HC skin content (1151+/-293 microg/g), while cineole produced the highest HC skin content (18999+/-5666 microg/g). No correlation was established between the log P of enhancers and HC skin content. A correlation however, existed between the log P of terpenes and the lag time. As log P increased, a linear decrease in lag time was observed. Cymene yielded the shortest HC lag time, while fenchone produced the longest lag time. Also, the increase in the log P of terpenes resulted in a proportional increase in HC solubility in the formulation solvent mixture.

  19. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis.

    PubMed

    Blanch, J-S; Sampedro, L; Llusià, J; Moreira, X; Zas, R; Peñuelas, J

    2012-03-01

    We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns relevant to plant-insect signalling. The total concentration and emission rate ranged between 5732 and 13,995 μg·g(-1) DW and between 2 and 22 μg·g(-1) DW·h(-1), respectively. Storage and emission were dominated by the isomers α- and β-pinene (77.2% and 84.2% of the total terpene amount amassed and released, respectively). In both resistant and susceptible families, P stress caused an increase of 31% in foliar terpene concentration with an associated 5-fold decrease in terpene emission rates. A higher terpene content in the leaves implies that the 'excess carbon', available under limiting growth conditions (P scarcity), is allocated to terpene production. Sensitive families showed a greater increase in terpene emission rates with increasing P concentrations, which could explain their susceptibility to H. abietis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene.

    PubMed

    Phelan, Ryan M; Sekurova, Olga N; Keasling, Jay D; Zotchev, Sergey B

    2015-04-17

    The past decade has witnessed a large influx of research toward the creation of sustainable, biologically derived fuels. While significant effort has been exerted to improve production capacity in common hosts, such as Escherichia coli or Saccharomyces cerevisiae, studies concerning alternate microbes comparatively lag. In an effort to expand the breadth of characterized hosts for fuel production, we map the terpene biosynthetic pathway in a model actinobacterium, Streptomyces venezuelae, and further alter secondary metabolism to afford the advanced biofuel precursor bisabolene. Leveraging information gained from study of the native isoprenoid pathway, we were able to increase bisabolene titer nearly 5-fold over the base production strain, more than 2 orders of magnitude greater than the combined terpene yield in the wild-type host. We also explored production on carbon sources of varying complexity to, notably, define this host as one able to perform consolidated bioprocessing.

  1. Membrane anchoring γ-secretase modulators with terpene-derived moieties.

    PubMed

    Naumann, Eva Christine; Göring, Stefan; Ogorek, Isabella; Weggen, Sascha; Schmidt, Boris

    2013-07-01

    Modulation of γ-secretase activity is a promising therapeutic strategy for the treatment of Alzheimer's disease. Herein we report on the synthesis of carprofen- and tocopherol-derived small-molecule modulators carrying terpene moieties as lipophilic membrane anchors. Additionally, these modulators are equipped with an acidic moiety, which contributes to the desired modulatory effect on the γ-secretase with decreased formation of Aβ42 and increased Aβ38 production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells.

    PubMed

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Torricelli, Piera; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-06-01

    Re-expression of fetal hemoglobin (HbF) was proposed as a possible therapeutic strategy for β-haemoglobinopathies. Although several inducers of HbF were tested in clinical trials, only hydroxyurea (HU) received FDA approval. Despite it produced adequate HbF levels only in half of HU-treated SCD patients, and was ineffective at all in β-thalassemia patients, beneficial effects of this approach suggested to continue in this direction identifying further molecules capable of inducing HbF. We tested the potential of essential oil isolated from Ocimum basilicum L. leaves (ObEO) in inducing hemoglobin biosynthesis. Initially, dose-dependent effect and kinetics of hemoglobin accumulation in K562 cells after treatment with ObEO were evaluated. ObEO induced dose-dependent hemoglobin accumulation superior to hydroxyurea and rapamycin and a strongest γ-globin mRNA expression. Terpenes composition of ObEO was studied by GC-MS. Three main constituents, linalool, eugenol and eucalyptol, represented about 75% of total. A blend of these three terpenes fully replicated the ObEO's biological effect, thus indicating that one of them or all together could be the active ingredients. When terpenes were tested individually, eugenol was the only one inducing stable hemoglobin accumulation, while eucalyptol and linalool produced only a small transient response. However, eugenol potential was strongly enhanced in the presence of eucalyptol and linalool, suggesting a synergistic effect on hemoglobin accumulation. By these results, the discovery of a new inducer and the interesting activity of a blend of major terpenes from ObOE on Hb accumulation could have positive fallouts on β-thalassemia and sickle cells anemia. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Polyphenylenesulfide, noxon® an ozone scavenger for the analysis of oxygenated terpenes in air

    NASA Astrophysics Data System (ADS)

    Calogirou, A.; Duane, M.; Kotzias, D.; Lahaniati, M.; Larsen, B. R.

    During sampling, oxygenated terpenes may undergo decomposition through reaction with atmospheric ozone. We have studied their ozonolytic decomposition during preconcentration on Tenax. The saturated. terpenoids 1,8-cineole, bornyl acetate nopinone and pinonaldehyde are practically unaffected by ozone in the range of 8 to 120 ppbv. Compounds which contain one or more C-C double bonds are decomposed in the order: linalool ≈ citronellal ≈ 6-methyl-5-hepten-2-one > citral > 4-acetyl-1-methyl-cyclohexane > 3-(1-methylethenyl)-6-oxo-heptanal > myrtenal ≈ 2-methyl-3-buten-2-ol. The degree of decomposition varies from 0 to 5% for the least reactive to 80 to 90% for the most reactive compounds. A broad range of material was investigated as potential ozone scavengers. By using the polymer noXon (polyphenylenesulfide) all the investigated compounds could be sampled with quantitative recoveries even at high ozone mixing ratios (95-110 ppbv). This ozone scrubber was tested for sampling of terpene oxidation products on Tenax and dinitrophenylhydrazine impregnated C 18-silicagel cartridges. Recoveries from 85 to 110% were obtained for all investigated compounds. The method was used for the analysis of oxidation products of terpenes in ambient air in three campaigns. Attention was focused on nopinone from β-pinene, pinonaldehyde from α-pinene, 3-(1-methylethenyl)-6-oxo-heptanal and 4-acetyl-1-methyl-cyclohexane from limonene, and 5-(1-methylethyl)-bicyclo[3.1.0] hexan-2-one from sabinene. Nopinone was the only product which could be frequently detected in ratios from 0 to 90% of the measured β-pinene concentrations. Pinonaldehyde was encountered only once (30% of α-pinene) while the other products were not found. These data have to be seen as a first attempt to measure terpene oxidation products in the troposphere.

  4. Terpene profile of one-seed juniper saplings explains differential herbivory by small ruminants

    A study was conducted in central New Mexico to examine the relationship between terpene profile and one-seed juniper sapling herbivory by sheep and goats. Fifteen does (47.9 ± 1.1 kg) and four ewes (69.2 ± 0.9 kg) were allotted to 16 paddocks (20 x 30m) for 6 days in summer 2006 and spring 2007. Lea...

  5. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium.

    PubMed

    Putkaradze, Natalia; Litzenburger, Martin; Abdulmughni, Ammar; Milhim, Mohammed; Brill, Elisa; Hannemann, Frank; Bernhardt, Rita

    2017-12-01

    CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.

  6. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Schmelz, Eric A; Rocca, James R; Scharf, Michael E

    2009-02-01

    Primer pheromones play key roles in regulating division of labor, which is a fundamental and defining aspect of insect sociality. Primer pheromones are chemical messengers that transmit hormone-like messages among colony members; in recipients, these messages can either induce or suppress phenotypic caste differentiation. Here, we investigated soldier caste-derived chemicals as possible primer pheromones in the lower termite Reticulitermes flavipes, a species for which no primer pheromones have yet been identified. We determined that soldier head extracts (SHE), when provided to totipotent workers along with the insect morphogenetic juvenile hormone (JH), significantly enhanced soldier caste differentiation. When applied alone, however, SHE had no impacts on caste differentiation, survivorship, or any other aspect of worker biology. These findings support a function of soldier chemicals as primer pheromones that enhance the action of the endogenous JH. In accord with previous studies, gamma-cadinene and the corresponding aldehyde, gamma-cadinenal, were identified by gas chromatography-mass spectrometry and nuclear magnetic resonance analyses as the two most abundant components of R. flavipes SHE. Validative bioassays with commercially available cadinene confirmed activity. Several other terpenes, previously identified in R. flavipes soldiers, also were found to be active. These findings reveal a novel primer pheromone-like function for soldier-derived terpenes in termites and further suggest convergent evolution of terpene functions in enhancing JH-dependent soldier caste differentiation.

  7. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  8. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates.

    PubMed

    Bution, Murillo L; Molina, Gustavo; Abrahão, Meissa R E; Pastore, Gláucia M

    2015-01-01

    Throughout human history, natural products have been the basis for the discovery and development of therapeutics, cosmetic and food compounds used in industry. Many compounds found in natural organisms are rather difficult to chemically synthesize and to extract in large amounts, and in this respect, genetic and metabolic engineering are playing an increasingly important role in the production of these compounds, such as new terpenes and terpenoids, which may potentially be used to create aromas in industry. Terpenes belong to the largest class of natural compounds, are produced by all living organisms and play a fundamental role in human nutrition, cosmetics and medicine. Recent advances in systems biology and synthetic biology are allowing us to perform metabolic engineering at the whole-cell level, thus enabling the optimal design of microorganisms for the efficient production of drugs, cosmetic and food additives. This review describes the recent advances made in the genetic and metabolic engineering of the terpenes pathway with a particular focus on systems biotechnology.

  9. Insights into molecular architecture of terpenes using small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  10. [Determination of terpene lactones in Ginkgo biloba leaves in different ages by UPLC-TQ-MS].

    PubMed

    Yao, Xin; Zhou, Gui-Sheng; Tang, Yu-Ping; Qian, Ye-Fei; Shang, Er-Xin; Su, Shu-Lan; Qian, Da-Wei; Duan, Jin-Ao

    2013-02-01

    To establish an ultra-high performance liquid chromatography coupled with triple quadrupole mass (UPLC-TQ-MS) for determination of four terpene lactones. Chromatographic separation was carried out on a ACQUITY UPLC BEH C18 column (2.1 mm x 100 mm, 1.7 microm) with isocratic elution of 70% methanol at a flow rate of 0.4 mL x min(-1), the column temperature was set at 30 degrees C; Waters Xevo TQ worked in multiple reaction monitoring mode. All calibration curves were linear (r > 0.990 3) over the tested ranges. The average recoveries ranged from 98.83% to 103.9% with RSD value below 3.0%. The contents of total terpene lactones in Ginkgo biloba leaves were significantly different in different ages. The contents in the leaves of young ginkgo tree were higher than that in old tree. The method was simple and fast with high precision, sensitivity and repeatability, which can be used for qualitative and quantitative analysis of terpene lactones in G. biloba leaves.

  11. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    PubMed Central

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  12. N cycling and the composition of terpenes and tannins in boreal forest soils: Effects of logging residues

    NASA Astrophysics Data System (ADS)

    Smolander, Aino; Kitunen, Veikko; Kukkola, Mikko; Tamminen, Pekka

    2014-05-01

    There is increasing evidence available that certain terpenes and tannins may mediate substantial changes in nitrogen cycling processes in boreal forest soils. Terpenes and tannins are two important groups of plant secondary metabolites: Terpenes are hydrocarbons having different number of isoprene-derived units and tannins are complex polyphenolic compounds able to interact with proteins. Logging residues, consisting of fresh tree tops and branches with needles contain large amounts of terpenes and tannins. Currently there is increasing demand for forest biomass for bioenergy production. Therefore, harvesting of logging residues has become more common from both clear-cutting and thinning stands, instead of conventional stem-only harvest where logging residues are retained on the site. Our aim was to determine how logging residues affect soil N cycling processes in Scots pine and Norway spruce thinning stands in long-term, and how these processes are related to the composition of terpenes and tannins in the soil. Samples were taken from the humus layer of pine and spruce experiments which had been thinned 4-to-19 years before; in the thinning different amounts of logging residues had been distributed on the plots. Logging residues had only little effect on soil microbial biomass N or C. However, in several sites logging residues increased the rate of net N mineralization and the ratios net N mineralization/ C mineralization and net N mineralization/microbial biomass N, and these positive effects were very long-lasting. Logging residues also changed the composition of different terpenes and condensed tannins in soil. In general, with regard to the processes and ratios indicating N availability, stem-only harvest seems to be more favorable than whole-tree harvest. The results from long-term field experiments will be discussed in relation to the effects of different terpenes and tannins, observed in short-term laboratory experiments, on N cycling processes.

  13. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    PubMed

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  14. Terpenes Increase the Lipid Dynamics in the Leishmania Plasma Membrane at Concentrations Similar to Their IC50 Values

    PubMed Central

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×106 parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4–9%) at their respective IC50 values. For assays with high cell concentrations (2×109 parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis. PMID:25101672

  15. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

    PubMed

    Aizpurua-Olaizola, Oier; Soydaner, Umut; Öztürk, Ekin; Schibano, Daniele; Simsir, Yilmaz; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-02-26

    The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.

  16. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    PubMed

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  17. Accuracy of Genomic Prediction for Foliar Terpene Traits in Eucalyptus polybractea.

    PubMed

    Kainer, David; Stone, Eric A; Padovan, Amanda; Foley, William J; Külheim, Carsten

    2018-06-11

    Unlike agricultural crops, most forest species have not had millennia of improvement through phenotypic selection, but can contribute energy and material resources and possibly help alleviate climate change. Yield gains similar to those achieved in agricultural crops over millennia could be made in forestry species with the use of genomic methods in a much shorter time frame. Here we compare various methods of genomic prediction for eight traits related to foliar terpene yield in Eucalyptus polybractea , a tree grown predominantly for the production of Eucalyptus oil. The genomic markers used in this study are derived from shallow whole genome sequencing of a population of 480 trees. We compare the traditional pedigree-based additive best linear unbiased predictors (ABLUP), genomic BLUP (GBLUP), BayesB genomic prediction model, and a form of GBLUP based on weighting markers according to their influence on traits (BLUP|GA). Predictive ability is assessed under varying marker densities of 10,000, 100,000 and 500,000 SNPs. Our results show that BayesB and BLUP|GA perform best across the eight traits. Predictive ability was higher for individual terpene traits, such as foliar α-pinene and 1,8-cineole concentration (0.59 and 0.73, respectively), than aggregate traits such as total foliar oil concentration (0.38). This is likely a function of the trait architecture and markers used. BLUP|GA was the best model for the two biomass related traits, height and 1 year change in height (0.25 and 0.19, respectively). Predictive ability increased with marker density for most traits, but with diminishing returns. The results of this study are a solid foundation for yield improvement of essential oil producing eucalypts. New markets such as biopolymers and terpene-derived biofuels could benefit from rapid yield increases in undomesticated oil-producing species. Copyright © 2018, G3: Genes, Genomes, Genetics.

  18. Secondary metabolite concentrations and terpene emissions of Scots pine xylem after long-term forest fertilization.

    PubMed

    Turtola, S; Manninen, A M; Holopainen, J K; Levula, T; Raitio, H; Kainulainen, P

    2002-01-01

    Secondary compounds are known to be associated with the resistance of conifer xylem against insects and fungi. The effects of long-term forest fertilization with nitrogen (N) or with N, calcium (Ca), and phosphorus (P) on secondary compounds in the xylem of 50-yr-old Scots pine (Pinus sylvestris L.) trees were examined. Xylem samples were collected from trees growing in three locations in southern Finland: Vilppula, Padasjoki, and Punkaharju. Forests were fertilized every fifth (Vilppula and Padasjoki) or tenth (Punkaharju) year since the 1950s. We compared concentrations of individual and total monoterpenes and resin acids in the heartwood and sapwood of Scots pine. Terpene emissions were analyzed from the sapwood and total phenolics from the heartwood. Fertilization did not have any significant effect on the concentrations and emissions of xylem monoterpenes. Concentrations of several individual terpenes in sapwood were positively correlated with the corresponding terpene emission. The concentrations of individual resin acids (i.e., abietic and dehydroabietic) decreased significantly in Punkaharju, but increased in the sapwood of N-fertilized trees compared with control ones at Padasjoki and Vilppula. The concentrations of resin acids in the heartwood were not significantly affected by fertilization. Both fertilization treatments decreased the total phenolic concentrations in the heartwood of trees growing in Padasjoki. There was a significant positive correlation between the total phenolics and total resin acid concentration. Overall, resin acids and phenolics seemed be more responsive than monoterpenes to N treatment. These results suggest that forest fertilization might cause slight changes in secondary compound concentrations of xylem, and thus might have significance in the decay resistance of wood.

  19. Oxidative tryptophan modification by terpene- and squalene-hydroperoxides and a possible link to cross-reactions in diagnostic tests.

    PubMed

    Natsch, Andreas; Emter, Roger; Badertscher, Remo P; Brunner, Gerhard; Granier, Thierry; Kern, Susanne; Ellis, Graham

    2015-06-15

    Hydroperoxides can act as specific haptens and oxidatively modify proteins. Terpene hydroperoxides trigger unusually high frequencies of positive skin reactions in human patients if tested at high concentrations. It is unknown whether this is due to specific hapten formation. Here, we show that both terpene hydroperoxides and the endogenous hydroperoxide formed from squalene can oxidatively modify tryptophan. Oxidative modifications of Trp were recently postulated to explain cross-sensitization between unrelated photosensitizers. Current observations may extend this hypothesis: Oxidative events triggered by endogenous hydroperoxides and hydroperoxides/oxidants derived from xenobiotics might lead to a sensitized state detected by patch tests with high concentrations of hydroperoxides.

  20. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential.

    PubMed

    Klein, Felix; Farren, Naomi J; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Tuthill, Rosemary N; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-11-10

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg -1 Herbs min -1 . These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  1. Quantification of Terpenes by 1DGC-MS and 2DGC-TOF-MS

    NASA Astrophysics Data System (ADS)

    Flores, R. M.; Perlinger, J. A.; Doskey, P. V.

    2009-12-01

    Biogenic emissions are the primary source of volatile organic compounds in the global troposphere. Deciduous and coniferous forests are the principal emitters of a complex mixture of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24). Sesquiterpenes are readily oxidized in the atmosphere producing secondary organic aerosols (SOA) with 100% yields. The SOA are hydrophilic and scatter light, and thus, increase albedo and lead to a cooling effect. In addition, both monoterpene and sesquiterpene generated SOA are effective cloud condensation nuclei leading to an increase in the particle number concentration and to the formation of clouds that also increase albedo. To quantify the complex mixture of terpenes and their oxidation products requires development of on-line extraction and comprehensive two-dimensional gas chromatographic techniques. One objective of this work was to compare one-dimensional gas chromatography-mass spectrometry (1DGC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (2DGC-TOFMS) for quantifying eight monoterpenes (alpha- and beta-pinene, limonene, 3-carene, linalool, terpinolene, myrcene and ocimene) and eight sesquiterpenes (beta-caryophyllene, humulene, alpha-cedrene, cis-nerolidol, trans-nerolidol, cedrol, camphene and farnesene) in air samples collected in Northern Michigan. Future research involves coupling thermal desorption and supercritical fluid extraction devices to a GC×2GC for routine quantification of the complex mixture of terpenes and their oxidation products in rural and urban air.

  2. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    PubMed Central

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-01-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air. PMID:27830718

  3. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    PubMed

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparing terpenes from plant essential oils as pesticides for the poultry red mite (Dermanyssus gallinae).

    PubMed

    Sparagano, O; Khallaayoune, K; Duvallet, G; Nayak, S; George, D

    2013-11-01

    Resistance to conventional synthetic pesticides has been widely reported in ticks, parasitic mites and other pests of veterinary and medical significance. New and novel approaches to manage these pests are therefore needed to ensure efficient control programmes that can be implemented now and in the future. Recent research in this area has focused on the pesticidal potential of plant essential oils. These products are attractive as pesticide candidates on the grounds of low mammalian toxicity, short environmental persistence and complex chemistries (limiting the development of pest resistance against them). Although issues may exist concerning reliability in efficacy of essential oils, these may be overcome by identifying and developing bioactive oil components for use in pest management. In the current work, three such components (terpenes) found in essential oils (eugenol, geraniol and citral) were tested against the poultry red mite Dermanyssus gallinae. All provided 100% mortality in toxicity tests when undiluted. Even at 1% of this dose, eugenol was 20% effective against experimental pest populations, although the remaining terpenes were largely ineffective at this concentration. © 2013 Blackwell Verlag GmbH.

  5. Separation of attogram terpenes by the capillary zone electrophoresis with fluorometric detection.

    PubMed

    Kubesová, Anna; Horká, Marie; Růžička, Filip; Slais, Karel; Glatz, Zdeněk

    2010-11-12

    An original method based on capillary zone electrophoresis with fluorimetric detection has been developed for the determination of terpenic compounds. The method is based on the separation of a terpenes dynamically labeled by the non-ionogenic tenside poly(ethylene glycol) pyrenebutanoate, which was used previously for the labeling of biopolymers. The background electrolytes were composed of taurine-Tris buffer (pH 8.4). In addition to the non-ionogenic tenside aceton and poly(ethylene glycol) were used as the additives. The capillary zone electrophoresis with fluorometric detection at the excitation wavelength 335 nm and the emission wavelength 463 nm was successfully applied to the analysis of tonalid, cholesterol, vitamin A, ergosterol, estrone and farnesol at level of 10(-17) mol L(-1). Farnesol, is produced by Candida albicans as an extracellular quorum-sensing molecule that influences expression of a number of virulence factors, especially morphogenesis and biofilm formation. It enables this yeast to cause serious nosocomial infections. The sensitivity of this method was demonstrated on the separation of farnesol directly from the cultivation medium. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    NASA Astrophysics Data System (ADS)

    Klein, Felix; Farren, Naomi J.; Bozzetti, Carlo; Daellenbach, Kaspar R.; Kilic, Dogushan; Kumar, Nivedita K.; Pieber, Simone M.; Slowik, Jay G.; Tuthill, Rosemary N.; Hamilton, Jacqueline F.; Baltensperger, Urs; Prévôt, André S. H.; El Haddad, Imad

    2016-11-01

    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air.

  7. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  8. Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles.

    PubMed

    Ham, Jason E; Wells, J Raymond

    2011-04-01

    Indoor environments are dynamic reactors where consumer products (such as cleaning agents, deodorants, and air fresheners) emit volatile organic compounds (VOCs) that can subsequently interact with indoor oxidants such as ozone (O(3)), hydroxyl radicals, and nitrate radicals. Typically, consumer products consist of mixtures of VOCs and semi-VOCs which can react in the gas-phase or on surfaces with these oxidants to generate a variety of oxygenated products. In this study, the reaction of a pine-oil cleaner (POC) with O(3) (100ppb) on a urethane-coated vinyl flooring tile was investigated at 5% and 50% relative humidity. These results were compared to previous α-terpineol+O(3) reactions on glass and vinyl surfaces. Additionally, other terpene and terpene alcohol mixtures were formulated to understand the emission profiles as seen in the POC data. Results showed that the α-terpineol+O(3) reaction products were the prominent species that were also observed in the POC/O(3) surface experiments. Furthermore, α-terpineol+O(3) reactions generate the largest fraction of oxygenated products even in equal mixtures of other terpene alcohols. This finding suggests that the judicial choice of terpene alcohols for inclusion in product formulations may be useful in reducing oxidation product emissions. Published by Elsevier Ltd.

  9. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components.

    PubMed

    Ntalli, Nikoletta G; Ferrari, Federico; Giannakou, Ioannis; Menkissoglu-Spiroudi, Urania

    2010-07-14

    Eight essential oils (EOs) as well as 13 single terpenes were studied for their nematicidal activity against Meloidogyne incognita , for three immersion periods (24, 48, and 96 h). The EOs were isolated from eight Greek Lamiaceae species: Melissa officinalis , Sideritis clandestina , Origanum dictamnus , Ocimum basilicum , Mentha pulegium , Origanum vulgare , Vitex agnus castus , and Salvia officinalis . The EOs nematicidal activity was correlated to their chemical composition as well as to the pure terpenes' activity tested individually. Clear dose and time response relationships were established. The EOs of O. vulgare, O. dictamnus, M. pulegium, and M. officinalis exhibited high nematicidal activity against M. incognita, and the EC(50) values (96 h) were calculated at 1.55, 1.72, 3.15, and 6.15 muL/mL, respectively. The activity of the nematicidal terpenes was found to decrease in the order l-carvone, pulegone, trans-anethole, geraniol, eugenol, carvacrol, thymol, terpinen-4-ol, and the respective EC(50) values (24 h) were calculated in the range of 115-392 mug/mL. Terpenes tested individually were more active than as components in EO, implementing antagonistic action.

  10. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens.

    PubMed

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Castañera, Pedro; Peña, Leandro

    2011-06-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.

  11. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    NASA Astrophysics Data System (ADS)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  12. Identification and microbial production of a terpene-based advanced biofuel

    PubMed Central

    Peralta-Yahya, Pamela P.; Ouellet, Mario; Chan, Rossana; Mukhopadhyay, Aindrila; Keasling, Jay D.; Lee, Taek Soon

    2011-01-01

    Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels. PMID:21952217

  13. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet.

    PubMed

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; Li, Man; Wang, Xin; Hu, Cheng; Gorman, Connor; Dai, Susie Y; Ding, Shi-You; Yuan, Joshua S

    2018-03-16

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.

  14. The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Papiez, Maria R.; Potosnak, Mark J.; Goliff, Wendy S.; Guenther, Alex B.; Matsunaga, Sou N.; Stockwell, William R.

    A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw -1 h -1 ( Washingtonia spp., palms) for isoprene and 9.56 μgC gdw -1 h -1 ( Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw -1 h -1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250-640 μgC m -2 h -1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NO x, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NO x; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.

  15. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Vermeuel, Michael P.; Novak, Gordon A.; Bertram, Timothy H.

    2018-06-01

    Benzene cluster cations are a sensitive and selective reagent ion for chemical ionization of select biogenic volatile organic compounds. We have previously reported the sensitivity of a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), using benzene cluster cation ion chemistry, for detection of dimethyl sulfide, isoprene and α-pinene. Here, we present laboratory measurements of the sensitivity of the same instrument to a series of terpenes, including isoprene, α-pinene, β-pinene, D-limonene, ocimene, β-myrcene, farnesene, α-humulene, β-caryophyllene, and isolongifolene at atmospherically relevant mixing ratios (< 100 pptv). In addition, we determine the dependence of CI-ToFMS sensitivity on the reagent ion neutral delivery concentration and water vapor concentration. We show that isoprene is primarily detected as an adduct (C5H8 ṡ C6H6+) with a sensitivity ranging between 4 and 10 ncps ppt-1, which depends strongly on the reagent ion precursor concentration, de-clustering voltages, and specific humidity (SH). Monoterpenes are detected primarily as the molecular ion (C10H16+) with an average sensitivity, across the five measured compounds, of 14 ± 3 ncps ppt-1 for SH between 7 and 14 g kg-1, typical of the boreal forest during summer. Sesquiterpenes are detected primarily as the molecular ion (C15H24+) with an average sensitivity, across the four measured compounds, of 9.6 ± 2.3 ncps ppt-1, that is also independent of specific humidity. Comparable sensitivities across broad classes of terpenes (e.g., monoterpenes and sesquiterpenes), coupled to the limited dependence on specific humidity, suggest that benzene cluster cation CI-ToFMS is suitable for field studies of biosphere-atmosphere interactions.

  16. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    SciT

    Wu, Weihua; Wu, Benjamin Chiau-Pin; Davis, Ryan Wesley

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacementsmore » for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  17. Biochemical characterization of microbial type terpene synthases in two closely related species of hornworts, Anthoceros punctatus and Anthoceros agrestis.

    PubMed

    Xiong, Wangdan; Fu, Jianyu; Köllner, Tobias G; Chen, Xinlu; Jia, Qidong; Guo, Haobo; Qian, Ping; Guo, Hong; Wu, Guojiang; Chen, Feng

    2018-05-01

    Microbial terpene synthase-like (MTPSL) genes are a type of terpene synthase genes only recently identified in plants. In contrast to typical plant terpene synthase genes, which are ubiquitous in land plants, MTPSL genes appear to occur only in nonseed plants. Our knowledge of catalytic functions of MTPSLs is very limited. Here we report biochemical characterization of the enzymes encoded by MTPSL genes from two closely related species of hornworts, Anthoceros punctatus and Anthoceros agrestis. Seven full-length MTPSL genes were identified in A. punctatus (ApMTPSL1-7) based on the analysis of its genome sequence. Using homology-based cloning, the apparent orthologs for six of the ApMTPSL genes, except ApMTPSL2, were cloned from A. agrestis. They were designated AaMTPSL1, 3-7. The coding sequences for each of the 13 Anthoceros MTPSL genes were cloned into a protein expression vector. Escherichia coli-expressed recombinant MTPSLs from hornworts were assayed for terpene synthase activities. Six ApMTPSLs and five AaMTPSLs, except for ApMTPSL5 and AaMTPSL5, showed catalytic activities with one or more isoprenyl diphosphate substrates. All functional MTPSLs exhibited sesquiterpene synthase activities. In contrast, only ApMTPSL7 and AaMTPSL7 showed monoterpene synthase activity and only ApMTPSL2, ApMTPSL6 and AaMTPSL6 showed diterpene synthase activity. Most MTPSLs from Anthoceros contain uncanonical aspartate-rich motif in the form of either 'DDxxxD' or 'DDxxx'. Homology-based structural modeling analysis of ApMTPSL1 and ApMTPSL7, which contain 'DDxxxD' and 'DDxxx' motif, respectively, showed that 'DDxxxD' and 'DDxxx' motifs are localized in the similar positions as the canonical 'DDxxD' motif in known terpene synthases. To further understand the role of individual aspartate residues in the motifs, ApMTPSL1 and ApMTPSL7 were selected as two representatives for site-directed mutagenesis studies. No activities were detected when any of the conserved aspartic acid was

  18. Potential Contribution of Fish Feed and Phytoplankton to the Content of Volatile Terpenes in Cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus).

    PubMed

    Podduturi, Raju; Petersen, Mikael A; Mahmud, Sultan; Rahman, Md Mizanur; Jørgensen, Niels O G

    2017-05-10

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The concentrations of most of the volatiles were below published odor thresholds, except for α-pinene, limonene, β-caryophyllene, α-humulene, and β-ionone in tilapia, and limonene and β-ionone in pangasius. To identify sources of the terpenes, terpene profiles of fish feed and phytoplankton in the ponds were analyzed. In feed and mustard cake (feed ingredient), five monoterpenes and two sesquiterpenes were identified, and five of these compounds were also detected in the fish. In phytoplankton, 11 monoterpenes were found and three also occurred in the fish. The higher number of terpenes common to both fish and feed, than to fish and phytoplankton, suggests that feed was a more abundant source of odor-active terpenes in the fish than phytoplankton.

  19. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants

    DOE PAGES

    Jia, Qidong; Li, Guanglin; Köllner, Tobias G.; ...

    2016-10-10

    Here, the vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii. The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like ( MTPSL) genes inmore » other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich “DDxxD” motif. The third group has a “DDxxxD” motif, and the fourth group has only the first two “DD” conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.« less

  20. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants

    SciT

    Jia, Qidong; Li, Guanglin; Köllner, Tobias G.

    Here, the vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, whereas genes similar to microbial TPS genes have been recently identified in the lycophyte Selaginella moellendorffii. The goal of this study was to investigate the distribution, evolution, and biochemical functions of microbial terpene synthase-like ( MTPSL) genes inmore » other plants. By analyzing the transcriptomes of 1,103 plant species ranging from green algae to flowering plants, putative MTPSL genes were identified predominantly from nonseed plants, including liverworts, mosses, hornworts, lycophytes, and monilophytes. Directed searching for MTPSL genes in the sequenced genomes of a wide range of seed plants confirmed their general absence in this group. Among themselves, MTPSL proteins from nonseed plants form four major groups, with two of these more closely related to bacterial TPSs and the other two to fungal TPSs. Two of the four groups contain a canonical aspartate-rich “DDxxD” motif. The third group has a “DDxxxD” motif, and the fourth group has only the first two “DD” conserved in this motif. Upon heterologous expression, representative members from each of the four groups displayed diverse catalytic functions as monoterpene and sesquiterpene synthases, suggesting these are important for terpene formation in nonseed plants.« less

  1. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    NASA Astrophysics Data System (ADS)

    Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.

    2012-02-01

    Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ significantly between trees

  2. Effects of seasonal changes in feeding management under part-time grazing on terpene concentrations of ewes' milk.

    PubMed

    Abilleira, Eunate; Virto, Mailo; Nájera, Ana Isabel; Albisu, Marta; Pérez-Elortondo, Francisco José; Ruiz de Gordoa, Juan Carlos; de Renobales, Mertxe; Barron, Luis Javier R

    2011-05-01

    Terpene composition of ewes' raw milk from nine commercial flocks was analysed from February to July. Ewes' diet consisted of concentrate and conserved forage in winter (indoor feeding) and part-time grazing from spring (transition and outdoor feeding). Regardless of the feeding, limonene and β-phellandrene were the most abundant monoterpenes and β-caryophyllene showed the highest concentrations among sesquiterpenes. Terpene content increased in the milks of commercial flocks when animals were reared under grazing management. Monoterpenes were detected in the milks of all the commercial flocks throughout the season, whereas sesquiterpenes were only detected in the milks from flocks grazing on non-cultivated community-owned grasslands in which a higher biodiversity of plant species grew. These preliminary results indicated that β-caryophyllene could be a potential pasture-diet marker in the case of milks from animals grazing a higher biodiversity of plant species but in-depth studies including information on terpene composition of plants ingested by the animals are necessary to evaluate the suitability of β-caryophyllene or another terpenoid compound as pasture biomarker.

  3. Identification of Genes and Proteins Necessary for Catabolism of Acyclic Terpenes and Leucine/Isovalerate in Pseudomonas aeruginosa

    PubMed Central

    Förster-Fromme, Karin; Höschle, Birgit; Mack, Christina; Bott, Michael; Armbruster, Wolfgang; Jendrossek, Dieter

    2006-01-01

    Geranyl-coenzyme A (CoA)-carboxylase (GCase; AtuC/AtuF) and methylcrotonyl-CoA-carboxylase (MCase; LiuB/LiuD) are characteristic enzymes of the catabolic pathway of acyclic terpenes (citronellol and geraniol) and of saturated methyl-branched compounds, such as leucine or isovalerate, respectively. Proteins encoded by two gene clusters (atuABCDEFGH and liuRABCDE) of Pseudomonas aeruginosa PAO1 were essential for acyclic terpene utilization (Atu) and for leucine and isovalerate utilization (Liu), respectively, as revealed by phenotype analysis of 10 insertion mutants, two-dimensional gel electrophoresis, determination of GCase and MCase activities, and Western blot analysis of wild-type and mutant strains. Analysis of the genome sequences of other pseudomonads (P. putida KT2440 and P. fluorescens Pf-5) revealed candidate genes for Liu proteins for both species and candidate genes for Atu proteins in P. fluorescens. This result concurred with the finding that P. fluorescens, but not P. putida, could grow on acyclic terpenes (citronellol and citronellate), while both species were able to utilize leucine and isovalerate. A regulatory gene, atuR, was identified upstream of atuABCDEFGH and negatively regulated expression of the atu gene cluster. PMID:16820476

  4. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)

    PubMed Central

    Nieuwenhuizen, Niels J.; Wang, Mindy Y.; Matich, Adam J.; Green, Sol A.; Chen, Xiuyin; Yauk, Yar-Khing; Beuning, Lesley L.; Nagegowda, Dinesh A.; Dudareva, Natalia; Atkinson, Ross G.

    2009-01-01

    Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ and its male pollinator ‘Chieftain’. Terpene volatile levels showed a profile dominated by the sesquiterpenes α-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-β-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a ‘Hayward’ petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-α-farnesene and small amounts of (E)-β-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers. PMID:19516075

  5. Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis.

    PubMed

    Giese, Matthew W; Lewis, Mark A; Giese, Laura; Smith, Kevin M

    2015-01-01

    The requirements for an acceptable cannabis assay have changed dramatically over the years resulting in a large number of laboratories using a diverse array of analytical methodologies that have not been properly validated. Due to the lack of sufficiently validated methods, we conducted a single- laboratory validation study for the determination of cannabinoids and terpenes in a variety of commonly occurring cultivars. The procedure involves high- throughput homogenization to prepare sample extract, which is then profiled for cannabinoids and terpenes by HPLC-diode array detector and GC-flame ionization detector, respectively. Spike recovery studies for terpenes in the range of 0.03-1.5% were carried out with analytical standards, while recovery studies for Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid, and cannabigerolic acid and their neutral counterparts in the range of 0.3-35% were carried out using cannabis extracts. In general, accuracy at all levels was within 5%, and RSDs were less than 3%. The interday and intraday repeatabilities of the procedure were evaluated with five different cultivars of varying chemotype, again resulting in acceptable RSDs. As an example of the application of this assay, it was used to illustrate the variability seen in cannabis coming from very advanced indoor cultivation operations.

  6. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases

    PubMed Central

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A.; O’Maille, Paul E.

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography–mass spectrometry (GC–MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of kcat/KM among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries. PMID:26150952

  7. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    PubMed

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  8. The effect of bleaching on the terpene chemistry of Plexaurella fusifera: evidence that zooxanthellae are not responsible for sesquiterpene production.

    PubMed

    Frenz-Ross, Jamie L; Enticknap, Julie J; Kerr, Russell G

    2008-01-01

    The close association between marine invertebrates, zooxanthellae, and numerous bacteria gives rise to the question of the identity of the actual producer of secondary metabolites. In fall of 2005, a widespread bleaching event occurred throughout the Caribbean Sea in which some colonies of the gorgonian coral Plexaurella fusifera bleached. This study investigated whether zooxanthellae play a key role in the biosynthesis of secondary metabolite terpenes from P. fusifera. The extent of bleaching was examined by chlorophyll A analysis and also by zooxanthellae isolation and cell counting. The bleached and unbleached colonies were found to contain similar concentrations of eremophilene as the major terpene, and both exhibited similar biosynthetic capability as evaluated by the transformation of [C(1)-(3)H]-farnesyl diphosphate to the sesquiterpenes. Differences in bacterial communities between the bleached and unbleached colonies were analyzed using molecular techniques, and preliminary indications are that unbleached and bleached corals are dominated by low G + C firmicutes and gammaproteobacteria, respectively. It therefore appears that terpene biosynthesis can proceed independently of the zooxanthellae in P. fusifera, suggesting that the coral or a bacterium is the biosynthetic source.

  9. The α-Terpineol to 1,8-Cineole Cyclization Reaction of Tobacco Terpene Synthases1

    PubMed Central

    Piechulla, Birgit; Bartelt, Richard; Brosemann, Anne; Bouwmeester, Harro; Hippauf, Frank

    2016-01-01

    Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(−)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed. PMID:27729471

  10. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes.

    PubMed

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Giménez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2016-05-01

    Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    NASA Astrophysics Data System (ADS)

    Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting similar behavior to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established, reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10-400 nm) in every experiment and with an optical particle counter (OPC, 0.1-2.0 μm) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM 1.1) ranged from 10 to >300 μg m -3 and yields ranged from 5% to 37%. Steady-state nucleation rates and SOA mass formation rates were ˜10 cm -3 s -1 and ˜10 μg m -3 min -1, respectively.

  12. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    SciT

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particlemore » sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.« less

  13. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    SciT

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  14. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  15. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    DOE PAGES

    Zhao, Cheng; Kim, YongKyoung; Zeng, Yining; ...

    2018-02-13

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalenemore » at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.« less

  16. Polyketide-Terpene Hybrid Metabolites from an Endolichenic Fungus Pestalotiopsis sp.

    PubMed Central

    Ding, Gang; Wang, Hai-Ying; Guo, Yu-Hua; Shang, Hai

    2017-01-01

    Five new polyketide-terpene hybrid metabolites (1–5) with highly functionalized groups, together with six known derivatives (6–11), were isolated from the endolichenic fungus Pestalotiopsis sp. Their structures were elucidated by extensive NMR experiments including 1H, 13C, HMQC, COSY, and HMBC. The relative configurations of the new compounds were determined by analysis of coupling constants and ROESY correlations. The absolute configurations especially the secondary alcohol at C-15 in 1 and secondary alcohol at C-14 in 5 were established via the CD experiments of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivatives. These compounds were tested for their inhibition activity against six plant pathogens. Compounds 1 and 5 exhibited pronounced efficiency against Fusarium oxysporum, and compounds 5 and 6 potently inhibited Fusarium gramineum with MIC value of 8 µg/mL, which revealed the plausible ecological role of endolichenic fungus in providing chemical protection for its host lichen in the fungus-plant relationship. The biosynthetic pathway of compounds 1–11 was postulated for the first time, which paved the way for its further biosynthesis research. PMID:28593175

  17. Polyketide-Terpene Hybrid Metabolites from an Endolichenic Fungus Pestalotiopsis sp.

    PubMed

    Yuan, Chao; Ding, Gang; Wang, Hai-Ying; Guo, Yu-Hua; Shang, Hai; Ma, Xiao-Jun; Zou, Zhong-Mei

    2017-01-01

    Five new polyketide-terpene hybrid metabolites ( 1 - 5 ) with highly functionalized groups, together with six known derivatives ( 6 - 11 ), were isolated from the endolichenic fungus Pestalotiopsis sp. Their structures were elucidated by extensive NMR experiments including 1 H, 13 C, HMQC, COSY, and HMBC. The relative configurations of the new compounds were determined by analysis of coupling constants and ROESY correlations. The absolute configurations especially the secondary alcohol at C-15 in 1 and secondary alcohol at C-14 in 5 were established via the CD experiments of the in situ formed [Rh 2 (OCOCF 3 ) 4 ] complex with the acetonide derivatives. These compounds were tested for their inhibition activity against six plant pathogens. Compounds 1 and 5 exhibited pronounced efficiency against Fusarium oxysporum , and compounds 5 and 6 potently inhibited Fusarium gramineum with MIC value of 8  µ g/mL, which revealed the plausible ecological role of endolichenic fungus in providing chemical protection for its host lichen in the fungus-plant relationship. The biosynthetic pathway of compounds 1 - 11 was postulated for the first time, which paved the way for its further biosynthesis research.

  18. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts

    DOE PAGES

    Yaegashi, Junko; Kirby, James; Ito, Masakazu; ...

    2017-10-23

    Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity weremore » enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fe d-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.« less

  19. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts

    SciT

    Yaegashi, Junko; Kirby, James; Ito, Masakazu

    Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity weremore » enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fe d-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.« less

  20. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles.

    PubMed

    Dalla Costa, Lorenza; Emanuelli, Francesco; Trenti, Massimiliano; Moreno-Sanz, Paula; Lorenzi, Silvia; Coller, Emanuela; Moser, Sergio; Slaghenaufi, Davide; Cestaro, Alessandro; Larcher, Roberto; Gribaudo, Ivana; Costantini, Laura; Malnoy, Mickael; Grando, M Stella

    2017-01-01

    Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system "microvine" and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  1. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  2. Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: An in vitro study.

    PubMed

    Andrade, Verónica; Martínez, Alejandra; Rojas, Ninón; Bello-Toledo, Helia; Flores, Paulo; Sánchez-Sanhueza, Gabriela; Catalán, Alfonso

    2018-05-01

    Interim restorations are occasionally left in the mouth for extended periods and are susceptible to bacterial infiltration. Thus, dental interim cements with antibacterial properties are required. The purpose of this in vitro study was to determine in vitro antibacterial activity against Streptococcus mutans and to compare the diametrical tensile strength (DTSs) of dental interim cement modified with zinc oxide nanoparticles (ZnO-NPs) with that of cement modified with terpenes. Antibacterial properties of ZnO-NPs, terpenes, and dental interim cement modified with ZnO-NPs and cement modified with terpenes against S mutans were tested according to minimum inhibitory concentration (MIC) and direct contact inhibition (DCI). Tensile strength levels were evaluated using DTS. Results were analyzed using the Kolmogorov-Smirnov, ANOVA, and Tamhane tests (α=.05). The MICs of ZnO-NPs and terpenes against S mutans were 61.94 μg/g and 0.25% v/v, respectively. The DCI assay under the cylinders of cement (area of contact with the agar surface) revealed significant bacterial growth inhibition on Temp-Bond NE specimens with ZnO-NPs at MIC of 495.2 μg/g (8× MIC) and with terpenes at MIC 0.999% v/v (4× MIC) (P<.05). The Temp-Bond NE cement cylinder (control group) showed the lowest DTS (1.05 ±0.27 MPa) of all other test groups. In the Zn-NPs group, the greatest increase occurred in the NP8 (8× MIC; 495.2 μg/g) group with a value of 1.50 ±0.23 MPa, a significant increase in DTS compared with the control and terpene groups (P<.05). In the terpene group, the highest increase corresponded to group T2 (2× MIC; 0.4995% v/v) with a value of 1.29 ±0.18 MPa. The addition of terpenes and ZnO-NPs to interim cement showed antibacterial activity when in contact with S. mutans ATCC 25175. Both terpenes and ZnO-NPs antimicrobial agents increased diametral tensile strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights

  3. A special terpene combination (Rowatinex®) improves stone clearance after extracorporeal shockwave lithotripsy in urolithiasis patients: results of a placebo-controlled randomised controlled trial.

    PubMed

    Romics, Imre; Siller, György; Kohnen, Ralf; Mavrogenis, Stelios; Varga, József; Holman, Endre

    2011-01-01

    To investigate the safety and efficacy of a special terpene combination in the treatment of patients with urolithiasis after extracorporeal shockwave lithotripsy (ESWL). 222 patients with clinically stable kidney or ureter stones of 0.3-2.0 cm undergoing complication-free ESWL were randomised to receive a special terpene combination (Rowatinex®; 3 × 2 capsules/day) or placebo. The study consisted of a 12-week active treatment phase and a 2-week follow-up phase. All patients had a physical examination, and diagnosis of kidney stones was made by X-ray, intravenous pyelogram or ultrasound at weeks 1, 4, 8 and 12 as well as after 2 weeks of follow-up. Stone-free status was defined as obviously successful expulsion of calculi/fragments, being without any stone. In all, when compared to placebo, significantly more patients receiving the terpene combination treatment in the intent-to-treat (ITT) group [72 (67.9%) vs. 49 (50.0%); p = 0.0009] and the per-protocol (PP) group [69 (78.4%) vs. 48 (52.2%); p = 0.0004] were stone-free at the end of the study. Treatment with the terpene combination was also more effective when analysed with respect to the size of the treated stone. In addition, treatment with the terpene combination significantly reduced the median time to stone-free status from 85.0 to 56.0 days (p = 0.0061) and from 85.0 to 49.5 days (p = 0.0028) in the ITT and PP populations, respectively. Nine mild-to-moderate adverse events (AE; terpene combination group: 7 AE in 4 patients; placebo group: 2 AE in 2 patients) were assessed as drug-related. Treatment with the terpene combination is well tolerated and safe. The terpene combination was found to be an efficacious treatment in eliminating calculi fragments generated by ESWL as compared to placebo. The pharmacodynamic properties of the terpene combination (antilithogenic, antibacterial, antiinflammatory, spasmolytic and analgesic effects), which have been also confirmed in preclinical studies, represent a

  4. Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells.

    PubMed

    Chen, Lijia; Tong, Hui; Wang, Mingxuan; Zhu, Jianhua; Zi, Jiachen; Song, Liyan; Yu, Rongmin

    2015-12-01

    The biosynthetic pathway of terpene trilactones of Ginkgo biloba is unclear. In this present study, suspension cultured cells of G. biloba were used to explore the regulation of the mevalonic acid (MVA) and methylerythritol 4-phosphate (MEP) pathways in response to specific enzyme inhibitors (lovastatin and clomazone). The results showed that the biosynthesis of bilobalide was more highly correlated with the MVA pathway, and the biosynthesis of ginkgolides was more highly correlated with the MEP pathway. Meanwhile, according to the results, it could be speculated that bilobalide might be a product of ginkgolide metabolism.

  5. Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method

    SciT

    Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.

    Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less

  6. Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method

    DOE PAGES

    Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.; ...

    2017-01-16

    Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less

  7. The Variability of Sesquiterpenes Emitted from Two Zea mays Cultivars Is Controlled by Allelic Variation of Two Terpene Synthase Genes Encoding Stereoselective Multiple Product Enzymes

    PubMed Central

    Köllner, Tobias G.; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-01-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes. PMID:15075399

  8. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    PubMed

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  9. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais.

    PubMed

    Pizzolitto, Romina P; Herrera, Jimena M; Zaio, Yesica P; Dambolena, Jose S; Zunino, Maria P; Gallucci, Mauro N; Zygadlo, Julio A

    2015-11-12

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure-activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (-77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.

  10. Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens1[W

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451

  11. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes.

    PubMed

    Styles, Matthew Q; Nesbitt, Edward A; Marr, Scott; Hutchby, Marc; Leak, David J

    2017-06-01

    The terpenoid family of natural products is being targeted for heterologous microbial production as a cheaper and more reliable alternative to extraction from plants. The key enzyme responsible for diversification of terpene structure is the class-I terpene synthase (TS), and these often require engineering to improve properties such as thermostability, robustness and catalytic activity before they are suitable for industrial use. Improving thermostability typically relies on screening a large number of mutants, as there are no naturally thermostable TSs described upon which to base rational design decisions. We have characterized the first examples of natural TSs exhibiting thermostability, which catalyse the formation of the sesquiterpene τ-muurolol at temperatures up to 78 °C. We also report an enzyme with a k cat value of 0.95 s -1 at 65 °C, the highest k cat recorded for a bacterial sesquiterpene synthase. In turn, these thermostable enzymes were used as a model to inform the rational engineering of another TS, with the same specificity but low sequence identity to the model. The newly engineered variant displayed increased thermostability and turnover. Given the high structural homology of the class-I TS domain, this approach could be generally applicable to improving the properties of other enzymes in this class. Model data are available in the PMDB database under the accession number PM0080780. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  12. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    PubMed Central

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize. PMID:27682121

  13. REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases.

    PubMed

    Cheema, Jitender; Faraldos, Juan A; O'Maille, Paul E

    2017-02-01

    Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.

    PubMed

    Oates, Caryn N; Külheim, Carsten; Myburg, Alexander A; Slippers, Bernard; Naidoo, Sanushka

    2015-07-01

    Plants have evolved complex defenses that allow them to protect themselves against pests and pathogens. However, there is relatively little information regarding the Eucalyptus defensome. Leptocybe invasa is one of the most damaging pests in global Eucalyptus forestry, and essentially nothing is known regarding the molecular mechanisms governing the interaction between the pest and host. The aim of the study was to investigate changes in the transcriptional landscape and terpene profile of a resistant and susceptible Eucalyptus genotype in an effort to improve our understanding of this interaction. We used RNA-seqencing to investigate transcriptional changes following L. invasa oviposition. Expression levels were validated using real-time quantitative PCR. Terpene profiles were investigated using gas chromatography coupled to mass spectometry on uninfested and oviposited leaves. We found 698 and 1,115 significantly differentially expressed genes from the resistant and susceptible interactions, respectively. Gene Ontology enrichment and Mapman analyses identified putative defense mechanisms including cell wall reinforcement, protease inhibitors, cell cycle suppression and regulatory hormone signaling pathways. There were significant differences in the mono- and sesquiterpene profiles between genotypes and between control and infested material. A model of the interaction between Eucalyptus and L. invasa was proposed from the transcriptomic and chemical data. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. A chamber study of alkyl nitrate production formed by terpene ozonolysis in the presence of NO and alkanes

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen R.; Harrison, Joel C.; Ham, Jason E.; Wells, J. R.

    2017-12-01

    Organic nitrates are relatively long-lived species and have been shown to have a potential impact on atmospheric chemistry on local, regional, and even global scales. However, the significance of these compounds in the indoor environment remains to be seen. This work describes an impinger-based sampling and analysis technique for organic nitrate species, focusing on formation via terpene ozonolysis in the presence of nitric oxide (NO). Experiments were conducted in a Teflon film environmental chamber to measure the formation of alkyl nitrates produced from α-pinene ozonolysis in the presence of NO and alkanes using gas chromatography with an electron capture detector. For the different concentrations of NO and O3 analyzed, the concentration ratio of [O3]/[NO] around 1 was found to produce the highest organic nitrate concentration, with [O3] = 100 ppb & [NO] = 105 ppb resulting in the most organic nitrate formation, roughly 5 ppb. The experiments on α-pinene ozonolysis in the presence of NO suggest that organic nitrates have the potential to form in indoor air between infiltrated ozone/NO and terpenes from household and consumer products.

  16. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    PubMed

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  17. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens1[C][W

    PubMed Central

    Rodríguez, Ana; San Andrés, Victoria; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro

    2011-01-01

    Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens. PMID:21525333

  18. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    PubMed

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack

    A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich

    2016-01-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...

  20. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    PubMed

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  1. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase.

    PubMed

    Yahyaa, Mosaab; Ibdah, Muhammad; Marzouk, Sally; Ibdah, Mwafaq

    2018-03-14

    Fruits from wild carrot ( Daucus carota L. ssp. carota) have been used for medicinal purposes since ancient times. The oil of its seeds, with their abundant monoterpenes and sesquiterpenes, has drawn attention in recent years because of its potential pharmaceutical application. A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of terpene volatiles in carrot fruits of wild accessions. This work reports a similarity-based cloning strategy identification and functional characterization of one carrot monoterpene terpene synthase, WtDcTPS1. Recombinant WtDcTPS1 protein produces mainly geraniol, the predominant monoterpene in carrot seeds of wild accession 23727. The results suggest a role for the WtDcTPS1 gene in the biosynthesis of carrot fruit aroma and flavor compounds.

  2. The Terpene Synthase Gene Family of Carrot (Daucus carota L.): Identification of QTLs and Candidate Genes Associated with Terpenoid Volatile Compounds

    PubMed Central

    Keilwagen, Jens; Lehnert, Heike; Berner, Thomas; Budahn, Holger; Nothnagel, Thomas; Ulrich, Detlef; Dunemann, Frank

    2017-01-01

    Terpenes are an important group of secondary metabolites in carrots influencing taste and flavor, and some of them might also play a role as bioactive substances with an impact on human physiology and health. Understanding the genetic and molecular basis of terpene synthases (TPS) involved in the biosynthesis of volatile terpenoids will provide insights for improving breeding strategies aimed at quality traits and for developing specific carrot chemotypes possibly useful for pharmaceutical applications. Hence, a combination of terpene metabolite profiling, genotyping-by-sequencing (GBS), and genome-wide association study (GWAS) was used in this work to get insights into the genetic control of terpene biosynthesis in carrots and to identify several TPS candidate genes that might be involved in the production of specific monoterpenes. In a panel of 85 carrot cultivars and accessions, metabolite profiling was used to identify 31 terpenoid volatile organic compounds (VOCs) in carrot leaves and roots, and a GBS approach was used to provide dense genome-wide marker coverage (>168,000 SNPs). Based on this data, a total of 30 quantitative trait loci (QTLs) was identified for 15 terpenoid volatiles. Most QTLs were detected for the monoterpene compounds ocimene, sabinene, β-pinene, borneol and bornyl acetate. We identified four genomic regions on three different carrot chromosomes by GWAS which are both associated with high significance (LOD ≥ 5.91) to distinct monoterpenes and to TPS candidate genes, which have been identified by homology-based gene prediction utilizing RNA-seq data. In total, 65 TPS candidate gene models in carrot were identified and assigned to known plant TPS subfamilies with the exception of TPS-d and TPS-h. TPS-b was identified as largest subfamily with 32 TPS candidate genes. PMID:29170675

  3. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration.

    PubMed

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-09-01

    Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics. Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

  4. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration

    PubMed Central

    Chen, Feng; Li, Li; Xu, Fang; Sun, Yan; Du, Feifei; Ma, Xutao; Zhong, Chenchun; Li, Xiuxue; Wang, Fengqing; Zhang, Nating; Li, Chuan

    2013-01-01

    BACKGROUND AND PURPOSE Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds’ pharmacokinetics. EXPERIMENTAL APPROACH Rats received single or multiple doses of ShuXueNing injection (prepared from GBE50 for intravenous administration) or GBE50 (a standardized extract of G. biloba leaves for oral administration). Brain delivery of the ginkgo compounds was assessed with microdialysis. Various rat samples were analysed using liquid chromatography/mass spectrometry. KEY RESULTS Slow terminal elimination features of the flavonols counterbalanced the influence of poor oral bioavailability on their systemic exposure levels, which also resulted in significant accumulation of the compounds in plasma during the subchronic treatment with ShuXueNing injection and GBE50. Unlike the flavonols, the terpene lactones had poor enterohepatic circulation due to their rapid renal excretion and unknown metabolism. The flavonol glycosides occurred as major forms in plasma after dosing with ShuXueNing injection, while the flavonol aglycone conjugates were predominant in plasma after dosing with GBE50. Cerebral exposure was negligible for the flavonols and low for the terpene lactones. CONCLUSION AND IMPLICATIONS Unlike the significant systemic exposure levels, the levels of cerebral exposure to the flavonols and terpene lactones are low. The elimination kinetic differences between the two classes of ginkgo compounds influence their relative systemic exposure levels. The information gained is relevant to linking ginkgo administration to the medicinal effects. PMID:23808355

  5. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece.

    PubMed

    Ntalli, Nikoletta G; Ferrari, Federico; Giannakou, Ioannis; Menkissoglu-Spiroudi, Urania

    2011-03-01

    Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second-stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. The 96 h EC(50) values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL(-1) , respectively, in an immersion bioassay. Benzaldehyde (9 µg mL(-1) ) was the most toxic compound, followed by γ-eudesmol (50 µg mL(-1) ) and estragole (180 µg mL(-1) ), based on 96 h EC(50) values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans-anethole/geraniol, trans-anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry.

  6. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    PubMed

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.

    PubMed

    Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan

    2017-05-22

    Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    PubMed Central

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers. PMID:26793212

  9. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour.

    PubMed

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2015-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  10. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    PubMed

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  11. Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian Eucalyptus Species against Tetranychus urticae Koch.

    PubMed

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Maroufpoor, Mostafa; Rahimi-Nasrabadi, Mehdi

    2017-03-01

    There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC 50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.

  12. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    PubMed

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Chemotaxonomic significance of the terpene composition in natural populations of Pinus nigra J.F.Arnold from Serbia.

    PubMed

    Sarac, Zorica; Bojović, Srdjan; Nikolić, Biljana; Tešević, Vele; Ethorđević, Iris; Marin, Petar D

    2013-08-01

    The essential-oil variability in seven native populations belonging to different infraspecific taxa of Pinus nigra (ssp. nigra, var. gocensis, ssp. pallasiana, and var. banatica) growing wild in Serbia was analyzed. In the needles of 195 trees from seven populations, 58 essential-oil components were identified. The major components were α-pinene (43.6%) and germacrene D (29.8%), comprising together 73.4% of the total oil composition. Based on the average chemical profile of the main terpene components (with contents >5%), the studied populations were found to be the most similar to populations from central Italy and Greece (ssp. nigra). Cluster analysis showed the division of the populations into three principal groups: the first group consisted of Populations I, II, III, IV, and V (considered as ssp. nigra group), the second of Population VI (ssp. pallasiana group), and the third of Population VII, which had the most distinct oil composition (ssp. banatica group). The taxonomic implications of the essential-oil profiles of the investigated taxa of this very complex species are discussed. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS031[W][OA

    PubMed Central

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-01-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-β-ocimene and (E,E)-α-farnesene from accession Wassilewskija (Ws), a high-(E)-β-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species. PMID:20463089

  15. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  16. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest.

    PubMed

    Li, Fengqi; Li, Wei; Lin, Yong-Jun; Pickett, John A; Birkett, Michael A; Wu, Kongming; Wang, Guirong; Zhou, Jing-Jiang

    2018-01-01

    Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up-regulated with their derived proteins phylogenetically clustered in the TPS-g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)-nerolidol, the latter being precursor of the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)-nerolidol, as well as (E,E)-geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)-linalool and DMNT than wild-type plants, whereas transgenic rice expressing Pltps4 produced (S)-linalool, DMNT and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment. © 2017 John Wiley & Sons Ltd.

  17. Spectroscopic investigation of Ginkgo biloba terpene trilactones and their interaction with amyloid peptide Aβ(25-35)

    NASA Astrophysics Data System (ADS)

    He, Jiangtao; Petrovic, Ana G.; Dzyuba, Sergei V.; Berova, Nina; Nakanishi, Koji; Polavarapu, Prasad L.

    2008-04-01

    The beneficial effects of Ginkgo biloba extract in the "treatment" of dementia are attributed to its terpene trilactone (TTL) constituents. The interactions between TTLs and amyloid peptide are believed to be responsible in preventing the aggregation of peptide. These interactions have been investigated using infrared vibrational absorption (VA) and circular dichroism (VCD) spectra. Four TTLs, namely ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and bilobalide (BB) and amyloid Aβ(25-35) peptide, as a model for the full length peptide, are used in this study. GA-monoether and GA-diether have also been synthesized and investigated to help understand the role of individual carbonyl groups in these interactions. The precipitation and solubility issues encountered with the mixture of ginkgolide + Aβ peptide for VA and VCD studies were overcome using binary ethanol-D 2O solvent mixture. The experimental VA and VCD spectra of GA, GB, GC and BB, GA-monoether and GA-diether have been analyzed using the corresponding spectra predicted with density functional theory. The time-dependent experimental VA and VCD spectra of Aβ(25-35) peptide and the corresponding experimental spectra in the presence of TTLs indicated that the effect of the TTLs in modulating the aggregation of Aβ(25-35) peptide is relatively small. Such small effects might indicate the absence of a specific interaction between the TTLs and Aβ(25-35) peptide as a major force leading to the reduced aggregation of amyloid peptides. It is possible that the therapeutic effect of G. biloba extract does not originate from direct interactions between TTLs and the Aβ(25-35) peptide and is more complex.

  18. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    PubMed

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    PubMed

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom

    PubMed Central

    Kumari, Sangita; Pundhir, Sachin; Priya, Piyush; Jeena, Ganga; Punetha, Ankita; Chawla, Konika; Firdos Jafaree, Zohra; Mondal, Subhasish; Yadav, Gitanjali

    2014-01-01

    Plant essential oils are complex mixtures of volatile organic compounds, which play indispensable roles in the environment, for the plant itself, as well as for humans. The potential biological information stored in essential oil composition data can provide an insight into the silent language of plants, and the roles of these chemical emissions in defense, communication and pollinator attraction. In order to decipher volatile profile patterns from a global perspective, we have developed the ESSential OIL DataBase (EssOilDB), a continually updated, freely available electronic database designed to provide knowledge resource for plant essential oils, that enables one to address a multitude of queries on volatile profiles of native, invasive, normal or stressed plants, across taxonomic clades, geographical locations and several other biotic and abiotic influences. To our knowledge, EssOilDB is the only database in the public domain providing an opportunity for context based scientific research on volatile patterns in plants. EssOilDB presently contains 123 041 essential oil records spanning a century of published reports on volatile profiles, with data from 92 plant taxonomic families, spread across diverse geographical locations all over the globe. We hope that this huge repository of VOCs will facilitate unraveling of the true significance of volatiles in plants, along with creating potential avenues for industrial applications of essential oils. We also illustrate the use of this database in terpene biology and show how EssOilDB can be used to complement data from computational genomics to gain insights into the diversity and variability of terpenoids in the plant kingdom. EssOilDB would serve as a valuable information resource, for students and researchers in plant biology, in the design and discovery of new odor profiles, as well as for entrepreneurs—the potential for generating consumer specific scents being one of the most attractive and interesting topics

  1. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers

    PubMed Central

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K.; Müller, Carsten T.; Rosati, Carlo; Rogers, Hilary J.

    2012-01-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar ‘Sweet Laura’ is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. ‘Sweet Laura’ with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. ‘Sweet Laura’ and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. ‘Sweet Laura’ placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R28(R)X8W and D321DXXD are the putative Mg2+-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. ‘Sweet Laura’ flowers. PMID:22268153

  2. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    PubMed Central

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  3. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    PubMed

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  4. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  5. Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions.

    PubMed

    Raffa, Kenneth F

    2014-01-01

    , biochemical time), relationships among inducible and constitutive defenses, population dynamics, and plastic host-selection behavior (stand level, ecological time), and climate-driven range expansion of a native eruptive species into semi-naïve and potentially naïve habitats (geographical level, evolutionary time). I approach this problem by focusing primarily on one chemical group, terpenes, by emphasizing the curvilinear and threshold-structured basis of most underlying relationships, and by focusing on the system's feedback structure, which can either buffer or amplify relationships across scales.

  6. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen.

    PubMed

    Yoshitomi, Kayo; Taniguchi, Shiduku; Tanaka, Keiichiro; Uji, Yuya; Akimitsu, Kazuya; Gomi, Kenji

    2016-02-01

    Rice is one of the most important crops worldwide and is widely used as a model plant for molecular studies of monocotyledonous species. The plant hormone jasmonic acid (JA) is involved in rice-pathogen interactions. In addition, volatile compounds, including terpenes, whose production is induced by JA, are known to be involved in the rice defense system. In this study, we analyzed the JA-induced terpene synthase OsTPS24 in rice. We found that OsTPS24 was localized in chloroplasts and produced a monoterpene, γ-terpinene. The amount of γ-terpinene increased after JA treatment. γ-Terpinene had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo); however, it did not show significant antifungal activity against Magnaporthe oryzae. The antibacterial activity of the γ-terpinene against Xoo was caused by damage to bacterial cell membranes. These results suggest that γ-terpinene plays an important role in JA-induced resistance against Xoo, and that it functions as an antibacterial compound in rice. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  8. Comparative Characterization of Total Flavonol Glycosides and Terpene Lactones at Different Ages, from Different Cultivation Sources and Genders of Ginkgo biloba Leaves

    PubMed Central

    Yao, Xin; Shang, Erxin; Zhou, Guisheng; Tang, Yuping; Guo, Sheng; Su, Shulan; Jin, Chun; Qian, Dawei; Qin, Yong; Duan, Jin-Ao

    2012-01-01

    The extract from Ginkgo biloba leaves has become a very popular plant medicine and herbal supplement for its potential benefit in alleviating symptoms associated with peripheral vascular disease, dementia, asthma and tinnitus. Most research on G. biloba leaves focus on the leaves collected in July and August from four to seven year-old trees, however a large number of leaves from fruit cultivars (trees older than 10 years) are ignored and become obsolete after fruit harvest season (November). In this paper, we expand the tree age range (from one to 300 years) and first comparatively analyze the total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of G. biloba leaves collected in November by using the validated HPLC-ELSD and HPLC-PDA methods. The results show that the contents of total terpene lactones and flavonol glycosides in the leaves of young ginkgo trees are higher than those in old trees, and they are higher in male trees than in female trees. Geographical factors appear to have a significant influence on the contents as well. These results will provide a good basis for the comprehensive utilization of G. biloba leaves, especially the leaves from fruit cultivars. PMID:22949862

  9. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit.

    PubMed

    Li, Xiang; Xu, Yaying; Shen, Shuling; Yin, Xueren; Klee, Harry; Zhang, Bo; Chen, Kunsong; Hancock, Robert

    2017-10-13

    The unique flavor of Citrus fruit depends on complex combinations of soluble sugars, organic acids, and volatile compounds. The monoterpene E-geraniol is an important volatile, contributing to flavor in sweet orange (Citrus sinensis Osbeck). Moreover, antifungal activity of E-geraniol has also been observed. However, the terpene synthase (TPS) responsible for its synthesis has not been identified in sweet orange. Terpene synthase 16 (CitTPS16) was shown to catalyze synthesis of E-geraniol in vitro, and transient overexpression of CitTPS16 in fruits and leaves of Newhall sweet orange resulted in E-geraniol accumulation in vivo. Having identified the responsible enzyme, we next examined transcriptional regulation of CitTPS16 in the fruit. Among cloned members of the AP2/ERF transcription factor gene family, CitERF71 showed a similar expression pattern to CitTPS16. Moreover, CitERF71 was able to activate the CitTPS16 promoter based on results from transient dual-luciferase assays and yeast one-hybrid assays. EMSAs showed that CitERF71 directly binds to ACCCGCC and GGCGGG motifs in the CitTPS16 promoter. These results indicate an important role for CitERF71 in transcriptional regulation of CitTP16 and, therefore, in controlling production of E-geraniol in Citrus fruit. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Differential response of terpenes and anthraquinones derivatives in Rumex dentatus and Lavandula officinalis to harsh winters across north-western Himalaya.

    PubMed

    Jan, Sumira; Kamili, Azra N; Parray, Javid A; Bedi, Yashbir S

    2016-01-01

    Herbs adapted to diverse climates exhibit distinct variability to fluctuating temperatures and demonstrate various metabolic and physiological adaptations to harsh environments. In this research, Rumex dentatus L. and Lavandula officinalis L. were collected before snowfall in September-November to evaluate variability in major phytoconstituents to diverse seasonal regime. LC-MS was used for simultaneous determination of eight anthraquinone derivatives in R. dentatus, i.e. emodin, physcion, chrysophanol, physcion glucoside, endocrocin, emodin glucoside, chrysophanol glucoside and chromone derivatives and monoterpenes in L. officinalis i.e. (Z)-β-ocimene, (E)-β-ocimene, terpene alcohol, terpin-4-ol, acetate ester-linalyl acetate and bicyclic sesquiterpene (E)-caryophyllene. The correlation analysis confirmed significant variation in anthraquinone glucoside and terpene content within Rumex and Lavender, respectively, and altitude was established as the determinant factor in secondary metabolism of both herbs. The study concludes the propagation of herbs in bioclimatic belts which favour accumulation of major constituents and validate their greater pharmacological activity.

  11. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    PubMed

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  12. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    PubMed Central

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  13. Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis.

    PubMed

    Kim, Taewook; Park, June Hyun; Lee, Sang-Gil; Kim, Soyoung; Kim, Jihyun; Lee, Jungho; Shin, Chanseok

    2017-08-01

    MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus , the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues ( i.e. , leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE , which is involved in flower initiation and is duplicated in H. syriacus . Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

  14. Microbiological Transformation of Terpenes

    PubMed Central

    Prema, B. R.; Bhattacharyya, P. K.

    1962-01-01

    Several strains of fungi were tested for their ability to metabolize α-pinene in shake cultures. A strain of Aspergillus niger showing marked efficiency in this respect was selected for further studies. The optimal conditions for fermentation were established with respect to substrate concentration, time, and temperature. From the fermentation products three major metabolites of α-pinene were isolated: a ketone, C10H14O, identified as d-verbenone; an alcohol, C10H16O, identified as d-cis-verbenol; and a crystalline diol, C10H18O2, characterized as d-trans-sobrerol. PMID:16349625

  15. Modeling with the logistic regression of the growth/no growth interface of Saccharomyces cerevisiae in relation to 2 antimicrobial terpenes (citral and linalool), pH, and a(w).

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Patrignani, Francesca; Siroli, Lorenzo; Lanciotti, Rosalba; Gardini, Fausto

    2014-03-01

    The antimicrobial effects of 2 terpenes (citral and linalool) on a Saccharomyces cerevisiae strain isolated from spoiled soft drink have been evaluated, alone or in combination, in relation to pH and aw using in vitro assays. The obtained data were fitted with the logit model to find the growth/no growth boundary regions of the 2 terpenes, focusing the attention on the type of interaction exerted by citral and linalool. In particular, the results showed an increase of citral antimicrobial effect in growth media characterized by low aw value, as well as a higher linalool antimicrobial effect in media at low pH. Moreover, the interactive effects of the 2 terpenes were exploited. The results obtained with the model were validated in an independent experiment. The knowledge of the interactions of essential oil molecules with enhanced antimicrobial activity, in relation to some of the most important chemicophysical variables, can have important industrial applications, since these substances are able to assure the desired antimicrobial effect without negatively modifying the product flavor profile. The effects of the main chemicophysical parameters (such as aw and pH) on the antimicrobial activity of bioactive terpenes are necessary for the definition of an industrially applicable preservation strategy based on the use of essential oils as natural antimicrobials aimed to prolong shelf life of food products. © 2014 Institute of Food Technologists®

  16. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene.

    PubMed

    Tamiru, Amanuel; Bruce, Toby J A; Richter, Annett; Woodcock, Christine M; Midega, Charles A O; Degenhardt, Jörg; Kelemu, Segenet; Pickett, John A; Khan, Zeyaur R

    2017-04-01

    Maize ( Zea mays ) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important signaling component ( E )-caryophyllene in a South American maize landrace Braz1006 possessing stemborer Chilo partellus egg inducible defense trait, in comparison with the European maize line Delprim and North American inbred line B73. The ( E) - caryophyllene production level and transcript abundance of TPS23, terpene synthase responsible for ( E) - caryophyllene formation, were compared between Braz1006, Delprim, and B73 after mimicked herbivory. Braz1006-TPS23 was heterologously expressed in E. coli , and amino acid sequences were determined. Furthermore, electrophysiological and behavioral responses of a key parasitic wasp Cotesia sesamiae to C .  partellus egg-induced Braz1006 volatiles were determined using coupled gas chromatography electroantennography and olfactometer bioassay studies. After elicitor treatment, Braz1006 released eightfold higher ( E) -caryophyllene than Delprim, whereas no ( E) -caryophyllene was detected in B73. The superior (E)- caryophyllene production by Braz1006 was positively correlated with high transcript levels of TPS23 in the landrace compared to Delprim. TPS23 alleles from Braz1006 showed dissimilarities at different sequence positions with Delprim and B73 and encodes an active enzyme. Cotesia sesamiae was attracted to egg-induced volatiles from Braz1006 and synthetic (E)- caryophyllene. The variation in ( E) -caryophyllene emission between Braz1006 and Delprim is positively correlated with induced levels of TPS23 transcripts. The enhanced TPS23 activity and corresponding ( E) -caryophyllene production by the maize landrace could be

  17. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation

    PubMed Central

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry

    2017-01-01

    Abstract Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography–mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. PMID:29117373

  18. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation.

    PubMed

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry; Goldarazena, Arturo

    2017-09-01

    Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography-mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  19. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. © 2013 Scandinavian Plant Physiology Society.

  20. Characterization of a Root-Specific Arabidopsis Terpene Synthase Responsible for the Formation of the Volatile Monoterpene 1,8-Cineole1

    PubMed Central

    Chen, Feng; Ro, Dae-Kyun; Petri, Jana; Gershenzon, Jonathan; Bohlmann, Jörg; Pichersky, Eran; Tholl, Dorothea

    2004-01-01

    Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively low Km value for geranyl diphosphate of 0.2 μm. At3g25820/At3g25830 promoter activity, measured with a β-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47–58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-β-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are

  1. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    PubMed

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  2. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  4. Density functional theory calculations in stereochemical determination of terpecurcumins J-W, cytotoxic terpene-conjugated curcuminoids from Curcuma longa L.

    PubMed

    Lin, Xionghao; Ji, Shuai; Qiao, Xue; Hu, Hongbo; Chen, Ni; Dong, Yinhui; Huang, Yun; Guo, Dean; Tu, Pengfei; Ye, Min

    2013-12-06

    Fourteen novel terpene-conjugated curcuminoids, terpecurcumins J-W (1-14), have been isolated from the rhizomes of Curcuma longa L. Among them, terpecurcumins J-Q and V represent four unprecedented skeletons featuring an unusual core of hydrobenzannulated[6,6]-spiroketal (1 and 2), bicyclo[2.2.2]octene (3-7), bicyclo[3.1.3]octene (8), and spiroepoxide (13), respectively. The structures of compounds 1-14 were elucidated by extensive spectroscopic analysis, and their absolute configurations were established by electronic circular dichroism, vibrational circular dichroism, and (13)C NMR spectroscopic data analysis, together with density functional theory calculations. The structure and configuration of 1 was further confirmed by single-crystal X-ray diffraction (Cu Kα). The biogenetic pathways of 1-14 were proposed, involving Michael addition, condensation, Diels-Alder cycloaddition, and electrophilic substitution reactions. Terpecurcumins showed more potent cytotoxic activities than curcumin and ar-/β-turmerone. Among them, terpecurcumin Q (8) exhibited IC50 of 3.9 μM against MCF-7 human breast cancer cells, and mitochondria-mediated apoptosis played an important role in the overall growth inhibition. Finally, LC/MS/MS quantitative analysis of five representative terpecurcumins indicated these novel compounds were present in C. longa at parts per million level.

  5. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: newly identified compounds, flavors molecular markers, and terpenic profile.

    PubMed

    Cecchi, Teresa; Alfei, Barbara

    2013-12-01

    This study aims to contribute to the knowledge of the commercial, sensory, and analytical characteristics of extra virgin olive oil (EVOO) from Italy (Marche region), renowned since ancient times. Headspace solid-phase micro-extraction (HS-SPME) was applied for the very first time to the sampling of volatile compounds of eleven typical Italian monocultivar EVOOs. Forty-eight compounds were characterised by GC-MS, some of them were only occasionally found in other EVOOs and some other were never detected before in any EVOO. Compounds belonging mainly to alcohols, esters, aldehydes, ketones and hydrocarbons chemical classes characterised the volatile profiles. The main volatile compounds detected in the EVOOs were the C6 compounds derived from polyunsaturated fatty acids, through the lipoxygenase pathway, in different proportion according to the specific cultivar. The results suggest that genetic factors strongly influence volatile formation and terpene hydrocarbons are claimed to be suitable markers of the geographic origin and genotype of the EVOO. Correlations among sensory attributes evaluated by a panel test and the presence of specific volatile compounds were highlighted for the very first time. The significance of the presence of some newly identified volatile compounds was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange

    PubMed Central

    Shen, Shu-ling; Yin, Xue-ren; Zhang, Bo; Xie, Xiu-lan; Jiang, Qian; Grierson, Donald; Chen, Kun-song

    2016-01-01

    Aroma is a vital characteristic that determines the quality and commercial value of citrus fruits, and characteristic volatiles have been analyzed in different citrus species. In sweet orange, Citrus sinensis, the sesquiterpene (+)-valencene is a key volatile compound in the fruit peel. Valencene synthesis is catalyzed by the terpene synthase CsTPS1, but the transcriptional mechanisms controlling its gene expression are unknown. Here, the AP2/ERF (APETALA2/ethylene response factor) transcription factor, CitAP2.10, is characterized as a regulator of (+)-valencene synthesis. The expression pattern of CitAP2.10 was positively correlated with (+)-valencene content and CsTPS1 expression. Dual-luciferase assays indicated that CitAP2.10 could trans-activate the CsTPS1 promoter. Ethylene enhanced expression of CitAP2.10 and this effect was abolished by the ethylene antagonist 1-methylcyclopropene. The role and function of CitAP2.10 in (+)-valencene biosynthesis were confirmed using the Arabidopsis homolog (AtWRI1), which also transiently activated the CsTPS1 promoter. Furthermore, transient over-expression of CitAP2.10 triggered (+)-valencene biosynthesis in sweet orange fruit. These results indicate that CitAP2.10 regulates (+)-valencene synthesis via induction of CsTPS1 mRNA accumulation. PMID:27194737

  7. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    PubMed

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  8. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis.

    PubMed

    Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S

    2017-01-13

    Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.

  9. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L.

    PubMed

    Jones, Christopher G; Keeling, Christopher I; Ghisalberti, Emilio L; Barbour, Elizabeth L; Plummer, Julie A; Bohlmann, Jörg

    2008-09-01

    Sandalwood, Santalum album (Santalaceae) is a small hemi-parasitic tropical tree of great economic value. Sandalwood timber contains resins and essential oils, particularly the santalols, santalenes and dozens of other minor sesquiterpenoids. These sesquiterpenoids provide the unique sandalwood fragrance. The research described in this paper set out to identify genes involved in essential oil biosynthesis, particularly terpene synthases (TPS) in S. album, with the long-term aim of better understanding heartwood oil production. Degenerate TPS primers amplified two genomic TPS fragments from S. album, one of which enabled the isolation of two TPS cDNAs, SamonoTPS1 (1731bp) and SasesquiTPS1 (1680bp). Both translated protein sequences shared highest similarity with known TPS from grapevine (Vitis vinifera). Heterologous expression in Escherichia coli produced catalytically active proteins. SamonoTPS1 was identified as a monoterpene synthase which produced a mixture of (+)-alpha-terpineol and (-)-limonene, along with small quantities of linalool, myrcene, (-)-alpha-pinene, (+)-sabinene and geraniol when assayed with geranyl diphosphate. Sesquiterpene synthase SasesquiTPS1 produced the monocyclic sesquiterpene alcohol germacrene D-4-ol and helminthogermacrene, when incubated with farnesyl diphosphate. Also present were alpha-bulnesene, gamma-muurolene, alpha- and beta-selinenes, as well as several other minor bicyclic compounds. Although these sesquiterpenes are present in only minute quantities in the distilled sandalwood oil, the genes and their encoded enzymes described here represent the first TPS isolated and characterised from a member of the Santalaceae plant family and they may enable the future discovery of additional TPS genes in sandalwood.

  10. Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer.

    PubMed

    Cardoso, Daniel R; Olsen, Karsten; Møller, Jens K S; Skibsted, Leif H

    2006-07-26

    Phenolic compounds present in beer were shown by fluorescence spectroscopy and laser flash photolysis to deactivate both singlet- and triplet-excited states of riboflavin with bimolecular rate constants close to the diffusion control ranging from 2.8x10(9) to 1.1x10(10) M-1 s-1 and from 1.1x10(9) to 2.6x10(9) M-1 s-1, respectively. Enthalpies of activation were low (up to 33.2 kJ mol-1), and entropies of activation were positive, ranging from 17 to 92 J mol-1 K-1, as derived from temperature dependence, indicating a compensation effect. From a Stern-Volmer analysis of the singlet-excited riboflavin quenching by phenols it was found that high amounts of phenolic compounds (>0.3 M) would be needed to hinder triplet-excited riboflavin generation. On the other hand, a phenolic content of 0.36 mM is likely to quench 90% of the triplet-excited state. Phenol photodegradation was found to be complex, and using ESI-MS analysis it was not possible to identify specific photooxidation products of the phenolic compounds; only the photoproducts of riboflavin could be detected and structurally assigned. The rate of reaction of triplet-excited riboflavin with phenolic compounds in acetonitrile/citrate buffer (pH 4.6, 10 mM) is 550 times faster than the reaction with iso-alpha-acids from hops, indicating that triplet-excited quenchers such as phenols may be involved in the early steps in light-struck flavor formation in beer through radical formation. Terpenes present in herb-flavored beers were found to be nonreactive toward singlet- and triplet-excited-state riboflavin, and any protection depends on other mechanisms.

  11. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    PubMed Central

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  12. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq.

    PubMed

    Torres-Martínez, Rafael; García-Rodríguez, Yolanda Magdalena; Ríos-Chávez, Patricia; Saavedra-Molina, Alfredo; López-Meza, Joel Edmundo; Ochoa-Zarzosa, Alejandra; Garciglia, Rafael Salgado

    2018-01-01

    The aim of this study was to investigate the in vitro antioxidant activity of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. (Lamiaceae) essential oil, a Mexican medicinal plant known as nurite. Fresh aerial parts of S. macrostema plants cultivated in greenhouse for 3 months were subjected to hydrodistillation in a Clevenger apparatus to obtain essential oil. Volatile compounds were identified by gas chromatography (GC) and GC/mass spectrometry. Antioxidant effectiveness of essential oil and its major terpenes of S. macrostema was examined by three different radical scavenging methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and total antioxidant capacity (TAC). The concentrations tested were 0.001, 0.01, 0.1, and 1 mg/mL. The major volatile compounds were caryophyllene, limonene, linalool, pulegone, menthone, and thymol. S. macrostema essential oil showed the highest free radical scavenging activity with DPPH and ABTS methods (53.10% and 92.12%, respectively) at 1 mg/mL and 98% with TAC method at 0.1 mg/mL. Thymol exerted the highest antioxidant capacity with 0.1 mg/mL, reaching 83.38%, 96.96%, and 98.57% by DPPH, ABTS, and TAC methods. Caryophyllene, limonene, linalool, pulegone, and menthone exhibited an antioxidant capacity <25% with the DPPH and ABTS methods; however, limonene showed a TAC of 85.41% with 0.01 mg/mL. The essential oil of S. macrostema and thymol showed a free radical scavenging activity close to that of the synthetic butylated hydroxytoluene. The major volatile compounds of essential oil of Satureja macrostema were caryophyllene, limonene, linalool, pulegone, menthone and thymolThe essential oil of S. macrostema showed a high free radical scavengingThymol exerted the highest antioxidant capacity by DPPH, ABTS and TAC methods. Abbreviations used: GC: Gas Chromatography; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; TAC: Total

  13. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq.

    PubMed Central

    Torres-Martínez, Rafael; García-Rodríguez, Yolanda Magdalena; Ríos-Chávez, Patricia; Saavedra-Molina, Alfredo; López-Meza, Joel Edmundo; Ochoa-Zarzosa, Alejandra; Garciglia, Rafael Salgado

    2017-01-01

    Background: The aim of this study was to investigate the in vitro antioxidant activity of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. (Lamiaceae) essential oil, a Mexican medicinal plant known as nurite. Materials and Methods: Fresh aerial parts of S. macrostema plants cultivated in greenhouse for 3 months were subjected to hydrodistillation in a Clevenger apparatus to obtain essential oil. Volatile compounds were identified by gas chromatography (GC) and GC/mass spectrometry. Antioxidant effectiveness of essential oil and its major terpenes of S. macrostema was examined by three different radical scavenging methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and total antioxidant capacity (TAC). The concentrations tested were 0.001, 0.01, 0.1, and 1 mg/mL. Results: The major volatile compounds were caryophyllene, limonene, linalool, pulegone, menthone, and thymol. S. macrostema essential oil showed the highest free radical scavenging activity with DPPH and ABTS methods (53.10% and 92.12%, respectively) at 1 mg/mL and 98% with TAC method at 0.1 mg/mL. Thymol exerted the highest antioxidant capacity with 0.1 mg/mL, reaching 83.38%, 96.96%, and 98.57% by DPPH, ABTS, and TAC methods. Caryophyllene, limonene, linalool, pulegone, and menthone exhibited an antioxidant capacity <25% with the DPPH and ABTS methods; however, limonene showed a TAC of 85.41% with 0.01 mg/mL. Conclusion: The essential oil of S. macrostema and thymol showed a free radical scavenging activity close to that of the synthetic butylated hydroxytoluene. SUMMARY The major volatile compounds of essential oil of Satureja macrostema were caryophyllene, limonene, linalool, pulegone, menthone and thymolThe essential oil of S. macrostema showed a high free radical scavengingThymol exerted the highest antioxidant capacity by DPPH, ABTS and TAC methods. Abbreviations used: GC: Gas Chromatography; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2

  14. Screening of Polish Fir Honeydew Honey Using GC/MS, HPLC-DAD, and Physical-Chemical Parameters: Benzene Derivatives and Terpenes as Chemical Markers.

    PubMed

    Kuś, Piotr M; Jerković, Igor; Marijanović, Zvonimir; Tuberoso, Carlo I G

    2017-09-01

    GC/MS of headspace solid phase micro extraction (HS-SPME) and solvent extractives along with targeted HPLC-DAD of Polish fir (Abies alba Mill.) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical-chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate-high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe 2+ /kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant-originated benzene derivatives: 3,4-dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4-hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4-Hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Direct analysis of 18 flavonol glycosides, aglycones and terpene trilactones in Ginkgo biloba tablets by matrix solid phase dispersion coupled with ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry.

    PubMed

    Liu, Xin-Guang; Yang, Hua; Cheng, Xiao-Lan; Liu, Lei; Qin, Yong; Wang, Qi; Qi, Lian-Wen; Li, Ping

    2014-08-01

    Analysis and quality control of Ginkgo biloba have been comprehensively studied. However, little attention has been devoted to the simultaneous extraction and analysis of flavonols and terpene trilactones, especially for direct quantification of flavonol glycosides. This work described a rapid strategy for one-step extraction and quantification of the components. A matrix solid phase dispersion (MSPD) method was designed for the extraction of ginkgo ingredients and compared with the heat-reflux and ultrasonic extraction methods. An ultra-high performance liquid chromatography (UHPLC)-tandem-triple-quadrupole-mass spectrometry (QQQ-MS) method was developed for detection of the 18 components, including 10 original flavonol glycosides, 3 aglycones, and 5 lactones. Subsequently, the proposed strategy was used for the analysis of 12 G. biloba tablets. Results showed that MSPD produced comparable extraction efficiency but consumed less time and required lower solvent volumes compared with conventional methods. Without hydrolysis, the concentration detected was much closer to the original in the sample. The total flavonol glycoside contents in ginkgo tablets ranged from 3.59 to 125.21μgmg(-1), and the terpene trilactone varied from 3.45 to 57.8μgmg(-1) among different manufacturers. In conclusion, the proposed MSPD and UHPLC-QQQ-MS is rapid and sensitive in providing comprehensive profile of chemical constituents especially the genuine flavonol glycosides for improved quality control of ginkgo products. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Principal component analysis (PCA) of volatile terpene compounds dataset emitted by genetically modified sweet orange fruits and juices in which a D-limonene synthase was either up- or down-regulated vs. empty vector controls.

    PubMed

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Peña, Leandro

    2016-12-01

    We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

  17. Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide.

    PubMed

    Xie, Haiyan; Wang, Jing-Rong; Yau, Lee-Fong; Liu, Yong; Liu, Liang; Han, Quan-Bin; Zhao, Zhongzhen; Jiang, Zhi-Hong

    2014-04-10

    The standard extract of Ginkgo biloba leaves (EGb761) is used clinically in Europe for the symptomatic treatment of impaired cerebral function in primary degenerative dementia syndromes, and the results of numerous in vivo and in vitro studies have supported such clinical use. The abnormal production and aggregation of amyloid β peptide (Aβ) and the deposition of fibrils in the brain are regarded as key steps in the onset of Alzheimer's Disease (AD), and the inhibition of Aβ aggregation and destabilization of the preformed fibrils represent viable approaches for the prevention and treatment of AD. Flavonoid glycosides and terpene trilactones (TTLs) are the two main components of EGb761 which represent 24 and 6% of the overall content, respectively. In our research, seven abundant flavonoid glycosides 1-7 were isolated from the extract of Ginkgo biloba leaves and characterized by spectroscopic analysis. Furthermore, an ultra-high performance liquid chromatography method was established for the simultaneous quantification of these seven flavonoids. The inhibitory activities of these flavonoids, as well as four TTLs, i.e., ginkgolides A, B, and C and bilobalide (compounds 8-11), were evaluated towards Aβ42 fibril formation using a thioflavin T fluorescence assay. It was found that three flavonoids 1, 3 and 4 exhibited moderate inhibitory activities, whereas the other four flavonoids 2, 5, 6 and 7, as well as the four terpene trilactones, showed poor activity. This is the first report of the inhibition of Aβ fibril formation of two characteristic acylated flavonoid glycosides 6, 7 in Ginkgo leaves, on the basis of which the structure-activity relationship of these flavonoids 1-7 was discussed.

  18. Natural terpene derivatives as new structural task-specific ionic liquids to enhance the enantiorecognition of acidic enantiomers on teicoplanin-based stationary phase by high-performance liquid chromatography.

    PubMed

    Flieger, Jolanta; Feder-Kubis, Joanna; Tatarczak-Michalewska, Małgorzata; Płazińska, Anita; Madejska, Anna; Swatko-Ossor, Marta

    2017-06-01

    We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R,2S,5R)-(-)-menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0 ) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β-d-glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as "structural task-specific ionic liquids" responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    PubMed

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  20. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae.

    PubMed

    Chen, Xujun; Chen, Hao; Yuan, Joshua S; Köllner, Tobias G; Chen, Yuying; Guo, Yufen; Zhuang, Xiaofeng; Chen, Xinlu; Zhang, Yong-Jun; Fu, Jianyu; Nebenführ, Andreas; Guo, Zejian; Chen, Feng

    2018-03-06

    Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  2. Bioactive terpenes from marine-derived fungi.

    PubMed

    Elissawy, Ahmed M; El-Shazly, Mohamed; Ebada, Sherif S; Singab, AbdelNasser B; Proksch, Peter

    2015-04-03

    Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years' reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  3. Development of two step liquid-liquid extraction tandem UHPLC-MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets.

    PubMed

    Xiao, Jie; Wang, Tianyang; Li, Pei; Liu, Ran; Li, Qing; Bi, Kaishun

    2016-08-15

    A sensitive, reliable and accurate UHPLC-MS/MS method has been firstly established and validated for the simultaneous quantification of ginkgo flavonoids, terpene lactones and nimodipine in rat plasma after oral administration of Ginkgo biloba dispersible tablets, Nimodipine tablets and the combination of the both, respectively. The plasma samples were extracted by two step liquid-liquid extraction, nimodipine was extracted by hexane-ether (3:1, v/v) at the first step, after that ginkgo flavonoids and terpene lactones were extracted by ethyl acetate. Then the analytes were successfully separated by running gradient elution with the mobile phase consisting of 0.1% formic acid in water and methanol at a flow rate of 0.6mL/min. The detection of the analytes was performed on a UHPLC-MS/MS system with turbo ion spray source in the negative ion and multiple reaction monitoring (MRM) mode. The calibration curves for the determination of all the analytes showed good linearity (R(2)>0.99), and the lower limits of quantification were 0.50-4.00ng/mL. Intra-day and inter-day precisions were in the range of 3.6%-9.2% and 3.2%-13.1% for all the analytes. The mean extraction recoveries of the analytes were within 69.82%-103.5% and the matrix were within 82.8%-110.0%. The validated method had been successfully applied to compare the pharmacokinetic parameters of ginkgo flavonoids, terpene lactones and nimodipine in rat plasma after oral administration of Ginkgo biloba dispersible tablets, Nimodipine tablets with the combination of the both. There were no statistically significant differences on the pharmacokinetic behaviors of all the analytes between the combined and single administration groups. Results showed that the combination of the two agents may avoid dosage adjustments in clinic and the combination is more convenient as well as efficient on different pathogenesis of cerebral ischemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Biotransformations of terpenes by fungi from Amazonian citrus plants.

    PubMed

    Moreno Rueda, Maria Gabriela; Guerrini, Alessandra; Giovannini, Pier Paolo; Medici, Alessandro; Grandini, Alessandro; Sacchetti, Gianni; Pedrini, Paola

    2013-10-01

    The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Microtubules are an intracellular target of the plant terpene citral.

    PubMed

    Chaimovitsh, David; Abu-Abied, Mohamad; Belausov, Eduard; Rubin, Baruch; Dudai, Nativ; Sadot, Einat

    2010-02-01

    Citral is a component of plant essential oils that possesses several biological activities. It has known medicinal traits, and is used as a food additive and in cosmetics. Citral has been suggested to have potential in weed management, but its precise mode of action at the cellular level is unknown. Here we investigated the immediate response of plant cells to citral at micromolar concentrations. It was found that microtubules of Arabidopsis seedlings were disrupted within minutes after exposure to citral in the gaseous phase, whereas actin filaments remained intact. The effect of citral on plant microtubules was both time- and dose-dependent, and recovery only occurred many hours after a short exposure of several minutes to citral. Citral was also able to disrupt animal microtubules, albeit less efficiently. In addition, polymerization of microtubules in vitro was inhibited in the presence of citral. Taken together, our results suggest that citral is a potent, volatile, anti-microtubule compound.

  6. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    SciT

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  7. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  8. Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot (Daucus carota L.) roots

    Plants produce numerous volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and the aroma of carrots (Daucus carota L.). A combined chemical, biochemical and molecular study was conducted to evaluate the...

  9. Geographical Variation in the Terpene Composition of the Leaf Oil of Douglas Fir,

    DTIC Science & Technology

    The two forms of Douglas fir, Pseudotsuga menziesii var. menziesii and var. glauca, differ quite considerably with regard to the monoterpenes of...their leaf oils. Several chemical races, differing quantitatively in certain monoterpenes , appear to exist in each variety and the leaf oil composition seems to be particularly useful in classifying intermediate forms. (Author)

  10. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    PubMed Central

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  11. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    SciT

    Davis, Ryan Wesley; Wu, Weihua

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  12. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    SciT

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  13. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  14. Douglas-fir nutrients and terpenes as potential factors influencing western spruce budworm defoliation

    Karen M. Clancy

    1991-01-01

    Variation in levels of herbivory within and among plants can be attributed to many mechanisms, such as differences in a) host nutritional quality, b) suitability of the physical environment, and c) abundance of competitor consumers or natural enemies (Mattson et al. 1982, Denno and McClure 1983, Mattson and Scriber 1987, Clancy et al. 1988a, 1988b, Mattson et al. 1988...

  15. Highly enantioselective asymmetric direct aldol reaction promoted by aziridine amides constructed on chiral terpene scaffold.

    PubMed

    Wujkowska, Zuzanna; Strojewska, Aleksandra; Pieczonka, Adam M; Leśniak, Stanisław; Rachwalski, Michał

    2017-05-01

    Optically pure, diastereomeric aziridine amides built on the chiral skeletons of camphor, fenchone, and menthone have proven to be highly efficient ligands for enantioselective asymmetric direct aldol reaction in the presence of water and zinc triflate. Desired products were formed in moderate to high chemical yields (up to 95%) and with enantiomeric excess up to 99%. The influence of the stereogenic centers located at the aziridine subunit on the stereochemical course of the reaction is discussed. © 2017 Wiley Periodicals, Inc.

  16. One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts

    DOE PAGES

    Davis, Ryan Wesley; Wu, Weihua

    2016-01-01

    In this study, rising demand for transportation fuels, diminishing reserved of fossil oil, and the concerns with fossil fuel derived environmental pollution as well as the green-house gas emission derived climate change have resulted in the compelling need for alternative, sustainable new energy sources(1). Algae-based biofuels have been considered one of the promising alternatives to fossil fuels as they can overcome some of these issues (2-4). The current state-of-art of algal biofuel technologies have primarily focused on biodiesel production through prompting high algal lipid yields under the nutrient stress conditions. There are less interests of using algae-based carbohydrate and proteinsmore » as carbon sources for the fermentative production of liquid fuel compounds or other high-value bioproducts(5-7).« less

  17. Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla.

    PubMed

    He, Wen-Jun; Fu, Zhao-Hui; Zeng, Guang-Zhi; Zhang, Yu-Mei; Han, Hong-Jin; Yan, He; Ji, Chang-Jiu; Chu, Hong-Biao; Tan, Ning-Hua

    2012-11-01

    Labdane diterpene glycosides cathargyroside A and cathargyroside B, monoterpene glycosides vervenone-10-O-β-D-glucopyranoside and vervenone-10-O-β-D-apiofuranosyl-(1″→6')-β-D-glucopyranoside, as well as lignan glycosides cedrusinin-4-O-α-L-rhamnopyranoside and (+)-cyclo-olivil-9'-O-β-D-xylopyranoside, along with 39 known compounds, were obtained from the methanol extract of the twigs and leaves of Cathaya argyrophylla. These compounds were identified mainly by analyzing their NMR and MS data. Almost all of these compounds were hitherto unknown in this genus. The isolated compounds were screened against Candida albicans and Staphylococcus aureus for antimicrobial assay, and against K562, HT-29, BEL-7402, SGC-7901, B16, BGC-823, U251 and A549 cancer cell lines for cytotoxic activities. One compound showed antimicrobial activity against C. albicans, and four of them displayed cytotoxicity. Similarity analysis on the chemical constituents of the genera Cathaya, Picea and Pinus supported their close phylogenetic relationships. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Alkanes and terpenes in wood and leaves of Pinus jeffreyi and P. sabiniana

    Robert P. Adams; Jessica W. Wright

    2012-01-01

    The wood oils of Pinus jeffreyi and P. sabiniana contain considerable amounts of heptane (76.6%, 92%), on a monoterpene basis. However, when entire wood extractables is considered, the amounts drop considerably (3.4%, 36.8%) with the major portion of the wood oils being diterpene acids. The leaf oil of P. jeffreyi...

  19. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    PubMed

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. AQUEOUS AND SLURRY PHASE BIOTRANSFORMATION OF AROCLOR 1242 USING TERPENES AS COSUBSTRATES. (R825540C004)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Isolation and Structure Elucidation of the Terpene "[beta]"-Thujone from Cedar Leaf Oil

    ERIC Educational Resources Information Center

    French, Larry G.

    2011-01-01

    Western red cedar leaf affords an essential oil characterized by high thujone content. Students in an advanced organic chemistry lab course isolate a single thujone diastereoisomer from commercially available cedar leaf oil. Treatment of crude oil, containing roughly 70% thujone, predominately as [alpha]-thujone (6.5:1), with ethanolic sodium…

  2. Terpene exposure and respiratory effects among workers in Swedish joinery shops.

    PubMed

    Eriksson, K A; Levin, J O; Sandström, T; Lindström-Espeling, K; Lindén, G; Stjernberg, N L

    1997-04-01

    Exposure to monoterpenes (alpha-pinene, beta-pinene and delta 3-carene) in joinery shops was studied in Sweden during the processing of Scot's pine, and the acute respiratory effects among the employees were evaluated. A cross-sectional study of 38 workers was carried out in 4 joinery shops. The investigation included personal air sampling of monoterpenes, biological monitoring of metabolites of alpha-pinene in the workers' urine, interviews following a standardized questionnaire, and dynamic spirometry. The personal exposure to monoterpenes in the joinery shops was 10-214 mg/m3. The correlation (correlation coefficient = 0.69) between exposure to alpha-pinene and verbenols (metabolites from alpha-pinene) in urine was relatively good. No acute effects on forced vital capacity or forced expiratory volume during 1 s were detected. The workers had significantly reduced preshift lung function values when compared with the values of a local reference group, even when smokers and ex-smokers were excluded. Personal exposure to the monoterpenes alpha-pinene, and delta 3-carene in joinery shops may exceed the present Swedish occupational exposure limit of 150 mg/m3 during the winter season when workroom air is commonly recirculated. The determination of metabolites of alpha-pinene (verbenols) in urine can be used as an index of exposure to fumes released during wood-treating processes. The results from the lung function tests indicate chronic rather than acute reactions in the airways. The fact that there were no major changes in lung function over a workshift indicates chronic reaction in the airways.

  3. 75 FR 39450 - Terpene Constituents of the Extract of Chenopodium ambrosioides

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... exposures resulting from exposure to residues from this pesticidal extract. C. Biochemical Pesticide Human... that this active ingredient poses no significant human health risk with regard to food use. a. The...) factors in calculating a dose level that poses no appreciable risk. Health risks to humans, including...

  4. Thermal degradation of terpenes: camphene, Δ-carene, limonene, and α -terpinene

    Gerald W. McGraw; Richard W. Hemingway; Leonard L. Ingram; Catherine S. Canady; William B. McGraw

    1999-01-01

    Emissions from wood dryers have been of some concern for a number of years, and recent policy changes by the Environmental Protection Agency have placed emphasis upon the gaseous emissions that lead to the formation of particulate matter as small as 2.5 l m diameter. In this qualitative study, camphene, D 3 -carene, limonene, and a -terpinene were thermally degraded in...

  5. 2,3-Dideoxyglucosides of selected terpene phenols and alcohols as potent antifungal compounds.

    PubMed

    James Bound, D; Murthy, Pushpa S; Srinivas, P

    2016-11-01

    The antifungal activities of novel 2,3-unsaturated and 2,3-dideoxy 1-O-glucosides of carvacrol, thymol, and perillyl alcohol were tested against Aspergillus flavus, Aspergillus ochraceus, Fusarium oxysporum, Saccharomyces cerevisiae and Candida albicans. In the agar well diffusion tests, zones of inhibition for the derivatives of carvacrol, thymol and perillyl alcohol were higher (15-30mm) in the case of filamentous fungi than those for the parent compounds. Their MIC and MFC values indicated that the 2,3-unsaturated and 2,3-dideoxy 1-O-glucosides of carvacrol and thymol exhibited more fungicidal activity than the other compounds. Further, the 2,3-dideoxyglucosides of carvacrol and thymol, exhibited antitoxigenic effects against A. ochraceus and A. flavus and inhibited the production of ochratoxin and aflatoxin-B2. Propidium iodide influx assay demonstrated the lysis of C. albicans cells by carvacrol and its 2,3-unsaturated 1-O-glucoside and the loss of the membrane integrity. These new 2,3-dideoxyglucosides can be useful as antifungal agents and condiments in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enzymatic Addition of Alcohols to Terpenes by Squalene Hopene Cyclase Variants.

    PubMed

    Kühnel, Lisa C; Nestl, Bettina M; Hauer, Bernhard

    2017-11-16

    Squalene-hopene cyclases (SHCs) catalyze the polycyclization of squalene into a mixture of hopene and hopanol. Recently, amino-acid residues lining the catalytic cavity of the SHC from Alicyclobacillus acidocaldarius were replaced by small and large hydrophobic amino acids. The alteration of leucine 607 to phenylalanine resulted in increased enzymatic activity towards the formation of an intermolecular farnesyl-farnesyl ether product from farnesol. Furthermore, the addition of small-chain alcohols acting as nucleophiles led to the formation of non-natural ether-linked terpenoids and, thus, to significant alteration of the product pattern relative to that obtained with the wild type. It is proposed that the mutation of leucine at position 607 may facilitate premature quenching of the intermediate by small alcohol nucleophiles. This mutagenesis-based study opens the field for further intermolecular bond-forming reactions and the generation of non-natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 3-methyl-1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Szmigielski, Rafal; Surratt, Jason D.; Gómez-González, Yadian; Van der Veken, Pieter; Kourtchev, Ivan; Vermeylen, Reinhilde; Blockhuys, Frank; Jaoui, Mohammed; Kleindienst, Tadeusz E.; Lewandowski, Michael; Offenberg, John H.; Edney, Edward O.; Seinfeld, John H.; Maenhaut, Willy; Claeys, Magda

    2007-12-01

    Highly oxygenated compounds assigned to be oxidation products of α-pinene have recently been observed in substantial concentrations in ambient aerosols. Here, we confirm the unknown α-pinene tracer compound with molecular weight (MW) 204 as the C8-tricarboxylic acid 3-methyl-1,2,3-butanetricarboxylic acid. Its gas and liquid chromatographic behaviors and its mass spectral characteristics in electron ionization and negative ion electrospray ionization perfectly agree with those of a synthesized reference compound. The formation of this compound is explained by further reaction of cis-pinonic acid involving participation of the OH radical. This study illustrates that complex, multi-generation chemistry holds for the photooxidation of α-pinene in the presence of NOx.

  8. Two Naturally Occurring Terpenes, Dehydrocostuslactone and Costunolide, Decrease Intracellular GSH Content and Inhibit STAT3 Activation

    PubMed Central

    Butturini, Elena; Cavalieri, Elisabetta; Carcereri de Prati, Alessandra; Darra, Elena; Rigo, Antonella; Shoji, Kazuo; Murayama, Norie; Yamazaki, Hiroshi; Watanabe, Yasuo; Suzuki, Hisanori; Mariotto, Sofia

    2011-01-01

    The main purpose of the present study is to envisage the molecular mechanism of inhibitory action ofdehydrocostuslactone (DCE) andcostunolide (CS), two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3). We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC50 of 10 µM with concomitantdown-regulation ofthe phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsatured carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH) concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS), the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE), the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function. PMID:21625597

  9. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core

    PubMed Central

    Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner

    2016-01-01

    ABSTRACT Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo. PMID:26863940

  10. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene vol...

  11. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene volatiles. ...

  12. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta-thujone was not transcriptionally regulated. 2010 Elsevier GmbH. All rights reserved.

  13. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    PubMed Central

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  14. Critical factors determining the variation in SOA yields from terpene ozonolysis: a combined experimental and computational study.

    PubMed

    Donahue, Neil M; Hartz, Kara E Huff; Chuong, Bao; Presto, Albert A; Stanier, Charles O; Rosenhørn, Thomas; Robinson, Allen L; Pandis, Spyros N

    2005-01-01

    A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.

  15. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Distillates (petroleum), C(3-6... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7020 Distillates (petroleum... significant new uses subject to reporting. (1) The chemical substance distillates (petroleum), C(3-6...

  16. Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa.

    PubMed

    Ciaglia, Elena; Malfitano, Anna Maria; Laezza, Chiara; Fontana, Angelo; Nuzzo, Genoveffa; Cutignano, Adele; Abate, Mario; Pelin, Marco; Sosa, Silvio; Bifulco, Maurizio; Gazzerro, Patrizia

    2017-07-28

    We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa . We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal-regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases.

  17. Ethanol and high-value terpene co-production from lignocellulosic biomass of Cymbopogon flexuosus and Cymbopogon martinii

    Cymbopogon flexuosus and C. martinii are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosi...

  18. Radioracemization and radiation-induced chiral amplification of chiral terpenes measured by optical rotatory dispersion (ORD) spectroscopy

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Ursini, Ornella; Angelini, Giancarlo

    2008-08-01

    For the first time the radioracemization of α(+)pinene and α(-)pinene, of turpentine and of R(-)- α-phellandrene has been studied by optical rotatory dispersion (ORD) spectroscopy. For all these compounds, the radioracemization implies a shift of the ORD curves toward lower levels of specific optical rotation. The radioracemization degree ( RR) has been defined and calculated for all the compounds studied. It has been found that for radiation dose of 1 MGy the radioracemization degree is about 4.5% for the compound with the highest optical purity and reaches 7-8% for the less optically pure compounds, demonstrating that impurities can affect greatly the radioracemization. In contrast with the general radioracemization effect exerted by high-energy radiation on chiral molecules, β(-)pinene, β(+)pinene when irradiated show an increment of their specific optical rotation. This fact has been measured for the first time by ORD spectroscopy and the amplification degree of chirality can reach 1000% in the near UV. This phenomenon is due to the formation of a chiral polymer, poly- β-pinene, which forms a solution with the monomer enhancing its optical activity. The implications for the theories of the origin of life of such unexpected phenomenon are discussed briefly.

  19. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism1[OPEN

    PubMed Central

    Jiang, Zuodong; Kempinski, Chase; Bush, Caroline J.; Nybo, S. Eric; Chappell, Joe

    2016-01-01

    Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31–C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g−1 fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene. PMID:26603654

  20. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE PAGES

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; ...

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha -1 and 15.11 Mg palmarosa ha -1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha -1 respectively compared to reported 1749–3691 L ethanol ha -1 for switchgrass. Pretreated lemongrassmore » yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha -1 with an estimated value of USD $857 and $1005 ha -1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  1. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    DOE PAGES

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.; ...

    2016-03-08

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  2. AQUEOUS AND SLURRY PHASE COMETABOLIC BIODEGRADATION OF AROCLOR 1242 USING TERPENES AS COSUBSTRATES. (R825540C004)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling

    SciT

    Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less

  4. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  5. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily.

    PubMed

    Hansen, Nikolaj L; Heskes, Allison M; Hamberger, Britta; Olsen, Carl E; Hallström, Björn M; Andersen-Ranberg, Johan; Hamberger, Björn

    2017-02-01

    Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856

  7. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.

  8. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores. PMID:26023857

  9. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  10. ROLE OF CANOPY-SCALE PHOTOCHEMISTRY IN MODIFYING BIOGENIC-ATMOSPHERE EXCHANGE OF REACTIVE TERPENE SPECIES: RESULTS FROM THE CELTIC FIELD STUDY

    EPA Science Inventory

    A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactiv...

  11. 40 CFR 180.1296 - Terpene Constituents α-terpinene, d-limonene and p-cymene, of the Extract of Chenopodium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-limonene and p-cymene, of the Extract of Chenopodium ambrosioides near ambrosioides as Synthetically..., d-limonene and p-cymene, of the Extract of Chenopodium ambrosioides near ambrosioides as...-terpinene, d-limonene and p-cymene, of the Extract of Chenopodiumambrosioides near ambrosioides as...

  12. Simultaneous quantitative determination of bioactive terpene indole alkaloids in ethanolic extracts of Catharanthus roseus (L.) G. Don by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Kumar, Sunil; Singh, Awantika; Kumar, Brijesh; Singh, Bikarma; Bahadur, Lal; Lal, Mohan

    2018-03-20

    A rapid, sensitive and reproducible method using ultra-high-performance liquid chromatography coupled with electrospray ionization hybrid triple quadrupole-linear ion trap mass spectrometry (UHPLC-ESI-QqQ LIT -MS/MS) in multiple reaction monitoring (MRM) mode was developed and validated for simultaneous quantitation of anticancer (vincristine, vinblastine, vindesine), antihypertensive (ajmaline, ajmalicine, reserpine), aphrodisiac (yohimbine), sedative (serpentine) agents, dietary supplement (vinpocetine, yohimbine) and precursor of vinblastine (vindoline) from crude extracts of Catharanthus roseus. The precursor to product ion transitions for these compounds were observed at m/z 327 → 144, 355 → 144, 754 → 355, 353 → 144, 349 → 317, 825 → 225, 811 → 224, 458 → 188, 351 → 280 and 609 → 195, respectively in positive ionization mode. Chromatographic separation of all targeted TIAs was performed on ACQUITY UPLC BEH™ C 18 column (1.7 μm, 2.1 mm × 50 mm). The calibration curves were linear within the concentration range 0.5-1000 ng/mL and correlation coefficients (R 2 ) were closer to 1. Limit of detection (LOD) and limit of quantitation (LOQ) ranged from 0.039-0.583 ng/mL and 0.118-1.767 ng/mL, respectively. The intra-day (0.23-2.71% RSD) and inter-day (0.40-2.90% RSD) precision, stability (0.69-3.45% RSD) and recovery (99.63-104.30% ± %RSD ≤ 3.03%) were acceptable indicating good accuracy of the developed method. The method was successfully applied in ethanolic extracts of 39 samples of C. roseus parts (leaf, stem and root) collected from five different locations in India. Serpentine was detected as one of the most abundant TIA. Principal component analysis (PCA) was able to successfully discriminate among C. roseus samples on the basis of content of targeted TIAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2015-06-19

    Headspace sorptive extraction (HSSE) was used to preconcentrate seven monoterpenes (eucalyptol, linalool, menthol, geraniol, carvacrol, thymol and eugenol) for separation by gas chromatography and mass spectrometry (GC-MS). Three commercially available coatings for the stir bars, namely Polydimethylsiloxane (PDMS), polyacrilate (PA) and Ethylene glycol-silicone (EG-Silicone), were tested, and the influential parameters both in the adsorption and the thermal desorption steps were optimized. PDMS provided the best sensitivity for linalool, geraniol, menthol and eucalyptol, whereas EG-Silicone was best for extracting the phenolic monoterpenes studied. Considering the average obtained slopes from all compounds, PDMS pointed as the best option, and the analytical characteristics for the HSSE-TD-GC-MS method using this coating were obtained. Quantification of the samples was carried out by matrix-matched calibration using a synthetic honey. Detection limits ranged between 0.007 and 0.032 ng g(-1), depending on the compound. Twelve honey samples of different floral origins were analyzed using the HSSE-GC-MS method, the analytes being detected at concentrations up to 64 ng g(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Formation of the unusual semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the root stele is involved in defense against belowground herbivory

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and anti-herbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. ...

  15. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    SciT

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  16. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth: Ambient Observations of Gas-Phase Dimers

    DOE PAGES

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; ...

    2017-03-28

    Here, we present ambient observations of dimeric monoterpene oxidation products (C 16–20H yO 6–9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10 -15 to 10 -6 µg m -3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10 -3 to 10 -2 µg m -3 (~10more » 6–10 7 molecules cm -3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of ~5% to early stage particle growth from the ~60 gaseous dimer compounds.« less

  17. Characterization and Identification of Natural Terpenic Resins employed in “Madonna con Bambino e Angeli” by Antonello da Messina using Gas Chromatography–Mass Spectrometry

    PubMed Central

    2012-01-01

    Background Natural resins were frequently employed as adhesives or as components of oleo-resinous media in paintings in the past. The identification of vegetable resins is still an open problem. The aim of this paper is to analyze by GC-MS some vegetable resins frequently employed in paintings, such as Venice turpentine, dammar, copal, elemi in order to identify their main component in raw and aged samples. Some molecules are proposed as chemical “markers” to identify these natural resins. Results The results obtained on standards allowed us to successfully analyze sample collected from one work of art: the Madonna with the Infant and Angels by Antonello da Messina (XV century). Conclusion The results obtained confirm that the painting the artist originally used a mixture of linseed oil and natural resin (Venice turpentine) as binding medium. PMID:22721351

  18. Measurement of monoterpenes and sesquiterpenes in serum, plasma, and rumen fluid from sheep

    Studies involving the consumption, metabolism, and elimination of terpenes by small ruminants consuming terpene-laden shrubs as well as those exploring the potential for natural products as rumen modifiers could benefit from a procedure that measures terpenes in both blood and rumen fluid and that i...

  19. Mirror-symmetry-breaking in poly[(9,9-di-n-octylfluorenyl- 2,7-diyl)-alt-biphenyl] (PF8P2) is susceptible to terpene chirality, achiral solvents, and mechanical stirring.

    PubMed

    Fujiki, Michiya; Kawagoe, Yoshifumi; Nakano, Yoko; Nakao, Ayako

    2013-06-17

    Solvent chirality transfer of (S)-/(R)-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD)/circularly polarized luminescence (CPL) amplitudes with a high quantum yield of 16-20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i) the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii) clockwise and counterclockwise stirring operations, and (iii) the order of addition of limonene and methanol to the chloroform solution.

  20. Using volatile organic compounds to enhance atrazine biodegradation in a biobed system.

    PubMed

    Tortella, G R; Rubilar, O; Stenström, J; Cea, M; Briceño, G; Quiroz, A; Diez, M C; Parra, L

    2013-09-01

    The effect of the terpenes α-pinene, eucalyptol, and limonene, individually and as mixtures, on atrazine (ATZ) biodegradation and on biological activity in a biobed biomixture was evaluated. Additionally, terpenes emitted from the biomixture were captured using solid-phase microextraction. Terpenes added individually at relatively low concentrations (50 μg kg(-1)) significantly enhanced ATZ degradation and biological activity during the first incubation days. No significant effect on ATZ degradation was found from adding the terpene mixture, and, interestingly, an inhibitory effect on phenoloxidase activity was found during the first 20 days of incubation when mixed terpenes were present at 100 μg kg(-1). Capturing terpenes demonstrated that during the first hour of incubation a significant fraction of the terpenes was volatilized. These results are the first to demonstrate the feasibility of using terpenes to enhance the degradation of a pesticide. However, successive applications of terpenes or the addition of materials that slowly release terpenes could sustain the ATZ degradation enhancement.

  1. Classification of Pinus patula, P. tecunumanii, P. oocarpa, P. caribaea var. hondurensis, and Related Taxonomic Entities

    A.E. Squillace; Jesse P. Perry

    1992-01-01

    Stem xylem terpenes of 75 pine populations were studied to determine relationships among taxonomic entities. Typical Pinus patula populations occurring in areas north and west of Oaxaca, Mexico, had very high proportions of 3-phellandrene and low proportions of other constituents. Terpene compositions of populations of variety longipeduncalatain...

  2. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  3. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems.

    PubMed

    Kemper, Katarina; Hirte, Max; Reinbold, Markus; Fuchs, Monika; Brück, Thomas

    2017-01-01

    With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli , this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.

  4. Essential Oils in Foods: From Ancient Times to the 21st Century.

    PubMed

    Sendra, Esther

    2016-06-14

    Medicinal plants and culinary herbs have been used since ancient times. Essential oils (EO) are a mixture of numerous compounds, mainly terpenes, alcohols, acids, esters, epoxides, aldehydes, ketones,aminesandsulfides,thatareprobablyproducedbyplantsasaresponsetostress[1].[...].

  5. Photocaged Competitor Guests: A General Approach Toward Light-Activated Cargo Release From Cucurbiturils.

    PubMed

    Romero, Miguel A; Basílio, Nuno; Moro, Artur J; Domingues, Mara; González-Delgado, José A; Arteaga, Jesús F; Pischel, Uwe

    2017-09-21

    A general approach toward the light-induced guest release from cucurbit[7]uril by means of a photoactivatable competitor was devised. An o-nitrobenzyl-caged competitor is photolyzed to generate a competitive guest that can displace cargo from the host macrocycle solely based on considerations of chemical equilibrium. With this method the release of terpene guests from inclusion complexes with cucurbit[7]uril was demonstrated. The binding of the herein investigated terpenes, all being lead fragrant components in essential oils, has been characterized for the first time. They feature binding constants of up to 10 8  L mol -1 and a high differential binding selectivity (spanning four orders of magnitude for the binding constants for the particular set of terpenes). By fine-tuning the photoactivatable competitor guest, selective and also sequential release of the terpenes was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta)

    PubMed Central

    de Oliveira, Louisi Souza; Tschoeke, Diogo Antonio; de Oliveira, Aline Santos; Hill, Lilian Jorge; Paradas, Wladimir Costa; Salgado, Leonardo Tavares; Thompson, Cristiane Carneiro; Pereira, Renato Crespo; Thompson, Fabiano L.

    2015-01-01

    The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest. PMID:25675000

  7. Base oils and methods for making the same

    SciT

    Ohler, Nicholas; Fisher, Karl; Tirmizi, Shakeel

    Provided herein are isoparaffins derived from hydrocarbon terpenes such as myrcene, ocimene and farnesene, and methods for making the same. In certain variations, the isoparaffins have utility as lubricant base stocks.

  8. Chemistry with a Peel.

    ERIC Educational Resources Information Center

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  9. Natural Products: An Independent Study Project

    ERIC Educational Resources Information Center

    Griffin, Roger W., Jr.

    1974-01-01

    Described is an independent study project for students in chemistry at New College, Sarasota, Florida. Six students collected and analyzed local plants to determine content of alkaloids, terpenes, and flavonoids. (RH)

  10. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  11. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    PubMed

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p < 0.01) enhancement in the valsartan flux at a concentration of 1%, and less so at 3% and 5%. The effectiveness of terpenes at 1% concentration was in the following order: anethole > menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  12. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  13. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations

    PubMed Central

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y.; Rentzepis, Peter M.; Yuan, Joshua S.

    2016-01-01

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria. PMID:27911807

  14. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    PubMed

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  15. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    PubMed

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.

  16. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases.

    PubMed

    Kracht, Octavia Natascha; Ammann, Ann-Christin; Stockmann, Julia; Wibberg, Daniel; Kalinowski, Jörn; Piotrowski, Markus; Kerr, Russell; Brück, Thomas; Kourist, Robert

    2017-04-01

    Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Short communication: Effect of oregano and caraway essential oils on the production and flavor of cow milk.

    PubMed

    Lejonklev, J; Kidmose, U; Jensen, S; Petersen, M A; Helwing, A L F; Mortensen, G; Weisbjerg, M R; Larsen, M K

    2016-10-01

    Many essential oils and their terpene constituents display antimicrobial properties, which may affect rumen metabolism and influence milk production parameters. Many of these compounds also have distinct flavors and aromas that may make their way into the milk, altering its sensory properties. Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels of essential oils, 0.2 and 1.0g of oil/kg of dry matter, were added to the feed of lactating cows for 24d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma and flavor. The levels of essential oils used in this study mimic realistic levels of essential oils in herbs from feed, but were too low to affect milk production and methane emissions, and their inclusion in the animal diet did not adversely affect milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile.

    PubMed

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo

    2013-12-01

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction-gas chromatography mass spectrometry (SPME-GCMS).

    PubMed

    Patel, Kirti; Ruiz, Candy; Calderon, Rosa; Marcelo, Mavel; Rojas, Rosario

    2016-11-01

    The volatiles were characterised by headspace solid phase micro extraction (HS-SPME), gas chromatography mass spectrometry (GC-FID/MS). A total of 127 compounds were identified with terpenes (including mono terpenes and sesquiterpenes - a total of 45 compounds), esters (31 compounds) and hydrocarbons (20 compounds) were the predominant volatile compounds. Principal component analysis (PCA) of the volatile compounds yielded 2 significant PC's, which together accounted for 90.3% of the total variance in the data set and the scatter plot generated between PC1 and PC2 successfully segregated the 50 chili pepper samples into 7 groups. Clusters of hydrocarbons, esters, terpenes, aldehyde and ketones formed the major determinants of the difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique

    PubMed Central

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-01-01

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089

  1. Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2017-02-08

    The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis , Lavandula angustifolia and Mentha asiatica . Aroma components of the S. officinalis , L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography-mass spectrometry (GC-MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.

  2. Volatile components from mango (Mangifera indica L.) cultivars.

    PubMed

    Pino, Jorge A; Mesa, Judith; Muñoz, Yamilie; Martí, M Pilar; Marbot, Rolando

    2005-03-23

    The volatile components of 20 mango cultivars were investigated by means of simultaneous distillation-extraction, GC, and GC-MS. Three hundred and seventy-two compounds were identified, of which 180 were found for the first time in mango fruit. The total concentration of volatiles was approximately 18-123 mg/kg of fresh fruit. Terpene hydrocarbons were the major volatiles of all cultivars, the dominant terpenes being delta-3-carene (cvs. Haden, Manga amarilla, Macho, Manga blanca, San Diego, Manzano, Smith, Florida, Keitt, and Kent), limonene (cvs. Delicioso, Super Haden, Ordonez, Filipino, and La Paz), both terpenes (cv. Delicia), terpinolene (cvs. Obispo, Corazon, and Huevo de toro), and alpha-phellandrene (cv. Minin). Other qualitative and quantitative differences among the cultivars could be demonstrated.

  3. Theoretical and experimental analysis of the reaction mechanism of MrTPS2, a triquinane-forming sesquiterpene synthase from chamomile.

    PubMed

    Hong, Young J; Irmisch, Sandra; Wang, Selina C; Garms, Stefan; Gershenzon, Jonathan; Zu, Liansuo; Köllner, Tobias G; Tantillo, Dean J

    2013-09-27

    Terpene synthases, as key enzymes of terpene biosynthesis, have garnered the attention of chemists and biologists for many years. Their carbocationic reaction mechanisms are responsible for the huge variety of terpene structures in nature. These mechanisms are amenable to study by using classical biochemical approaches as well as computational analysis, and in this study we combine quantum-chemical calculations and deuterium-labeling experiments to elucidate the reaction mechanism of a triquinane forming sesquiterpene synthase from chamomile. Our results suggest that the reaction from farnesyl diphosphate to triquinanes proceeds through caryophyllyl and presilphiperfolanyl cations and involves the protonation of a stable (-)-(E)-β-caryophyllene intermediate. A tyrosine residue was identified that appears to be involved in the proton-transfer process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification of Isopentenol Biosynthetic Genes from Bacillus subtilis by a Screening Method Based on Isoprenoid Precursor Toxicity▿

    PubMed Central

    Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.

    2007-01-01

    We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564

  5. The aqueous photolysis of α-pinene in solution with humic acid

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  6. Engineering triterpene metabolism in tobacco

    PubMed Central

    Shuiqin, Wu; Zuodong, Jiang; Chase, Kempinski; Eric Nybo, S.; Husodo, Satrio; Williams, Robert

    2013-01-01

    Terpenes comprise a distinct class of natural products that serve a diverse range of physiological functions, provide for interactions between plants and their environment and represent a resource for many kinds of practical applications. To better appreciate the importance of terpenes to overall growth and development, and to create a production capacity for specific terpenes of industrial interest, we have pioneered the development of strategies for diverting carbon flow from the native terpene biosynthetic pathways operating in the cytosol and plastid compartments of tobacco for the generation of specific classes of terpenes. In the current work, we demonstrate how difficult it is to divert the 5-carbon intermediates DMAPP and IPP from the mevalonate pathway operating in the cytoplasm for triterpene biosynthesis, yet diversion of the same intermediates from the methylerythritol phosphate pathway operating in the plastid compartment leads to the accumulation of very high levels of the triterpene squalene. This was assessed by the co-expression of an avian farnesyl diphosphate synthase and yeast squalene synthase genes targeting metabolism in the cytoplasm or chloroplast. We also evaluated the possibility of directing this metabolism to the secretory trichomes of tobacco by comparing the effects of trichome-specific gene promoters to strong, constitutive viral promoters. Surprisingly, when transgene expression was directed to trichomes, high-level squalene accumulation was observed, but overall plant growth and physiology were reduced up to 80 % of the non-transgenic controls. Our results support the notion that the biosynthesis of a desired terpene can be dramatically improved by directing that metabolism to a non-native cellular compartment, thus avoiding regulatory mechanisms that might attenuate carbon flux within an engineered pathway. PMID:22729821

  7. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus.

    PubMed

    Gosney, Benjamin; O'Reilly-Wapstra, Julianne; Forster, Lynne; Whiteley, Carmen; Potts, Brad

    2017-05-01

    Genetic variation in foundation trees can influence dependent communities, but little is known about the mechanisms driving these extended genetic effects. We studied the potential chemical drivers of genetic variation in the dependent foliar community of the focal tree Eucalyptus globulus. We focus on the role of cuticular waxes and compare the effects to that of the terpenes, a well-studied group of secondary compounds known to be bioactive in eucalypts. The canopy community was quantified based on the abundance of thirty-nine distinctive arthropod and fungal symptoms on foliar samples collected from canopies of 246 progeny from 13 E. globulus sub-races grown in a common garden trial. Cuticular waxes and foliar terpenes were quantified using gas chromatography - mass spectrometry (GC-MC). A total of 4 of the 13 quantified waxes and 7 of the 16 quantified terpenes were significantly associated with the dependent foliar community. Variation in waxes explained 22.9% of the community variation among sub-races, which was equivalent to that explained by terpenes. In combination, waxes and terpenes explained 35% of the genetic variation among sub-races. Only a small proportion of wax and terpene compounds showing statistically significant differences among sub-races were implicated in community level effects. The few significant waxes have previously shown evidence of divergent selection in E. globulus, which signals that adaptive variation in phenotypic traits may have extended effects. While highlighting the role of the understudied cuticular waxes, this study demonstrates the complexity of factors likely to lead to community genetic effects in foundation trees.

  8. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    PubMed

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  9. Characterization of three agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Peña-Alvarez, Araceli; Díaz, Laura; Medina, Alejandra; Labastida, Carmen; Capella, Santiago; Vera, Luz Elena

    2004-02-20

    Steam distillation (SD) extraction-solid-phase microextraction coupled to GC-MS was developed for the determination of terpenes and Bligh-Dyer extraction-derivatization coupled with GC for the determination of fatty acids such as ethyl esters were used. It was found that the three different Agave species have the same profile of fatty acids; the quantity of these compounds is different in each Agave variety. On the other hand, different terpenes were identified in the three Agave plants studied: nine in A. salmiana, eight in A. angustifolia and 32 in A. tequilana Weber var. azul.

  10. Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes

    R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel

    2005-01-01

    Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...

  11. The mono - and sesquiterpene content of aphid-induced galls on Pistacia palaestina is not a simple reflection of their composition in intact leaves.

    PubMed

    Rand, Karin; Bar, Einat; Ben-Ari, Matan; Lewinsohn, Efraim; Inbar, Moshe

    2014-06-01

    Pistacia palaestina Boiss. (Anacardiaceae), a sibling species of P. terebinthus also known as turpentine tree or terebinth tree, is common in the Levant region. The aphid Baizongia pistaciae L. manipulates the leaves of the plant to form large galls, which provide both food and protection for its developing offspring. We analyzed the levels and composition of mono-and sesquiterpenes in both leaves and galls of ten naturally growing trees. Our results show that monoterpene hydrocarbons are the main constituents of P. palaestina leaves and galls, but terpene levels and composition vary among trees. Despite this inter-tree variation, terpene levels and compositions in galls from different trees resemble each other more than the patterns displayed by leaves from the same trees. Generally, galls contain 10 to 60 fold higher total terpene amounts than leaves, especially of the monoterpenes α-pinene and limonene. Conversely, the leaves generally accumulate more sesquiterpenes, in particular E-caryophyllene, germacrene D and δ-cadinene, in comparison to galls. Our results clearly show that the terpene pattern in the galls is not a simple reflection of that of the leaves and suggest that aphids have a strong impact on the metabolism of their host plant, possibly for their own defense.

  12. Pistagremic acid as a broad spectrum natural inhibitor from Pistacia integerrima Stewart.

    PubMed

    Rauf, Abdur; Patel, Seema

    2017-02-01

    Pistagremic acid (PA) is a bioactive tri-terpene isolated in bulk quantity from the galls of Pistacia integerrima. PA has been documented for a broad range of in vitro and in vivo biological properties. This letter documented the bioloigical potential of PA, which directed the researcher to re-isolate this compound and enhanced their biological potential.

  13. Guayule resin detection and influence on guayule rubber

    Guayule (Parthenium argentatum) is a natural rubber (cis-1,4-polyisoprene) producing crop, native to North America. Guayule also produces organic resins, complex mixtures of terpenes, triglycerides, guayulins, triterpenoids and other components. During natural rubber extraction, guayule resins can b...

  14. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens

    Aims: To evaluate natural terpene compounds for antimicrobial activities and determine if these compounds could be used to control microbial activities and pathogens in production animal facilities. Methods and Results: Thymol, geraniol, glydox, linalool, pine oil, plinol, and terpineol were teste...

  15. Chemical Composition of Essential Oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and Their Effects on the HIV-1 Tat Protein Function.

    PubMed

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-02-01

    New drugs would be beneficial to fight resistant HIV strains, in particular those capable of interfering with essential viral functions other than those targeted by highly active antiretroviral therapy drugs. Despite the central role played by Tat protein in HIV transcription, a search for vegetable extracts able to hamper this important viral function was never carried out. In this work, we evaluated the chemical composition and possible interference of essential oil from Thymus vulgaris, Cananga odorata, Cymbopogon citratus, and Rosmarinus officinalis with the Tat/TAR-RNA interaction and with Tat-induced HIV-1 LTR transcription. GC/MS Analysis demonstrated the biodiversity of herbal species translated into essential oils composed of different blends of terpenes. In all of them, 4 - 6 constituents represent from 81.63% to 95.19% of the total terpenes. Essential oils of Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis were active in interfering with Tat functions, encouraging further studies to identify single terpenes responsible for the antiviral activity. In view of the quite different composition of these essential oils, we concluded that their interference on Tat function depends on specific terpene or a characteristic blend. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  16. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.

    PubMed

    Tippmann, Stefan; Scalcinati, Gionata; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Terpenes have various applications as fragrances, cosmetics and fuels. One of the most prominent examples is the sesquiterpene farnesene, which can be used as diesel substitute in its hydrogenated form farnesane. Recent metabolic engineering efforts have enabled efficient production of several terpenes in Saccharomyces cerevisiae and Escherichia coli. Plant terpene synthases take on an essential function for sesquiterpene production as they catalyze the specific conversion of the universal precursor farnesyl diphosphate (FPP) to the sesquiterpene of interest and thereby impose limitations on the overall productivity. Using farnesene as a case study, we chose three terpene synthases with distinct plant origins and compared their applicability for farnesene production in the yeast S. cerevisiae. Differences regarding the efficiency of these enzymes were observed in shake flask cultivation with maximal final titers of 4 mg/L using α-farnesene synthase from Malus domestica. By employing two existing platform strains optimized for sesquiterpene production, final titers could be raised up 170 mg/L in fed-batch fermentations with RQ-controlled exponential feeding. Based on these experiments, the difference between the selected synthases was not significant. Lastly, the same fermentation setup was used to compare these results to production of the fragrance sesquiterpene santalene, and almost equivalent titers were obtained with 163 mg/L, using the highest producing strain expressing a santalene synthase from Clausena lansium. However, a reduction of the product yield on biomass by 50% could indicate a higher catalytic efficiency of the farnesene synthase. © 2015 Wiley Periodicals, Inc.

  17. Maize pathogens suppress inducible phytoalexin production to thwart innate plant immunity

    Kauralexins (KA) and zealexins (ZA) are newly described secondary metabolites in maize that serve as inducible chemical defenses against insects and pathogens. In contrast to the abundance of terpene volatiles in leaves, these non-volatile terpenoid phytoalexins are only mildly produced in response ...

  18. Maize pathogens suppress inducible phytoalexin production to thwart innate plant immunity

    Kauralexins and zealexins are newly described secondary metabolites in maize that serve as inducible chemical defenses against insects and pathogens. In contrast to the abundance of terpene volatiles in leaves, these non-volatile terpenoid phytoalexins are only mildly produced in response to insect ...

  19. Monoterpene concentration in Douglas-fir in relation to geographic location and resistance to attack by the Douglas-fir beetle

    J.W. Hanover; M.M. Furniss

    1966-01-01

    The concentration of monoterpenes in Pinus monticola Dougl. has been shown to be genetically controlled (Hanover, in preparation). Genetic control of terpene concentration has been implied, also, from analyses of parents or interspecies hybrids in other species (Bannister et al. 1959; Williams and Bannister 1962; Smith 1964, and Forde 1964). Evidence...

  20. Local and regional variation in the monoterpenes of ponderosa pine wood oleoresin

    R.H. Smith; R.L. Peloquin; P.C. Passof

    1969-01-01

    A gas chromatographic analysis of the mono-terpenes of 927 ponderosa pines, representing to some degree a major portion of the species' range, showed considerable local and regional diversity in composition. Five major monoterpenes— α-pinene, β-pinene, 3-carene, myrcene, and limonene—were analyzed. There is some evidence to support the...

  1. Spruce Budworm (Choristoneura fumiferana) Performance in Relation to Foliar Chemistry of its Host Plants

    William John.  Mattson

    1983-01-01

    Spruce budworm growth was best on balsam fir, poorest on lowland black spruce, and intermediate on upland white and black spruce. Growth was consistently, positively linked to foliar N and negatively linked to Fe, K, and select terpenes. Survival rates were not strongly, nor consistently linked to any of the measured foliar chemical traits.

  2. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  3. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  4. Observations of speciated monoterpenes above a Southeastern United States Forest and comparison with a 0-D model

    NASA Astrophysics Data System (ADS)

    Mcavey, K. M.; Groff, C. J.; Harkins, A. D.; Bertman, S. B.; Starn, T.; Seeley, J. S.; Shepson, P. B.

    2013-12-01

    Biogenic emissions of monoterpenes play a role in the formation of secondary organic aerosols (SOA) and tropospheric ozone, as well as impacting the fate of nitrogen through production of organic nitrates. Monoterpene emissions can interact with anthropgenic emissions (e.g. sulfate aerosol) to produce a variety of SOA components, such as organosulfates. Concentrations of several monoterpenes, including some combination of α-pinene, β-pinene, camphene, limonene, terpinolene, γ-terpinene, myrcene, and ρ-cymene (depending on chromatographic resolution) were quantified in a forested site in rural Alabama using an automated solid sorbent sampler/2D-GC, as part of the Southern Oxidant and Aerosol Study (SOAS). Monoterpene concentrations were relatively large in this mixed coniferous/deciduous forest, with individual terpenes maximizing at concentrations as high as 1 ppb or more, making them important OH sinks, as well as organic nitrate precursors. α-pinene was the dominant terpene measured. Diurnal patterns show a clear increase in observed monoterpene concentrations occurring in the later evening hours. In this presentation we will compare the observed terpene distribution with that from a simple landcover survey and emissions model, and discuss the relative role of isoprene and the terpenes as OH sinks, and precursors to organic nitrates, which are themselves potentially important SOA components.

  5. Attraction of some scolytids and associated beetles to the host volatiles α-pinene and ethanol

    Leif Martin Schroeder

    1991-01-01

    Several scolytid species are known to use host volatiles such as monoterpenes and the degradation product, ethanol, when searching for suitable host material. The release rates of terpenes and ethanol and the proportions in which they are released can be expected to differ depending on the breeding substrate preferences of the various scolytid species. The aim of this...

  6. Reduced stomatal conductance in plants grown under elevated carbon dioxide leads to lower emission of herbivore induced volatiles.

    Terpene volatiles produced by sweet corn (Zea Mays) upon infestation with pests such as Beet armyworm (Spodoptera exigua) function as part of an indirect plant defense mechanism by attracting parasitoid wasps. To investigate the effect of climate change on this indirect defense, we determined the im...

  7. PHOTOCHEMISTRY OF SOME NATURALLY EMITTED HYDROCARBONS

    EPA Science Inventory

    Six C10H16 monoterpenes, p-cymene, and isoprene, all known or thought to be emitted to the atmosphere by vegetation, were irradiated in the presence of NOx. The terpenes studied included one acyclic triolefin (myrcene), two monocyclic diolefins (d-limonene, terpinolene), and thre...

  8. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance[C][W

    PubMed Central

    Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng

    2014-01-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  9. EFFECTS OF METHOPRENE, ITS METABOLITES, AND BREAKDOWN PRODUCTS ON RETINOID-ACTIVATED PATHWAYS IN TRANSFECTED CELL LINES

    EPA Science Inventory

    Methoprene is a terpene-based insecticide designed to act as an agonist of insect juvenile hormone, which is essential for the transition from larval to adult forms in some metamorphic insects. Recent evidence suggests that a methoprene metabolite, methoprene acid, activates a ve...

  10. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen.

    PubMed

    Zhang, Jingjing; Zhao, Chen

    2015-12-18

    The traditional methodology includes a carbon-chain shortening strategy to produce bio-jet fuel from lipids via a two-stage process with hydrogen. Here, we propose a new solution using a carbon-chain filling strategy to convert C10 terpene and lipids to jet fuel ranged hydrocarbons with aromatic hydrocarbon ingredients in the absence of hydrogen.

  11. Heterologous expression of tri5 gene in Trichoderma harzianum: Effect of trichodiene production on Trichoderma environmental interactions

    Terpenes form a large class of compounds that have a variety of roles in mediating antagonistic and beneficial interactions among organisms. The trichothecenes are phytotoxic sesquiterpenoid compounds that have been extensively studied, mainly in the genus Fusarium, that can act as virulence factors...

  12. Synthesis, Antiviral and Cytotoxic Activity of Novel Terpenyl Hybrid Molecules Prepared by Click Chemistry.

    PubMed

    Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo

    2018-06-03

    Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.

  13. USSR and Eastern Europe Scientific Abstracts Biomedical and Behavioral Sciences No. 72

    DTIC Science & Technology

    1977-06-03

    of the hydrolyzate of coniferous wood contaminate the obtained furfural. The results of analysis of the water-insoluble portion of the terpene...psychology, psychiatry and related fields. 17. Key Words and Document Analysis . 17a. Descriptors USSR Aerospace Medicine Agrotechnology Biology...and Scientific Technics, Department of Cybernetic Systems] [Abstract] Mathematical methods are necessary for a logical summarization and analysis of

  14. Enantiospecific responses of southern pine beetle (Dendroctonus frontalis) and its clerid predator, Thanasimus dubius, to a-pinene.

    Jenny C. Staeben; Brian Sullivan; John T. Nowak; Kamal J.K. Gandhi

    2015-01-01

    Multi-trophic interactions between pine bark beetles, their host trees, and predators are mediated in part by volatile terpenes in host tree oleoresin that can influence aggregation and/or host finding by both prey and predator species. The southern pine beetle, Dendroctonus frontalis Zimmermann, mass-attacks pine trees in response to its aggregation pheromone combined...

  15. Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus.

    PubMed

    Giatropoulos, Athanassios; Kimbaris, Athanasios; Michaelakis, Αntonios; Papachristos, Dimitrios P; Polissiou, Moschos G; Emmanouel, Nickolaos

    2018-06-01

    In the current laboratory study, 14 essential oils (EOs) derived from 12 Lamiaceae plant species and their major components were screened for their larvicidal and repellent properties against Aedes albopictus, an invasive mosquito species of great medical importance. The results of toxicity bioassays revealed that the EOs from Thymus vulgaris, Ocimum basilicum, Origanum dictamnus, Origanum majorana, and Origanum vulgare, as well as their major components (terpenes), namely thymol, carvacrol, p-cymene, and γ-terpinene exerted the highest larvicidal effect. Essential oils from Mellisa officinalis, Origanum dictamus, Mentha spicata (chem. piperitenone epoxide), Origanum majorana, and Satureja thymbra were the most potent repellents, with the last two assigned as the best ones. Among the terpenes tested, piperitenone epoxide, carvacrol, thymol, and piperitenone provided the highest level of protection against Ae. albopictus adults. Chemical analysis revealed the presence of a high number of terpenes in the EOs, while in most cases, the biological action of the tested EOs and their major components was in consistency. The most effective EOs and terpenes that were identified through the current laboratory bioassays could be used as alternative agents to control larvae and repel adults of Ae. albopictus.

  16. 78 FR 4138 - Notice of Intent To Grant Co-Exclusive Licenses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... brine solution.//Patent Application Serial No. 13/426294: Process and apparatus for the selective dimerization of terpenes and alpha-olefin oligomers with a single-stage reactor and a single-stage fractionation system.//Patent Application Serial No. 13/426347: Process and apparatus for the selective...

  17. Draft Genome Sequence of Geobacillus sp. LEMMY01, a Thermophilic Bacterium Isolated from the Site of a Burning Grass Pile.

    PubMed

    de Souza, Yuri Pinheiro Alves; da Mota, Fábio Faria; Rosado, Alexandre Soares

    2017-05-11

    We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain. Copyright © 2017 de Souza et al.

  18. Draft Genome Sequence of Geobacillus sp. LEMMY01, a Thermophilic Bacterium Isolated from the Site of a Burning Grass Pile

    PubMed Central

    de Souza, Yuri Pinheiro Alves; da Mota, Fábio Faria

    2017-01-01

    ABSTRACT We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain. PMID:28495764

  19. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  20. Gas Chromatography-Mass Spectrometry Facility: Recent Improvements and Applications.

    DTIC Science & Technology

    1980-03-01

    such as l- octanol despite continuous heavy use. The dur- ability of the high temperature silanized columns over a long period has not yet been fully... Octanone 4 2-Ethyl-2-hexenal 5 5-Nonanone 6 2-Nonanone 7 Linalool 8 Isopulegol 9 Unknown terpene alcohol 10 Terpinenol-4 11 2 ,6-Dimethylaniline (12 2

  1. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  2. The Economic and Environmental Benefits of Product Substitution for Organic Solvents

    DTIC Science & Technology

    1991-05-01

    ALPHA.TERPINEOL LINALOOL MENTHOL O Figure 3.1 - Molecular Structures of Selected Terpenes?3 20 Commercial grades of d-limonene can cause dermatitis due...Permitted GRAS Limited Menthol Permitted GRAS Limited a-Pinene Permitted GRAS Permitted P-Pinene Permitted GRAS Permitted u-Terpinene Permitted GRAS Not

  3. SciT

    Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less

  4. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  5. Allergy to oxidized limonene and linalool is frequent in the U.K.

    PubMed

    Audrain, H; Kenward, C; Lovell, C R; Green, C; Ormerod, A D; Sansom, J; Chowdhury, M M U; Cooper, S M; Johnston, G A; Wilkinson, M; King, C; Stone, N; Horne, H L; Holden, C R; Wakelin, S; Buckley, D A

    2014-08-01

    The oxidized forms of the fragrance terpenes limonene and linalool are known to cause allergic contact dermatitis. Significant rates of contact allergy to these fragrances have been reported in European studies and in a recent worldwide study. Patch testing to oxidized terpenes is not routinely carried out either in the U.K. or in other centres internationally. To investigate the prevalence of contact allergy to oxidized limonene and linalool in the U.K. Between 1 August 2011 and 31 December 2012, 4731 consecutive patients in 13 U.K. dermatology departments were tested for hydroperoxides of limonene 0·3% pet., hydroperoxides of linalool 1·0% pet., stabilized limonene 10·0% pet. and stabilized linalool 10·0% pet. Doubtful (?+) and equivocal (±) reactions were grouped together as irritant reactions. Two hundred and thirty-seven patients (5·0%) had a positive patch test reaction to hydroperoxides of limonene 0·3% pet. and 281 (5·9%) to hydroperoxides of linalool 1·0% pet. Irritant reactions to one or both oxidized terpenes were found in 242 patients (7·3%). Eleven patients (0·2%) had a positive patch test reaction to the stabilized terpenes alone. This large, multicentre U.K. audit shows a significant rate of allergy to the hydroperoxides of limonene and linalool plus a high rate of irritant reactions. Testing to the oxidized forms alone captures the majority (97·0%; 411 of 422) of positive reactions; testing to nonoxidized terpenes appears to be less useful. We recommend that the hydroperoxides of limonene and linalool be added to an extended baseline patch test series. © 2014 British Association of Dermatologists.

  6. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    PubMed

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  7. Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)

    PubMed Central

    Leonhardt, Sara D.; Schmitt, Thomas; Blüthgen, Nico

    2011-01-01

    The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans. PMID:21858119

  8. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.

    PubMed

    Hubbard, H F; Coleman, B K; Sarwar, G; Corsi, R L

    2005-12-01

    The use of indoor ozone generators as air purifiers has steadily increased over the past decade. Many ozone generators are marketed to consumers for their ability to eliminate odors and microbial agents and to improve health. In addition to the harmful effects of ozone, recent studies have shown that heterogeneous and homogeneous reactions between ozone and some unsaturated hydrocarbons can be an important source of indoor secondary pollutants, including free radicals, carbonyls, carboxylic acids, and fine particles. Experiments were conducted in one apartment and two detached single-family dwellings in Austin, TX, to assess the effects of an ozone generator on indoor secondary organic aerosol concentrations in actual residential settings. Ozone was generated using a commercial ozone generator marketed as an air purifier, and particle measurements were recorded before, during, and after the release of terpenes from a pine oil-based cleaning product. Particle number concentration, ozone concentration, and air exchange rate were measured during each experiment. Particle number and mass concentrations increased when both terpenes and ozone were present at elevated levels. Experimental results indicate that ozone generators in the presence of terpene sources facilitate the growth of indoor fine particles in residential indoor atmospheres. Human exposure to secondary organic particles can be reduced by minimizing the intentional release of ozone, particularly in the presence of terpene sources. Past studies have shown that ozone-initiated indoor chemistry can lead to elevated concentrations of fine particulate matter, but have generally been completed in controlled laboratory environments and office buildings. We explored the effects of an explicit ozone generator marketed as an air purifier on the formation of secondary organic aerosol mass in actual residential indoor settings. Results indicate significant increases in number and mass concentrations for particles <0

  9. Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    PubMed Central

    2011-01-01

    Background Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents. Methods Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS). Results A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of Amomum villosum, Amomum microcarpum and Blumea balsamifera were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene. Conclusions Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath

  10. Sunlight exclusion from Muscat grape alters volatile profiles during berry development.

    PubMed

    Zhang, Haohao; Fan, Peige; Liu, Cuixia; Wu, Benhong; Li, Shaohua; Liang, Zhenchang

    2014-12-01

    The effects of sunlight exclusion on the volatile profiles of grapes during different stages of berry development were investigated by placing clusters of grapes in special boxes. Terpenes and aldehydes were the main volatile compounds in the ripe 'Jingxiangyu' berries. Sunlight exclusion was found to change volatile profiles at any stage. Sunlight exclusion from berries significantly inhibited the synthesis and accumulation of terpenes, which contribute to the characteristic aroma of Muscat grapes. However, sunlight exclusion during berry formation and veraison promoted the accumulation of aldehydes, alcohols, and ketones during the ripening stage. These results may provide important information regarding the metabolism of volatile compounds in grapes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product.

    PubMed

    Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi

    2016-07-01

    To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.

  12. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  13. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality.

    PubMed

    Mishra, Prashant K; Tripathi, Jyoti; Gupta, Sumit; Variyar, Prasad S

    2017-01-15

    Volatile aroma compounds of three varieties of red kidney beans (Phaseolus vulgaris) namely Kashmiri red, Sharmili and Chitra were extracted in raw state using solid-phase microextraction (SPME) and cooked state using simultaneous distillation extraction (SDE). During cooking a significant (p<0.05) reduction in the content of several aldehydes, alcohols and terpene hydrocarbons while an increase in content of various sulfurous compounds, terpene alcohols, ketones and pyrazines was noted. Descriptive sensory analysis showed that the maximum intensity of 'kidney bean', 'earthy' and 'smoky' odour was observed in Kashmiri red while Sharmili variety was characterised by 'sulfurous' odour. Correlation of volatile profile data with descriptive sensory analysis and odour activity values clearly established the role of compounds, such as methanethiol, diethyl sulfide, dimethyl disulfide, methional and dimethyl trisulfide, in contributing to 'cooked kidney bean' aroma, while dimethyl sulfoxide, dimethyl sulfone and ethyl methyl sulfone were responsible for 'sulfurous' aroma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SciT

    Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.

    Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less

  15. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger.

    PubMed

    Esmaeili, Akbar; Moazami, Nasrin; Rustaiyan, Abdolhossein

    2012-01-01

    Terpenes are present in the essential oils obtained from herbs and spices. They are produced by these plant species as a chemical defense mechanism against phytopathogenic microorganisms. Therefore, terpenes have attracted great attention in the food industry, e.g., they have been used in foods such as cheese as natural preservatives to prevent fungal growth. Herein, we describe the microbial transformation of onopordopicrin (1) by Aspergillus niger. Four product 11α H-dihydroonopordopicrin (2), 11β H-dihydroonopordopicrin (3), 3β-hydroxy-11β H-dihydroonopordopicrin (4), and 14-hydroxy-11β H-dihydroonopordopicrin (5) were obtained. Their structures were identified on the basis of chemical and spectroscopic data. All the four compounds were novel.

  16. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  17. Examinations of the matrix isolation fourier transform infrared spectra of organic compounds: Part XII

    SciT

    Coleman, W. M., III; Gordon, B. M.; Lawrence, B. M.

    1989-02-01

    Matrix isolation Fourier transform infrared spectra (MI/FT-IR), massspectra (MS), carbon-13 Nuclear Magnetic Resonance (/sup 13/C-NMR) spectra,condensed-phase infrared spectra, and vapor-phase infrared (IR)spectra are presented for a series of terpene compounds. Subtle differencesin positional and configurational isomers commonly found withterpenes could be easily detected by the MI/FT-IR spectra. The resultsare comparable in some aspects to those obtainable from /sup 13/C-NMR andthin-film IR; however, most importantly, they are acquired at the lownanogram level for MI/FT-IR, as compared to the milligram level forthe other techniques. These results represent an advance in the technologyavailable for the analysis of complex mixtures such as essential oilscontainingmore » terpene-like molecules.« less

  18. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C.

    PubMed

    Schmidt, Ruth; Jager, Victor de; Zühlke, Daniela; Wolff, Christian; Bernhardt, Jörg; Cankar, Katarina; Beekwilder, Jules; Ijcken, Wilfred van; Sleutels, Frank; Boer, Wietse de; Riedel, Katharina; Garbeva, Paolina

    2017-04-13

    The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.

  19. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil.

    PubMed

    Martin, Diana; Navarro Del Hierro, Joaquín; Villanueva Bermejo, David; Fernández-Ruiz, Ramón; Fornari, Tiziana; Reglero, Guillermo

    2016-11-23

    Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution, and antioxidant activity after the in vitro codigestion of ME with olive oil (OO) were determined. ME produced without cosolvent was richer in taraxasterol, lupeol, α-amyrin, and β-amyrin than extracts with cosolvent. All terpenes showed high bioaccessibility without OO (>75%). Significant correlations were found between the molecular properties of compounds (logP and number of rotatable bonds) and their bioaccessibility. Codigestion with OO enhanced the bioaccessibility (around 100% for PT), which could be related to a higher abundance of low-size particles of the digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity after in vitro digestion, although complete bioaccessibility of PT can be reached by codigestion with oil, without affecting antioxidant activity.

  20. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.

    PubMed

    Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan

    2015-12-16

    To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.

  1. A synthetic biochemistry platform for cell free production of monoterpenes from glucose

    SciT

    Korman, Tyler P.; Opgenorth, Paul H.; Bowie, James U.

    Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. We design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose.more » We also obtain conversion yields 495% and titres 415 g l -1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals.« less

  2. Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.

    PubMed

    Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra

    2009-12-01

    The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.

  3. Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.

    PubMed

    Lasekan, Ola; Abbas, Kassim A

    2012-01-01

    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.

  4. Floral aroma improvement of Muscat spirits by packed column distillation with variable internal reflux.

    PubMed

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Orriols, Ignacio; Pérez-Correa, José Ricardo; López, Francisco

    2016-12-15

    The organoleptic quality of wine distillates depends on raw materials and the distillation process. Previous work has shown that rectification columns in batch distillation with fixed reflux rate are useful to obtain distillates or distillate fractions with enhanced organoleptic characteristics. This study explores variable reflux rate operating strategies to increase the levels of terpenic compounds in specific distillate fractions to emphasize its floral aroma. Based on chemical and sensory analyses, two distillate heart sub-fractions obtained with the best operating strategy found, were compared with a distillate obtained in a traditional alembic. Results have shown that a drastic reduction of the reflux rate at an early stage of the heart cut produced a distillate heart sub-fraction with a higher concentration of terpenic compounds and lower levels of negative aroma compounds. Therefore, this sub-fraction presented a much more noticeable floral aroma than the distillate obtained with a traditional alembic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A synthetic biochemistry platform for cell free production of monoterpenes from glucose

    DOE PAGES

    Korman, Tyler P.; Opgenorth, Paul H.; Bowie, James U.

    2017-05-24

    Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. We design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose.more » We also obtain conversion yields 495% and titres 415 g l -1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals.« less

  6. [Study on different extracts of Chrysanthemum indicum by Fourier transform infrared spectroscopy].

    PubMed

    Zhang, Yan-Ling; Xia, Yuan; Tsogt; Zhou, Qun; Sun, Su-Qin

    2012-12-01

    According to the macro-fingerprint characteristic of infrared spectroscopy, Fourier transform infrared spectroscopy and second-derivative infrared spectroscopy were used to analyze the extracts of chrysanthemum indicum L. by different solvents. It was speculated preliminarily that the main component of petroleum ether extract was long chain fatty acids (esters) and terpenes of small molecules, ethyl acetate extract contains terpenes and flavonoids mainly, ethanol and 95% ethanol extract was mainly composed of flavonoids and flavonoid glycosides, and deionized water extract contains polysaccharides and tannins mainly. Besides, the content of flavonoids in ethanol extract is the highest by comparison of the infrared spectroscopy of different extracts with that of buddleoside. Thus, the infrared spectroscopy can analyze directly the extracts of traditional Chinese medicines, recognize the main ingredient preliminarily, and then supply directional reference for further planning the extract scheme and detection methods.

  7. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Determination of active components of Ginkgo biloba in human urine by capillary high-performance liquid chromatography/mass spectrometry with on-line column-switching purification.

    PubMed

    Ding, Shujing; Dudley, Ed; Chen, Lijuan; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth

    2006-01-01

    Ginkgo biloba is one of the most popular herbal nutritional supplements, with terpene lactones and flavonoids being the two major active components. An on-line purification high-performance liquid chromatography/mass spectrometry (HPLC/MS) method was successfully developed for the quantitative determination of flavonoids and terpene lactones excreted in human urine after ingesting the herbal supplement. Satisfactory separation was obtained using a C18 capillary column made in-house with sample clean-up and pre-concentration achieved using a C18 pre-column with column switching. High selectivity and limits of detection of 1-18 ng/mL were achieved using a selected ion monitoring (SIM) scan in negative ion mode; the on-line solid-phase extraction (SPE) recovery of the active components in Ginkgo biloba determined in this study was greater than 75%. Copyright 2006 John Wiley & Sons, Ltd.

  9. Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels

    DOE PAGES

    Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.; ...

    2017-04-17

    Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less

  10. A 15-Step Synthesis of (+)-Ryanodol

    PubMed Central

    Chuang, Kangway V.; Xu, Chen; Reisman, Sarah E.

    2017-01-01

    (+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular Ca2+ release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation–contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework, and a remarkable SeO2-mediated oxidation to install three oxygen atoms in single step. This work highlights how strategic C–O bond constructions can streamline the synthesis of poly-hydroxylated terpenes by minimizing protecting group and redox adjustments. PMID:27563092

  11. Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.

    PubMed

    Lee, S; Park, M K; Kim, K H; Kim, Y-S

    2007-09-01

    Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.

  12. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis.

    PubMed

    Cherney, Emily C; Baran, Phil S

    2011-04-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis.

  13. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    PubMed

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. UFVA, A Combined Linear and Nonlinear Factor Analysis Program Package for Chemical Data Evaluation.

    DTIC Science & Technology

    1980-11-01

    that one cluster consists of the monoterpenes and Isoprene; the second is of the sesquiterpenes. Compound 8 (Caryophyllene) should therefore belong to...two clusters very clearly (Fig. 6). Figure 6 The very similar fragmentation pattern of Isoprene and the monoterpenes is reflected by their close...13 of another set of 13 terpene components. These are Isoprene, four monoterpenes (Myrcene, Menthol, Camphene, Umbellulone), four sesquiterpenes

  15. NIOSH Health Hazard Evaluation for d-Limonene

    DTIC Science & Technology

    1993-11-01

    of natural hydrocarbons referred to as terpenes (d-limonene is a monoterpene ). The other form of limonene is called 1-limonene, and a mixture of the...as a flavor and fragrance additive in perfumes, soaps, foods, chewing gum and beverages, and is the most widely distribiit. monoterpene ." 4’ The use of...effect and skin irritation of monocyclic monoterpenes . Drug Des Deliv 6:229-238. 29. Hooser SB, Beasley VR, Everitt J1 [1986]. Effects of an

  16. Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses

    PubMed Central

    Pazouki, Leila; Kanagendran, Arooran; Li, Shuai; Kännaste, Astrid; Memari, Hamid Rajabi; Bichele, Rudolf; Niinemets, Ülo

    2018-01-01

    Plants frequently experience heat ramps of various severities, but how and to what degree plant metabolic activity recovers from mild and severe heat stress is poorly understood. In this study, we exposed the constitutive terpene emitter, Solanum. lycopersicum leaves to mild (37 and 41 °C), moderate (46 °C) and severe (49 °C) heat ramps of 5 min. and monitored foliage photosynthetic activity, lipoxygenase pathway volatile (LOX), and mono- and sesquiterpene emissions and expression of two terpene synthase genes, β-phellandrene synthase and (E)-β-caryophyllene/α-humulene synthase, through a 24 h recovery period upon return to pre-stress conditions. Leaf monoterpene emissions were dominated by β-phellandrene and sesquiterpene emissions by (E)-β-caryophyllene, and thus, these two terpene synthase genes were representative for the two volatile terpene classes. Photosynthetic characteristics partly recovered under moderate heat stress, and very limited recovery was observed under severe stress. All stress treatments resulted in elicitation of LOX emissions that declined during recovery. Enhanced mono- and sesquiterpene emissions were observed immediately after the heat treatment, but the emissions decreased even to below the control treatment during recovery between 2-10 h, and raised again by 24 h. The expression of β-phellandrene and (E)-β-caryophyllene synthase genes decreased between 2-10 h after heat stress, and recovered to pre-stress level in mild heat stress treatment by 24 h. Overall, this study demonstrates a highly sensitive heat response of terpenoid synthesis that is mainly controlled by gene level responses under mild stress, while severe stress leads to non-recoverable declines in foliage physiological and gene expression activities. PMID:29367791

  17. Genotype × Herbivore Effect on Leaf Litter Decomposition in Betula Pendula Saplings: Ecological and Evolutionary Consequences and the Role of Secondary Metabolites

    PubMed Central

    Silfver, Tarja; Paaso, Ulla; Rasehorn, Mira; Rousi, Matti; Mikola, Juha

    2015-01-01

    Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary

  18. Sesquiterpenes from Centaurea aspera.

    PubMed

    Marco, J Alberto; Sanz-Cervera, Juan F; Yuste, Alberto; Sancenón, Félix; Carda, Miguel

    2005-07-01

    The aerial parts of two subspecies of Centaurea aspera L. (Asteraceae) yielded the germacranolides 1a-h, 2, 3, 4 and 5, the elemane derivatives 6d and 6f, the lignan matairesinol, the degraded terpene loliolide, and the onopordopicrin-valine dimeric adduct 7. From these, compounds 1e, 3 and 6d are natural products. The chemical composition of the two subspecies is very similar, a circumstance which does not support a taxonomic subdivision of the species.

  19. Engineering Robust Yeasts for Biorefinery Applications

    SciT

    Lee, Taek Soon; Niles, Brad; Chow, Ruthie

    2016-06-22

    Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.

  20. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars.

    PubMed

    Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko

    2016-04-01

    A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.

  1. RNA-Seq in the discovery of a sparsely expressed scent-determining monoterpene synthase in lavender (Lavandula).

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Malli, Radesh P N; Liang, Ping; Mahmoud, Soheil S

    2018-06-09

    Using RNA-Seq, we cloned and characterized a unique monoterpene synthase responsible for the formation of a scent-determining S-linalool constituent of lavender oils from Lavandula × intermedia. Several species of Lavandula produce essential oils (EOs) consisting mainly of monoterpenes including linalool, one of the most abundant and scent-determining oil constituents. Although R-linalool dominates the EOs of lavenders, varying amounts (depending on the species) of the S-linalool enantiomer can also be found in these plants. Despite its relatively low abundance, S-linalool contributes a sweet, pleasant scent and is an important constituent of lavender EOs. While several terpene synthase genes including R-linalool synthase have been cloned from lavenders many important terpene synthases including S-linalool synthase have not been described from these plants. In this study, we employed RNA-Seq and other complementary sequencing data to clone and functionally characterize the sparsely expressed S-linalool synthase cDNA (LiS-LINS) from Lavandula × intermedia. Recombinant LiS-LINS catalyzed the conversion of the universal monoterpene precursor geranyl diphosphate to S-linalool as the sole product. Intriguingly, LiS-LINS exhibited very low (~ 30%) sequence similarity to other Lavandula terpene synthases, including R-linalool synthase. However, the predicted 3D structure of this protein, including the composition and arrangement of amino acids at the active site, is highly homologous to known terpene synthase proteins. LiS-LINS transcripts were detected in flowers, but were much less abundant than those corresponding to LiR-LINS, paralleling enantiomeric composition of linalool in L. × intermedia oils. These data indicate that production of S-linalool is at least partially controlled at the level of transcription from LiS-LINS. The cloned LiS-LINS cDNA may be used to enhance oil composition in lavenders and other plants through metabolic engineering.

  2. The Significance of Lichens and Their Metabolites

    NASA Astrophysics Data System (ADS)

    Huneck, S.

    Lichens, symbiontic organisms of fungi and algae, synthesize numerous metabolites, the "lichen substances," which comprise aliphatic, cycloaliphatic, aromatic, and terpenic compounds. Lichens and their metabolites have a manifold biological activity: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory, antiherbivore, and enzyme inhibitory. Usnic acid, a very active lichen substance is used in pharmaceutical preparations. Large amounts of Pseudevernia furfuracea and Evernia prunastri are processed in the perfume industry, and some lichens are sensitive reagents for the evaluation of air pollution.

  3. Fine structure in the m/z 121 mass chromatogram of Paraho shale oil

    SciT

    Gallegos, E.J.

    1984-04-01

    High-resolution gas chromatography/high-resolution mass spectrometry/computer (HRGC/HRMS/C) techniques are reported here in the provisional identification of several homologous series of alkylpuridines, phenols, terpenes, and terpanes analytically isolated from Paraho shale oil. HRGC/HRMS/C techniques were also used to follow the hydrodenitrification, HDN, procedure for the removal of the heterocompounds, as well as to monitor the effect of hydrogenation on alkenes.

  4. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    PubMed Central

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  5. Assembly of Terpenoid Cores by a Simple, Tunable Strategy.

    PubMed

    Lahtigui, Ouidad; Emmetiere, Fabien; Zhang, Wei; Jirmo, Liban; Toledo-Roy, Samira; Hershberger, John C; Macho, Jocelyn M; Grenning, Alexander J

    2016-12-19

    Oxygenated, polycyclic terpenoid natural products have important biological activities. Although total synthesis of such terpenes is widely studied, synthetic strategies that allow for controlled placement of oxygen atoms and other functionality remains a challenge. Herein, we present a simple, scalable, and tunable synthetic strategy to assemble terpenoid-like polycycloalkanes from cycloalkanones, malononitrile, and allylic electrophiles, abundantly available reagent classes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp.pl. in an ozone-enriched atmospheric environment.

    PubMed

    Pollastrini, Martina; Luchi, Nicola; Michelozzi, Marco; Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Capretti, Paolo

    2015-03-01

    The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Draft Genome Sequence of Janthinobacterium sp. Strain ROICE36, a Putative Secondary Metabolite-Synthesizing Bacterium Isolated from Antarctic Snow

    PubMed Central

    Chiriac, Cecilia; Baricz, Andreea

    2018-01-01

    ABSTRACT The draft genome assembly of Janthinobacterium sp. strain ROICE36 has 207 contigs, with a total genome size of 5,977,006 bp and a G+C content of 62%. Preliminary genome analysis identified 5,363 protein-coding genes and a total of 7 secondary metabolic gene clusters (encoding bacteriocins, nonribosomal peptide-synthetase [NRPS], terpene, hserlactone, and other ketide synthases). PMID:29650588

  8. A Pauson-Khand approach to the hamigerans.

    PubMed

    Madu, Christian E; Lovely, Carl J

    2007-11-08

    An intramolecular Pauson-Khand reaction has been used in the construction of the tricyclic core common to the hamigeran terpenes. For effective cyclization, it was necessary to tether the olefin-containing moiety to the aromatic framework to reduce its conformation mobility; this was accomplished using a silylene protecting group. Efficient construction of the aryl enyne from a salicylic acid derivative was accomplished via ortho lithiation and Sonogashira cross-coupling chemistry.

  9. The effect of an ion generator on indoor air quality in a residential room.

    PubMed

    Waring, M S; Siegel, J A

    2011-08-01

    Ion generators charge particles with a corona prior to their removal on collector plates or indoor surfaces and also emit ozone, which can react with terpenes to yield secondary organic aerosol, carbonyls, carboxylic acids, and free radicals. This study characterized the indoor air quality implications of operating an ion generator in a 27 m(3) residential room, with four different test room configurations. Two room configurations had carpet overlaying the original flooring of stained/sealed concrete, and for one configuration with and without carpet, a plug-in air freshener was used as a terpene source. Measurements included airborne sampling of particulate matter (0.015-20 μm), terpenes and C(1) -C(4) and C(6) -C(10) aldehydes, ozone concentrations, and air exchange rates. When the heating, ventilating, and air-conditioning system was not operating (room air exchange rate = ∼0.5/h), the use of the ion generator in the presence of the air freshener led to a net increase in ultrafine particles (<0.1 μm). Also, increased concentrations of ozone were observed regardless of air freshener presence, as well as increases in formaldehyde and nonanal, albeit within measurement uncertainty in some cases. Thus, it may be prudent to limit ion generator use indoors until evidence of safety can be ascertained. Portable ion generators are intended to clean the air of particles, but they may emit ozone as a byproduct of their operation, which has the potential to degrade indoor air quality. This study showed that under certain conditions in a residential room, the use of a portable ion generator can increase concentrations of ozone and, to a lesser degree, potentially aldehydes. Also, if operated in the presence of a plug-in air freshener that emits terpenes, its use can increase concentrations of secondary organic aerosol in the ultrafine size range. © 2010 John Wiley & Sons A/S.

  10. The Role of Co-Oxidation and Commensalism in the Biodegradation of Recalcitrant Molecules.

    DTIC Science & Technology

    1980-01-08

    readily utilized by microorganisms. A species of Nocardia that can utilize hydrocarbon substrates does cooxidize terpenes to menthol and several other...on a wide array of hydrocarbons including crude oil will cooxidize p-menthane to menthol and other products. At the present the intermediates, other...than menthol , resulting from these cooxidations are being analyzed. After determining structures we will employ enrichment culture techniques to

  11. Three-Step Synthesis of Chiral Spirocyclic Oxaphospholenes.

    PubMed

    Berton, Jan K E T; Salemi, Hadi; Pirat, Jean-Luc; Virieux, David; Stevens, Christian V

    2017-12-01

    Chiral spirocylic oxaphospholenes were prepared in a three-step sequence from chiral pool terpenoid ketones. After addition of a metal acetylide, the resulting propargyl alcohols were converted stereoselectively into their allenylphosphonate counterparts. In the last step, they were conveniently cyclized into spirooxaphospholenes with one equivalent of iodine without purification. When starting from sterically hindered terpenes, allenylphosphonates were also easily obtained but showed to be unreactive or rearranged under these cyclization conditions.

  12. In Planta Variation of Volatile Biosynthesis: An Alternative Biosynthetic Route to the Formation of the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in Arabidopsis Roots

    PubMed Central

    Sohrabi, Reza; Huh, Jung-Hyun; Badieyan, Somayesadat; Rakotondraibe, Liva Harinantenaina; Kliebenstein, Daniel J.; Sobrado, Pablo; Tholl, Dorothea

    2015-01-01

    Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants. PMID:25724638

  13. Niaouli oils from different sources: analysis and influence on cutaneous permeation of estradiol in vitro.

    PubMed

    Monti, D; Tampucci, S; Chetoni, P; Burgalassi, S; Bertoli, A; Pistelli, L

    2009-07-01

    Previous studies in vitro had identified niaouli essential oil (NEO) as a valuable transdermal permeation promoter for estradiol (ES). Subsequent considerations on the complex issue of NEO provenance and composition stimulated the present investigation, which was aimed at defining the composition of NEOs obtained from four different sources, at evaluating their influence on transdermal permeation of ES through hairless mouse skin, and at formulating and evaluating simpler terpene mixtures mimicking the NEOs' composition. While all oils contained 1,8-cineol (eucalyptol) as the main component, appreciable variations in composition could be evidenced, originating differences on the ES cutaneous permeation. Two artificial mixtures containing the same proportions of the main terpenes present in each oil (except the commercially unavailable gamma-terpineol) proved equal or significantly superior in activity when compared with the original oils. It is felt that this study might contribute to the formulation of terpene mixtures acting more efficiently and reproducibly with respect to natural NEOs, whose complex and variable composition, depending on growing place, season, and extraction process, is well documented in the relevant literature.

  14. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis

    PubMed Central

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated. PMID:27199751

  15. Sources of propylene glycol and glycol ethers in air at home.

    PubMed

    Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf

    2010-12-01

    Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building's structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child's birth, and "newest" surface material in the child's bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m³) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  16. Tomato linalool synthase is induced in trichomes by jasmonic acid

    PubMed Central

    van Schie, Chris C. N.; Haring, Michel A.

    2007-01-01

    Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced β-phellandrene, β-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato. PMID:17440821

  17. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC-MS and LC-HRMS (q-exactive orbitrap®) approach.

    PubMed

    Calvi, Lorenzo; Pentimalli, Daniela; Panseri, Sara; Giupponi, Luca; Gelmini, Fabrizio; Beretta, Giangiacomo; Vitali, Davide; Bruno, Massimo; Zilio, Emanuela; Pavlovic, Radmila; Giorgi, Annamaria

    2018-02-20

    There are at least 554 identified compounds in C. sativa L., among them 113 phytocannabinoids and 120 terpenes. Phytocomplex composition differences between the pharmaceutical properties of different medical cannabis chemotype have been attributed to strict interactions, defined as 'entourage effect', between cannabinoids and terpenes as a result of synergic action. The chemical complexity of its bioactive constituents highlight the need for standardised and well-defined analytical approaches able to characterise the plant chemotype, the herbal drug quality as well as to monitor the quality of pharmaceutical cannabis extracts and preparations. Hence, in the first part of this study an analytical procedures involving the combination of headspace-solid-phase microextraction (HS-SPME) coupled to GC-MS and High Resolution Mass-Spectrometry LC-HRMS (Orbitrap ® ) were set up, validated and applied for the in-depth profiling and fingerprinting of cannabinoids and terpenes in two authorised medical grade varieties of Cannabis sativa L. inflorescences (Bedrocan ® and Bediol ® ) and in obtained macerated oils. To better understand the trend of all volatile compounds and cannabinoids during oil storage a new procedure for cannabis macerated oil preparation without any thermal step was tested and compared with the existing conventional methods to assess the potentially detrimental effect of heating on overall product quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus

    PubMed Central

    Quek, Althea Ying Hui

    2016-01-01

    Summary The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. oBrix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05. PMID:28115897

  19. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    PubMed

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P < 0.05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  20. Erythrolic acids A-E, Meroterpenoids from a Marine-Derived Erythrobacter sp

    PubMed Central

    Hu, Youcai; Legako, Aaron G.; Espindola, Ana Paula D.M.; MacMillan, John B.

    2012-01-01

    Erythrolic acids A-E (1–5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side chain modifications include oxidation of a terminal methyl substituent and in the case of 1–4 addition of a 2-carbon unit to give terpene side chains of unusual length; C22 for 1 and 2, C17 for 3 and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE and Mosher’s analysis. In vitro cytotoxicity towards a number of non-small cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 μM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrate the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA. PMID:22384985

  1. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius.

    PubMed

    Liu, Feng; Haynes, Kenneth F; Appel, Arthur G; Liu, Nannan

    2014-06-01

    Populations of the common bed bug Cimex lectularius (Hemiptera; Cimicidae), a temporary ectoparasite on both humans and animals, have surged in many developed countries. Similar to other haematophagous arthropods, C. lectularius relies on its olfactory system to detect semiochemicals in the environment, including both attractants and repellents. To elucidate the olfactory responses of the common bed bug to commonly used insect chemical repellents, particularly haematophagous repellents, we investigated the neuronal responses of individual olfactory sensilla in C. lectularius' antennae to 52 insect chemical repellents, both synthetic and botanic. Different types of sensilla displayed highly distinctive response profiles. While C sensilla did not respond to any of the insect chemical repellents, Dγ sensilla proved to be the most sensitive in response to terpene-derived insect chemical repellents. Different chemical repellents elicited neuronal responses with differing temporal characteristics, and the responses of the olfactory sensilla to the insect chemical repellents were dose-dependent, with an olfactory response to the terpene-derived chemical repellent, but not to the non-terpene-derived chemical repellents. Overall, this study furnishes a comprehensive map of the olfactory response of bed bugs to commonly used insect chemical repellents, providing useful information for those developing new agents (attractants or repellents) for bed bug control.

  2. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    NASA Astrophysics Data System (ADS)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  3. Use of response surface methodology for the assessment of changes in the volatile composition of Moscato bianco (Vitis vinifera L.) grape berries during ripening.

    PubMed

    Torchio, Fabrizio; Giacosa, Simone; Vilanova, Mar; Río Segade, Susana; Gerbi, Vincenzo; Giordano, Manuela; Rolle, Luca

    2016-12-01

    The changes in the volatile composition of Moscato bianco grapes were evaluated during ripening. Grape berries were sampled for five weeks (16-20 °Brix) and sorted for each date in ten density classes (1.05-1.12g/cm(3)). The highest total concentration of free terpenes was found at 19.3 °Brix; however, total concentration of the bound fraction increased significantly throughout ripening. Response surface methodology was used to assess the simultaneous effect of sampling time and berry density on the volatile composition, which was satisfactorily fitted to regression models for some key terpene compounds. Total free and bound terpenes were more affected by grape density than by sampling date. The same behaviour was observed for free and bound linalool and bound nerol, whereas the stronger effect of sampling date was exhibited for bound t-rose oxide, c-rose oxide and geraniol. The results showed that the sampling strategy impacted strongly on the aroma quality of berries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  5. Purification and characterization of an ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus and its potential for hydrolysis of wine aroma precursors.

    PubMed

    Baffi, Milla Alves; Martin, Natália; Tobal, Thaise Mariá; Ferrarezi, Ana Lúcia; Lago, João Henrique Ghilardi; Boscolo, Maurício; Gomes, Eleni; Da-Silva, Roberto

    2013-12-01

    An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement.

  6. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics.

    PubMed

    Deshpande, Ashish B; Anamika, Krishanpal; Jha, Vineet; Chidley, Hemangi G; Oak, Pranjali S; Kadoo, Narendra Y; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-08-18

    Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb. Importantly, 20,755 unique transcripts were annotated and 4,611 were assigned enzyme commission numbers, which encoded 142 biological pathways. These included ethylene and flavor related secondary metabolite biosynthesis pathways, as well as those involved in metabolism of starch, sucrose, amino acids and fatty acids. Differential regulation (p-value ≤ 0.05) of thousands of transcripts was evident in various stages of fruit development and ripening. Novel transcripts for biosynthesis of mono-terpenes, sesqui-terpenes, di-terpenes, lactones and furanones involved in flavor formation were identified. Large number of transcripts encoding cell wall modifying enzymes was found to be steady in their expression, while few were differentially regulated through these stages. Novel 79 transcripts of inhibitors of cell wall modifying enzymes were simultaneously detected throughout Alphonso fruit development and ripening, suggesting controlled activity of these enzymes involved in fruit softening.

  7. [Active ingredients and efficacies of Ganoderma lucidum cultivated on non-medicinal parts of Chinese medicinal herbs].

    PubMed

    Guo, Yaohui; Luo, Xia; Yu, Mengyao; Zheng, Linyong

    2011-06-01

    Ganoderma lucidum was cultivated on non-medicinal parts of Salvia miltiorrhiza, Chrysanthemum morifolium, Ptatycodgn grandlfiorum, as all are Chinese traditional herbal medicines. We studied the changes of active ingredients and efficacies of the Ganoderma lucidum fruit bodies. The agronomic characters, polysaccharide and terpene contents, acute toxicity and efficacy of Ganoderma lucidum grown on the non-medicinal part of the three materials were compared with that grown on the ordinary formula group (OF. G) which was composed of corn cob, cotton seed shell. Biological conversion efficiencies of the Ganoderma lucidum fruit body using non-medicinal parts were higher than that of using the ordinary formula group (OF. G), though growth periods became longer; Contents of active ingredients were all improved except that the terpene content of the Salvia miltiorrhiza group was decreased. Both polysaccharide and terpene from the Chrysanthemum morifolium group were the highest, contents of which were respectively 2.47% and 0.79%; Acute toxicity test showed that Ganoderma lucidum fruit bodies were all with low toxicities. Mice maximum tolerance dose were 100 g/kg weight. In hemolysin test and sleeping promotion test, the Chrysanthemum morifolium group showed better effect than the ordinary formula group (OF. G). In anti-fatigue test, only the ordinary formula group (OF. G) proved to be more effective. It's feasible to cultivate Ganoderma lucidum and active ingredients and efficacies of Ganoderma lucidum have been changed using the non-medicinal parts of Chinese medicinal herbs.

  8. Evaluating the Effects of Gamma-Irradiation for Decontamination of Medicinal Cannabis.

    PubMed

    Hazekamp, Arno

    2016-01-01

    In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative UPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  9. Evaluation of Beer Fermentation with a Novel Yeast
Williopsis saturnus.

    PubMed

    Liu, Shao-Quan; Quek, Althea Ying Hui

    2016-12-01

    The aim of this study is to evaluate the potential of a novel yeast Williopsis saturnus var. mrakii NCYC 500 to produce fruity beer. Fermentation performance of W. mrakii and beer volatile composition were compared against that fermented with Saccharomyces cerevisiae Safale US-05. o Brix, sugar and pH differed significantly between the two types of beer. A total of 8 alcohols, 11 acids, 41 esters, 9 aldehydes, 8 ketones, 21 terpenes and terpenoids, 5 Maillard reaction products and 2 volatile phenolic compounds were detected. Yeast strain Safale US-05 was more capable of producing a wider range of ethyl and other esters, while yeast strain NCYC 500 produced significantly higher amounts of acetate esters. Strain NCYC 500 retained more terpenes and terpenoids, suggesting that the resultant beer could possess more of the aromatic hint of hops. This study showed that W. saturnus var. mrakii NCYC 500 could ferment wort to produce low-alcohol beer with higher levels of acetate esters, terpenes and terpenoids than yeast S. cerevisiae Safale US-05.

  10. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    PubMed

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  11. Plasma-potentiated small molecules—possible alternative to antibiotics?

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Bazaka, Olha; Levchenko, Igor; Xu, Shuyan; Ivanova, Elena P.; Keidar, Michael; (Ken Ostrikov, Kostya

    2017-09-01

    The efficacy of the existing arsenal of antibiotics is continuously compromised by their indiscriminative and often excessive use. The antibiotic arsenal can be expanded with agents that have different mechanisms of activity to conventional drugs, such as plant-derived natural antimicrobial small molecules, yet these often lack sufficient activity and selectivity to fulfill the antibiotics requirements and conventional thermochemical methods of their transient activation may not be compatible with biomedical applications. Here, non-equilibrium conditions of atmospheric-pressure plasma are used for rapid, single-step potentiation of activity of select terpenes without the use of chemicals or heating. Substantial potentiation of activity against Staphylococcus aureus cells in planktonic and biofilm states is observed in both inherently antibacterial terpenes, e.g. terpinen-4-ol, and compounds generally considered to have limited effect against S. aureus, e.g. γ-terpinene. The improved biological activity may arise, at least in part, from the changes in the physico-chemical properties of the terpenes induced by plasma-generated chemical species and physical effects, such as electric fields and UV irradiation. This activation approach is generic, and thus can potentially be applied to other molecules and their mixtures in an effort to expand the range of effective antimicrobial agents for deactivation of pathogenic organisms in hygiene, medical and food applications.

  12. Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a "green" paint

    NASA Astrophysics Data System (ADS)

    Toftum, J.; Freund, S.; Salthammer, T.; Weschler, C. J.

    This study examined the formation and growth of secondary organic aerosols (SOA) generated when ozone was added to a 1 m 3 glass chamber that contained either pine shelving, oriented strand board (OSB), beech boards, or beach boards painted with an "eco" paint. The experiments were conducted at close to real-world conditions; the chamber was ventilated at ˜0.5 air changes/h; the loadings (exposed surface of building materials to chamber volume) were in the range of 1-2.5 m 2 m -3; and the initial O 3 concentrations were between 15 and 40 ppb. Throughout each experiment particles were measured with both a condensation nuclei counter and an optical counter, while terpenes were measured before and after the ozone exposure period using sorbent tubes. The pine boards emitted primarily α-pinene and 3-carene and lesser amounts of 5 other terpenes; when O 3 was introduced, the particle counts increased dramatically; the mass concentration reached ˜15 μg m -3 at ˜20 ppb O 3, and ˜95 μg m -3 at ˜40 ppb O 3. The OSB emitted primarily limonene and α-pinene. Although the particle counts increased when O 3 was introduced, the increase was not as large as anticipated based on the terpene concentrations. The beech boards emitted negligible quantities of terpenes, and the introduction of O 3 resulted in almost no increase in the particle concentration. Beech boards painted with an "eco" paint emitted large amounts of limonene and lesser amounts of carvone; upon introduction of O 3 the particle counts increased sharply with the mass concentration reaching ˜20 μg m -3 at ˜15 ppb O 3 and ˜160 μg m -3 at ˜35 ppb O 3. These experiments demonstrate that the emission of terpenes and potential generation of SOA varies greatly among different types of wood and pressed wood materials. In the case of the pine boards and painted beech boards, the SOA concentrations generated at modest O 3 concentrations approach or exceed current guideline levels for PM 2.5 established by the US

  13. Biota: sediment partitioning of aluminium smelter related PAHs and pulp mill related diterpenes by intertidal clams at Kitimat, British Columbia.

    PubMed

    Yunker, Mark B; Lachmuth, Cara L; Cretney, Walter J; Fowler, Brian R; Dangerfield, Neil; White, Linda; Ross, Peter S

    2011-09-01

    The question of polycyclic aromatic hydrocarbon (PAH) bioavailability and its relationship to specific PAH sources with different PAH binding characteristics is an important one, because bioavailability drives PAH accumulation in biota and ultimately the biochemical responses to the PAH contaminants. The industrial harbour at Kitimat (British Columbia, Canada) provides an ideal location to study the bioavailability and bioaccumulation of sediment hydrocarbons to low trophic level biota. Samples of soft shell clams (Mya arenaria) and intertidal sediment collected from multiple sites over six years at various distances from an aluminium smelter and a pulp and paper mill were analysed for 106 PAHs, plant diterpenes and other aromatic fraction hydrocarbons. Interpretation using PAH source ratios and multivariate data analysis reveals six principal hydrocarbon sources: PAHs in coke, pitch and emissions from anode combustion from the aluminium smelter, vascular plant terpenes and aromatised terpenes from the pulp and paper mill, petroleum PAHs from shipping and other anthropogenic activities and PAHs from natural plant detritus. Harbour sediments predominantly contain either pitch or pyrogenic PAHs from the smelter, while clams predominantly contain plant derived PAHs and diterpenes from the adjacent pulp mill. PAHs from the smelter have low bioavailability to clams (Biota-Sediment Accumulation Factors; BSAFs <1 for pitch and coke; <10 for anode combustion, decreasing to ∼0.1 for the mass 300 and 302 PAHs), possibly due to binding to pitch or soot carbon matrices. Decreases in PAH isomer ratios between sediments and clams likely reflect a combination of variation in uptake kinetics of petroleum PAHs and compound specific metabolism, with the importance of petroleum PAHs decreasing with increasing molecular weight. Plant derived compounds exhibit little natural bioaccumulation at reference sites, but unsaturated and aromatised diterpenes released from resins by

  14. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    PubMed Central

    Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf

    2010-01-01

    Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively. PMID:21318004

  15. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    SciT

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractionalmore » emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.« less

  17. SciT

    Rivas-Ubach, A.; Sardans, J.; Hódar, J. A.

    Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at elemental and molecular levels have focused on nutrients or/and certain molecular compounds or specific families of defensive metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and to avoid those with higher levels of phenolics and terpenes. Unfortunately, the defensive role of phenolics in conifers is still unclear. We performed stoichiometric and metabolomics, local and systemic, analyses in two subspecies of Pinus sylvestris under the herbivorous attack by the caterpillars of the pine processionary moth, an importantmore » pest in the Mediterranean Basin. Herbivorous attack was not associated with any of the elements analyzed. Both pine subspecies responded locally to folivory mainly by increasing the concentrations of various terpenes and phenolics. Systemic responses differed between subspecies and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Contrary as usually thought, foliar nutrient concentrations did not show to be a main factor of an alleged plant selection by adult female processionary moths for oviposition. Local increases in phenolics were more associated with antioxidant function for protection against oxidative damage produced by folivory. On the other hand, terpenes were directly related to defense against herbivores. Herbivory attack produced a general systemic shift in pines, including both primary and secondary metabolisms, that was, however, less intense and chemically different from the local responses. Subspecies responded similarly locally but differently to folivory at systemic level.« less

  18. Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius

    PubMed Central

    Liu, Feng; Xia, Xiaoming; Liu, Nannan

    2017-01-01

    As the most extensively used chemical repellent, N,N-diethyl-3-methylbenzamide (DEET) displayed repellency to a wide range of insects, including the common bed bug, Cimex lectularius. While the neuronal or molecular basis involved in DEET's repellency have been majorly focused on mosquitos and fruit flies, DEET's repellency to the common bed bug is largely unreached. To gain new insights into the cellular and molecular mechanisms in DEET's repellency to the common bed bug, we characterized the neuronal response of bed bugs to DEET, identified the olfactory receptors targeted by DEET and demonstrated the interfering effect of DEET on bed bug's responses to human odorants. High doses of DEET were required for activating the olfactory receptor neurons in the sensilla of bed bugs and at least three DEET-sensitive receptors were functionally deciphered. These DEET-sensitive receptors presented even more sensitive to certain botanical terpenes/terpenoids which also displayed repellency at varying levels for bed bugs. In addition, DEET produced a blocking effect on the neuronal responses of bed bugs to specific human odors and showed inhibitory effect on the function of odorant receptors in responding to certain human odors. Taken together, our results indicate that DEET may function as a stimulus that triggers avoidance behaviors and a molecular “confusant” for interrupting the host odor recognition in the odorant receptors of bed bugs. The receptors that coincidently responded to both synthetic DEET and botanical terpenes/terpenoids suggested that DEET probably target on receptors that originally responded to terpenes/terpenoids. This study gave novel insight into the mechanisms of DEET's repellency to bed bugs and also provided valuable information for developing new reagents for bed bug control. PMID:28676765

  19. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis)

    PubMed Central

    Green, Sol A.; Chen, Xiuyin; Nieuwenhuizen, Niels J.; Matich, Adam J.; Wang, Mindy Y.; Bunn, Barry J.; Yauk, Yar-Khing; Atkinson, Ross G.

    2012-01-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers. PMID:22162874

  20. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).

    PubMed

    Green, Sol A; Chen, Xiuyin; Nieuwenhuizen, Niels J; Matich, Adam J; Wang, Mindy Y; Bunn, Barry J; Yauk, Yar-Khing; Atkinson, Ross G

    2012-03-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.

  1. Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius.

    PubMed

    Liu, Feng; Xia, Xiaoming; Liu, Nannan

    2017-01-01

    As the most extensively used chemical repellent, N,N-diethyl-3-methylbenzamide (DEET) displayed repellency to a wide range of insects, including the common bed bug, Cimex lectularius . While the neuronal or molecular basis involved in DEET's repellency have been majorly focused on mosquitos and fruit flies, DEET's repellency to the common bed bug is largely unreached. To gain new insights into the cellular and molecular mechanisms in DEET's repellency to the common bed bug, we characterized the neuronal response of bed bugs to DEET, identified the olfactory receptors targeted by DEET and demonstrated the interfering effect of DEET on bed bug's responses to human odorants. High doses of DEET were required for activating the olfactory receptor neurons in the sensilla of bed bugs and at least three DEET-sensitive receptors were functionally deciphered. These DEET-sensitive receptors presented even more sensitive to certain botanical terpenes/terpenoids which also displayed repellency at varying levels for bed bugs. In addition, DEET produced a blocking effect on the neuronal responses of bed bugs to specific human odors and showed inhibitory effect on the function of odorant receptors in responding to certain human odors. Taken together, our results indicate that DEET may function as a stimulus that triggers avoidance behaviors and a molecular "confusant" for interrupting the host odor recognition in the odorant receptors of bed bugs. The receptors that coincidently responded to both synthetic DEET and botanical terpenes/terpenoids suggested that DEET probably target on receptors that originally responded to terpenes/terpenoids. This study gave novel insight into the mechanisms of DEET's repellency to bed bugs and also provided valuable information for developing new reagents for bed bug control.

  2. Essential-oil composition of the needles collected from natural populations of Macedonian pine (Pinus peuce Griseb.) from the Scardo-Pindic mountain system.

    PubMed

    Nikolić, Biljana; Ristić, Mihailo; Bojović, Srdjan; Matevski, Vlado; Krivošej, Zoran; Marin, Petar D

    2014-06-01

    The needle-terpene profiles of two natural Pinus peuce populations from the Scardo-Pindic mountain system (Mt. Ošljak and Mt. Pelister) were analyzed. Among the 90 detected compounds, 87 were identified. The dominant constituents were α-pinene (45.5%), germacrene D (11.1%), β-pinene (10.8%), and camphene (10.3%). The following eight additional components were found to be present in medium-to-high amounts (0.5-10%): bornyl acetate (5.0%), β-phellandrene (3.4%), β-caryophyllene (2.9%), β-myrcene (0.9%), germacrene D-4-ol (0.9%), tricyclene (0.7%), (E)-hex-2-enal (0.7%), and bicyclogermacrene (0.6%). Although the general needle-terpene profiles of the populations from Mt. Ošljak and Mt. Pelister were found to be similar to those of the populations from Zeletin, Sjekirica, and Mokra Gora (Dinaric Alps), principle component analysis (PCA) of eight terpenes (α-pinene, β-myrcene, α-terpinolene, bornyl acetate, α-terpinyl acetate, β-caryophyllene, trans-β-farnesene, and germacrene D) in 139 tree samples suggested a divergence between the two population groups, i.e., the samples from the Scardo-Pindic mountain system and those from the Dinaric Alps. Genetic analysis of the β-pinene content demonstrated a partial divergence between the two geographical groups. The profiles of both population groups differed from those published for populations from the Balkan-Rhodope mountains system (literature results), which were characterized by high contents of bornyl acetate and citronellol (Greek populations) or δ-car-3-ene (Bulgarian populations). Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.

    PubMed

    de Lacy Costello, Ben P J; Adamatzky, Andrew I

    2013-09-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a "fungal odor," was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis.

  4. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    PubMed Central

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a “fungal odor,” was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis. PMID:24265848

  5. Structural and biochemical characteristics of citrus flowers associated with defence against a fungal pathogen

    PubMed Central

    Marques, João Paulo Rodrigues; Amorim, Lilian; Silva-Junior, Geraldo José; Spósito, Marcel Bellato; Appezzato-da Gloria, Beatriz

    2015-01-01

    The constitutive characters of plants can be structural or biochemical and play an important role in their defence against pathogens. Citrus postbloom fruit drop (PFD) caused by Colletotrichum spp. is one of the most important fungal diseases of citrus. The pathogen infects the flowers, leading to premature fruit drop and reducing citrus production. However, flower buds smaller than 8 mm long are usually not infected by Colletotrichum spp. Thus, this study investigated whether there are constitutive mechanisms in flower buds related to Colletotrichum spp. infection. We studied flower buds that were 2, 3, 4, 8, 12 and 15 mm long and petals, after anthesis, of sweet orange ‘Valência’ using light and scanning electron microscopy and histochemistry. We evaluated the effect of volatile organic compounds (VOCs) in flowers (R-limonene and linalool) on the in vitro growth of Colletotrichum acutatum. We found that the arrangement of the epidermal papillae in the petal primordia, the occurrence of prismatic crystals and the distribution of oil glands are the main differences between buds smaller than 8 mm and buds 8–15 mm long. Osmophores at the tips of petals produced and accumulated phenols, terpenes and lipophilic compounds. Flower buds smaller than 8 mm long have constitutive structural and biochemical barriers to Colletotrichum spp. infection. In addition, this is the first time that osmophores have been reported in citrus. Our study shows that natural terpenes of Citrus flowers inhibit the fungal growth in vitro, highlighting the potential use of terpenes for the chemical control of PFD in citrus. PMID:25535209

  6. Studies on optimizing in vitro transdermal permeation of ondansetron hydrochloride using nerodilol, carvone, and limonene as penetration enhancers.

    PubMed

    Krishnaiah, Yellela S R; Raju, Vengaladasu; Shiva Kumar, Mantri; Rama, Bukka; Raghumurthy, Vanambattina; Ramana Murthy, Kolapalli V

    2008-01-01

    The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 +/- 3.1 microg/cm(2.)h), 8% w/w of carvone (87.4 +/- 1.6 microg/cm(2.)h), or 3% w/w of limonene (181.9 +/- 0.9 microg/cm(2.)h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 microg/cm(2.)h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.

  7. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    PubMed

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  8. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    PubMed

    Formighieri, Cinzia; Melis, Anastasios

    2015-11-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    PubMed Central

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  10. Does prescribed burning affect leaf secondary metabolites in pine stands?

    PubMed

    Lavoir, A V; Ormeño, E; Pasqualini, V; Ferrat, L; Greff, S; Lecareux, C; Vila, B; Mévy, J P; Fernandez, C

    2013-03-01

    Prescribed burning (PB) is gaining popularity as a low-cost forest protection measure that efficiently reduces fuel build-up, but its effects on tree health and growth are poorly understood. Here, we evaluated the impact of PB on plant defenses in Mediterranean pine forests (Pinus halepensis and P. nigra ssp. laricio). These chemical defenses were estimated based on needle secondary metabolites (terpenes and phenolics including flavonoids) and discussed in terms of chlorophyll fluorescence and soil nutrients. Three treatments were applied: absence of burning (control plots); single burns (plots burned once); and repeated burns (plots burned twice). For single burns, we also explored changes over time. In P. laricio, PB tended to trigger only minor modifications consisting exclusively of short-lived increases (observed within 3 months after PB) in flavonoid index, possibly due to the leaf temperature increase during PB. In P. halepensis, PB had detrimental effects on physiological performance, consisting of (i) significant decreases in actual PSII efficiency (ΦPSII) in light-adapted conditions after repeated PB, and (ii) short-lived decreases in variable-to-maximum fluorescence ratio (Fv/Fm) after single PB, indicating that PB actually stressed P. halepensis trees. Repeated PB also promoted terpene-like metabolite production, which increased 2 to 3-fold compared to control trees. Correlations between terpene metabolites and soil chemistry were found. These results suggest that PB impacts needle secondary metabolism both directly (via a temperature impact) and indirectly (via soil nutrients), and that these impacts vary according to species/site location, frequency and time elapsed since last fire. Our findings are discussed with regard to the use of PB as a forest management technique and its consequences on plant investment in chemical defenses.

  11. Variability of the needle essential oils of Pinus peuce from different populations in Montenegro and Serbia.

    PubMed

    Nikolić, Biljana; Ristić, Mihailo; Bojović, Srdjan; Marin, Petar D

    2008-07-01

    The essential-oil composition of Pinus peuce Griseb. is reported at the population level. Macedonian pine is endemic high-mountain Balkan pine relict of an anthropogenically reduced area, with large morphological diversity and insufficiently clear taxonomic position. In the pine-needle terpene profile of two populations from Montenegro and one from Serbia, 78 compounds were detected, 56 of which are identified (Table 3). The dominant constituents were alpha-pinene (36.5%) and germacrene D (11.4%). The following 20 additional components were found to be present in medium-to-high amounts (0.5-10%): camphene (8.5%), bornyl acetate (6.8%), beta-pinene (6.8%), beta-caryophyllene (5.2%), beta-phellandrene (4.7%), terpinen-4-ol acetate (1.6%), (E)-hex-2-enal (1.5%), alpha-muurolene (1.2%), beta-gurjunene (1.1%), beta-myrcene (1.0%), alpha-terpinyl acetate (0.9%), alpha-phellandrene (0.8%), delta-cadinene (0.8%), alpha-humulene (0.8%), sabinene (0.7%), aromadendrene (0.6%), alpha-thujene (0.6%), gamma-muurolene (0.6%), gamma-cadinene (0.6%), alpha-terpinolene (0.5%), and one unknown component (0.5%). The similarity of the populations and the within-population variability were visualized by principle-component analysis (PCA) and genetic analysis of selected terpenes in 90 tree samples. Our study suggests a closer connection between populations II and III compared to population I. Based on the profile of the main terpene components, the studied populations are more similar to populations from Kosovo and Greece than to the population from Mt. Mokra (Montenegro) and the population in France.

  12. Potential Replacements for Solvents that are Ozone Depleting Substances

    DTIC Science & Technology

    1994-09-01

    18.4 d-Lumonene 17.8 Glidsafe-LUI54B 18.2 Turpentine 16.5 isobutyl acetate 17.2 Diisobutyl phthalate 18.3 Dipropylene glycol monomethyl ether 19.0...Diethylene glycol monomethyl ether 22.3 N- Methyl pyrrolidone 23.0 Water 47.8 1. Barton (1983): 2. Gallagher (date unknown). 9 TI DSTO-TR-0046 For blends...parameters. For example, Glidsafe UTS-4B which is a mixture of terpenes and dipropylene glycol monomethyl ether has a Hildebrand solubility of 18.2 MPal/ 2

  13. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  14. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  15. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    PubMed

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  16. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    PubMed

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  17. Sustainable polymers from renewable resources

    NASA Astrophysics Data System (ADS)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K.

    2016-12-01

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  18. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    PubMed Central

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  19. Modeling of combined effects of citral, linalool and beta-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment.

    PubMed

    Belletti, Nicoletta; Kamdem, Sylvain Sado; Tabanelli, Giulia; Lanciotti, Rosalba; Gardini, Fausto

    2010-01-01

    The aim of this work was to evaluate the antimicrobial activity of three terpenes (citral, linalool and beta-pinene), in combination with a mild heat treatment (55 degrees C, 15 min). The study has been carried out on an orange based soft drink inoculated using a wild strain of Saccharomyces cerevisiae. The results, expressed as growth/no-growth data, were analyzed with the logistic regression. A model comprising only of significant individual parameters (p < or = 0.05) and describing the relationships between terpene concentrations and the probability of having stable beverages was obtained. When citral and beta-pinene were combined, the citral concentration required to achieve a 50% probability of having stable bottles (P=0.5) dropped from 100.9 microL/L in the absence of beta-pinene to 49.3 microL/L in the presence of 20 microL/L of beta-pinene. The mixture of citral and linalool was less effective, in fact, the same probability (P=0.5) was obtained combining 60 microL/L of linalool with 35.1 microL/L of citral. The addition of 20 microL/L of linalool and beta-pinene reinforced citral bioactivity and the concentration of citral needed to reach P=0.5 fell from 100.9 microL/L in the presence of citral alone to 42.0 microL/L. The presence of both linalool and beta-pinene at a concentration of 40 or 60 microL/L in the absence of citral led to a lower spoilage probability (P=0.58 and P=0.93, respectively). It can be concluded that the antimicrobial potential of the three terpenes alone can be strengthened combining appropriate concentrations of each of them. This study confirmed also the potentiating effect of a mild temperature treatment on the antimicrobial efficacy of the molecules. Neither the thermal treatment alone nor the presence of the terpenes at their maximum concentrations (without thermal treatment) were able to guarantee the microbial stability of the beverages. 2009 Elsevier B.V. All rights reserved.

  20. Anticancer activity of seaweeds.

    PubMed

    Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C

    2018-02-01

    Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Chatfield, R. B.; Fishman, J.; Crutzen, P. J.; Hanst, P. L.

    1978-01-01

    Extrapolating from extensive field measurements on foliar emissions in the U.S. approximate global inputs of isoprene and terpenes of 3.5 times 10 to the 14th power and 4.8 times 10 to the 14th power g(C)/yr, respectively, are obtained. The oxidation of these hydrocarbons could contribute in an important way to the atmospheric sources of CO (4.2-13.3 times 10 to the 14th power g/yr) and H2 (10-35 times 10 to the 12th power g/yr), and to organic species soluble in rainwater

  2. The extraction and chromatographic determination of the essentials oils from Ocimum basilicum L. by different techniques

    NASA Astrophysics Data System (ADS)

    Loredana Soran, Maria; Codruta Cobzac, Simona; Varodi, Codruta; Lung, Ildiko; Surducan, Emanoil; Surducan, Vasile

    2009-08-01

    Three different techniques (maceration, sonication and extraction in microwave field) were used for extraction of essential oils from Ocimum basilicum L. The extracts were analyzed by TLC/HPTLC technique and the fingerprint informations were obtained. The GC-FID was used to characterized the extraction efficiency and for identify the terpenic bioactive compounds. The most efficient extraction technique was maceration followed by microwave and ultrasound. The best extraction solvent system was ethyl ether + ethanol (1:1, v/v). The main compounds identified in Ocimum basilicum L. extracts were: α and β-pinene (mixture), limonene, citronellol, and geraniol.

  3. Protection against β-amyloid induced abnormal synaptic function and cell death by Ginkgolide J

    PubMed Central

    Vitolo, Ottavio; Gong, Bing; Cao, Zixuan; Ishii, Hideki; Jaracz, Stanislav; Nakanishi, Koji; Arancio, Ottavio; Dzyuba, Sergei V.; Lefort, Roger; Shelanski, Michael

    2009-01-01

    A new Ginkgo biloba extract P8A (TTL), 70% enriched with terpene trilactones, prevents Aβ1-42 induced inhibition of long-term potentiation in the CA1 region of mouse hippocampal slices. This neuroprotective effect is attributed in large part to ginkgolide J that completely replicates the effect of the extract. Ginkgolide J is also capable of inhibiting cell death of rodent hippocampal neurons caused by Aβ1-42. This beneficial and multi-faceted mode of action of the ginkgolide makes it a new and promising lead in designing therapies against Alzheimer’s disease. PMID:17640772

  4. Use of Camphor and Essential Oil Balms for Infants in Cambodia

    PubMed Central

    Var, Chivorn; Grossman, Francoise; Oberhelman, Richard A.

    2017-01-01

    Balms and oils containing terpenic compounds, such as camphor, menthol and eucalyptus, are potentially toxic, and numerous reports of adverse events stemming from their use in infants and young children have been published. During qualitative research on newborn practices in rural Cambodia, these products were found to be commonly applied to the skin of newborns and infants and available in most households. Parents and caregivers of infants in Cambodia and other settings where use of camphor- and menthol-containing products are common should be educated on the risks of these to prevent child morbidity and potential mortality. PMID:27370817

  5. Cytotoxicity and phytochemical analyses of Orthosiphon stamineus leaves and flower extracts

    NASA Astrophysics Data System (ADS)

    Alwahid, Alaa Abd; Yusoff, Wan Mohtar Wan; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2015-09-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with many ethnobotanical uses including antifungal and antibacterial activities. This study is aimed to determine the cytotoxicity and phytochemical content of O. stamineus leaves and flower using ethanol and water as solvents. The cytotoxicity of the extracts towards Vero cell was determined by MTT assay. The CC50 values were between 3.4-7.4 mg/ml and can be considered as nontoxic. Phytochemical screening revealed terpenes, alkaloid and phenolic were present in the leaves and flower of O. stamineus that might pose as the bioactive compound.

  6. L-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum.

    PubMed

    Maeda, Kazuyuki; Nakajima, Yuichi; Tanahashi, Yoshikazu; Kitou, Yoshiyuki; Miwa, Akihiro; Kanamaru, Kyoko; Kobayashi, Tetsuo; Nishiuchi, Takumi; Kimura, Makoto

    2017-08-01

    Fusarium graminearum produces trichothecene mycotoxins under certain nutritional conditions. When L-Thr and its analogue L-allo-threonine were added to brown rice flour solid medium before inoculation, trichothecene production after 4 days of incubation was suppressed. A time-course analysis of gene expression demonstrated that L-Thr suppressed transcription of Tri6, a trichothecene master regulator gene, and a terpene cyclase Tri5 gene. Regulation of trichothecene biosynthesis by altering major primary metabolic processes may open up the possibility to develop safe chemicals for the reduction of mycotoxin contamination might be developed.

  7. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts.

    PubMed

    Maksimovic, Svetolik; Tadic, Vanja; Skala, Dejan; Zizovic, Irena

    2017-06-01

    Helichrysum italicum presents a valuable source of natural bioactive compounds. In this work, a literature review of terpenes, phenolic compounds, and other less common phytochemicals from H. italicum with regard to application of different separation methods is presented. Data including extraction/separation methods and experimental conditions applied, obtained yields, number of identified compounds, content of different compound groups, and analytical techniques applied are shown as corresponding tables. Numerous biological activities of both isolates and individual compounds are emphasized. In addition, the data reported are discussed, and the directions for further investigations are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Eucalypt smoke and wildfires

    NASA Astrophysics Data System (ADS)

    Maleknia, Simin D.; Bell, Tina L.; Adams, Mark A.

    2009-01-01

    Eucalypt contributions to biogenic sources of volatile organic compounds (VOCs) in Australia are estimated at teragram (Tg = 1012 g) amounts each year. Biogenic VOCs include plant-specific isoprenoids (isoprene and a range of terpenes) and other reactive organic compounds (i.e., acids, aldehydes and ketones). Atmospheric reactions of VOCs are numerous and many have significant environmental impact. Wildfires increase both the amounts of VOCs released and the complexity of their reactions. Proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography mass spectrometry (GCMS) and direct analysis in real time (DART) mass spectrometry were applied to analyze release of VOCs as a function of temperatures ranging from ambient to combustion. PTR-MS enabled trace level analysis of VOCs from a complex forest atmosphere and revealed the release of terpenes associated with leaf damage during a storm. Temperature profile studies revealed ion abundances (i.e., emissions of VOCs) could be correlated with boiling points and vapor pressures of specific compounds. PTR-MS analysis of VOCs resulting from heating fresh leaf (E. grandis) material suggested that emissions of protonated methanol (m/z 33) and protonated acetaldehyde (m/z 45) were greatest at ~60 °C while m/z 137 and 153 (associated with a series of terpenes) showed monotonic increases in ion abundance over a wide temperature range from ambient to 200 °C. GCMS analysis of fresh and senescent leaves of E. grandis showed that a series of VOCs (ethylvinylketone, diethylketone, 2-ethylfuran, hexanal and hexenals) are present only in fresh leaves while several terpenes ([alpha] and [beta] pinenes, [alpha]-phellandrene, eucalyptol, [gamma]-terpinene) were common in both. DART analysis of fresh leaf and stem of E. sideroxylon identified tissue-specific VOCs (e.g., methanol and ethanol were more abundant in stems). PTR-MS combustion studies of senescent leaves (E. grandis) identified two distinct, temperature

  9. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens.

    PubMed

    Wells, J E; Berry, E D; Guerini, M N; Varel, V H

    2015-02-01

    To evaluate natural terpene compounds for antimicrobial activities and determine whether these compounds could be used to control microbial activities and pathogens in production animal facilities. Thymol, geraniol, glydox, linalool, pine oil, plinol and terpineol were tested in laboratory studies for ability to control the production of odorous volatile fatty acid compounds and reduce pathogen levels in manure slurry preparations. Thymol is a terpene phenolic compound and was most effective for reducing fermentation products and pathogen levels (P < 0.05), followed by the extracts linalool, pine oil and terpineol, which are terpene alcohols. Select compounds thymol, linalool and pine oil were further evaluated in two separate studies by applying the agents to feedlot surfaces in cattle pens. Feedlot surface material (FSM; manure and soil) was collected and analysed for fermentation products, levels of coliforms and total Escherichia coli, and the presence of E. coli O157:H7, Campylobacter, Salmonella, Listeria and L. monocytogenes. The reduction in fermentation products but not pathogens was dependent on the moisture present in the FSM. Treatment with 2000 ppm thymol reduced the prevalence of E. coli O157:H7 but not Listeria. In a separate study, treatment with 4000 ppm pine oil reduced E. coli O157:H7, Listeria and Campylobacter (P < 0.05). Linalool was tested at two levels (2000 and 4000 ppm) and did not affect pathogen levels at either concentration. Natural compounds bearing terpenes can control pathogenic bacteria in treated manures and when applied to the feedlot surface in production cattle systems. Pine oil is a cheaper alternative to thymol and may be a useful treatment for controlling pathogens. The control of bacterial pathogens in animal productions systems is an important step in preharvest food safety. Waste products, such as pine oil extract, from the pulp wood industry may have application for treating feedlot pens and manures to reduce the

  10. Sustainable polymers from renewable resources.

    PubMed

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  11. Effect of nerodilol and carvone on in vitro permeation of nicorandil across rat epidermal membrane.

    PubMed

    Krishnaiah, Yellela S R; Al-Saidan, Saleh M; Chandrasekhar, Dantam V; Rama, Bukka

    2006-04-01

    The objective of the study was to investigate the effect of nerodilol and carvone on the in vitro transdermal delivery of nicorandil so as to fabricate a membrane-moderated transdermal therapeutic system. The in vitro permeation studies were carried across the rat epidermal membrane from the hydroxypropyl methylcellulose (HPMC) gels (prepared with 70:30 v/v ethanol-water) containing selected concentrations of a terpene such as nerodilol (0%w/w, 4%w/w, 8%w/w, 10%w/w, or 12%w/w) or carvone (0%w/w, 4%w/w, 8%w/w, 12%w/w, or 16%w/w). The amount of nicorandil permeated (Q(24)) from HPMC gel drug reservoir without a terpene was 3424.6+/-51.4 microg/cm(2), and the corresponding flux of the drug was 145.5+/-2.2 microg/cm(2). h. The flux of nicorandil increased with an increase in terpene concentration in HPMC gel. It was increased ranging from 254.9+/-3.1 to 375.7+/-3.2 microg/cm(2).h or 207.6+/-4.7 to 356.7+/-15.3 microg/cm(2). h from HPMC gels containing nerodilol (4%w/w to 12%w/w) or carvone (4%w/w to 16%w/w), respectively. Nerodilol increased the flux of nicorandil by about 2.62-folds whereas carvone increased the flux of the drug by about 2.49-folds across the rat epidermal membrane. The results of the Fourier Transform Infrared (FT-IR) study indicated that the enhanced in vitro transdermal delivery of nicorandil might be due to the partial extraction of stratum corneum lipids by nerodilol or carvone. It was concluded that the terpenes, nerodilol and carvone, produced a marked penetration enhancing effect on the transdermal delivery of nicorandil that could be used in the fabrication of membrane-moderated transdermal therapeutic systems.

  12. Phytochemistry and biological activities of Heracleum persicum: a review.

    PubMed

    Majidi, Zahra; Sadati Lamardi, S N

    2018-05-24

    Heracleum persicum Desf. ex Fisch is used in Iranian traditional medicines, for the treatment of various diseases including neurological, gastrointestinal, respiratory, rheumatological and urinary tract diseases. In phytochemical analysis of H. persicum, several classes of natural chemicals including volatile (aliphatic esters, carbonyls, phenyl propenes and terpenes) and nonvolatile (flavonoids, furanocoumarins, tannins and alkaloids) constituents as well as different minerals have been identified. Scientific studies on H. persicum proved that it has a wide range of biological and pharmacological activities. This article has provided comprehensive information on Iranian traditional uses, phytochemistry and pharmacological activities of H. persicum. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  13. Syntheses and Biological Studies of Marine Terpenoids Derived from Inorganic Cyanide

    PubMed Central

    Schnermann, Martin J.; Shenvi, Ryan A.

    2015-01-01

    Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups–isonitriles in particular–onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds. PMID:25514696

  14. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    PubMed

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Volatile chemical constituents of Piper aduncum L and Piper gibbilimbum C. DC (Piperaceae) from Papua New Guinea.

    PubMed

    Rali, Topul; Wossa, Stewart W; Leach, David N; Waterman, Peter G

    2007-03-09

    Exhaustive hydro-distillation of the leaves of Piper aduncum and fruits of Piper gibbilimbum (Piperaceae) afforded colorless and pale orange colored oils in 0.35 and 0.30 % yields, respectively. Detailed chemical analysis by GC/MS indicated the volatile constituents of Piper aduncum to be composed of dill apiole (43.3%), beta-caryophyllene (8.2%), piperitione (6.7%) and alpha-humulene (5.1%), whilst the oil of P. gibbilimbum is dominated by the gibbilimbols A-D (74.2%), with the remaining major constituents being the terpenes camphene (13.6%) and alpha-pinene (6.5%).

  16. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    PubMed

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  17. Structural Amendment and Stereoselective Synthesis of Mutisianthol.

    PubMed

    Ho, Tse-Lok; Lee, Kwang-Yuan; Chen, Chun-Kuei

    1997-05-16

    cis-1-(5-Acetoxy-3,6-dimethyl-1-indanyl)-2-methyl-1-propene synthesized from 3,6-dimethyl-1-indanone was found to be different from mutisianthol by spectral comparison. The presence of a high-field signal in the NMR spectrum of the final product and various intermediates, characteristic of the cis-1,3-dialkylindanes but absent in the spectrum of the natural terpene, suggests a revision of the structure of mutisianthol to the trans isomer. The trans-indane which was subsequently obtained indeed exhibits data fully agreeable with mutisianthol. A similar stereochemical revision for jungianol is also indicated.

  18. Volatile constituents of Trifolium pratense and T. repens from N.E. Italian alpine pastures.

    PubMed

    Tava, Aldo; Ramella, Daniele; Grecchi, Maris; Aceto, Paolo; Paoletti, Renato; Piano, Efisio

    2009-06-01

    The composition of the volatile fraction of two important forage legumes from Italian sub-alpine N.E. pastureland, namely Trifolium pratense L. subsp. pratense (red clover) and T. repens subsp. repens (white clover) were investigated. The volatile oil was obtained from the fresh aerial parts by steam distillation and analyzed by GC/FID and GC/MS. The oil yield was 0.018 and 0.021% (weight/fresh weight basis) for T. pratense and T. repens, respectively. Several classes of compounds were found in both the oils, including alcohols, aldehydes, ketones, terpenes, esters, hydrocarbons, phenolics and acids. Qualitative and quantitative differences were found.

  19. Use of dimethyldioxirane in the epoxidation of the main constituents of the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora.

    PubMed

    Veloza, Luz A; Orozco, Lina M; Sepúlveda-Arias, Juan C

    2011-07-01

    Dimethyldioxirane (DMDO), a widely used oxidant in organic synthesis is considered an environmentally friendly oxygen transfer reagent because acetone is the only byproduct formed in its oxidation reactions. This work describes the isolation of the main constituents (terpenes) in the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora, their epoxidation with DMDO in acetone solution and the characterization of the resulting epoxides by GC-MS (EI) and NMR. This is one of the first reports involving the application of dioxirane chemistry to essential oils in order to generate modified compounds with potential uses in several areas of medicine and industry.

  20. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  1. Volatile Compounds from Grape Skin, Juice and Wine from Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) for Wine Production.

    PubMed

    Slegers, Amélie; Angers, Paul; Ouellet, Étienne; Truchon, Tamara; Pedneault, Karine

    2015-06-15

    Developed from crosses between Vitis vinifera and North American Vitis species, interspecific hybrid grape varieties are becoming economically significant in northern areas, where they are now extensively grown for wine production. However, the varietal differences between interspecific hybrids are not well defined, nor are the relationships between hybrid grape and wine composition, which causes significant drawbacks in the development of viticulture and winemaking of northern wines. In an effort to increase our understanding of interspecific hybrids, we have characterized the free volatile compounds profiles of berries (juice and skin) and wines of five red hybrid varieties (Frontenac, Marquette, Maréchal Foch, Sabrevois and St. Croix) grown in Québec (Canada), using GC-MS(TOF)-SPME. In grapes and wines, significantly higher levels of C6 and other fatty acid degradation products (FADP) were found in Frontenac, Maréchal Foch and Marquette. Terpenes were primarily located in the skin, with Marquette showing the highest level for these compounds. Both the level of terpenes and the level of FADP in grape were strongly correlated with their respective levels in wine, as demonstrated by the redundancy analyses. Nonanal, (E,Z)-2,6-nonadienal, β-damascenone, ethyl octanoate and isoamyl acetate showed the highest OAVs in the wines of the studied varieties.

  2. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    PubMed

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  3. Changes in soil nitrogen cycling under Norway spruce logging residues on a clear-cut

    NASA Astrophysics Data System (ADS)

    Smolander, Aino; Lindroos, Antti-Jussi; Kitunen, Veikko

    2016-04-01

    In Europe, forest biomass is increasingly being used as a source of energy to replace fossil fuels. In practice, this means that logging residues, consisting of green branches and stem tops, are more commonly harvested. In 2012 logging residues were harvested from about one third of clear-cuts in Finland. Our aim was to study how logging residues affect soil organic matter quality, in particular soil N cycling processes and composition of certain groups of plant secondary compounds, tannins and terpenes. Compounds in these groups were of interest because they are abundant in logging residues, and they have been shown to control soil N cycling. In connection with clear-cutting a Norway spruce stand in southern Finland, we established a controlled field experiment by building logging residue piles (40 kg/m2) on study plots. The piles consisted of fresh spruce branches and tops with green foliage. Control plots with no residues were included (0 kg/m2). Changes in soil organic matter properties have now been monitored for three growing seasons. Logging residues affected organic layer properties strongly. For example, they increased net nitrification and nitrate concentrations. There were also increases in the concentrations of certain terpenes and condensed tannins due to the residues. The significance of logging residues on soil processes and properties will be shown.

  4. Analysis of Relative Concentration of Ethanol and Other Odorous Compounds (OCs) Emitted from the Working Surface at a Landfill in China

    PubMed Central

    Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao

    2015-01-01

    Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100

  5. Cleaning practices and cleaning products in nurseries and schools: to what extent can they impact indoor air quality?

    PubMed

    Wei, W; Boumier, J; Wyart, G; Ramalho, O; Mandin, C

    2016-08-01

    In the framework of a nationwide survey on indoor air quality conducted from September 2009 to June 2011 in 310 nurseries, kindergartens, and elementary schools in all regions of France, cleaning practices and products were described through an extensive questionnaire completed on-site by expert building inspectors. The questionnaire included the cleaning frequencies and periods, cleaning techniques, whether windows were open during cleaning, and the commercial names of the products used. Analysis of the questionnaire responses showed that cleaning was generally performed daily for furniture and floors. It was performed mostly in the evening with wet mopping and with one or more windows open. Five hundred eighty-four different cleaning products were listed, among which 218 safety data sheets (SDSs) were available and analyzed. One hundred fifty-two chemical substances were identified in the SDSs. The typical substances in cleaning products included alcohols, chlorides, terpenes, aldehydes, and ethers; more than half of them are irritants. Two endocrine disruptors, 2-phenylphenol and Galaxolide, were identified in two cleaning products used every day to clean the floors, in seven kindergartens and in a nursery respectively. Eleven reactive substances containing C=C double bonds, mostly terpenes, were identified in a wide variety of cleaning products. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Seasonal cycle of indoor-VOCs: comparison of apartments and cities

    NASA Astrophysics Data System (ADS)

    Schlink, U.; Rehwagen, M.; Damm, M.; Richter, M.; Borte, M.; Herbarth, O.

    On the basis of 2103 measurements of volatile organic compounds (VOCs) in indoor air we study the intensity of a seasonal pattern. The data are representative for the German population and were gathered in different cities (Leipzig, München, Köln), in rooms of different type (children's, living, sleeping rooms, and other rooms), and in households of smokers and non-smokers. In addition to the randomly selected different apartments that were sampled each month, we repeatedly measured in a fixed set of 10 apartments. The analysis comprised concentrations of 30 VOCs belonging to the groups of alkanes, cycloalkanes, aromatics, volatile halogenated hydrocarbons, and terpenes. The annual cycle for total VOC concentrations was observed at every site. Seasonality proved to be the most dominant pattern, but it may be modified by further factors, such as the city, the considered VOC component, and the type of the considered room. Highest concentrations occurred during the winter months and amount to approximately three to four times the summer burden. As seasonality may bias the results of health effect studies we fit a seasonal model to our measurements and develop a procedure for seasonal adjustment, which enables to roughly estimate the annual peak concentration utilizing one monthly observation. The seasonal pattern proved to be a general feature of indoor VOC concentrations and, therefore, this adjustment procedure may be generally applicable. For Leipzig, München, and Köln we present site-specific adjustment factors for indoor concentrations of aromatics, terpenes, and alkanes.

  7. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    PubMed

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  8. Relationship between sensory attributes and volatile compounds of polish dry-cured loin

    PubMed Central

    Górska, Ewa; Nowicka, Katarzyna; Jaworska, Danuta; Przybylski, Wiesław; Tambor, Krzysztof

    2017-01-01

    Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production. PMID:27456422

  9. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis.

    PubMed

    Shabestary, Kiyan; Hudson, Elton P

    2016-12-01

    Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities.

  10. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  11. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

    PubMed

    Kumar, Krishna; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Shukla, Ashutosh K; Shanker, Karuna; Nagegowda, Dinesh A

    2015-10-01

    The monoterpene indole alkaloids (MIAs) are generally derived from strictosidine, which is formed by condensation of the terpene moiety secologanin and the indole moiety tryptamine. There are conflicting reports on the limitation of either terpene or indole moiety in the production of MIAs in Catharanthus roseus cell cultures. Formation of geraniol by geraniol synthase (GES) is the first step in secologanin biosynthesis. In this study, feeding of C. roseus leaves with geraniol, but not tryptophan (precursor for tryptamine), increased the accumulation of the MIAs catharanthine and vindoline, indicating the limitation of geraniol in MIA biosynthesis. This was further validated by molecular and in planta characterization of C. roseus GES (CrGES). CrGES transcripts exhibited leaf and shoot specific expression and were induced by methyl jasmonate. Virus-induced gene silencing (VIGS) of CrGES significantly reduced the MIA content, which was restored to near-WT levels upon geraniol feeding. Moreover, over-expression of CrGES in C. roseus leaves increased MIA content. Further, CrGES exhibited correlation with MIA levels in leaves of different C. roseus cultivars and has significantly lower expression relative to other pathway genes. These results demonstrated that the transcriptional regulation of CrGES and thus, the in planta geraniol availability plays crucial role in MIA biosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.

    PubMed

    Feng, Hui; Skinkis, Patricia A; Qian, Michael C

    2017-01-01

    The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice.

    PubMed

    Yuan, Joshua S; Köllner, Tobias G; Wiggins, Greg; Grant, Jerome; Degenhardt, Jörg; Chen, Feng

    2008-08-01

    Rice plants fed on by fall armyworm (Spodoptera frugiperda, FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris. Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase (TPS) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S-linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.

  14. In vitro antimicrobial and antiprotozoal activities, phytochemical screening and heavy metals toxicity of different parts of Ballota nigra.

    PubMed

    Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan

    2014-01-01

    The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.

  15. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  16. Low VOC drying of lumber and wood panel products. Progress report number 9

    SciT

    Hooda, U.; Banerjee, S.; Ingram, L.

    1998-10-01

    This project is based on the finding that brief microwave or RF-treatment of wood under low-headspace conditions leads to the release of VOCs. On occasion the authors have found that prolonged irradiation increases turpentine yield much more than anticipated from a simple mass balance; i.e., more pinene appeared to be released than was present in the wood in the first place. If taken at face value, this suggests that brief low-headspace irradiation removes VOCs, while prolonged exposure creates it. While seemingly improbable, this could follow if dielectric heating exposed regions of wood that were otherwise inaccessible to the solvent usedmore » for extraction (unlikely), or if the irradiation induced depolymerization of terpene dimers or higher polymers. In this report the authors attempt to identify the conditions that lead to this apparent enhancement of terpene yield, by constructing relationships between yield and irradiation parameters. The tentative conclusions are that this enhancement only occurs with relatively wet heartwood, and only under prolonged irradiation. An additional conclusion is that continuing analyses of twelve trees in the MSU forest confirm that the absence of a significant seasonal influence on turpentine content. An apparatus for permeability testing has been constructed, and work is underway.« less

  17. Variability in chemical composition and abundance of the rare tertiary relict Pinus heldreichii in Serbia.

    PubMed

    Bojović, Srdjan; Nikolić, Biljana; Ristić, Mihailo; Orlović, Saša; Veselinović, Milorad; Rakonjac, Ljubinko; Dražić, Dragana

    2011-09-01

    The particular significance of the whitebark pine (Pinus heldreichii Christ.) stems from the fact that it is a tertiary relict and Balkanic subendemite covering a very narrow and intermittent area in Serbia. A representative pool of 48 adult trees originating from three populations, one recently discovered natural (Population I) and two planted populations (Populations II and III) was investigated in order to evaluate the intra- and interpopulation variability of the essential oil of the complete fund of P. heldreichii in Serbia. In the pine-needle-terpene profile, 104 compounds were detected, 84 of which could be identified. Among the essential-oil constituents, monoterpenes and sesquiterpenes dominated, comprising ca. 90% of the essential oil. The terpenic profile of Population I was characterized by a predominance of monoterpenes (e.g., limonene (1), α-pinene, and Δ(3) -carene (4)), while sesquiterpenes (e.g., germacrene D (2) and β-caryophyllene (3)) obviously preponderated in the profile of Populations II and III. This study also demonstrated that the abundance of whitebark pines in Serbia had significantly changed over the last few decades. The number of individuals in the natural population had increased, while the number of individuals in the planted populations had decreased. Today, the whitebark pine fund in Serbia comprises less than 250 trees. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Comprehensive analysis of chemical constituents in Xingxiong injection by high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Guo, Long; Dou, Li-Li; Duan, Li; Liu, Ke; Bi, Zhi-Ming; Li, Ping; Liu, E-Hu

    2015-09-01

    Xingxiong injection (XXI) is a widely used Chinese herbal formula prepared by the folium ginkgo extract and ligustrazine for the treatment of cardiovascular and cerebrovascular diseases. Compared with the pharmacological studies, chemical analysis and quality control studies on this formula are relatively limited. In the present study, a high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) method was applied to comprehensive analysis of constituents in XXI. According to the fragmentation rules and previous reports, thirty ginkgo flavonoids, four ginkgo terpene lactones, and one alkaloid were identified. A high performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-QQQ MS) method was then applied to quantify ten major constituents in XXI. The method validation results indicated that the developed method had desirable specificity, linearity, precision and accuracy. The total contents of ginkgo flavonoids were about 22.05-25.51 μg·mL(-1) and the ginkgo terpene lactones amounts were about 4.41-8.70 μg·mL(-1) in six batches of XXI samples, respectively. Furthermore, cosine ratio algorithm and distance measurements were employed to evaluate the similarity of XXI samples, and the results demonstrated a high-quality consistency. This work could provide comprehensive information on the quality control of Xingxiong injection, which be helpful in the establishment of a rational quality control standard. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Chemical Compositions, Somatic Embryogenesis, and Somaclonal Variation in Cumin

    PubMed Central

    Tohidfar, Masoud; Sadat Noori, Seyed Ahmad; Izadi Darbandi, Ali; Rao, Rosa

    2017-01-01

    This is the first report evaluating the relationship between the chemical compositions of cumin seeds (based on the analysis of the content of catalase, ascorbate peroxidase, proline, protein, terpenic compounds, alcohol/phenols, aldehydes, and epoxides) and the induction efficiency of somatic embryogenesis in two Iranian superior cumin landraces (Golestan and North Khorasan). Cotyledons isolated from Golestan landrace seeds cultivated on MS medium supplemented with 0.1 mg/L kinetin proved to be the best primary explant for the induction of somatic embryogenesis as well as the regeneration of the whole plantlet. Results indicated that different developmental stages of somatic embryos were simultaneously observed on a callus with embryogenic potential. The high content of catalase, ascorbate peroxidase, proline, and terpenic hydrocarbons and low content of alcoholic and phenolic compositions had a stimulatory effect on somatic embryogenesis. Band patterns of RAPD markers in regenerated plants were different from those of the mother plants. This may be related to somaclonal variations or pollination system of cumin. Generally, measurement of chemical compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in cumin. Also, somaclonal variations of regenerated plants can be applied by the plant breeders in breeding programs. PMID:29234682

  20. [Characteristics of supramolecular imprinting template on liver meridian tropism of traditional Chinese medicine based on molecular connectivity index].

    PubMed

    Fan, Shi-Qi; Li, Sen; Liu, Jin-Ling; Yang, Jiao; Hu, Chao; Zhu, Jun-Ping; Xiao, Xiao-Qin; Liu, Wen-Long; He, Fu-Yuan

    2017-01-01

    The molecular connectivity index was adopted to explore the characteristics of supramolecular imprinting template of herbs distributed to liver meridian, in order to provide scientific basis for traditional Chinese medicines(TCMs) distributed to liver meridian. In this paper, with "12th five-year plan" national planning textbooks Science of Traditional Chinese Medicine and Chemistry of Traditional Chinese Medicine as the blueprint, literatures and TCMSP sub-databases in TCM pharmacology of northwest science and technology university of agriculture and forestry were retrieved to collect and summarize active constituents of TCM distributed to liver meridian, and calculate the molecular connectivity index. The average molecular connectivity index of ingredients distributed to liver meridian was 9.47, which was close to flavonoid glycosides' (9.17±2.11) and terpenes (9.30±3.62). Therefore, it is inferred that template molecule of liver meridian is similar to physicochemical property of flavonoid glycosides and terpenes, which could be best matched with imprinting template of liver meridian. Copyright© by the Chinese Pharmaceutical Association.

  1. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-09-26

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids.

  2. Heliotropium bacciferum Forssk. (Boraginaceae) extracts: chemical constituents, antioxidant activity and cytotoxic effect in human cancer cell lines.

    PubMed

    Aïssaoui, Hanane; Mencherini, Teresa; Esposito, Tiziana; De Tommasi, Nunziatina; Gazzerro, Patrizia; Benayache, Samir; Benayache, Fadila; Mekkiou, Ratiba

    2018-02-12

    Heliotropium bacciferum (Boraginaceae) is a perennial herb, growing in the Bechar region of Algeria, where it is traditionally used for skin diseases and tonsillitis. Herein, we report the isolation and characterization of sixteen secondary metabolites from the aerial part extracts. They include a sterol (1), megastigman type nor-isoprenoids (2, 3, 4, 6, 8, 10), C-11 terpene lactones (5 and 9), and a monoterpene (7) from the chloroform extract (HB-C); monoterpene glucoside (14), and phenolic compounds (11-13, 15, 16) from the methanol one (HB-M). Their structures were elucidated by spectroscopic methods including 1D and 2D NMR experiments, and ESIMS analysis. HB-M showed a significant and concentration dependent scavenging activity in vitro against the radicals DPPH and ABTS, related to the phenol derivatives (11-13, and 15-16), and HB-C inhibited the growth of colon cancer cell lines, mainly for the presence of the antiproliferative C-11 terpene lactones (5 and 9).

  3. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty

    PubMed Central

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty. PMID:26760934

  4. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.

    PubMed

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty.

  5. Defence syndromes in lodgepole - whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles.

    PubMed

    Raffa, Kenneth F; Mason, Charles J; Bonello, Pierluigi; Cook, Stephen; Erbilgin, Nadir; Keefover-Ring, Ken; Klutsch, Jennifer G; Villari, Caterina; Townsend, Philip A

    2017-09-01

    Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species. © 2017 John Wiley & Sons Ltd.

  6. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants.

    PubMed

    Pangesti, Nurmi; Weldegergis, Berhane T; Langendorf, Benjamin; van Loon, Joop J A; Dicke, Marcel; Pineda, Ana

    2015-08-01

    Beneficial root-associated microbes modify the physiological status of their host plants and affect direct and indirect plant defense against insect herbivores. While the effects of these microbes on direct plant defense against insect herbivores are well described, knowledge of the effect of the microbes on indirect plant defense against insect herbivores is still limited. In this study, we evaluate the role of the rhizobacterium Pseudomonas fluorescens WCS417r in indirect plant defense against the generalist leaf-chewing insect Mamestra brassicae through a combination of behavioral, chemical, and gene-transcriptional approaches. We show that rhizobacterial colonization of Arabidopsis thaliana roots results in an increased attraction of the parasitoid Microplitis mediator to caterpillar-infested plants. Volatile analysis revealed that rhizobacterial colonization suppressed the emission of the terpene (E)-α-bergamotene and the aromatics methyl salicylate and lilial in response to caterpillar feeding. Rhizobacterial colonization decreased the caterpillar-induced transcription of the terpene synthase genes TPS03 and TPS04. Rhizobacteria enhanced both the growth and the indirect defense of plants under caterpillar attack. This study shows that rhizobacteria have a high potential to enhance the biocontrol of leaf-chewing herbivores based on enhanced attraction of parasitoids.

  7. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.

    PubMed

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-07-25

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  8. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line

    PubMed Central

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero del Mar; Cadena-Iñiguez, Jorge; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-01-01

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1), but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents. PMID:28757593

  9. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved.

    PubMed

    Comelli, Francesca; Giagnoni, Gabriella; Bettoni, Isabella; Colleoni, Mariapia; Costa, Barbara

    2008-08-01

    This study aimed to give a rationale for the employment of phytocannabinoid formulations to treat neuropathic pain. It was found that a controlled cannabis extract, containing multiple cannabinoids, in a defined ratio, and other non-cannabinoid fractions (terpenes and flavonoids) provided better antinociceptive efficacy than the single cannabinoid given alone, when tested in a rat model of neuropathic pain. The results also demonstrated that such an antihyperalgesic effect did not involve the cannabinoid CB1 and CB2 receptors, whereas it was mediated by vanilloid receptors TRPV1. The non-psychoactive compound, cannabidiol, is the only component present at a high level in the extract able to bind to this receptor: thus cannabidiol was the drug responsible for the antinociceptive behaviour observed. In addition, the results showed that after chronic oral treatment with cannabis extract the hepatic total content of cytochrome P450 was strongly inhibited as well as the intestinal P-glycoprotein activity. It is suggested that the inhibition of hepatic metabolism determined an increased bioavailability of cannabidiol resulting in a greater effect. However, in the light of the well known antioxidant and antiinflammatory properties of terpenes and flavonoids which could significantly contribute to the therapeutic effects, it cannot be excluded that the synergism observed might be achieved also in the absence of the cytochrome P450 inhibition.

  10. Gall volatiles defend aphids against a browsing mammal

    PubMed Central

    2013-01-01

    Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365

  11. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.

    PubMed

    Turtola, Satu; Sallas, Leena; Holopainen, Jarmo K; Julkunen-Tiitto, Riitta; Kainulainen, Pirjo

    2006-11-01

    The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.

  12. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.).

    PubMed

    Urcan, Delia Elena; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Raimondi, Stefano; Bertolino, Marta; Gerbi, Vincenzo; Pop, Nastasia; Rolle, Luca

    2017-03-15

    The impact of postharvest dehydration on the volatile composition of Malvasia moscata grapes and fortified wines produced from them was assessed. The ripeness effect of fresh grapes on volatile compounds of dehydrated grapes was evaluated for the first time in this study. Fresh grape berries were densimetrically sorted, and more represented density classes were selected. Dehydration of riper berries (20.5 °Brix) led to volatile profiles richer in terpenes, particularly linalool and geraniol. The effect of dehydration rate on the volatile composition of dehydrated grapes and fortified wines was also evaluated. Fast dehydration grapes were richer in total free terpenes, and the resulting wines contained greater amounts of volatile compounds. The predominant compounds were free esters, but linalool, rose oxide, citronellol and geraniol can also contribute to wine aroma, particularly for fast dehydration. β-Damascenone can be an active odorant, although its contribution was greater in wines made from slow dehydrated grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Isolation and Characterization of Bioactive Metabolites from Fruiting Bodies and Mycelial Culture of Ganoderma oerstedii (Higher Basidiomycetes) from Mexico.

    PubMed

    Mendoza, Guillermo; Suárez-Medellín, Jorge; Espinoza, César; Ramos-Ligonio, Angel; Fernández, José J; Norte, Manuel; Trigos, Ángel

    2015-01-01

    Various species of the genus Ganoderma have been used for centuries according to oriental tradition as a source of medicines and nutrients. A chemical study of the fruiting bodies and mycelial culture of G. oerstedii was carried out with the idea of isolating and characterizing active natural components present to make use of their potential pharmaceutical application in Mexico. The fruiting bodies and mycelial culture of G. oesrtedii were lyophylized and extracted one after the other with hexane, chloroform, and methanol. Following this process, each substance was extracted separately by using column chromatography. From fruiting bodies eight metabolites, five sterols (ergosta-7,22-dien-3β-ol, ergosterol peroxide, ergosterol, cerevisterol, and ergosta-7,22-dien-3-one) as well as three terpene compounds (ganodermanondiol, ganoderic acid Sz, and ganoderitriol M) were obtained from fruiting bodies. From the mycelial culture three metabolites, two sterols (ergosterol and cerevisterol), and a new terpene compound (ganoderic acetate from the acid) were obtained. These structures were established based on a spectroscopic analysis mainly using nuclear magnetic resonance and a comparison with data already established.

  14. Volatiles emitted by Carya illinoinensis (Wang.) K. Koch as a prelude for semiochemical investigations to focus on Acrobasis nuxvorella Nuenzig (Lepidoptera: Pyralidae).

    PubMed

    Corella-Madueño, Maria A; Harris, Marvin K; Fu-Castillo, Agustin A; Martínez-Téllez, Miguel A; Valenzuela-Soto, Elisa M; Gálvez-Ruiz, Juan C; Vargas-Arispuro, Irasema

    2011-12-01

    Plant volatiles have complex intra- and interspecific effects in the environment that include plant/herbivore interactions. Identifying the quantity and quality of volatiles produced by a plant is needed to aid the process of determining which chemicals are exerting what effects and then examining whether these effects can be manipulated to benefit society. The qualitative characterization of volatile compounds emitted by pecan, Carya illinoinensis (Wang.) K. Koch, was begun in order to establish a database for investigating how these volatiles affect Acrobasis nuxvorella Nuenzig, a monophagous pest of pecan. Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used for the analysis of the volatile constituents of pecan during three phenological stages (dormant buds, intact new shoot growth and intact nutlets) of the Western Schley and Wichita cultivars. About 111 distinct compounds were identified from the two cultivars, accounting for ∼99% of the headspace volatiles. The chromatographic profiles of both varieties revealed variations in the volatile composition and proportion between cultivars, with a predominance of terpene hydrocarbons, of the sesquiterpenes class, as well as monoterpenes. The significantly higher responsiveness recorded for the larvae of A. nuxvorella to C. illinoinensis shoots indicates that the larvae may be activated by terpenes emanating from the new shoot growth. This is the first study that has examined volatiles of pecan in Mexico. Copyright © 2011 Society of Chemical Industry.

  15. Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.

    PubMed

    Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A

    2011-04-15

    Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.

  16. A UDP-Glucose:Monoterpenol Glucosyltransferase Adds to the Chemical Diversity of the Grapevine Metabolome1[W

    PubMed Central

    Bönisch, Friedericke; Frotscher, Johanna; Stanitzek, Sarah; Rühl, Ernst; Wüst, Matthias; Bitz, Oliver; Schwab, Wilfried

    2014-01-01

    Terpenoids represent one of the major classes of natural products and serve different biological functions. In grape (Vitis vinifera), a large fraction of these compounds is present as nonvolatile terpene glycosides. We have extracted putative glycosyltransferase (GT) sequences from the grape genome database that show similarity to Arabidopsis (Arabidopsis thaliana) GTs whose encoded proteins glucosylate a diversity of terpenes. Spatial and temporal expression levels of the potential VvGT genes were determined in five different grapevine varieties. Heterologous expression and biochemical assays of candidate genes led to the identification of a UDP-glucose:monoterpenol β-d-glucosyltransferase (VvGT7). The VvGT7 gene was expressed in various tissues in accordance with monoterpenyl glucoside accumulation in grape cultivars. Twelve allelic VvGT7 genes were isolated from five cultivars, and their encoded proteins were biochemically analyzed. They varied in substrate preference and catalytic activity. Three amino acids, which corresponded to none of the determinants previously identified for other plant GTs, were found to be important for enzymatic catalysis. Site-specific mutagenesis along with the analysis of allelic proteins also revealed amino acids that impact catalytic activity and substrate tolerance. These results demonstrate that VvGT7 may contribute to the production of geranyl and neryl glucoside during grape ripening. PMID:24784757

  17. Numerical modeling of particle generation from ozone reactions with human-worn clothing in indoor environments

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Lin, Chao-Hsin; Chen, Qingyan

    2015-02-01

    Ozone-terpene reactions are important sources of indoor ultrafine particles (UFPs), a potential health hazard for human beings. Humans themselves act as possible sites for ozone-initiated particle generation through reactions with squalene (a terpene) that is present in their skin, hair, and clothing. This investigation developed a numerical model to probe particle generation from ozone reactions with clothing worn by humans. The model was based on particle generation measured in an environmental chamber as well as physical formulations of particle nucleation, condensational growth, and deposition. In five out of the six test cases, the model was able to predict particle size distributions reasonably well. The failure in the remaining case demonstrated the fundamental limitations of nucleation models. The model that was developed was used to predict particle generation under various building and airliner cabin conditions. These predictions indicate that ozone reactions with human-worn clothing could be an important source of UFPs in densely occupied classrooms and airliner cabins. Those reactions could account for about 40% of the total UFPs measured on a Boeing 737-700 flight. The model predictions at this stage are indicative and should be improved further.

  18. [Research on improving memory impairment of blue lavender volatile oil].

    PubMed

    Zhu, Li-Yun; Gao, Yong-Sheng; Song, Lin-Zhen; Li, Su-Fang; Qian, Jun-Qing

    2017-12-01

    In order to study the potential application value of lavender volatile oil (LVO), the chemical composition of the volatile oil of lavender was analyzed by GC-MS, and the mouse model of Alzheimer's disease (AD) was established. Additionally, the antioxidant enzymes activity of T-SOD, GSH-PX, CAT and MDA content were studied. Experimental results showed that 55 kinds of chemical constituents including terpene, terpene alcohol and ester compounds from LVO were identified, and the content of linalool and linalyl acetate was the highest, accounting for 49.71% of the total volatile oil. The ability of mouse platform memory was improved significantly. The levels of GSH-PX, CAT and T-SOD of mouse brain tissue in the treatment group were significantly higher than those in the model group (P<0.05). The level of MDA reached the maximum value in the model group, while there was no notable difference between the levels of MDA in the drug group and the normal group. The result indicated the significant oxidative activity of LVO, the possibility of induced oxidative stress reduction in neurons, and the reversal effect of memory acquired disorder. Copyright© by the Chinese Pharmaceutical Association.

  19. Biotechnology touches the forest

    SciT

    Powledge, J.M.

    1984-09-01

    Both the United States and New Zealand are doing research in forest biotechnology and much of the interest is in speedy propagation from seed to mature tree. A number of propagation techniques are discussed, such as tissue culture, the culture of tissue from mature trees and somatic embryo genesis. Much of the tissue culture work has been done on radiata pine. Field testing results are considered. The aims and the advantages of forest biotechnology are discussed under the following headings. 1) Disease resistance: research is being carried out on a loblolly pine which would be resistant to fusiform rust. 2)more » Animal feed: some trees have been discovered to have lower lignin content and similar cellulose and hemicellulose to alfalfa. 3) Specialty chemicals: terpenes, in the tree resin, could be turned into hormones, drugs and other chemicals: the genetic system for the overall biosynthesis of terpenes has been studied. 4) Herbicide resistance. The resistance to glyphosate in poplars is being studied. In conclusion, further research into forest species, using molecular biology is considered essential.« less

  20. SciT

    Westbrook, JW; Walker, AR; Neves, LG

    Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P.taedaxPinuselliottii)xP.elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2)0.12-0.21) and positively genetically correlated with xylem growthmore » (r(g)0.32-0.72) and oleoresin flow (r(g)0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.« less