Sample records for terrestrial hydrology program

  1. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  2. Can we Observe and Assess Whether the Global Hydrological Cycle is "Intensifying"?

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Sheffield, J.

    2012-12-01

    There is controversy over whether the hydrological cycle is "intensifying" (or "accelerating"), and if so how and where? Resolving this critical question is a central goal of both national (e.g. NASA's Energy and Water cycle Study: NEWS) and international (WCRP Global Energy and Water cycle Experiment: GEWEX) programs. Its resolution has significant implications for understanding changes in hydroclimatic states and variability, and in future water security at regional to global scales. Over the last decade a number of papers have addressed trends and change in specific water cycle variables with results that can best be described as inconclusive, regardless of the conclusions of specific papers. In this presentation a number of recent studies will be reviewed for their consistency in assessing whether collectively one can make conclusions regarding how the hydrologic cycle is changing. The presentation will also demonstrate a pathway for analyzing where to observe for the detection of change based on a NASA-supported, global, 1983-2009, terrestrial water cycle Earth System Data Record project being led by the author. Initial results will be presented and a discussion presented on the extent that the proposed strategy can be used to detect change in the terrestrial hydrological cycle.

  3. Variability in Terrestrial Water Storage and its effect on polar motion

    NASA Astrophysics Data System (ADS)

    Śliwińska, Justyna; Nastula, Jolanta

    2017-04-01

    Explaining the hydrological part of observed polar motion excitation has been a major challenge over a dozen years. The terrestrial water storage (TWS) excitation of polar motion - hydrological angular momentum (HAM), has been investigated widely using global hydrological models mainly at seasonal timescales. Unfortunately, the results from the models do not fully explain the role of hydrological signal in polar motion excitation. The determination of TWS from the Earth's gravity field observations represents an indirect approach for estimating land hydrology. Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in Terrestrial Water Storage. Our investigations are focused on the influence of Terrestrial Water Storage (TWS) variations obtained from Gravity Recovery and Climate Experiment (GRACE) mission on polar motion excitation functions at decadal and inter-annual timescales. The global and regional trend, seasonal cycle as well as some extremes in TWS variations are considered here. Here TWS are obtained from the monthly mass grids land GRACE Tellus data: GRACE CSR RL05, GRACE GFZ RL05 and GRACE JPL RL05. As a comparative dataset, we also use TWS estimates determined from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5). GRACE data and state-of-the-art CMIP5 climate models allow us to show the variability of hydrological part of polar motion under climate changes. Our studies include two steps: first, the determination and comparisons of regional patterns of TWS obtained from GRACE data and climate models, and second, comparison of the regional and global hydrological excitation functions of polar motion with a hydrological signal in the geodetic excitation functions of polar motion.

  4. A strategy to study regional hydrology and terrestrial ecosystem processes using satellite remote sensing, ground-based data and computer modeling

    NASA Technical Reports Server (NTRS)

    Vorosmarty, C.; Grace, A.; Moore, B.; Choudhury, B.; Willmott, C. J.

    1990-01-01

    A strategy is presented for integrating scanning multichannel microwave radiometer data from the Nimbus-7 satellite with meteorological station records and computer simulations of land surface hydrology, terrestrial nutrient cycling, and trace gas emission. Analysis of the observations together with radiative transfer analysis shows that in the tropics the temporal and spatial variations of the polarization difference are determined primarily by the structure and phenology of vegetation and seasonal inundations of major rivers and wetlands. It is concluded that the proposed surface hydrology model, along with climatological records, and, potentially, 37-GHz data for phenology, will provide inputs to a terrestrial ecosystem model that predicts regional net primary production and CO2 gas exchange.

  5. Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    PubMed Central

    Chen, Baozhang; Coops, Nicholas C.

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers. PMID:22291528

  6. Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.

    PubMed

    Chen, Baozhang; Coops, Nicholas C

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.

  7. Models of atmosphere-ecosystem-hydrology interactions: Approaches and testing

    NASA Technical Reports Server (NTRS)

    Schimel, David S.

    1992-01-01

    Interactions among the atmosphere, terrestrial ecosystems, and the hydrological cycle have been the subject of investigation for many years, although most of the research has had a regional focus. The topic is broad, including the effects of climate and hydrology on vegetation, the effects of vegetation on hydrology, the effects of the hydrological cycle on the atmosphere, and interactions of the cycles via material flux such as solutes and trace gases. The intent of this paper is to identify areas of critical uncertainty, discuss modeling approaches to resolving those problems, and then propose techniques for testing. I consider several interactions specifically to illustrate the range of problems. These areas are as follows: (1) cloud parameterizations and the land surface, (2) soil moisture, and (3) the terrestrial carbon cycle.

  8. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F.

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  9. Influence of climate variability on terrestrial hydrology in North America

    NASA Astrophysics Data System (ADS)

    Chen, Ji

    A large-area basin-scale (LABs) model is developed for regional, continental and global hydrologic studies. The heterogeneity in the soil-moisture distribution within a basin is parameterized through the statistical moments of the probability distribution function of the topographic (wetness) index. The role of topographic influence in hydrologic prediction is studied using the LABs model and ISLSCP data for 1987 and 1988 in North America. Improvement in the terrestrial water balance and streamflow is observed due to improvements in the surface runoff and baseflow components achieved by incorporating the basin topographic features. These enhancements also impact the surface energy balance, Daily streamflow observations of the Mississippi river and its four tributaries are used for evaluating the LABs performance. It is observed that model baseflow has a significant contribution to the streamflow and is important in realistically capturing the seasonal and annual cycles. To study the impacts of climate variations on the terrestrial hydrologic processes, ERA-15 dataset (1979-1993) is used to drive LABs for all basins over North America. The anomalies of the model forcing and output are correlated with climate anomalies, such as ENSO, NAO and PNA. It is found that the terrestrial hydrology has a delayed response to the ENSO signal, as compared to the precipitation, and the delay may range from a month to a season or longer. The soil moisture storage plays a very vital role in delaying the effects of the climate variability on the terrestrial hydrology and in extending the influences of the El Niña and La Niña events. The fluctuation of the soil temperature anomaly is correlated with ENSO in certain geographic regions, and the strength and the associated time lag of this correlation increase with increasing soil depth. In addition, the NAO and PNA correlations with downward longwave radiation, surface temperature and ground heat flux in North America show a seesaw (or wavelike) spatial pattern.

  10. Terrestrial ecosystems in a changing environment: a dominant role for water.

    PubMed

    Bernacchi, Carl J; VanLoocke, Andy

    2015-01-01

    Transpiration--the movement of water from the soil, through plants, and into the atmosphere--is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps.

  11. COMPREHENSIVE RESEARCH AND MANAGEMENT OF IMPERVIOUS SURFACE IMPACTS ON WATERSHED HYDROLOGY

    EPA Science Inventory

    Impervious surface is one of the primary agents of hydrologic change in urbanizing watersheds, and its impacts on hydrologic cycles and terrestrial ecological regimes are multifold. The mechanisms through which these impacts are manifested are not well understood, hampering effec...

  12. COMPREHENSIVE RESEARCH AND MANAGEMENT OF IMPERVIOUS SURFACES IMPACTS ON WATERSHED HYDROLOGY

    EPA Science Inventory

    Impervious surface is one of the primary agents of hydrologic change in urbanizing watersheds, and its impacts on hydrologic cycles and terrestrial ecological regimes are multifold. The mechanisms through which these impacts are manifested are not well understood, hampering effec...

  13. Terrestrial water storage variations and surface vertical deformation derived from GPS and GRACE observations in Nepal and Himalayas

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Shen, W.; Hwang, C.

    2015-12-01

    As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  14. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  15. NCA-LDAS: A Terrestrial Water Analysis System Enabling Sustained Assessment and Dissemination of National Climate Indicators

    NASA Astrophysics Data System (ADS)

    Jasinski, M. F.; Kumar, S.; Peters-Lidard, C. D.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kempler, S.; Li, B.; Mocko, D. M.; Rodell, M.; Rui, H.; Silberstein, D. S.; Teng, W. L.; Vollmer, B.

    2016-12-01

    The National Climate Assessment - Land Data Assimilation System, or NCA-LDAS, is an integrated terrestrial water analysis system created as an end-to-end enabling tool for sustained assessment and dissemination of terrestrial hydrologic indicators in support of the NCA. The primary features are i) gridded, daily time series of over forty hydrologic variables including terrestrial water and energy balance stores, states and fluxes over the continental U.S. derived from land surface modeling with multivariate satellite data record assimilation (1979-2015), ii) estimated trends of the principal water balance components over a wide range of scales and locations, and iii) public dissemination of all NCA-LDAS model forcings, and input and output data products through dedicated NCA-LDAS and NASA GES-DISC websites. NCA-LDAS supports sustained assessment of our national terrestrial hydrologic climate for improved scientific understanding, and the adaptation and management of water resources and related energy sectors. This presentation provides an overview of the NCA-LDAS system together with an evaluation of the initial release of NCA-LDAS data products and trends using two land surface models; Noah Ver. 3.3 and Catchment Ver. Fortuna 2.5, and a listing of several available pathways for public access and visualization of NCA-LDAS background information and data products.

  16. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  17. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  18. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa, Water Resour. Res., 52, 1544-1567, doi:10.1002/2015WR017704.

  19. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  20. Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Pagani, Mark; Krishnan, Srinath; Dirghangi, Sitindra S.; Galeotti, Simone; Agnini, Claudia; Giusberti, Luca; Rio, Domenico

    2011-11-01

    The Paleocene-Eocene Thermal Maximum is characterized by a massive perturbation of the global carbon cycle reflected in a large, negative carbon isotope excursion associated with rapid global warming and changes in the hydrologic system. The magnitude of the carbon isotope excursion from terrestrial carbonates and organic carbon is generally larger relative to marine carbonates. However, high-resolution marine and terrestrial isotopic records from the same locality for direct comparison are limited. Here we present coupled carbon isotope records from terrestrial biomarkers (δ 13C n-alkane ), marine bulk carbonates (δ 13C carbonate), and bulk organic carbon (δ 13C organic) from the continuous sedimentary record of the Forada section in northern Italy in order to evaluate the magnitude and phase relationships between terrestrial and marine environments. Consistent with previous reports, we find that the carbon isotope excursion established from δ 13C n-alkane values is more negative than those established from δ 13C carbonate and δ 13C organic values. In contrast to the majority of PETM records, all Forada δ 13C records show a sharp 13C-enrichment immediately following the onset of the carbon isotope excursion. Further, the terrestrial δ 13C n-alkane record lags δ 13C carbonate/δ 13C organic trends by ~ 4-5 kyr—offsets that reflect the long residence time of soil organic carbon. Hydrogen isotope records from higher-plant leaf waxes (δD n-alkane ) and sea-surface temperatures (TEX 86) were established to assess hydrologic and ocean temperature trends. We find δD n-alkane values trend more positive, associated with higher temperatures prior to the onset of the carbon isotope excursion, and conclude that regional changes in the hydrologic cycle likely occurred before the onset of the carbon isotope anomaly.

  1. Hydrological and Climatic Significance of Martian Deltas

    NASA Astrophysics Data System (ADS)

    Di Achille, G.; Vaz, D. A.

    2017-10-01

    We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.

  2. Catchment hydrological change from soil degradation: A model study for assessing urbanization on the terrestrial water cycle

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2015-12-01

    It is commonly held that land cover and land use changes from agriculture and urbanization impact the terrestrial water cycle primarily through changes in the land surface and canopy energy balance. Another, and in some cases more important factor is the role that landuse changes have on soil structure, compaction, and loss of carbon on hydrologic performance. The consequential change on soil properties, such as aggregation of soil particles, reduction of voids, impacts on matrix conductivity and macropore fractions, alter the hydrological processes in a watershed. Macropores promote rapid water and gas movement under wet conditions while the soil matrix preserves the water-holding capacity necessary for plant growth. The physically-based Penn State Integrated Hydrologic Model (PIHM) simulates water movement in soil with Richard's equation using an effective matrix-macropore conductivity. The model is able to capture the preferential flow and soil water storage in vertical and horizontal directions. Soil degradation leads to a reduction of the macropore fraction with dramatic changes in overall hydrologic performance under urban development and agricultural landuse practices. The effects on the terrestrial water cycle in the catchment reduce infiltration, soil water availability, recharge and subsurface baseflow to streams, while increasing heavy surface runoff and erosion. The Lancaster area and surrounding watershed in eastern Pennsylvania, USA is a benchmark watershed comprised of urban (24%), agricultural (58%) and forest lands (18%) respectively. After parameter estimation from national geospatial soils, landuse and historical climate reanalysis, three landuse scenarios were developed. 1) Pre-development forest landuse (<1700 AD), (2) deforestation for agriculture and light urban landuse (1700-1900), (3) urban-suburban development (1900-pres.). The watershed model was used to evaluate hydrologic changes due to landuse change and soil degradation. The effects of macropore reduction and compaction on hydrologic performance were found to be of the same order or greater magnitude than for changes in landuse practices alone. The research, funded by the US EPA, illustrates the complex interaction of landuse and soil changes on the terrestrial water cycle.

  3. Arctic Freshwater Synthesis: Summary of key emerging issues

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.

    2015-10-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.

  4. Using open-source programs to create a web-based portal for hydrologic information

    NASA Astrophysics Data System (ADS)

    Kim, H.

    2013-12-01

    Some hydrologic data sets, such as basin climatology, precipitation, and terrestrial water storage, are not easily obtainable and distributable due to their size and complexity. We present a Hydrologic Information Portal (HIP) that has been implemented at the University of California for Hydrologic Modeling (UCCHM) and that has been organized around the large river basins of North America. This portal can be easily accessed through a modern web browser that enables easy access and visualization of such hydrologic data sets. Some of the main features of our HIP include a set of data visualization features so that users can search, retrieve, analyze, integrate, organize, and map data within large river basins. Recent information technologies such as Google Maps, Tornado (Python asynchronous web server), NumPy/SciPy (Scientific Library for Python) and d3.js (Visualization library for JavaScript) were incorporated into the HIP to create ease in navigating large data sets. With such open source libraries, HIP can give public users a way to combine and explore various data sets by generating multiple chart types (Line, Bar, Pie, Scatter plot) directly from the Google Maps viewport. Every rendered object such as a basin shape on the viewport is clickable, and this is the first step to access the visualization of data sets.

  5. Hydrology in a peaty high marsh: hysteretic flow and biogeochemical implications

    EPA Science Inventory

    Terrestrial nutrient input to coastal waters is a critical water quality problem worldwide, and salt marshes may provide a valuable nutrient buffer (either by removal or by smoothing out pulse inputs) between terrestrial sources and sensitive estuarine habitats. One of the major...

  6. Paleohydrology of the Polar Urals from the Last Glacial Maximum Through the Holocene

    NASA Astrophysics Data System (ADS)

    Cowling, O.; Thomas, E.; Svendsen, J. I.; Haflidason, H.

    2017-12-01

    Paleohydrologic records provide important information concerning the past response of local hydrology to abrupt temperature changes. Arctic hydrology is particularly sensitive to temperature due to feedbacks involving sea ice and ice sheets. The most recent deglacial interval contains multiple abrupt temperature changes, which provide opportunities to study the relationship between temperature, ice sheets, and hydrology. We present a lacustrine δ2Hwax record from Bolshoye Schuchye, in the Polar Ural Mountains, spanning 24.5- 1.3 ka, and interpret hydroclimate conditions at a multi-centennial scale from the Last Glacial Maximum (LGM) through the Holocene. Bolshoye Schuchye's position beyond the reach of local glaciers during the LGM makes it a unique site, since lacustrine paleoclimate records from the Arctic rarely span this entire interval, so Bolshoye Schuchye helps to cover a gap in understanding of paleoclimate. Compound specific analysis of leaf wax hydrogen isotopes (δ2Hwax) is a hydroclimate proxy that can be used to infer moisture source area, transport history, and local aridity. Inferences based on δ2Hwax rely on mechanistic understanding of the process by which hydrogen from meteoric water is incorporated into waxes, and subsequently deposited in lake sediments. The δ2Hwax value of a sample reflects the isotopic composition of precipitation, while also incorporating fractionation that occurs between precipitation and uptake by plants, and biosynthetic fractionation during wax synthesis. Comparisons between different chain length waxes can be used to infer the isotopic composition of terrestrial and aquatic waxes, as terrestrial plants tend to produce longer chain lengths than aquatic macrophytes. The offset between terrestrial and aquatic δ2Hwax, expressed as ɛt-a, indicates differences between the precipitation used by terrestrial plants, and the lake water used by aquatic plants. Significant changes in ɛt-a can represent shifts in local aridity or precipitation seasonality. The record we present from Bolshoye Schuchye gives insights into terrestrial hydrologic changes resulting from rapid temperature shifts since the LGM.

  7. A Regional, Integrated Monitoring System for the Hydrology of the Pan-Arctic Land Mass

    NASA Technical Reports Server (NTRS)

    Serreze, Mark; Barry, Roger; Nolin, Anne; Armstrong, Richard; Zhang, Ting-Jung; Vorosmarty, Charles; Lammers, Richard; Frolking, Steven; Bromwich, David; McDonald, Kyle

    2005-01-01

    Work under this NASA contract developed a system for monitoring and historical analysis of the major components of the pan-Arctic terrestrial water cycle. It is known as Arctic-RIMS (Regional Integrated Hydrological Monitoring System for the Pan-Arctic Landmass). The system uses products from EOS-era satellites, numerical weather prediction models, station records and other data sets in conjunction with an atmosphere-land surface water budgeting scheme. The intent was to compile operational (at 1-2 month time lags) gridded fields of precipitation (P), evapotranspiration (ET), P-ET, soil moisture, soil freeze/thaw state, active layer thickness, snow extent and its water equivalent, soil water storage, runoff and simulated discharge along with estimates of non-closure in the water budget. Using "baseline" water budgeting schemes in conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were compiled to provide historical time series. The goals as outlined in the original proposal can be summarized as follows: 1) Use EOS data to compile hydrologic products for the pan-Arctic terrestrial regions including snowcover/snow water equivalent (SSM/A MODIS, AMSR) and near-surface freeze/thaw dynamics (Sea Winds on QuikSCAT and ADEOS I4 SSMI and AMSR). 2) Implement Arctic-RIMS to use EOS data streams, allied fields and hydrologic models to produce allied outputs that fully characterize pan-Arctic terrestrial and aerological water budgets. 3) Compile hydrologically-based historical products providing a long-term baseline of spatial and temporal variability in the water cycle.

  8. Improved methods for estimating local terrestrial water dynamics from GRACE in the Northern High Plains

    NASA Astrophysics Data System (ADS)

    Seyoum, Wondwosen M.; Milewski, Adam M.

    2017-12-01

    Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.

  9. Exploring the limits of the terrestrial fresh water cycle

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; Wang-Erlandsson, Lan; Keys, Patrick; Savenije, Hubert

    2014-05-01

    Precipitation is the ultimate source of life on this planet: it makes our crops grow, provides drinking water, feeds rivers and replenishes groundwater aquifers. Climate modelling studies estimate changes in precipitation due to increased greenhouse gas emissions and climate impact studies use those estimates as input to their (hydrological) models to predict future water availability and societal impact. However, humans also significantly alter the land surface by, for example, deforestation and irrigation, which is not frequently taken into account in our climate studies. Here, we present an overview of several papers in the field of moisture recycling, published by our group, that show the extent to which terrestrial evaporation influences terrestrial precipitation. It is found that 38% of the terrestrial precipitation originates from terrestrial evaporation and that 58% of all terrestrial evaporation recycles, and return again as terrestrial precipitation. Knowing this, it is clear that evaporation is not necessary a loss to the hydrological cycle. We show that in some cases even transpiration during the dry season can act as a moisture source for a distant region. To assess the vulnerability of a region to local and remote land use changes we propose the concept of the precipitationshed, which maps out a region's precipitation sources. Our results are useful in mapping out possible land use change threats, but also opportunities to safeguard our water resources in the Anthropocene.

  10. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    USDA-ARS?s Scientific Manuscript database

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understanding feedbacks in the cl...

  11. Annotated Bibliography of Publications on Watershed Management and Ecological Studies at Coweeta Hydrologic Laboratory, 1934,1984

    Treesearch

    Julia W. Gaskin; James E. Douglass; Wayne T. Swank; [Compilers

    1984-01-01

    A collection of 470 citations and annotations for papers published by scientists associated with theCoweeta Hydrologic Laboratory. Major categories in a subject index include watershed management, hydrometeorology, plant-water relationships, soil relationships, stream-flow relationships, ground water, stream ecology, and terrestrial ecology.

  12. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  13. Testing DRAINMOD-FOREST for predicting evapotranspiration in a mid-rotation pine plantation

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Ge Sun; George M. Chescheir; Asko Noormets; Devendra M. Amatya; R. Wayne Skaggs; John S. King; Steve McNulty; Michael Gavazzi; Guofang Miao; Jean-Christophe Domec

    2015-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle in terrestrial ecosystems and accurate description of ET processes is essential for developing reliable ecohydrological models. This study investigated the accuracy of ET prediction by the DRAINMOD-FOREST after its calibration/validation for predicting commonly measured hydrological variables. The model...

  14. Potential water yield reduction due to forestation across China

    Treesearch

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose

    2006-01-01

    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  15. Meetings: Issues and recent advances in soil respiration

    Treesearch

    K.A. Hibbard; B.E. Law

    2004-01-01

    The terrestrial carbon cycle is intriniscally tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year. Thus, soil respiration is a key process that underlies...

  16. GRL-FLUXNET: A network of eddy covariance systems in the southern great plains

    USDA-ARS?s Scientific Manuscript database

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water budgets to develop, evaluate, and enhance hydrologic and crop simulation models and to better understand the potential of terrestrial ecosystems to mi...

  17. Assimilating GRACE terrestrial water storage data into a conceptual hydrology model for the River Rhine

    NASA Astrophysics Data System (ADS)

    Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.

    2009-12-01

    Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.

  18. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    USGS Publications Warehouse

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  19. Simulating floods in the Amazon River Basin: Impacts of new river geomorphic and dynamic flow parameterizations

    NASA Astrophysics Data System (ADS)

    Coe, M. T.; Costa, M. H.; Howard, E. A.

    2006-12-01

    In this paper we analyze the hydrology of the Amazon River system for the latter half of the 20th century with our recently completed model of terrestrial hydrology (Terrestrial Hydrology Model with Biogeochemistry, THMB). We evaluate the simulated hydrology of the Central Amazon basin against limited observations of river discharge, floodplain inundation, and water height and analyze the spatial and temporal variability of the hydrology for the period 1939-1998. We compare the simulated discharge and floodplain inundated area to the simulations by Coe et al., 2002 using a previous version of this model. The new model simulates the discharge and flooded area in better agreement with the observations than the previous model. The coefficient of correlation between the simulated and observed discharge for the greater than 27000 monthly observations of discharge at 120 sites throughout the Brazilian Amazon is 0.9874 compared to 0.9744 for the previous model. The coefficient of correlation between the simulated monthly flooded area and the satellite-based estimates by Sippel et al., 1998 exceeds 0.7 for 8 of the 12 mainstem reaches. The seasonal and inter-annual variability of the water height and the river slope compares favorably to the satellite altimetric measurements of height reported by Birkett et al., 2002.

  20. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Treesearch

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  1. New and Improved GLDAS and NLDAS Data Sets and Data Services at HDISC/NASA

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Mocko, David M.; Rodell, Matthew; Teng, William L.; Vollmer. Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. Generating global fields of these variables, however, is still a challenge. The goal of a land data assimilation system (LDAS)is to ingest satellite-and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast.

  2. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically,more » differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.« less

  3. A First Look at Decadal Hydrological Predictability by Land Surface Ensemble Simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Zhu, Enda

    2018-03-01

    The prediction of terrestrial hydrology at the decadal scale is critical for managing water resources in the face of climate change. Here we conducted an assessment by global land model simulations following the design of the fifth Coupled Model Intercomparison Project (CMIP5) decadal hindcast experiments, specifically testing for the sensitivity to perfect initial or boundary conditions. The memory for terrestrial water storage (TWS) is longer than 6 years over 11% of global land areas where the deep soil moisture and aquifer water have a long memory and a nonnegligible variability. Ensemble decadal predictions based on realistic initial conditions are skillful over 31%, 43%, and 59% of global land areas for TWS, deep soil moisture, and aquifer water, respectively. The fraction of skillful predictions for TWS increases by 10%-16% when conditioned on Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation indices. This study provides a first look at decadal hydrological predictability, with an improved skill when incorporating low-frequency climate information.

  4. CubeSats in Hydrology: Ultrahigh-Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Houborg, R.; Mascaro, J.

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight, and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  5. Five hydrologic studies conducted by or in cooperation with the Center for Forested Wetlands Research

    Treesearch

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; T.J. Callahan; Ge Sun; J.E. Nettles; J.E. Parsons; M. Miwa

    2005-01-01

    The U.S. Department of Agriculture Forest Service Center for Forested Wetlands Research has conducted or cooperated in studies designed to improve understanding of fundamental hydrologic and biogeochemical processes that link aquatic and terrestrial ecosystems. Five of these studies are discussed here. The first is based on observations made on long-term experimental...

  6. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States.

    PubMed

    Yi, Hang; Wen, Lianxing

    2016-01-27

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  7. Template for Conceptual Model Construction: Model Components and Application of the Template

    DTIC Science & Technology

    2007-09-01

    stressors, focused through EECs, result in endpoints (Lubinski and Barko 2003). Endpoints are quantifiable, ecologically significant, and important to...Monitoring Plan (Thomas et al. 2001) Lake Okeechobee (Havens 1999) EPA Ecological Risk Assessment on Terrestrial Ecosystem (Suter 1996) Grassland...endpoints (Havens 1999) are examples of Hydrologic Resources: Water Quality, and Terrestrial Resources: Biota. The EPA Ecological Risk Assessment (Suter

  8. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  9. Yucca Mountain biological resources monitoring program; Annual report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmentalmore » regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  10. Climatic and hydrologic perturbations in eastern North America during the Middle Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Hren, M. T.; Super, J. R.

    2017-12-01

    The Middle Miocene Climatic Optimum (MMCO, 15-17 Ma) was the warmest period of the Neogene, punctuating the long-term Cenozoic cooling trend of the last 50 million years. Temperatures during the MMCO are thought to have reached 4-5 °C higher than modern, despite relatively modest atmospheric pCO2 concentrations of 300-500 ppm. Similarity between Miocene pCO2 levels and those forecast for the next century make the MMCO a key interval for understanding the potential impacts of anthropogenic pCO2 forcing. Evaluation of the climatic drivers and environmental consequences of this transient warming event is challenging, however, due to the limited number of high resolution proxy records of temperature and hydrologic change through the MMCO, particularly from terrestrial sites. Here, we present a new organic molecular record from the Calvert Cliffs formation in Maryland, to investigate terrestrial and near-shore environmental conditions during the MMCO. We observe small-scale fluctuations of 2 °C in isoprenoidal glycerol dialkyl glycerol tetraether (GDGT) TEX86-derived sea surface temperatures (SSTs), however these are superimposed on a long-term gradual warming trend that raises SSTs by 5 °C between 16.5 Ma and 14 Ma. In contrast, the MBT'-CBT soil temperature proxy, based on terrestrially sourced branched GDGTs, suggests mean annual temperatures rose by 3 °C between 16.5 and 15.9 Ma. Over the same interval, leaf wax n-alkane hydrogen isotopes show a rapid positive shift of 40‰, which we attribute to the influence of these warmer temperatures on the condensation of precipitation. A coeval negative excursion of 2‰ in carbon isotopes is indicative of an increase in rainfall during this mid-Miocene warming. The timing of biomarker-derived terrestrial climatic and hydrologic perturbations closely match reconstructed shifts in atmospheric pCO2, illustrating the tight coupling between terrestrial environmental change and carbon cycling during the middle Miocene.

  11. Event-based aquifer-to-atmosphere modeling over the European CORDEX domain

    NASA Astrophysics Data System (ADS)

    Keune, J.; Goergen, K.; Sulis, M.; Shrestha, P.; Springer, A.; Kusche, J.; Ohlwein, C.; Kollet, S. J.

    2014-12-01

    Despite the fact that recent studies focus on the impact of soil moisture on climate and especially land-energy feedbacks, groundwater dynamics are often neglected or conceptual groundwater flow models are used. In particular, in the context of climate change and the occurrence of droughts and floods, a better understanding and an improved simulation of the physical processes involving groundwater on continental scales is necessary. This requires the implementation of a physically consistent terrestrial modeling system, which explicitly incorporates groundwater dynamics and the connection with shallow soil moisture. Such a physics-based system enables simulations and monitoring of groundwater storage and enhanced representations of the terrestrial energy and hydrologic cycles over long time periods. On shorter timescales, the prediction of groundwater-related extremes, such as floods and droughts, are expected to improve, because of the improved simulation of components of the hydrological cycle. In this study, we present a fully coupled aquifer-to-atmosphere modeling system over the European CORDEX domain. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is used. The system is set up with a spatial resolution of 0.11° (12.5km) and closes the terrestrial water and energy cycles from aquifers into the atmosphere. Here, simulations of the fully coupled system are performed over events, such as the 2013 flood in Central Europe and the 2003 European heat wave, and over extended time periods on the order of 10 years. State and flux variables of the terrestrial hydrologic and energy cycle are analyzed and compared to both in situ (e.g. stream and water level gauge networks, FLUXNET) and remotely sensed observations (e.g. GRACE, ESA ICC ECV soil moisture and SMOS). Additionally, the presented modeling system may be useful in the assessment of groundwater-related uncertainties in virtual reality and scenario simulations.

  12. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    NASA Astrophysics Data System (ADS)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.

  13. Response of terrestrial hydrology to climate and permafrost change for the 21st century as simulated by JSBACH offline experiments

    NASA Astrophysics Data System (ADS)

    Blome, Tanja; Hagemann, Stefan; Ekici, Altug; Beer, Christian

    2015-04-01

    Permafrost (PF) or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. In terms of hydrology, changes in permafrost characteristics may lead to contradicting effects. E.g., observations show that the deepening of the Active Layer (AL) can both decrease and increase soil moisture, depending on the specific conditions. For the investigation of hydrological changes in response to climatic and thus PF change, it is therefore necessary to use a model. To address this response of the terrestrial hydrology to projected changes for the 21st century, the global land surface model of the Max-Planck-Institute for Meteorology, JSBACH, was used to simulate several future climate scenarios. JSBACH recently has been equipped with important physical PF processes, such as the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In order to identify hydrological impacts originating solely in the physical forcing, experiments were conducted in an offline mode and with fixed vegetation cover. Feedback mechanisms, e.g. via the carbon cycle, were thus excluded. The uncertainty range arising through different Representative Concentration Pathways (RCPs) as well as through different GCMs was addressed through the use of combinations of two RCPs and two GCMs as driving data. Analysis will focus on hydrological variables and related quantities.

  14. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    NASA Astrophysics Data System (ADS)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time compared to Cariaco where temperature and hydrologic change may have acted in concert on the rate of terrestrial carbon turnover. This study has important implications for understanding the effects of large climate change on terrestrial carbon storage, as well as applications of terrestrial biomarkers for paleoclimate records.

  15. Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models

    NASA Astrophysics Data System (ADS)

    Jin, S. G.; Hassan, A. A.; Feng, G. P.

    2012-12-01

    The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.

  16. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates

    NASA Astrophysics Data System (ADS)

    Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan

    2016-09-01

    The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.

  17. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

    PubMed Central

    Prudhomme, Christel; Giuntoli, Ignazio; Robinson, Emma L.; Clark, Douglas B.; Arnell, Nigel W.; Dankers, Rutger; Fekete, Balázs M.; Franssen, Wietse; Gerten, Dieter; Gosling, Simon N.; Hagemann, Stefan; Hannah, David M.; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty. PMID:24344266

  18. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment.

    PubMed

    Prudhomme, Christel; Giuntoli, Ignazio; Robinson, Emma L; Clark, Douglas B; Arnell, Nigel W; Dankers, Rutger; Fekete, Balázs M; Franssen, Wietse; Gerten, Dieter; Gosling, Simon N; Hagemann, Stefan; Hannah, David M; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.

  19. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. Thismore » report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.« less

  20. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks

    NASA Astrophysics Data System (ADS)

    Covino, Tim

    2017-01-01

    Hydrologic connections can link hillslopes to channel networks, streams to lakes, subsurface to surface, land to atmosphere, terrestrial to aquatic, and upstream to downstream. These connections can develop across vertical, lateral, and longitudinal dimensions and span spatial and temporal scales. Each of these dimensions and scales are interconnected, creating a mosaic of nested hydrologic connections and associated processes. In turn, these interacting and nested processes influence the transport, cycling, and transformation of organic material and inorganic nutrients through watersheds and along fluvial networks. Although hydrologic connections span dimensions and spatiotemporal scales, relationships between connectivity and carbon and nutrient dynamics are rarely evaluated within this framework. The purpose of this paper is to provide a cross-disciplinary view of hydrologic connectivity - highlighting the various forms of hydrologic connectivity that control fluxes of organic material and nutrients - and to help stimulate integration across scales and dimensions, and collaboration among disciplines.

  1. Forest Roads; A Synthesis of Scientific Information

    DOT National Transportation Integrated Search

    2001-05-01

    Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrological effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservat...

  2. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Ross; Benscoter, Brian; Comas, Xavier

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regionalmore » carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.« less

  3. MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT IN URBAN AREAS

    EPA Science Inventory

    Uncaptured stormwater runoff from urban and urbanizing areas has negative impacts on both terrestrial and aquatic ecosystems. Alters hydrologic regimes through conversion of precipitation to runoff, lowers extent of infiltration. Aggravates nonpoint source pollution issues.

  4. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  5. Interaction between Hydrosphere and Biosphere: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sivapalan, M.

    2007-12-01

    Vegetated terrestrial ecosystems and the overlying atmosphere are dynamically linked though the continuous transfer of mass, energy and momentum. The hydrologic variability interacts with the vegetation at time scales ranging from hours to days to inter-annual and decadal. The existing distribution of ecosystems is a result of evolutionary selections in response to environmental constraints which are themselves modified as terrestrial systems evolve until reaching a dynamic equilibrium. However this balance is changing, often rapidly, in response to anthropogenic influences such as climate change, land use/land cover change, and urban and agricultural expansions. Evidence suggests that vegetation response is adaptive in that they alter their survival strategies in response to environmental change, for example, through development of deep rooting and using hydraulic redistribution to better utilize the available moisture in the deeper soil layers. Yet little is known on how this impacts the hydrologic cycle and its variability. Active and adaptive control of vegetation and atmospheric flow moves soil-moisture that is no longer constrained by watershed boundaries. How do the atmospheric and terrestrial moisture, and vegetation interact to produce the observed variability in the water cycle and how does/will this variability change in response to the anthropogenic influences? What are the ecological consequences of this change? These broad questions lie at the heart of understanding the interaction between the hydrosphere and biosphere. Some specific questions to address are: · How does biosphere mediate the interaction between long time scale sub-surface hydrology and short time scale atmospheric hydrologic cycle? · How has this interaction given rise to the observed self-organized patterns of ecosystems and how do these ecosystems sustain the hydrologic regime needed for their own sustenance? · How are the dynamic regimes of ecohydrologic interactions affected by the anthropogenic impacts of land use/land cover change, elevated CO2 and temperature, water use, etc? · How do these linkages and changes there in alter the biogeochemical cycling in a region? Addressing these challenges is a sub-theme of the synthesis project supported by NSF. In this talk we will describe the progress made in regard to these issues.

  6. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry - First results

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.

    2008-12-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.

  7. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  8. Terrestrial water flux responses to global warming in tropical rainforest areas

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  9. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  10. Changes of Photochemical Properties of Dissolved Organic Matter During a Hydrological Year

    NASA Astrophysics Data System (ADS)

    Porcal, P.; Dillon, P. J.

    2009-05-01

    The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments has been conducted to describe long term changes in photochemical properties of DOM. The stream samples used in this study originated from three different watersheds in Dorset area (Ontario, Canada), the first watershed has predominantly coniferous cove, the second one is dominated by maple and birch, and a large wetland dominates to the third one. The first order kinetic constant rate was used as a suitable characteristic of photochemical properties of DOM. The higher rates were observed in samples from watershed dominated by coniferous forest while the lower rates were determined in deciduous forest. Kinetic rates from all three watersheds showed sinusoidal pattern during the hydrological year. The rates increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during the spring melt events when the fresh DOM was flushed out from terrestrial sources. The minimum rate constants were in summer when the discharge was lower. The photochemical properties of DOM changes during the hydrological year and correspond to the seasonal cycles of terrestrial organic matter.

  11. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    NASA Astrophysics Data System (ADS)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  12. Development of an ecohydrological salt marsh model

    EPA Science Inventory

    Terrestrial nitrogen input to coastal waters is a critical water quality problem nationwide. Even in systems well described experimentally, a clear understanding of process-level hydrological and biogeochemical controls can be difficult to ascertain from data alone. For examp...

  13. INDICATORS OF HYDROLOGIC PERMANENCE IN HEADWATER STREAMS

    EPA Science Inventory

    Headwater intermittent streams lie at the aquatic-terrestrial interface and represent much of our nation's stream miles. Recent court cases concerning the definition of jurisdictional waters under the Clean Water Act have illuminated a need to better understand the characteristi...

  14. ASSESSING ARID RIPARIAN LANDSCAPES USING REMOTE SENSING: THE FIRST STEP

    EPA Science Inventory

    Riparian ecosystems are of great value in the Southwest yet they are also extremely fragile and susceptible to natural and anthropogenic disturbances. Riparian ecosystems establish in patterns per the hydrologic and geomorphologic processes that dictate terrestrial plant success...

  15. Featured collection introduction: riparian ecosystems and buffers II

    EPA Science Inventory

    Riparian ecosystems, the interface of terrestrial and aquatic systems, are zones of high biodiversity (Naiman et al., 1993), rapid biogeochemical activity (Vidon et al., 2010), complex hydrologic activity (Mayer et al., 2010a), and offer solace that can bestow significant mental ...

  16. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  17. A strategy to sample nutrient dynamics across the terrestrial-aquatic interface at NEON sites

    NASA Astrophysics Data System (ADS)

    Hinckley, E. S.; Goodman, K. J.; Roehm, C. L.; Meier, C. L.; Luo, H.; Ayres, E.; Parnell, J.; Krause, K.; Fox, A. M.; SanClements, M.; Fitzgerald, M.; Barnett, D.; Loescher, H. W.; Schimel, D.

    2012-12-01

    The construction of the National Ecological Observatory Network (NEON) across the U.S. creates the opportunity for researchers to investigate biogeochemical transformations and transfers across ecosystems at local-to-continental scales. Here, we examine a subset of NEON sites where atmospheric, terrestrial, and aquatic observations will be collected for 30 years. These sites are located across a range of hydrological regimes, including flashy rain-driven, shallow sub-surface (perched, pipe-flow, etc), and deep groundwater, which likely affect the chemical forms and quantities of reactive elements that are retained and/or mobilized across landscapes. We present a novel spatial and temporal sampling design that enables researchers to evaluate long-term trends in carbon, nitrogen, and phosphorus biogeochemical cycles under these different hydrological regimes. This design focuses on inputs to the terrestrial system (atmospheric deposition, bulk precipitation), transfers (soil-water and groundwater sources/chemistry), and outputs (surface water, and evapotranspiration). We discuss both data that will be collected as part of the current NEON design, as well as how the research community can supplement the NEON design through collaborative efforts, such as providing additional datasets, including soil biogeochemical processes and trace gas emissions, and developing collaborative research networks. Current engagement with the research community working at the terrestrial-aquatic interface is critical to NEON's success as we begin construction, to ensure that high-quality, standardized and useful data are not only made available, but inspire further, cutting-edge research.

  18. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  19. Role of surface and subsurface lateral water flows on summer precipitation in a complex terrain region: A WRF-Hydro case-study for Southern Germany

    NASA Astrophysics Data System (ADS)

    Rummler, Thomas; Arnault, Joel; Gochis, David; Kunstmann, Harald

    2017-04-01

    Recent developments in hydrometeorological modeling aim towards more sophisticated treatment of terrestrial hydrologic processes. The standard version of the Weather Research and Forecasting (WRF) model describes terrestrial water transport as a purely vertical process. The hydrologically enhanced version of WRF, namely WRF-Hydro, does account for lateral terrestrial water flows, which allows for a more comprehensive process description of the interdependencies between water- and energy fluxes at the land-atmosphere interface. In this study, WRF and WRF-Hydro are applied to the Bavarian Alpine region in southern Germany, a complex terrain landscape in a relatively humid, mid-latitude climate. Simulation results are validated with gridded and station observation of precipitation, temperature and river discharge. Differences between WRF and WRF-Hydro results are investigated with a joint atmospheric-terrestrial water budget analysis. Changes in the partitioning in (near-) surface runoff and percolation are prominent. However, values for evapotranspiration ET feature only marginal variations, suggesting that soil moisture content is not a limiting factor of ET in this specific region. Simulated precipitation fields during isolated summertime events still show appreciable differences, while differences in large-scale, multi-day rainy periods are less substantial. These differences are mainly related to differences in the moisture in- and outflow terms of the atmospheric water budget induced by the surface and sub-surface lateral redistribution of soil moisture in WRF-Hydro.

  20. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    PubMed Central

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  1. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian M.; Maxwell, Reed M.

    2012-12-01

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.

  2. Do Heat Waves have an Impact on Terrestrial Water Storage?

    NASA Astrophysics Data System (ADS)

    Brena-Naranjo, A.; Teuling, R.; Pedrozo-Acuña, A.

    2014-12-01

    Recent works have investigated the impact of heat waves on the surface energy and carbon balance. However, less attention has been given to the impacts on terrestrial hydrology. During the summer of 2010, the occurrence of an exceptional heat wave affected severely the Northern Hemisphere. The extension (more than 2 million km2) and severity of this extreme event caused substantial ecosystem damage (more than 1 million ha of forest fires), economic and human losses (~500 billion USD and more than 17 million of indirect deaths, respectively). This work investigates for the first time the impacts of the 2010 summer heat wave on terrestrial water storage. Our study area comprises three different regions where air temperature records were established or almost established during the summer: Western Russia, the Middle East and Eastern Sahel. Anomalies of terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) were used to infer water storage deficits during the 2003-2013 period. Our analysis shows that Russia experienced the most severe water storage decline, followed by the Middle East, whereas Eastern Sahel was not significantly affected. The impact of the heat wave was spatially uniform in Russia but highly variable in the Middle East, with the Northern part substantially more affected than the Southern region. Lag times between maxima air temperatures and lower water storage deficits for Russia and the Middle East were approximately two and seven months, respectively. The results suggest that the response of terrestrial water storage to heat waves is stronger in energy-limited environments than in water-limited regions. Such differences in the magnitude and timing between meteorological and hydrological extremes can be explained by the propagation time between atmospheric water demand and natural or anthropogenic sources of water storage.

  3. NCA-LDAS: An Integrated Terrestrial Water Analysis System for Development, Evaluation, and Dissemination of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Jasinski, M. F.; Arsenault, K. R.; Beaudoing, H. K.; Bolten, J. D.; Borak, J.; Kumar, S.; Peters-Lidard, C. D.; Li, B.; Liu, Y.; Mocko, D. M.; Rodell, M.

    2014-12-01

    An Integrated Terrestrial Water Analysis System, or NCA-LDAS, has been created to enable development, evaluation, and dissemination of terrestrial hydrologic climate indicators focusing on the continental U.S. The purpose is to provide quantifiable indicators of states and estimated trends in our nation's water stores and fluxes over a wide range of scales and locations, to support improved understanding and management of water resources and numerous related sectors such as agriculture and energy. NCA-LDAS relies on improved modeling of terrestrial hydrology through assimilation of satellite imagery, building upon the legacy of the Land Information System modeling framework (Kumar et al, 2006; Peters-Lidard et al, 2007). It currently employs the Noah or Catchment Land Surface Model, run with a number of satellite data assimilation scenarios. The domain for NCA-LDAS is the continental U.S. at 1/8 degree grid for the period 1979 to present. Satellite-based variables that are assimilated are soil moisture and snow water equivalent from principally microwave sensors such as SMMR, SSM/I and AMSR, snow covered area from multispectral sensors such as AVHRR, and MODIS, and terrestrial water storage from GRACE. Once simulated, output are evaluated in comparison to independent datasets using a variety of metrics using the Land Surface Verification Toolkit (LVT). LVT schemes within NCA-LDAS also include routines for computing standard statistics of time series such means, max, and linear trends, at various scales. The dissemination of the NCA-LDAS, including model descriptions, forcings, parameters, daily output, indicator results and LVT tools, have been made available to the public through dissemination on NASA GES-DISC.

  4. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  5. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    NASA Astrophysics Data System (ADS)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  6. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2

    NASA Astrophysics Data System (ADS)

    Lemordant, Léo; Gentine, Pierre; Swann, Abigail S.; Cook, Benjamin I.; Scheff, Jacob

    2018-04-01

    Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2. This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land.

  7. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS

    NASA Technical Reports Server (NTRS)

    Syed, Tajdarul H.; Famiglietti, James S.; Rodell, Matthew; Chen, Jianli; Wilson, Clark R.

    2008-01-01

    Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.

  8. Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.

    2017-12-01

    Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.

  9. Recent Acceleration of the Terrestrial Hydrologic Cycle in the U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Yeh, Pat J.-F.; Wu, Chuanhao

    2018-03-01

    Most hydroclimatic trend studies considered only a subset of water budget variables; hence, the trend consistency and a holistic assessment of hydrologic changes across the entire water cycle cannot be evaluated. Here we use a unique 31 year (1983-2013) observed data set in Illinois (a representative region of the U.S. Midwest), including temperature (T), precipitation (P), evaporation (E), streamflow (R), soil moisture, and groundwater level (GWL), to estimate the trends and their sensitivity to different data periods and lengths. Both the Mann-Kendall trend test and the least squares linear method identify trends in close agreement. Despite no clear trends during 1983-2013, increasing trends are found in P (8.73-9.05 mm/year), E (6.87-7.47 mm/year), and R (1.57-3.54 mm/year) during 1992-2013, concurrently with a pronounced warming trend of 0.029-0.037 °C/year. However, terrestrial water storageis decreased by -2.0 mm/year (mainly due to declining GWL), suggesting that the increased R is caused by increased surface runoff rather than baseflow. Monthly analyses identify warming trends for all months except winter. In summer, P (E) exhibits an increasing (decreasing) trend, leading to increasing R, soil moisture, GWL, and terrestrial water storage. Most trends estimated for different subperiods are found to be sensitive to data lengths and periods. Overall, this study provides an internally consistent observed evidence on the intensification of the hydrologic cycle in response to recent climate warming in U.S. Midwest, in agreement with and well supported by several recent studies consistently reporting the increased P, R and E over the Midwest and Mississippi River basin.

  10. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  11. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  12. Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin

    NASA Technical Reports Server (NTRS)

    Forman, Barton A.; Reichle, R. H.; Rodell, M.

    2011-01-01

    Terrestrial water storage (TWS) information derived from Gravity Recovery and Climate Experiment (GRACE) measurements is assimilated into a land surface model over the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are compared against independent observational data sets of snow water equivalent (SWE) and runoff. For SWE, modest improvements in mean difference (MD) and root mean squared difference (RMSD) are achieved as a result of the assimilation. No significant differences in temporal correlations of SWE resulted. Runoff statistics of MD remain relatively unchanged while RMSD statistics, in general, are improved in most of the sub-basins. Temporal correlations are degraded within the most upstream sub-basin, but are, in general, improved at the downstream locations, which are more representative of an integrated basin response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux estimation, though comparisons with observed runoff would be enhanced by the use of river routing and lake storage routines within the prognostic land surface model. Further, GRACE hydrology products would benefit from the inclusion of better constrained models of post-glacial rebound, which significantly affects GRACE estimates of interannual hydrologic variability in the Mackenzie River basin.

  13. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone.

    PubMed

    Fasching, Christina; Ulseth, Amber J; Schelker, Jakob; Steniczka, Gertraud; Battin, Tom J

    2016-03-01

    Streams and rivers transport dissolved organic matter (DOM) from the terrestrial environment to downstream ecosystems. In light of climate and global change it is crucial to understand the temporal dynamics of DOM concentration and composition, and its export fluxes from headwaters to larger downstream ecosystems. We monitored DOM concentration and composition based on a diurnal sampling design for 3 years in an Alpine headwater stream. We found hydrologic variability to control DOM composition and the coupling of DOM dynamics in the streamwater and the hyporheic zone. High-flow events increased DOM inputs from terrestrial sources (as indicated by the contributions of humic- and fulvic-like fluorescence), while summer baseflow enhanced the autochthonous imprint of DOM. Diurnal and seasonal patterns of DOM composition were likely induced by biological processes linked to temperature and photosynthetic active radiation (PAR). Floods frequently interrupted diurnal and seasonal patterns of DOM, which led to a decoupling of streamwater and hyporheic water DOM composition and delivery of aromatic and humic-like DOM to the streamwater. Accordingly, DOM export fluxes were largely of terrigenous origin as indicated by optical properties. Our study highlights the relevance of hydrologic and seasonal dynamics for the origin, composition and fluxes of DOM in an Alpine headwater stream.

  14. Contribution of Organic Material to the Stable Isotope Composition of Some Terrestrial Carbonates as Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2005-01-01

    Understanding the isotopic geochemistry of terrestrial carbonate formation is essential to understanding the evolution of the Martian atmosphere, hydrosphere, and potential biosphere. Carbonate minerals, in particular, are important secondary minerals for interpreting past aqueous environments, as illustrated by the carbonates present in ALH84001 [1]. Models for the history of Mars suggest that the planet was warmer, wetter, and possessed a greater atmospheric pressure within the first billion years as compared to present conditions [2],[3],[4], and likely had an active hydrologic cycle. Morse and Marion [5] point out that associated with this hydrologic cycle would be the active chemical weathering of silicate minerals and thus consumption of atmospheric CO2 and deposition of carbonate and silica. It is during this warmer and wetter period of Martian history that surface and/or near-surface conditions would be most favorable for harboring possible microbiological life. Carbonates within ALH84001 offer evidence that fluids were present at 3.9 Gy on Mars [6]. A more through understanding of the effects of aqueous weathering and the potential contribution of organic compounds on the isotopic composition of Martian carbonate minerals can be gained by studying some terrestrial occurrences of carbonate rocks.

  15. Terrestrial Observations from NOAA Operational Satellites.

    PubMed

    Yates, H; Strong, A; McGinnis, D; Tarpley, D

    1986-01-31

    Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.

  16. The global topography mission gains momentum

    USGS Publications Warehouse

    Farr, Tom; Evans, Diane; Zebker, Howard; Harding, David; Bufton, Jack; Dixon, Timothy; Vetrella, S.; Gesch, Dean B.

    1995-01-01

    An accurate description of the surface elevation of the Earth is of fundamental importance to many branches of Earth science. Continental topographic data are required for studies of hydrology, ecology, glaciology, geomorphology, and atmospheric circulation. For example, in hydrologic and terrestrial ecosystem studies, topography exerts significant control on intercepted solar radiation, water runoff and subsurface water inventory, microclimate, vegetation type and distribution, and soil development. The topography of the polar ice caps and mountain glaciers directly reflects ice-flow dynamics and is closely linked to global climate and sea level change.

  17. U.S. Solar-Terrestrial Research Program

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    The Committee on Solar-Terrestrial Research (CSTR) of the National Research Council of the National Academy of Sciences is charged with looking after the health of solar-terrestrial research in the United States. In 1984 the National Academy Press published the CSTR report “National Solar-Terrestrial Research Program.” This program implements the recommendations of the earlier National Research Council study “Solar-Terrestrial Research for the 1980's” (1981). The earlier study, which took over 18 months to complete and involved the participation of more than 150 scientists, specifically identified the principal scientific and management recommendations required for a balanced solar-terrestrial program. The present study was undertaken by CSTR in the fall of 1983 in response to a request from several concerned federal agencies and the Board on Atmospheric Sciences and Climate. Together, the two studies constitute a set that prescribes a broad-gaged solar-terrestrial program.

  18. Evaluating the application of multi-satellite observation in hydrologic modeling

    USDA-ARS?s Scientific Manuscript database

    When monitoring local or regional hydrosphere dynamics for applications such as agricultural productivity or drought and flooding events, it is necessary to have accurate, high-resolution estimates of terrestrial water and energy storages. Though in-situ observations provide reliable estimates of hy...

  19. The hydrologic response of Mars to the onset of a colder climate and to the thermal evolution of its early crust

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    Morphologic similarities between the Martian valley networks and terrestrial runoff channel have been cited as evidence that the early Martian climate was originally more Earth-like, with temperatures and pressures high enough to permit the precipitation of H2O as snow or rain. Although unambiguous evidence that Mars once possessed a warmer, wetter climate is lacking, a study of the transition from such conditions to the present climate can benefit our understanding of both the early development of the cryosphere and the various ways in which the current subsurface hydrology of Mars is likely to differ from that of the Earth. Viewed from this perspective, the early hydrologic evolution of Mars is essentially identical to considering the hydrologic response of the Earth to the onset of a global subfreezing climate.

  20. Terrestrial origin of bacterial communities in complex boreal freshwater networks.

    PubMed

    Ruiz-González, Clara; Niño-García, Juan Pablo; Del Giorgio, Paul A

    2015-08-25

    Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network. © 2015 John Wiley & Sons Ltd/CNRS.

  1. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  2. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    USGS Publications Warehouse

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  3. How can a modular Master Program in Hydrology provide a framework for future education challenges?

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Lange, Jens

    2010-05-01

    A new Master program in Hydrology started at the University of Freiburg in 2008 as a continuation of the Diploma program in Hydrology due to the proposed changes according to the Bologna ac-cord. This imposed formation provided a perfect opportunity to develop a new program that is able to meet the challenges of future hydrology students to work in a nonstationary world due to climate and land use change. A modular program with individual three week hydrological courses was es-tablished, which builds on a general bachelor knowledge in natural sciences. Besides broad theory, students are taught in all relevant methods of hydrological field data collection and laboratory analy-sis. Recurrently, practical data analysis is carried out using freeware software tools. Examples in-clude time series analysis, (geo-)statistics and independently programmed water balance models including uncertainty assessments. Students work on data sets of different climatic zones and are made aware of hydrological problem areas around the globe. Hence, graduates know how to collect, analyse and evaluate hydrological information and may prepare their own, independent tools to pre-dict future changes. In addition, the new modular program includes instructors from the industry and public authorities to provide the students a broad perspective of their future profession. Finally, the new program allows directly to teach university students and practicing hydrologists together to provide evolving methods in hydrology to the practitioners and to allow contacts to professional for the university students.

  4. Predictable oxygen isotope exchange of plant lipids improves our ability to understand hydrologic shifts and partition evapotranspiration across scales

    NASA Astrophysics Data System (ADS)

    Maxwell, T.; Silva, L. C. R.; Horwath, W. R.

    2016-12-01

    Understanding the partitioning of evapotranspiration is critical to assessing how changes in climate affect the terrestrial water cycle. N-alkyl lipids have been successfully used to integrate local to regional scale hydrologic change through the integration of δD measured in specific compounds found in sediments. However, such studies are limited compared to contemporary hydrologic studies which have the advantage of using dual isotope methods whereby δD and δ18O are used in conjunction to partition evapotranspiration. δD values in n-alkyl lipids have been established as resistant to exchange with environmental water and, this approach has allowed for routine measurement and reconstruction of plant water δD. In contrast, the use of δ18O in organic matter remains incipient because the low oxygen content of plant lipids makes it difficult to accurately measure δ18O. In the interest of addressing both fundamental and practical potential of a lipid δ18O proxy, we present the first evidence for predictable exchange of δ18O between environmental water and hydrophobic bulk organic matter, neutral saponified lipids, and specific plant derived compounds Our data suggests that these different pools may be used to reconstruct the original source water δD/δ18O relationship from soil or sedimentary organic matter, which will help elucidate hydrologic shifts in terrestrial systems. Our results bring new insight into methods by which organic compounds might be used to partition evapotranspiration across large spatial scales in both contemporary and reconstructed systems.

  5. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    PubMed

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p < 0.0001), suggesting that the abundance of CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry season. This finding was further supported by an elevated a(250)/a(365) of CDOM samples collected in the lake in the wet season than in the dry season. Significantly higher mean levels of C3 and a(350) were recorded for CDOM samples collected from River Yincun than those from rivers Dapu and Changdou, differing in seasons, suggesting the significance of terrestrial CDOM input from River Yincun.

  6. The Platte River Hydrologic Observatory (PRIVHO)

    NASA Astrophysics Data System (ADS)

    Harvey, F.; Ramirez, J. A.; Thurow, T. L.

    2004-12-01

    The Platte River Hydrologic Observatory (PRIVHO), located within the Platte River Basin, of the U.S. central Great Plains, affords excellent interdisciplinary and multi-disciplinary research opportunities for scientists to examine the impacts of scaling, to investigate forcing feedbacks and coupling of various interconnected hydrological, geological, climatological and biological systems, and to test the applicability and limits of prediction in keeping with all five of CUAHSI's priority science criteria; linking hydrologic and biogeochemical cycles, sustainability of water resources, hydrologic and ecosystem interactions, hydrologic extremes, and fate and transport of contaminants. In addition, PRIVHO is uniquely positioned to investigate many human dimension questions such as those related to interstate and intrastate conflicts over water use, evolution of water policy and law in the wake of advancing science, societal and economic changes that are driven by water use, availability and management, and human impacts on climate and land use changes. The Platte River traverses several important environmental gradients, including temperature and precipitation-to-evaporation ratio, is underlain by the High Plains Aquifer under much of its reach, crosses a number of terrestrial ecoregions, and in central Nebraska, serves as a vital link in the Central Flyway, providing habitat for 300 species of migratory birds and many threatened or endangered species. The Platte River flows through metropolitan, urban and agricultural settings and is impacted by both point and non-point pollution. The Platte River is one of the most over-appropriated rivers in the country with 15 major dams, hundreds of small reservoirs, and thousands of irrigation wells. The river provides municipal and industrial water supplies for about 3.5 million people, irrigation water for millions of acres of farmland, and generates millions of dollars of hydroelectric power. PRIVHO will allow researchers to address science questions related to; the impacts of drought, managed agriculture, and water resource development and use on riparian ecosystem health, hyporheic flow dynamics and contaminant attenuation within braided streams, groundwater-surface water interaction, and the influences of climate modes such as ENSO, NAO, PDO, etc. on river hydrological dynamics. Infrastructure is in place within PRIVHO to collect core hydrologic data including precipitation, stream discharge, groundwater levels, precipitation, surface and groundwater quality, soil moisture, remotely sensed water quality, vegetative cover data, soil moisture and vegetative wetness data, and information related to migratory waterfowl, terrestrial animals and aquatic organisms.

  7. Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Qu, Weijing; Fang, Peng; Peng, Dongju

    2014-08-01

    The terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption for establishing a terrestrial reference frame is that the motion of the solid Earth's figure centre relative to the mass centre of the Earth system on a multidecadal timescale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected accelerated motion in their translation parameters. Based on this underlying assumption, the inconsistency of relative origin motions of the ITRFs has been attributed to data reduction imperfection. We investigated the impact of surface mass loading from atmosphere, ocean, snow, soil moisture, ice sheet, glacier and sea level from 1983 to 2008 on the geocentre variations. The resultant geocentre time-series display notable trend acceleration from 1998 onward, in particular in the z-component. This effect is primarily driven by the hydrological mass redistribution in the continents (soil moisture, snow, ice sheet and glacier). The acceleration is statistically significant at the 99 per cent confidence level as determined using the Mann-Kendall test, and it is highly correlated with the satellite laser ranging determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that, in addition to systematic errors from analysis procedures, the observed non-linearity of the Earth-system behaviour at interannual timescales is physically driven and is able to explain 42 per cent of the disparity between the origins of ITRF2000 and ITRF2005, as well as the high level of consistency between the ITRF2005 and ITRF2008 origins.

  8. DOC Dynamics in Small Headwater Streams: the Role of Hydrology, Climate, and Land Management

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Lee, B. S.; Jones, J. A.

    2015-12-01

    Dissolved organic carbon (DOC) is a critical component of the carbon (C) cycle of both terrestrial and aquatic systems. For small headwater allochthonous streams, terrestrial C delivery fuels the metabolism of receiving waters and significantly influences biotic diversity and function. While nutrient fluxes in streams have long been used as indicators of terrestrial ecosystem processes, less attention has been given to terrestrial controls on DOC export. We used the long-term stream chemistry records from the H.J. Andrews Forest LTER to examine forest management, climatic, and hydrologic controls on both seasonal and annual DOC fluxes. Within a watershed, annual DOC flux was highly related to annual discharge (Q), although considerable variability in higher discharge years suggested a role for indices of storminess, especially early in the water year. Among watersheds, younger, previously harvested watersheds generally had significantly lower DOC fluxes for a given Q than old-growth watersheds, even 4+ decades after harvest. The exception to this pattern was a harvested watershed that had significant downed wood retained on site, and had densities of coarse woody debris (CWD) close to that of the old-growth watersheds even though live tree biomass was similar to the other harvested watersheds. Other climatic factors did not appear to have significant roles in predicting either seasonal or annual fluxes of DOC. This is in sharp contrast to fluxes of nitrate at our site, which appears to be related most significantly to the presence of alder within the watershed. Taken together, our data suggest a persistent and cascading role for CWD in old-growth forest ecosystems.

  9. Multi-proxy reconstructions of hydrologic change during the Eocene-Oligocene transition in the North American Interior

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Hren, M. T.

    2016-12-01

    The dramatic shift from a 'greenhouse' to an 'icehouse' world that occurred during the Eocene-Oligocene transition (EOT, 34-33.5 Ma) is associated with changes in atmospheric and oceanic circulation patterns, extinction events in both marine and terrestrial ecosystems, and the establishment of a continental-scale ice sheet on Antarctica. Terrestrial records of the EOT, however, show limited consensus regarding the intensity and impact of this transition, complicating our understanding of how terrestrial hydrology responds to climatic change of this magnitude. Stable isotopes of fossil bones and teeth from the White River Group (WRG) in Nebraska have been interpreted to show an 8 °C decrease in mean annual temperatures across the EOT, with an increase in seasonality, however these studies find no evidence for accompanying changes in aridity. Conversely, other studies have inferred increased aridity in the early Oligocene based on changes in the δ18O and δ13C values of mammalian tooth enamel sampled from the same location. Some of this ambiguity is likely to stem from the difficulty in separating the influence of factors such as temperature, water availability and atmospheric circulation patterns on the δ18O composition of ungulate tooth enamel. We present paired leaf wax biomarker and clay hydrogen isotope data from the WRG to produce a new multi-proxy record of hydrological change and accompanying ecosystem shifts through the EOT in the North American interior. Hydrogen isotopes of clay minerals show a negative shift of <15‰ from the late Eocene through early Oligocene, while in contrast leaf wax n-alkanes record a negative shift in excess of 50‰, in tandem with a positive change in average chain length. We infer an increase in aridity from these data, with an associated potential shift in vegetation cover towards more savannah-style plant species as the climate became drier during the transition into the Oligocene. These data provide new constraints on the impact of the EOT in North America, and highlight the potential role of increasing aridity, in addition to declining temperatures, in shaping the hydrology of the region during this interval.

  10. CHARACTERIZATION OF RIPARIAN VEGETATION IN OFF-CHANNEL HABITATS AND RELATIONSHIPS WITH ANNUAL FLOODING PATTERNS, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    Hydrogeomorphic processes drive riparian vegetation establishment, growth, and longevity. The stage of vegetation development (e.g. age, composition, height, density) affects its degree of functionality with respect to hydrology, nutrient cycling, and terrestrial and aquatic hab...

  11. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs

    EPA Science Inventory

    The flux of organic matter (OM) across ecosystem boundaries can influence estuarine food web dynamics and productivity. However, this process is seldom investigated taking into account all the adjacent ecosystems (e.g. ocean, river, land) and different hydrological settings (i.e....

  12. Benthic invertebrate fauna, small streams

    Treesearch

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  13. Satellite observations of temporal terrestrial features

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1972-01-01

    The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.

  14. Forest roads: a synthesis of scientific information.

    Treesearch

    Hermann Gucinski; Michael J. Furniss; Robert R. Ziemer; Martha H. Brookes

    2001-01-01

    Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrologic effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and socioeconomic ones (such as passive-use value, economic effects on development and range management). Road...

  15. Forest roads: A synthesis of scientific information

    Treesearch

    Hermann Gucinski; Michael J. Furniss; Robert R. Ziemer; Martha H. Brookes

    2001-01-01

    Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrologic effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and socioeconomic ones (such as passive-use value, economic effects on development and range management). Road...

  16. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  17. Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sanchez-Vidal, Anna; Higueras, Marina; Martí, Eugènia; Liquete, Camino; Calafat, Antoni; Kerhervé, Philippe; Canals, Miquel

    2013-11-01

    Rivers are the primary pathway for organic matter transport from the terrestrial to the marine environment and, thus, river fluxes are critical in regulating the quantity of terrestrial organic matter that reaches the coastal ecosystems. Hydrodynamic processes typical of the coastal zone can lead to the transport of terrestrial organic matter across the continental shelf and beyond. Such organic matter can eventually reach the deep margin and basin ecosystems. Riverine inputs of organic matter to the sea can be a significant food source to marine ecosystems contributing to carbon cycling in these ecosystems. In order to assess the marine carbon cycle it is essential to know the biogeochemical characteristics and temporal dynamics of the fluvial organic matter input discharged by rivers to the coastal zone. In this study we present a one and a half year long (November 2008 to May 2010) assessment on organic carbon (OC) and nitrogen (N) inputs from the three main rivers discharging into the North Catalan margin (Tordera, Ter and Fluvià, from south to north). Furthermore, we investigate the characteristics of the particulate organic matter discharged by these rivers by means of stable isotopic (δ13C and δ15N) and grain size analyses. We found that the hydrological regime of the rivers is a relevant factor in regulating the quantity and mediating the quality of organic matter inputs to the North Catalan margin. Overall, the three main rivers discharging into the study area deliver 1266 and 159 tonnes of terrestrial OC and N per year, respectively, to the coastal zone. Most of the OC and N load is transported during floods, which indicates that the Mediterranean climate of the area, with a strong seasonal contrast in precipitation, determines the timing of the main inputs of OC and N to the sea. Therefore, the annual OC and N load experiences a high temporal variability associated to the number and magnitude of floods with in each hydrological year. In addition, we found that water reservoirs along the rivers act as traps for terrestrial organic matter, reducing its delivery and ultimate burial into marine sediments. River hydrology also affects the quality of organic matter that reaches the coastal zone (both in terms of C and N) by shifting the relative weight of the various sources of terrestrial organic matter. During low river discharge (i.e., in summer and early autumn) the main contributor to the organic matter pool is mostly associated with freshwater primary producers, whereas with relatively high water flows (i.e., in winter and spring) the main contributor is associated with erosion and release of soil organic matter. Furthermore, the impact of waste water treatment plants into the studied rivers results in the alteration of the isotopic signal of suspended N. The three studied rivers play a major role in transporting terrestrial organic matter to the North Catalan margin, but the fraction that is exported to the deep margin by high-energy episodic hydrodynamic events, such as large coastal storms, has a minor importance.

  18. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    NASA Astrophysics Data System (ADS)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and internationally). The workshop brought together approximately 40 participants, with roughly equal numbers from North America and Europe/Scandinavia, and included representatives from Canada, Russia, Germany, Iceland, Sweden, Norway, Finland, Denmark/Greenland, and the US. This talk will focus on findings of the workshop, highlighting advances in Arctic research that have taken flight over the last decade, specifically stimulated by considering the hydrologic cycle as an integrating force and fundamental building block uniting atmospheric, oceanic, cryospheric and terrestrial domains of the pan-Arctic system. The authors will present a future vision for systems-level science of Arctic hydrology and affiliated energy and carbon cycles. A scientific roadmap will be introduced, outlining the main research priorities, robust global and regional geo-information data products, improved models and effective data assimilation systems to forward the science of water in the Arctic.

  19. Accelerating advances in continental domain hydrologic modeling

    USGS Publications Warehouse

    Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.

    2015-01-01

    In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.

  20. Robust and Heterogeneous Hydrological Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.

  1. On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Ajami, Hoori; Sharma, Ashish; Band, Lawrence E.; Evans, Jason P.; Tuteja, Narendra K.; Amirthanathan, Gnanathikkam E.; Bari, Mohammed A.

    2017-01-01

    Increases in greenhouse gas concentrations are expected to impact the terrestrial hydrologic cycle through changes in radiative forcings and plant physiological and structural responses. Here, we investigate the nature and frequency of non-stationary hydrological response as evidenced through water balance studies over 166 anthropogenically unaffected catchments in Australia. Non-stationarity of hydrologic response is investigated through analysis of long-term trend in annual runoff ratio (1984-2005). Results indicate that a significant trend (p < 0.01) in runoff ratio is evident in 20 catchments located in three main ecoregions of the continent. Runoff ratio decreased across the catchments with non-stationary hydrologic response with the exception of one catchment in northern Australia. Annual runoff ratio sensitivity to annual fractional vegetation cover was similar to or greater than sensitivity to annual precipitation in most of the catchments with non-stationary hydrologic response indicating vegetation impacts on streamflow. We use precipitation-productivity relationships as the first-order control for ecohydrologic catchment classification. A total of 12 out of 20 catchments present a positive precipitation-productivity relationship possibly enhanced by CO2 fertilization effect. In the remaining catchments, biogeochemical and edaphic factors may be impacting productivity. Results suggest vegetation dynamics should be considered in exploring causes of non-stationary hydrologic response.

  2. The power of runoff

    NASA Astrophysics Data System (ADS)

    Wörman, A.; Lindström, G.; Riml, J.

    2017-05-01

    Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.

  3. A post-Cassini view of Titan's methane-based hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2018-05-01

    The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.

  4. Evaporative fractionation of marine water isotopes in the Arctic Ocean help understand a changing Arctic water cycle

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Welker, J. M.

    2017-12-01

    Most of the global hydrologic cycle occurs in oceanic waters. This oceanic derived moisture is critical to the precipitation and evapotranspiration regimes that influence terrestrial Earth systems. Thus understanding oceanic water processes has important global implications for our knowledge of modern and past hydrologic cycles. As they are influenced by environmental variables such as sea surface temperature and atmospheric humidity, water isotope ratios (e.g., δ18O, δ2H) can help understand the patterns driving the water cycle. However, our knowledge of marine isotopes is relatively limited. In particular, the fractionation of water isotopes during evaporation of oceanic water, essentially the start of the hydrologic cycle, is largely based on theoretical relationships derived from spatially and temporally limited data sets. This constrained understanding of oceanic evaporation fractionation patterns is especially pronounced in the rapidly changing Arctic Ocean. These changes are associated with reduced sea ice coverage, which is increasing the amount of local Artic Ocean sourced moisture in atmospheric and terrestrial systems and amplifying the Arctic hydrologic cycle. Here we present new data revealing the nuances of evaporative fractionation of Arctic Ocean water isotopes with the first collection of continuous, contemporaneous sea water and vapor isotopes. These data, collected in situ aboard the icebreaker Healy, show that the difference between actual ocean vapor isotope values and vapor values estimated by the closure equation increases progressively with latitude (especially beyond 70°) and varies between δ18O and δ2H. These differences are likely due to more isotopic mixing in the troposphere and/or closure equation assumptions inapplicable to Arctic regions. Moreover, we find: 1) a positive relationship between fractionation magnitude and latitude; and 2) the influence of evaporative fractionation from environmental variables such as wind and relative humidity reverses with the presence of sea ice. These new data increase our understanding of the patterns and processes governing past, present, and future changes to the Arctic hydrologic cycle.

  5. Terrestrial Water Storage and Vegetation Resilience to Drought

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Reager, J. T., II; Konings, A. G.

    2017-12-01

    The expected increased occurrences of hydrologic extreme events such as droughts in the coming decades motivates studies to better understand and predict the response of vegetation to such extreme conditions. Previous studies have addressed vegetation resilience to drought, defined as its ability to recover from a perturbation (Hirota et al., 2011; Vicente-Serrano et al., 2012), but appear to only focus on precipitation and a couple of vegetation indices, hence lacking a key element: terrestrial water storage (TWS). In this study, we combine and compare multiple remotely-sensed hydro-ecological datasets providing information on climatic and hydrological conditions (Tropical Rainfall Measuring Mission (TRMM), Gravity Recovery and Climate Experiment (GRACE)) and indices characterizing the state of the vegetation (vegetation water content using Vegetation Optical Depth (VOD) from SMAP (Soil Moisture Active and Passive), Gross Primary Production (GPP) from FluxCom and Specific Fluorescence Intensity (SFI, from GOSat)) to assess the ability of vegetation to face and recover from droughts across the globe. Our results suggest that GRACE hydrological data bridge the knowledge gap between precipitation deficit and vegetation response. All products are aggregated at a 0.5º spatial resolution and a monthly temporal resolution to match the GRACE Mascon product. Despite these coarse spatiotemporal resolutions, we find that the relationship between existing remotely-sensed eco-hydrologic data varies spatially, both in terms of strength of relationship and time lag, showing the response time of vegetation characteristics to hydrological changes and highlighting the role of water storage. A special attention is given to the Amazon river basin, where two well documented droughts occurred in 2005 and 2010, and where a more recent drought occurred in 2015/2016. References : Hirota, Marina, et al. "Global resilience of tropical forest and savanna to critical transitions." Science 334.6053 (2011): 232-235. Vicente-Serrano, Sergio M., et al. "Response of vegetation to drought time-scales across global land biomes." Proceedings of the National Academy of Sciences 110.1 (2013): 52-57.

  6. Development of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu

    2017-04-01

    Recent research showed that inland water including rivers, lakes, and groundwater may play some role in carbon cycling, although its contribution has remained uncertain due to limited amount of reliable data available. In this study, the author developed an advanced model coupling eco-hydrology and biogeochemical cycle (National Integrated Catchment-based Eco-hydrology (NICE)-BGC). This new model incorporates complex coupling of hydrologic-carbon cycle in terrestrial-aquatic linkages and interplay between inorganic and organic carbon during the whole process of carbon cycling. The model could simulate both horizontal transports (export from land to inland water 2.01 ± 1.98 Pg C/yr and transported to ocean 1.13 ± 0.50 Pg C/yr) and vertical fluxes (degassing 0.79 ± 0.38 Pg C/yr, and sediment storage 0.20 ± 0.09 Pg C/yr) in major rivers in good agreement with previous researches, which was an improved estimate of carbon flux from previous studies. The model results also showed global net land flux simulated by NICE-BGC (-1.05 ± 0.62 Pg C/yr) decreased carbon sink a little in comparison with revised Lund-Potsdam-Jena Wetland Hydrology and Methane (-1.79 ± 0.64 Pg C/yr) and previous materials (-2.8 to -1.4 Pg C/yr). This is attributable to CO2 evasion and lateral carbon transport explicitly included in the model, and the result suggests that most previous researches have generally overestimated the accumulation of terrestrial carbon and underestimated the potential for lateral transport. The results further implied difference between inverse techniques and budget estimates suggested can be explained to some extent by a net source from inland water. NICE-BGC would play an important role in reevaluation of greenhouse gas budget of the biosphere, quantification of hot spots, and bridging the gap between top-down and bottom-up approaches to global carbon budget.

  7. Resource subsidies between stream and terrestrial ecosystems under global change

    USGS Publications Warehouse

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic homogenization. Our conceptual framework based on the match–mismatch between donor and recipient organisms may facilitate understanding of the multiple effects of global change and aid in the development of future research questions.

  8. Resource subsidies between stream and terrestrial ecosystems under global change.

    PubMed

    Larsen, Stefano; Muehlbauer, Jeffrey D; Marti, Eugenia

    2016-07-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream-terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream-riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream-terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic homogenization. Our conceptual framework based on the match-mismatch between donor and recipient organisms may facilitate understanding of the multiple effects of global change and aid in the development of future research questions. © 2015 John Wiley & Sons Ltd.

  9. Evaluation of hydrological cycle in the major European midlatitude river basins in the frame of the CORDEX project

    NASA Astrophysics Data System (ADS)

    Georgievski, Goran; Keuler, Klaus

    2013-04-01

    Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage seasonal cycle averaged in Danube river basin for the ten years (1990-1999) overlapping period between CCLM historical experiment (abbreviated CCLM_hist), its forcing GCM (MPI-ESM-LR, here abbreviated MPI_hist) and CCLM_eval is performed. It reveals that CCLM_hist simulation is in better agreement with quasi observed terrestrial water storage than MPI_hist and CCLM_eval. This result seems promising for the assessment of impact of climate change on hydrological cycle. However, evaluation of the whole ensemble of regional climate downscaling experiments participated in CORDEX-Europe project would provide a more robust estimate.

  10. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  11. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Constrain Missing Role of Inland Waters on Boundless Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2016-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering, etc. (NICE-BGC) (Nakayama, accepted). The new model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The model results of CO2 evasion to the atmosphere, sediment storage, and carbon transport to the ocean (DOC, POC, and DIC flux) were reasonably in good agreement with previous compiled data. The model also showed carbon budget in major river basins and in each continent in global scale. In order to decrease uncertainty about carbon cycle, it became clear the previous empirical estimation by compiled data should be extended to this process-oriented model and higher resolution data to further clarify mechanistic interplay between inorganic and organic carbon and its relationship to nitrogen and phosphorus in terrestrial-aquatic linkages. NICE-BGC would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  12. Ecosystem services provided by groundwater dependent wetlands in karst areas

    NASA Astrophysics Data System (ADS)

    Massimo Delle Grazie, Fabio; Gill, Laurence

    2017-04-01

    Ecosystem services provided by groundwater dependent wetlands in karst areas Turloughs are topographic depressions in karst, which are intermittently flooded on an annual cycle via groundwater sources and have substrate and/or ecological communities characteristic of wetlands. Turloughs are designated a Priority Habitat in Annex 1 of the EU Habitats Directive (92/43/EEC) as well as GWDTEs under the Water Framework Directive (WFD). Hydrology is the primary driver of these unique ecosystems and so a rigorous understanding of the flooding regime is required in order to assess their conservation and future sustainability. This research aims to identify and quantify the ecosystem services associated with turloughs, particularly in relation to the need for habitat conservation in the face of external pressures associated with agriculture, road drainage schemes, water supply and wastewater disposal. The research focuses primarily on quantifying the ecosystem functions responsible for producing terrestrial hydrologic and climatic services, as well as intrinsic biodiversity services, and uses this context to lay out a blueprint for a more detailed ecosystem service assessment. These services have been quantified in appropriate units (biophysical or otherwise), based on actual or potential sustainable use levels. Available data and field studies have been used to assess the hydrological conditions necessary to sustain the biodiversity of vegetation as well as to better understand the connections between hydrology and biogeochemical cycles. The benefits of the turlough services have then been analyzed and quantified in appropriate units (ecological, socio-cultural and economic indicators) as well as monetary values. This has been done using the inVEST tool. InVEST includes models for quantifying, mapping, and valuing the benefits provided by terrestrial, freshwater, and marine systems. In particular the Habitat Risk Assessment and the Nutrient Delivery Ratio modules have been used.

  13. Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2014-06-01

    Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removedmore » from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.« less

  14. “Black Swans” of Hydrology: Can our Models Address the Science of Hydrologic Change?

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2009-12-01

    Coupled models of terrestrial hydrology and climate have grown in complexity leading to better understanding of the coupling between the hydrosphere, biosphere, and the climate system. During the past two decades, these models have evolved through generational changes as they have grown in sophistication in their ability to resolve spatial heterogeneity as well as vegetation dynamics and biogeochemistry. These developments have, in part, been driven by data collection efforts ranging from focused field campaigns to long-term observational networks, advances in remote sensing and other measurement technologies, along with sophisticated estimation and assimilation methods. However, the hydrologic cycle is changing leading to unexpected and unanticipated behavior through emergent dynamics and patterns that are not part of the historical milieu. Is there a new thinking that is needed to address this challenge? The goal of this talk is to draw from the modeling developments in the past two decades to foster a debate for moving forward.

  15. The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.

    2017-01-01

    The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.

  16. SNOWMIP2: An evaluation of forest snow process simulations

    Treesearch

    Richard Essery; Nick Rutter; John Pomeroy; Robert Baxter; Manfred Stahli; David Gustafsson; Alan Barr; Paul Bartlett; Kelly Elder

    2009-01-01

    Models of terrestrial snow cover, or snow modules within land surface models, are used in many meteorological, hydrological, and ecological applications. Such models were developed first, and have achieved their greatest sophistication, for snow in open areas; however, huge tracts of the Northern Hemisphere both have seasonal snow cover and are forested (Fig. 1)....

  17. Estimating uncertainties in watershed studies

    Treesearch

    John Campbell; Ruth Yanai; Mark Green

    2011-01-01

    Small watersheds have been used widely to quantify chemical fluxes and cycling in terrestrial ecosystems for about the past half century. The small watershed approach has been valuable in characterizing hydrologic and nutrient budgets, for instance, in estimating the net gain or loss of solutes in response to disturbance. However, the uncertainty in these ecosystem...

  18. Featured collection introduction: Riparian ecosystems and buffers II

    Treesearch

    Paul M. Mayer; Kathleen A. Dwire; Judith A. Okay; Philipe G. Vidon

    2014-01-01

    Riparian ecosystems, the interface of terrestrial and aquatic systems, are zones of high biodiversity (Naiman et al., 1993), rapid biogeochemical activity (Vidon et al., 2010), complex hydrologic activity (Mayer et al., 2010a), and offer solace that can bestow significant mental health benefits (Alcock et al., 2014). Yet, many riparian zones also represent...

  19. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event

    NASA Astrophysics Data System (ADS)

    Izumi, Kentaro; Kemp, David B.; Itamiya, Shoma; Inui, Mutsuko

    2018-01-01

    A pronounced excursion in the carbon-isotope composition of biospheric carbon and coeval seawater warming during the early Toarcian (∼183 Ma) has been linked to the large-scale transfer of 12C-enriched carbon to the oceans and atmosphere. A European bias in the distribution of available data means that the precise pattern, tempo and global expression of this carbon cycle perturbation, and the associated environmental responses, remain uncertain. Here, we present a new cm-scale terrestrial-dominated carbon-isotope record through an expanded lower Toarcian section from Japan that displays a negative excursion pattern similar to marine and terrestrial carbon-isotope records documented from Europe. These new data suggest that 12C-enriched carbon was added to the biosphere in at least one rapid, millennial-scale pulse. Sedimentological analysis indicates a close association between the carbon-isotope excursion and high-energy sediment transport and enhanced fluvial discharge. Together, these data support the hypothesis that a sudden strengthening of the global hydrological cycle occurred in direct and immediate response to rapid carbon release and atmospheric warming.

  20. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  1. Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation

    PubMed Central

    2018-01-01

    Abstract The generation of plant diversity involves complex interactions between geography, environment and organismal traits. Many macroevolutionary processes and emergent patterns have been identified in different plant groups through the study of spatial data, but rarely in the context of a large radiation of tropical herbaceous angiosperms. A powerful system for testing interrelated biogeographical hypotheses is provided by the terrestrial bromeliads, a Neotropical group of extensive ecological diversity and importance. In this investigation, distributional data for 564 species of terrestrial bromeliads were used to estimate variation in the position and width of species-level hydrological habitat occupancy and test six core hypotheses linking geography, environment and organismal traits. Taxonomic groups and functional types differed in hydrological habitat occupancy, modulated by convergent and divergent trait evolution, and with contrasting interactions with precipitation abundance and seasonality. Plant traits in the Bromeliaceae are intimately associated with bioclimatic differentiation, which is in turn strongly associated with variation in geographical range size and species richness. These results emphasize the ecological relevance of structural-functional innovation in a major plant radiation. PMID:29479409

  2. The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models

    NASA Astrophysics Data System (ADS)

    Yang, Z.

    2011-12-01

    I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.

  3. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  4. LOADING SIMULATION PROGRAM C

    EPA Pesticide Factsheets

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  5. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  6. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.

  7. USERS MANUAL FOR HYDROLOGICAL SIMULATION PROGRAM - FORTRAN (HSPF)

    EPA Science Inventory

    The Hydrological Simulation Program--Fortran (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well-mixed impoundments. The manual discusses the modular structure...

  8. Incorporating Ecosystem Services into Community-level ...

    EPA Pesticide Factsheets

    EPA’s Office of Research and Development’s Sustainable and Healthy Communities Research Program is developing tools and approaches to incorporate ecosystem goods and services concepts into community-level decision-making. The San Juan Community Study is one of a series of coordinated community studies, which also include Mobile Bay, AL, Great Lakes Areas of Concern, and the Pacific Northwest. Common elements across the community studies include a focus on watershed management and national estuary programs (National Estuary Program, National Estuarine Research Reserve System). San Juan, Puerto Rico, is unique from the other community studies in that it is located in a highly urbanized watershed integrated with a number of freshwater and coastal ecosystems. The San Juan Community Study will explore linkages between watershed management decisions (e.g., dredging canals, restoration of mangrove buffers, sewage discharge interventions, climate adaptive strategies) targeting priority stressors (e.g., nutrients, contaminants, and pathogens; aquatic debris; habitat loss; modified hydrology and water circulation; sea level rise; storm intensity and frequency) effecting the condition of ecosystems (e.g., estuarine habitats and fish, as well as the connected terrestrial and coastal ecosystems), associated ecosystem goods and services (e.g., tourism and recreation, fishing, nutrient & sediment retention, contaminant processing, carbon sequestration, flood protection),

  9. Hydrology or biology? Modeling simplistic physical constraints on lake carbon biogeochemistry to identify when and where biology is likely to matter

    NASA Astrophysics Data System (ADS)

    Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.

    2017-12-01

    Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.

  10. Potential impacts of human water management on the European heat wave 2003 using fully integrated bedrock-to-atmosphere simulations

    NASA Astrophysics Data System (ADS)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Wada, Yoshihide

    2017-04-01

    Recent studies indicate that anthropogenic impacts on the terrestrial water cycle lead to a redistribution of water resources in space and time, can trigger land-atmosphere feedbacks, such as the soil moisture-precipitation feedback, and potentially enhance convection and precipitation. Yet, these studies do not consider the full hydrologic cycle from the bedrock to the atmosphere or apply simplified hydrologic models, neglecting the connection of irrigation to water withdrawal and groundwater depletion. Thus, there is a need to incorporate water resource management in 3D hydrologic models coupled to earth system models. This study addresses the impact of water resource management, i.e. irrigation and groundwater abstraction, on land-atmosphere feedbacks through the terrestrial hydrologic cycle in a physics-based soil-vegetation-atmosphere system simulating 3D groundwater dynamics at the continental scale. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface and overland flow model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is set up over the European CORDEX domain in 0.11° resolution. The model closes the terrestrial water and energy cycles from aquifers into the atmosphere. Anthropogenic impacts are considered by applying actual daily estimates of irrigation and groundwater abstraction from Wada et al. (2012, 2016), as a source at the land surface and explicit removal of groundwater from aquifer storage, respectively. Simulations of the fully coupled system are performed over the 2003 European heat wave and compared to a reference simulation, which does not consider human interactions in the terrestrial water cycle. We study the space and time characteristics and evolution of temperature extremes, and soil moisture and precipitation anomalies influenced by human water management during the heat wave. A first set of simulations utilizes the spectral nudging technique to keep the large-scale circulation consistent to the driving ERA-Interim reanalysis and examines the direct and local feedback pathway, along which irrigation cools the land surface, enhances evapotranspiration and increases the total atmospheric water vapor, which may induce local precipitation. A second set of simulations without spectral nudging addresses the indirect feedback, where the atmospheric circulation is modified indirectly by irrigation. Simulations are evaluated over a range of spatial and temporal scales, i.e. from daily to seasonal variations. Results indicate systematic responses at the land surface, but a strong non-linearity of the local feedback affecting tropospheric processes and the occurrence of precipitation, and hence emphasize the need to integrate human water management in regional climate simulations. References: Wada, Y., L. P. H van Beek, and M. F. P. Bierkens (2012), Nonsustainable groundwater sustaining irrigation: A global assessment, Water Resources Research, 48, W00L06, doi: 10.1029/2011WR010562. Wada, Y., I. E. M. de Graaf, and L. P. H. van Beek (2016), High-resolution modeling of human and climate impacts on global water resources, J. Adv. Model. Earth Syst., 8, 735-763, doi: 10.1002/2015MS000618.

  11. Solar-Terrestrial Science Strategy Workshop

    NASA Technical Reports Server (NTRS)

    Banks, Peter M. (Editor); Roberts, William T. (Editor); Kropp, Jack (Editor)

    1989-01-01

    The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program.

  12. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem in Eastern Canada.

    NASA Astrophysics Data System (ADS)

    Govind, A.; Chen, J. M.; Margolis, H.

    2007-12-01

    Current estimates of terrestrial carbon overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that this component, which occur at a landscape or watershed scale have significant influences on the spatial distribution of carbon, due to its large contribution to the local water balance. To this end, we further developed a spatially explicit ecohydrological model, BEPS-TerrainLab V2.0. We simulated the coupled hydrological and carbon cycle processes in a black spruce-moss ecosystem in central Quebec, Canada. The carbon stocks were initialized using a long term carbon cycling model, InTEC, under a climate change and disturbance scenario, the accuracy of which was determined with inventory plot measurements. Further, we simulated and validated several ecosystem indicators such as ET, GPP, NEP, water table, snow depth and soil temperature, using the measurements for two years, 2004 and 2005. After gaining confidence in the model's ability to simulate ecohydrological processes, we tested the influence of lateral water flow on the carbon cycle. We made three hydrological modeling scenarios 1) Explicit, were realistic lateral water routing was considered 2) Implicit where calculations were based on a bucket modeling approach 3) NoFlow, where the lateral water flow was turned off in the model. The results showed that pronounced anomalies exist among the scenarios for the simulated GPP, ET and NEP. In general, Implicit calculation overestimated GPP and underestimated NEP, as opposed to Explicit simulation. NoFlow underestimated GPP and overestimated NEP. The key processes controlling GPP were manifested through stomatal conductance which reduces under conditions of rapid soil saturation ( NoFlow ) or increases in the Implicit case, and, nitrogen availability which affects Vcmax, the maximum carboxylation rate. However, for NEP, the anomalies were attributed to differences in soil carbon pool decomposition, which determine the heterotrophic respiration and the resultant nitrogen mineralization which affects GPP and several other feedback mechanisms. These results suggest that lateral water flow does play a significant role in the terrestrial carbon distribution. Therefore, regional or global scale terrestrial carbon estimates could have significant errors if proper hydrological constrains are not considered for modeling ecological processes due to large topographic variations on the Earth's surface. For more info please visit: http://ajit.govind.googlepages.com/agu2007

  13. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.

    2013-12-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can be calibrated and forcing precipitation fields were successfully corrected. The calibrated model output was compared to the reference run of PCR-GLOBWB before calibration. Here we found significant improvement in simulation of the global terrestrial water cycle, specifically discharge simulation for major river basins in the world. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  14. Inorganic nitrogen retention by watersheds at Fernow Experimental Forest and Coweeta Hydrologic Laboratory

    Treesearch

    Mary Beth Adams; Jennifer D. Knoepp; Jackson R. Webster

    2014-01-01

    Because elevated N loading can impair both terrestrial and aquatic ecosystems, understanding the abiotic and biotic controls over retention and export of dissolved inorganic N (DIN) is crucial. Long-term research has been conducted on experimental watersheds at two U.S. Forest Service experimental forests in the Appalachian region: Fernow Experimental Forest (FEF) in...

  15. 76 FR 34273 - Environmental Assessment and Finding of No Significant Impact for Special Nuclear Material...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ..., including site geography, demographics, meteorology, hydrology, and geology. The proposed activity is... Elimination System permit are needed. No effects on the aquatic or terrestrial habitat in the vicinity of the..., enriched to 5% in the U-235 isotope. Transport of the 193 fresh fuel assemblies from a fuel fabrication...

  16. Modeling wildfire regimes in forest landscapes: abstracting a complex reality

    Treesearch

    Donald McKenzie; Ajith H. Perera

    2015-01-01

    Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fi re is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ),...

  17. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    USDA-ARS?s Scientific Manuscript database

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  18. Models and parameters for environmental radiological assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C W

    1984-01-01

    This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

  19. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels.

    PubMed

    Greenwood, M J; Booker, D J

    2016-02-01

    Despite many studies highlighting the widespread occurrence and effects of resource movement between ecosystems, comparatively little is known about how anthropogenic alterations to ecosystems affect the strength, direction and importance of such fluxes. Hydrological regime and riparian land use cause well-documented changes in riverine larval invertebrate communities. Using a dataset from 66 sites collected over 20 years, we showed that such effects led to spatial and temporal differences in the density and type of larvae with winged adults within a river reach, altering the size and composition of the source pool from which adult aquatic insects can emerge. Mean annual larval densities varied 33-fold and the temporal range varied more than 20-fold between sites, associated with the hydrological regime and land cover and antecedent high and low flows, respectively. Densities of larvae with winged adults were greater in sites that had more algal coverage, agricultural land use, seasonally predictable flow regimes and faster water velocities. More interestingly, by influencing larval communities, riparian land use and the magnitude and frequency of high and low flows affected the size structure, dispersal ability and longevity of adults available to emerge from river reaches, potentially influencing the spatial extent and type of terrestrial consumers supported by aquatic prey. This suggests that anthropogenic alterations to land use or river flows will have both spatial and temporal effects on the flux and potential availability of adult aquatic insects to terrestrial consumers in many rivers.

  20. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  1. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  2. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  3. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Seneviratne, Sonia I.; Gruber, Nicolas; Davin, Edouard L.

    2017-01-01

    The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.

  4. HYDROLOGICAL SIMULATION PROGRAM-FORTRAN (HSPF): USERS MANUAL FOR RELEASE 8.0

    EPA Science Inventory

    The Hydrological Simulation Program--FORTRAN (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well mixed impoundments. The manual discusses the modular structure...

  5. A Collaboration in Support of LBA Science and Data Exchange: Beija-flor and EOS-WEBSTER

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Gentry, M. J.; Keller, M.; Rhyne, T.; Moore, B.

    2001-12-01

    The University of New Hampshire (UNH) has developed a Web-based tool that makes data, information, products, and services concerning terrestrial ecological and hydrological processes available to the Earth Science community. Our WEB-based System for Terrestrial Ecosystem Research (EOS-WEBSTER) provides a GIS-oriented interface to select, subset, reformat and download three main types of data: selected NASA Earth Observing System (EOS) remotely sensed data products, results from a suite of ecosystem and hydrological models, and geographic reference data. The Large Scale Biosphere-Atmosphere Experiment in Amazonia Project (LBA) has implemented a search engine, Beija-flor, that provides a centralized access point to data sets acquired for and produced by LBA researchers. The metadata in the Beija-flor index describe the content of the data sets and contain links to data distributed around the world. The query system returns a list of data sets that meet the search criteria of the user. A common problem when a user of a system like Beija-flor wants data products located within another system is that users are required to re-specify information, such as spatial coordinates, in the other system. This poster describes methodology by which Beija-flor generates a unique URL containing the requested search parameters and passes the information to EOS-WEBSTER, thus making the interactive services and large diverse data holdings in EOS-WEBSTER directly available to Beija-flor users. This "Calling Card" is used by EOS-WEBSTER to generate on-demand custom products tailored to each Beija-flor request. Through a collaborative effort, we have demonstrated the ability to integrate project-specific search engines such as Beija-flor with the products and services of large data systems such as EOS-WEBSTER, to provide very specific information products with a minimal amount of additional programming. This methodology has the potential to greatly facilitate research data exchange by enhancing the interoperability of diverse data systems beyond the two described here.

  6. Industrial Fuel Gas Demonstration-Plant Program. Volume II. The environment (Deliverable No. 27). [Baseline environmental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    The proposed site of the Industrial Fuel Gas Demonstration Plant (IFGDP) is located on a small peninsula extending eastward into Lake McKeller from the south shore. The peninsula is located west-southwest of the City of Memphis near the confluence of Lake McKeller and the Mississippi River. The environmental setting of this site and the region around this site is reported in terms of physical, biological, and human descriptions. Within the physical description, this report divides the environmental setting into sections on physiography, geology, hydrology, water quality, climatology, air quality, and ambient noise. The biological description is divided into sections onmore » aquatic and terrestrial ecology. Finally, the human environment description is reported in sections on land use, demography, socioeconomics, culture, and visual features. This section concludes with a discussion of physical environmental constraints.« less

  7. USGS: Science to understand and forecast change in coastal ecosystems

    USGS Publications Warehouse

    Myers, M.

    2007-01-01

    The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.

  8. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  9. A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010

    DOE PAGES

    Zhang, Yu; Pan, Ming; Sheffield, Justin; ...

    2018-01-12

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation ( P), evapotranspiration (ET), runoff ( R), and the totalmore » water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET- R-TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.« less

  10. A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Pan, Ming; Sheffield, Justin

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation ( P), evapotranspiration (ET), runoff ( R), and the totalmore » water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET- R-TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.« less

  11. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.

  12. Water sources in mangroves in four hydrogeomorphic settings in Florida and Mexico

    Treesearch

    Christina Stringer; Mark Rains

    2016-01-01

    Mangroves are transitional environments, where fresh water from the terrestrial environments mix with seawater from the marine environment. The relative contributions of these sources vary and play a role in controlling the physical and chemical hydrological characteristics of mangroves and facilitate the exchange of mass, energy, and organisms between mangroves and...

  13. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Treesearch

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  14. Dissolved organic carbon fluxes from hydropedologic units in Alaskan coastal temperate rainforest watersheds

    Treesearch

    David V. D' Amore; Rick T. Edwards; Paul A. Herendeen; Eran Hood; Jason B. Fellman

    2015-01-01

    Dissolved organic C (DOC) transfer from the landscape to coastal margins is a key component of regional C cycles. Hydropedology provides a conceptual and observational framework for linking soil hydrologic function to landscape C cycling. We used hydropedology to quantify the export of DOC from the terrestrial landscape and understand how soil temperature and water...

  15. Solar radiation as a forest management tool: a primer of principles and application

    Treesearch

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  16. Evidence and implications of recent climate change in northern Alaska and other arctic regions.

    Treesearch

    Larry D. Hinzman; Neil D. Bettez; W. Robert Bolton; F. Stuart Chapin; Mark B. Dyurgerov; Chris L. Fastie; Brad Griffith; Robert D. Hollister; Allen Hope; Henry P. Huntington; Anne M. Jensen; Gensuou J. Jia; Torre Jorgenson; Douglas L. Kane; David R. Klein; Gary Kofinas; Amanda H. Lynch; Andrea H. Lloyd; A. David McGuire; Frederick E. Nelson; Walter C. Oechel; Thomas E. Osterkamp; Charles H. Racine; Vladimir E. Romanovsky; Robert S. Stone; Douglas A. Stow; Matthew Sturm; Craig E. Tweedie; George L. Vourlitis; Marilyn D. Walker; Donald A. Walker; Patrick J. Webber; Jeffrey M. Welker; Kevin S. Winker; Kenji Yoshikawa

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth...

  17. Effects of hydrological forcing on the structure of a tropical estuarine food web

    Treesearch

    Trisha B. Atwood; Tracy N. Wiegner; Richard A. MacKenzie

    2012-01-01

    River flow can impact which sources of particulate organic matter (POM) fuel estuarine food webs. Here, we used stable carbon (C) and nitrogen (N) isotope analyses to compare how contributions of diff erent POM sources (terrestrial, estuarine, and marine) to the diets of zooplankton and juvenile fishes differed between low and high river flow conditions, as well as...

  18. Direct Measurement of Daily Evapotranspiration From a Deciduous Forest Using a Superconducting Gravimeter

    NASA Astrophysics Data System (ADS)

    Van Camp, M. J.; de Viron, O.; Pajot-Métivier, G.; Cazenave, F.; Watlet, A.; Dassargues, A.; Vanclooster, M.

    2015-12-01

    The conversion of liquid water into water vapor strongly controls the energy transfer between the Earth and the atmosphere, and plays one of the most important roles in the hydrological cycle. This process, called evapotranspiration (ET), deeply constraints the amount of green water in the total global water balance. However, assessing the ET from terrestrial ecosystems remains a key challenge in hydrology. We show that the liquid water mass losses can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution varies through the system, changing its gravity field. Using continuous superconducting gravity measurements, we were able to identify a daily changes in gravity at the level of, or smaller than 10-10 g per day. This corresponds to 2.0 mm of water over an area of 50 ha.The strength of this method is its ability to ensure a direct, traceable and continuous monitoring of actual ET for years at the mesoscale (~50 ha) with a precision of a few tenths of mm of water. This paves the way for the development of the method in different land-use, land-cover and geological contexts, using superconducting and coming quantum gravimeters.

  19. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  20. Preliminary Analysis of the Hydrologic and Geochemical Controls on Acid-Neutralizing Capacity in Two Acidic Seepage Lakes in Florida

    NASA Astrophysics Data System (ADS)

    Pollman, Curtis D.; Lee, T. M.; Andrews, W. J.; Sacks, L. A.; Gherini, S. A.; Munson, R. K.

    1991-09-01

    In late 1988, parallel studies of Lake Five-O (pH 5.14) in the Florida panhandle and Lake Barco (pH 4.50) in north central Florida were initiated to develop hydrologic and major ion budgets of these lakes as part of an overall effort to improve understanding of the hydrologic, depositional, and biogeochemical factors that control acid-neutralizing capacity (ANC) in seepage lakes. Preliminary findings from these studies indicate that earlier perceptions of lake hydrology and mechanisms of ANC regulation in Florida seepage lakes may have to be revised. The traditional perspective of seepage lakes in the Florida panhandle views these systems as dominated by precipitation inputs and that ANC regulation is due largely to in-lake processes. Our results for Lake Five-O show modest to steep hydraulic gradients almost entirely around the lake. In addition, the horizontal hydraulic conductivity of the surficial aquifer is high (8-74 m day-1), indicating that large quantities of groundwater flow into Lake Five-O. Calculations of net groundwater flow from hydrologic budgets also indicate that groundwater may comprise at least 38 to 46% of the total inflow. For Lake Barco, net flow estimates of the minimum groundwater inflow range from 5 to 14% of total inflow. Enrichment factor and ion flux calculations for Lake Five-O and Lake Barco indicate that terrestrial as well as in-lake processes contribute significantly to ANC regulation. The extent that terrestrial processes contribute to ANC generation is directly related to the magnitude of groundwater inflow as well as the degree of ion enrichment or depletion that occurs in the surficial aquifer. Net ANC generation in both study lakes was dominated by anion retention (NO3- and SO42-). Where previous studies concluded that in-lake reduction was the primary sink for SO42-, our preliminary calculations show that adsorption of SO42- within the watershed is perhaps twice as important as in-lake reduction as a source of ANC. Net base cation enrichment in both lakes was negligible.

  1. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...

    2016-04-25

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  2. Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.

    2012-12-01

    At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the general service function of 2010 has minor increase than 2007, however the general function of two years are in common level; Compare with different region, the upstream, middle stream and downstream indicates "worse", "common" and "good" level respectively. The first three derived functions are leisure, offer products and industrial water use. In the end, this paper investigates the evolution of water ecosystem service function under rising temperatures and elevated CO2 concentration scenarios in Luanhe Basin through eco-hydrological model. The results elaborate that the water ecosystem service functions would decline when temperature rising, and warming to 1.5 degree is the mutation point of sharp drop; Increased CO2 concentration scenario will improve the direct service function in the whole Basin; under the overlying scenario, different region shows different results, the direct service function will increased in upstream and middle stream, direct service function will drop in downstream. A comprehensive analysis indicates that the rising temperature is the major driven of water ecosystem service function in Luanhe Basin.

  3. Science to support adaptive habitat management: Overton Bottoms North Unit, Big Muddy National Fish and Wildlife Refuge, Missouri [Volumes 1-6

    USGS Publications Warehouse

    Jacobson, Robert B.

    2006-01-01

    Extensive efforts are underway along the Lower Missouri River to rehabilitate ecosystem functions in the channel and flood plain. Considerable uncertainty inevitably accompanies ecosystem restoration efforts, indicating the benefits of an adaptive management approach in which management actions are treated as experiments, and results provide information to feed back into the management process. The Overton Bottoms North Unit of the Big Muddy National Fish and Wildlife Refuge is a part of the Missouri River Fish and Wildlife Habitat Mitigation Project. The dominant management action at the Overton Bottoms North Unit has been excavation of a side-channel chute to increase hydrologic connectivity and to enhance shallow, slow current-velocity habitat. The side-channel chute also promises to increase hydrologic gradients, and may serve to alter patterns of wetland inundation and vegetation community growth in undesired ways. The U.S. Geological Survey's Central Region Integrated Studies Program (CRISP) undertook interdisciplinary research at the Overton Bottoms North Unit in 2003 to address key areas of scientific uncertainty that were highly relevant to ongoing adaptive management of the site, and to the design of similar rehabilitation projects on the Lower Missouri River. This volume presents chapters documenting the surficial geologic, topographic, surface-water, and ground-water framework of the Overton Bottoms North Unit. Retrospective analysis of vegetation community trends over the last 10 years is used to evaluate vegetation responses to reconnection of the Overton Bottoms North Unit to the river channel. Quasi-experimental analysis of cottonwood growth rate variation along hydrologic gradients is used to evaluate sensitivity of terrestrial vegetation to development of aquatic habitats. The integrated, landscape-specific understanding derived from these studies illustrates the value of scientific information in design and management of rehabilitation projects.

  4. Northern Eurasia Earth Science Partnership Initiative (NEESPI) in 2009: An Overview of the Current Status

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Kattsov, V.; Lawford, R. G.

    2009-12-01

    Five years ago NEESPI was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Currently, serving as an umbrella for more than 130 individual research projects (always with an international participation) with a budget close to $15M annually, the Initiative is in full swing. A new crop of NEESPI projects were launched in 2009 to compensate for the projects that have been completed and the total number of the NEESPI projects practically did not change. Several NEESPI Workshops and Sessions at the International Meetings were held during 2009 that strengthen the NEESPI grasp on biogeochemical cycle and cryosphere studies, climatic and hydrological modeling, and regional NEESPI components in Central Asia, Siberia and mountainous regions of the NEESPI domain. An overview NEESPI paper submitted to the Bulletin of the American Meteorological Society was published in May 2009. Book “Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe” was published by Springer (Groisman and Ivanov, eds., 2009). Two more books devoted to the high latitudes of Eurasia prepared by the members of the NEESPI team are scheduled to appear before the end of this year. In April 2008 NEESPI received an intergovernmental level of support being included in a Memorandum of Understanding for Collaboration in the Fields of Meteorology, Hydrology, and Oceanography between the U.S. National Oceanic and Atmospheric Administration and the Russian Federal Service for Hydrometeorology and Environmental Monitoring. The new level of recognition requires a higher level of integration of observation programs, process studies, and modeling, and across disciplines.

  5. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of hydrological system changes, and to develop and implement tools and technologies for monitoring, prevention and mitigation of environmental risks and pressures. In addition, NOHA will provide long-term statistical series of hydrological state variables and fluxes for the analysis and prognosis of Global Change consequences using integrated model systems. These data will support the development and establishment of efficient prevention, mitigation and adaptation strategies (E.g. EU-Water Framework Directive) and spur the development and validation of hydrological theories and models. The second network, ALPS, - the Alpine Observing System - will create an unique infrastructure for environmental and climate research and observation for the whole Alpine region, providing a common platform for the benefit of the society in Europe as a whole. The initiative will build on existing infrastructure in the participating countries and on new and emerging technology, allowing an unprecedented coverage of observation systems at affordable cost. ALPS will create a new collaboration between scientists, engineers, monitoring agencies, public and decision makers, with the aim to gain an integrated understanding of complex environmental systems. The ALPS effort will be structured along three major axes: (i) harmonize and strengthen the backbone of permanent measurement infrastructures and complement these with dense deployments of intelligent networks, to improve the recording of environmental parameters overcoming disciplinary and national borders, (ii) link the main data centres to create a distributed cyber-infrastructure with the final aim to enable effective data access and retrieval to all science and society users, and (iii) invest in data assimilation and exploitation toward scientific and practical results in particular with respect to dealing with extreme events and natural hazards. In this presentation, we will focus on the motivation, the concept and the scientific and organizational challenges of ALPS and NOHA.

  6. Variability of Phenology and Fluxes of Water and Carbon with Observed and Simulated Soil Moisture in the Ent Terrestrial Biosphere Model (Ent TBM Version 1.0.1.0.0)

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Moorcroft, P. R.; Aleinov, Igor; Puma, M. J.; Kiang, N. Y.

    2015-01-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan- Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  7. Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments

    NASA Astrophysics Data System (ADS)

    Ng, G.-H. C.; Yourd, A. R.; Johnson, N. W.; Myrbo, A. E.

    2017-09-01

    Recent studies show sulfur redox processes in terrestrial settings are more important than previously considered, but much remains uncertain about how these processes respond to dynamic hydrologic conditions in natural field settings. We used field observations from a sulfate-impacted wetland and stream in the mining region of Minnesota (USA) to calibrate a reactive transport model and evaluate sulfur and coupled geochemical processes under contrasting hydrogeochemical scenarios. Simulations of different hydrological conditions showed that flux and chemistry differences between surface water and deeper groundwater strongly control hyporheic zone geochemical profiles. However, model results for the stream channel versus wetlands indicate sediment organic carbon content to be the more important driver of sulfate reduction rates. A complex nonlinear relationship between sulfate reduction rates and geochemical conditions is apparent from the model's higher sensitivity to sulfate concentrations in settings with higher organic content. Across all scenarios, simulated e- balance results unexpectedly showed that sulfate reduction dominates iron reduction, which is contrary to the traditional thermodynamic ladder but corroborates recent experimental findings by Hansel et al. (2015) that "cryptic" sulfur cycling could drive sulfate reduction in preference over iron reduction. Following the thermodynamic ladder, our models shows that high surface water sulfate slows methanogenesis in shallow sediments, but field observations suggest that sulfate reduction may not entirely suppress methane. Overall, our results show that sulfate reduction may serve as a major component making up and influencing terrestrial redox processes, with dynamic hyporheic fluxes controlling sulfate concentrations and reaction rates, especially in high organic content settings.

  8. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  9. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  10. Variability of phenology and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial Biosphere Model (Ent TBM version 1.0.1.0.0)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Moorcroft, P. R.; Aleinov, I.; Puma, M. J.; Kiang, N. Y.

    2015-12-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan-Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  11. Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Pellerin, Brian A.; Bergamaschi, Brian A.; Bachand, Philip A. M.; Bachand, Sandra M.; Spencer, Robert G. M.; Hernes, Peter J.

    2017-10-01

    Agricultural watersheds are globally pervasive, supporting fundamentally different organic matter source, composition, and concentration profiles in comparison to natural systems. Similar to natural systems, agricultural storm runoff exports large amounts of organic carbon from agricultural land into waterways. But intense management of upper soil layers, waterway channelization, wetland and riparian habitat removal, and postharvest vegetation removal promise to uniquely drive organic matter release to waterways. During a winter first flush and a subsequent storm event, this study investigated the influence of a small agricultural watershed on dissolved organic matter (DOM) source, composition, and biolability. Storm water discharge released strongly terrestrial yet biolabile (23 to 32%) dissolved organic carbon (DOC). Following a 21 day bioassay, a parallel factor analysis identified an 80% reduction in a protein-like (phenylpropyl) component (C2) that was previously correlated to lignin phenol concentration, and a 10% reduction in a humic-like, terrestrially sourced component (C4). Storm-driven releases tripled DOC concentration (from 2.8 to 8.7 mg L-1) during the first flush event in comparison to base flow and were terrestrially sourced, with an eightfold increase in vascular plant derived lignin phenols (23.0 to 185 μg L-1). As inferred from system hydrology, lignin composition, and nitrate as a groundwater tracer, an initial pulse of dilute water from the upstream watershed caused a counterclockwise DOC hysteresis loop. DOC concentrations peaked after 3.5 days, with the delay between peak discharge and peak DOC attributed to storm water hydrology and a period of initial water repellency of agricultural soils, which delayed DOM leaching.

  12. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  13. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.

  14. Detecting a liquid and solid H2O layer by geophysical methods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Romanovsky, V.; Tsapin, A.; Brown, J.

    2002-12-01

    The objective is to detect the hydrological and cryological structure of the cold continuous permafrost subsurface using geophysical methods. We believe that a lot of water potentially exists as solid and liquid phases underground on Mars. It is likely that the liquid fluid would be high in saline concentration (brine). The ground freezing process involves many hydrological processes including enrichment of the brine layer. The brine layer is an important environment for ancient and/or current life to exist on terrestrial permafrost regions. The existence of a Martian brine layer would increase the possibility of the existence of life, as on Earth. In situ electric resistivity measurement will be the most efficient method to determine brine layer as well as massive H2O ice in the permafrost. However, the wiring configuration is unlikely to operate on the remote planetary surface. Satellite-born Radar and/or EM methods will be the most accessible methods for detecting the hydrological and cryological structure. We are testing several geophysical methods at the brine layer site in Barrow and massive pingo ice site in Fairbanks, Alaska. The radar system is affected by the dielectric properties of subsurface materials, which allows for evidence of liquid phase in the frozen ground. The dielectric constant varies greatly between liquid water and frozen ground. The depth of the terrestrial (and probably Martian) brine layer is frequently located deeper than the maximum detecting depth of the impulse type of the ground penetrating radar system. Once we develop a radar system with a deeper penetrating capability (Lower frequency), the dispersion of the ground ice will be the key function for interpretation of these signals. We will improve and use radar signals to understand the hydrological and cryological structure in the permafrost. The core samples and borehole temperature data validate these radar signals.

  15. A Comparison of Vertical Deformations Derived from Space-based Gravimetry, Ground-based Sensors, and Model-based Hydrologic Loading over the Western United States

    NASA Astrophysics Data System (ADS)

    Yin, G.; Forman, B. A.; Loomis, B. D.; Luthcke, S. B.

    2017-12-01

    Vertical deformation of the Earth's crust due to the movement and redistribution of terrestrial freshwater can be studied using satellite measurements, ground-based sensors, hydrologic models, or a combination thereof. This current study explores the relationship between vertical deformation estimates derived from mass concentrations (mascons) from the Gravity Recovery and Climate Experiment (GRACE), vertical deformation from ground-based Global Positioning System (GPS) observations collected from the Plate Boundary Observatory (PBO), and hydrologic loading estimates based on model output from the NASA Catchment Land Surface Model (Catchment). A particular focus is made to snow-dominated basins where mass accumulates during the snow season and subsequently runs off during the ablation season. The mean seasonal cycle and the effects of atmospheric loading, non-tidal ocean loading, and glacier isostatic adjustment (GIA) are removed from the GPS observations in order to derive the vertical displacement caused predominately by hydrological processes. A low-pass filter is applied to GPS observations to remove high frequency noise. Correlation coefficients between GRACE- and GPS-based estimates at all PBO sites are calculated. GRACE-derived and Catchment-derived displacements are subtracted from the GPS height variations, respectively, in order to compute the root mean square (RMS) reduction as a means of studying the consistency between the three different methods. Results show that in most sites, the three methods exhibit good agreement. Exceptions to this generalization include the Central Valley of California where extensive groundwater pumping is witnessed in the GRACE- and GPS-based estimates, but not in the Catchment-based estimates because anthropogenic groundwater pumping activities are not included in the Catchment model. The relatively good agreement between GPS- and GRACE-derived vertical crustal displacements suggests that ground-based GPS has tremendous potential for a Bayesian merger with GRACE-based estimates in order to provide a higher resolution (in space and time) of terrestrial water storage.

  16. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  17. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.

    PubMed

    Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal

    2018-09-01

    Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in spring fen communities, because their aquatic and semiterrestrial components are largely affected by water temperature that is modified by local hydrological and landscape settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Variation in the Apparent Biosynthetic Fractionation for N-alkane δD Among Terrestrial Plants: Patterns, Mechanisms, and Implications

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Tipple, B. J.; Betancourt, J. L.; Ehleringer, J. R.; Leavitt, S. W.; Monson, R. K.

    2016-12-01

    Long-chain normal alkanes (n-alkanes) are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental waters. While this relationship creates opportunities for using n-alkane δD for process-based reconstructions of δD of environmental waters, progress in this direction is currently constrained by the observation that terrestrial plants exhibit a startlingly wide range of apparent biosynthetic fractionations. To understand the mechanisms responsible for variation in the apparent biosynthetic fractionations, we compared measurements and models of δD for n-C29 in a water-limited ecosystem where the timing of primary and secondary cuticle deposition is closely coupled to water availability (Tumamoc Hill, Tucson, Arizona, USA). During the 2014-2015 hydrologic year, the most widespread and abundant plant species at this site exhibited δD for n-C29 varying over a total range of 102‰. Discrete samples of leaf water collected at the same time as the n-C29 samples exhibited δD varying over a total range of only 53‰, but a continuous model of leaf water through the annual cycle predicted δD varying over a total range of 190‰. These results indicate that the observed variation in the apparent biosynthetic fractionation for n-C29 δD could be primarily attributable to leaf water dynamics that are temporally uncoupled from primary and secondary cuticle deposition. If a single biosynthetic fractionation does describe the relationship between the δD of n-alkanes and leaf water during intervals of cuticle deposition, it will facilitate process-based interpretations of n-alkane δD values in ecological, hydrological, and climatological studies of modern and ancient terrestrial environments.

  19. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  20. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  1. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.

    PubMed

    Foulquier, Arnaud; Volat, Bernadette; Neyra, Marc; Bornette, Gudrun; Montuelle, Bernard

    2013-08-01

    In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.

  3. 8.0 Integrating the effect of terrestrial ecosystem health and land use on the hydrology, habitat, and water quality of the Delaware River and estuary

    Treesearch

    Peter S. Murdoch; John L. Hom; Yude Pan; Jeffrey M. Fischer

    2008-01-01

    To complete the collaborative monitoring study of forested landscapes within the DRB, regional perspective on the cumulative effect of different disturbances on overall ecosystem health. This section describes two modeling activities used as integrating tools for the CEMRI database and a validation system that used nested river monitoring stations.

  4. The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events

    Treesearch

    Jacob A. Zwart; Stephen D. Sebestyen; Christopher T. Solomon; Stuart E. Jones

    2016-01-01

    The frequency and magnitude of extreme events are expected to increase in the future, yet little is known about effects of such events on ecosystem structure and function. We examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes....

  5. Late Quaternary environmental changes inferred from n-alkane evidence in coastal area of southern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo

    2016-04-01

    The studied core was a coastal core in Hainan Island, China. It is in length of 49.01m and divided into four Units (MIS 1~MIS 6) according to lithology description. The Optically Stimulated Luminescence (OSL) attributes the sediments from Unit 3 to the Oxygen Isotope Stage of MIS 5e (Unit 3b and 3c) and 5d (Unit 3a). To interpret the origination of organic carbons and to reconstruct paleovegetation changes, n-alkane, δ13C and TOC have been used in the present research. The result of n-alkanes distribution indicates a series of changes of sedimentary environment and terrestrial input. The shallow water facies at Unit 2, 3a and 4 is mainly characterized by short carbon chain n-alkanes and relatively low concentration. Contrasting with that of deep-water marine facies of MIS 5e (Unit 3b), the n-alkane pattern is typical bimodal and the main peaks are both in short and long carbon chains. During Unit 3b-1 (MIS 5e), more terrestrial original n-alkanes contribute to the concentration of TOC than oceanic. Organic matter source is mainly terrestrial origination. Total organic matter input mechanism of TLG-01 correlates with sediment grain size (average grain size). Total organic carbon input is enhanced with the increasing of fine grain size component. The variation of CPI (25-33) value in this study correlates with hydrological energy. The highest CPI (25-33) value is shown in the high sea level period of MIS 5e, comparing with that in MIS 5d and MIS 1. High CPI value corresponds to high TOC and average grain size (Φ) value. In the weak hydrological energy sedimentary environment, more terrestrial organic matter, together with TOC, deposit in the study area. ACL (25-33) index display higher values in the interglacial period (MIS 5 and MIS 1) than MIS 3 (sediments weathered during MIS 2) and MIS 6. Paq proxy, together with δ13C, estimates the mangrove growing depth in MIS 5e. The correlation between δ13C and each carbon chain alkane state stabilize and turbulence of sedimentary environment in MIS 5e. Sediments deposit in stable weak hydrological energy environment show order and grouped alkanes distribution (Unit 3b-2). High and positive correlation coefficients of δ13C and each carbon chain alkane show the dominant alkanes contributed to organic carbon (δ13C).

  6. Using diatoms, hydrochemical and stable isotope tracers to infer runoff generation processes

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, N.; Wetzel, C. E.; Frentress, J.; Hlúbiková, D.; Ector, L.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.

    2012-04-01

    Imaginative techniques are needed to improve our understanding of runoff generation processes. In this context, the hydrological community calls to cut across disciplines looking for new and exciting advances in knowledge. In this study, hydrologists and ecologists have worked together to use not only hydrochemical and stable isotope tracers, but also diatoms to infer runoff generation processes. Diatoms, one of the most common and divers algal group, can be easily transported by flowing water due to their small size (~10-200 μm). They are present in most terrestrial habitats and their diversified species distributions are largely controlled by physico-geographical factors (e.g. light, temperature, pH and moisture). Thus, hydrological systems largely control diatom species community composition and distribution. This study was conducted in the schistose Weierbach catchment (0.45 km2, NW Luxembourg). Its runoff regime is characterised by seasonal variation and a delayed shallow groundwater component originating from a saprolite zone. The catchment was instrumented with piezometers, suction cups, an automatic streamwater sampler, a sequential rainfall sampler, and soil moisture and temperature sensors. Samples collected bi-weekly and during storm runoff events allowed the characterisation of the different end-members. Chemical and isotopic hydrograph separations of stream discharge were used to determine not only the geographic sources of water, but also the fractions of old and new water contributing to streamflow. Diatoms intra-storm variability was also analysed and samples of diatoms from various terrestrial and subaerial substrates (bryophytes, litter and leaves), as well as from aquatic habitats (epilithon, epipelon and drift samples) were regularly collected. Diatoms were then used to constrain assumptions and to confirm or reject the hypothesis of existing surface runoff during rainfall-runoff events and to document the intermittent character of hydrological connectivity between upland, riparian and aquatic zones. As an advantage, diatoms do not seem to be subject to some inherent limitations of the classical tracer-based hydrograph separation techniques, such as unrealistic mixing assumptions, unstable end-member solutions and temporally varying input concentrations. Results suggested a substantial contribution of soil water during winter events in the Weierbach catchment, whereas groundwater played a more significant role during summer events. Even though overland flow remained insignificant during most of the sampled events, terrestrial diatom abundance increased with precipitation in all sampled events suggesting a rapid connectivity between soil surface and stream water. We hypothesise the mobilization and flushing away of terrestrial diatoms through a subsurface network of macropores in the shallow soils.

  7. Efficient Approaches for Propagating Hydrologic Forcing Uncertainty: High-Resolution Applications Over the Western United States

    NASA Astrophysics Data System (ADS)

    Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.

    2017-12-01

    NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.

  8. Assessing Spatio-temporal Variability of Karst Water Storage over Southwest China from GRACE and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Yao, C.; Luo, Z.; Lo, M. H.; Li, Q.

    2016-12-01

    This study assesses spatio-temporal variability of terrestrial water storage (TWS) over the world's largest karst aquifer with continuous coverage in Southwest China (SWC) from Gravity Recovery and Climate Experiment (GRACE), along with hydrological model outputs, precipitation and reservoir water level data. GRACE shows karst water increases for the period 2003/01-2014/06 with a total volume ranging from 29.0 to 49.1 km3, and observes an extremely wet condition in 2008/2009 caused by the increase in precipitation and Longtan Reservoir (LTR) storage. The subsequent two droughts in 2009/2010 and 2011 have resulted in significant aquifer water depletion, with abnormal karst water losses of 180.2±43.3 km3 and 269.8±34.6 km3 respectively. In particular, the sustained reduction in peaks of the LTR storage is associated with the long-term dry condition over the upper Pearl River. Nonseasonal karst TWS variations are considerably impacted by LTR impoundment in the post-dam period, especially for the impounding episode of autumn and the dry season of winter, with correlations of 0.71 and 0.93 between TWS and reservoir volume variations respectively. Additionally, the nonseasonal GRACE TWS deficit provides an alternative and valuable drought indicator for the study karst region since large differences exist in modeled soil moisture and drought indices. This study demonstrates that the combination of GRACE and other hydrological variables could be beneficial for studying karst hydrologic dynamics. Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant Nos. 41174020, 41131067, 41174021), the National Basic Research Program of China (973 Program) (Grant No. 2013CB733302), the Fundamental Research Funds for the Central Universities (Grant No. 2014214020203), the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (Grant No. 14-02-011), the open fund of Guangxi Key Laboratory of Spatial Information and Geomatics (Grant No. 14-045-24-17) and the MOST 103-2111-M-002-006 to National Taiwan University.

  9. Overview of a simple model describing variation of dissolved organic carbon in an upland catchment

    USGS Publications Warehouse

    Boyer, Elizabeth W.; Hornberger, George M.; Bencala, Kenneth E.; McKnight, Diane M.

    1996-01-01

    Hydrological mechanisms controlling the variation of dissolved organic carbon (DOC) were investigated in the Deer Creek catchment located near Montezuma, CO. Patterns of DOC in streamflow suggested that increased flows through the upper soil horizon during snowmelt are responsible for flushing this DOC-enriched interstitial water to the streams. We examined possible hydrological mechanisms to explain the observed variability of DOC in Deer Creek by first simulating the hydrological response of the catchment using TOPMODEL and then routing the predicted flows through a simple model that accounted for temporal changes in DOC. Conceptually the DOC model can be taken to represent a terrestrial (soil) reservoir in which DOC builds up during low flow periods and is flushed out when infiltrating meltwaters cause the water table to rise into this “reservoir”. Concentrations of DOC measured in the upper soil and in streamflow were compared to model simulations. The simulated DOC response provides a reasonable reproduction of the observed dynamics of DOC in the stream at Deer Creek.

  10. Special issue: Terrestrial fluids, earthquakes and volcanoes: The Hiroshi Wakita volume I

    USGS Publications Warehouse

    Perez, Nemesio M.; King, Chi-Yu; Gurrieri, Sergio; McGee, Kenneth A.

    2006-01-01

    Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume I is a special publication to honor Professor Hiroshi Wakita for his scientific contributions. This volume consists of 17 original papers dealing with various aspects of the role of terrestrial fluids in earthquake and volcanic processes, which reflect Prof. Wakita’s wide scope of research interests.Professor Wakita co-founded the Laboratory for Earthquake Chemistry in 1978 and served as its director from 1988 until his retirement from the university in 1997. He has made the laboratory a leading world center for studying earthquakes and volcanic activities by means of geochemical and hydrological methods. Together with his research team and a number of foreign guest researchers that he attracted, he has made many significant contributions in the above-mentioned scientific fields of interest. This achievement is a testimony to not only his scientific talent, but also his enthusiasm, his open mindedness, and his drive in obtaining both human and financial support.

  11. Solar-terrestrial models and application software

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1990-01-01

    The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of the solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.

  12. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars

    NASA Astrophysics Data System (ADS)

    Léveillé, Richard

    2010-03-01

    Terrestrial analogs to the Moon and Mars have been used to advance knowledge in planetary science for over a half-century. They are useful in studies of comparative geology of the terrestrial planets and rocky moons, in astronaut training and testing of exploration technologies, and in developing hypotheses and exploration strategies in astrobiology. In fact, the use of terrestrial analogs can be traced back to the origins of comparative geology and astrobiology, and to the early phases of the Apollo astronaut program. Terrestrial analog studies feature prominently throughout the history of both NASA and the USGS' Astrogeology Research Program. In light of current international plans for a return missions to the Moon, and eventually to send sample return and manned missions to Mars, as well as the recent creation of various analog research and development programs, this historical perspective is timely.

  13. Hydrology-based understanding of Ontario Lacus in Titan's south pole

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2015-11-01

    Ontario Lacus is the largest presently filled lake at the south pole of Titan. Many other large basins in south pole exist at lower elevations than Ontario Lacus but are currently empty. To find out what sets Ontario apart from those empty basins, we have carried a detailed hydrological assessment of Ontario Lacus. Topography of the region, as derived from Cassini RADAR altimetry was used to determine the catchment area of Ontario Lacus. We could map the areal extent of catchments as far as southern mid-latitudes. Clouds in southern mid and high latitudes have been observed by Cassini VIMS which indicate possible precipitation in those regions. Precipitation in southern mid-latitudes coupled with the large catchment areas of Ontario Lacus could be the reason behind it being filled. Our mass conservation calculations indicate that if runoff was the only contributor to the lake volume, then the lake might be filled within one Titan year (29.5 Earth years) in entirety. We also observe a non-linear relationship between the longest identifiable stream and the catchment area (Hack's Law) which is consistent with terrestrial hydrological systems and may help in further interpretation of the hydrology of Ontario Lacus.

  14. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in a stalagmite from central China

    NASA Astrophysics Data System (ADS)

    Wang, Canfa; Bendle, James A.; Zhang, Hongbin; Yang, Yi; Liu, Deng; Huang, Junhua; Cui, Jingwei; Xie, Shucheng

    2018-07-01

    To achieve a sufficient understanding of the spatial dynamics of terrestrial climate variability, new proxies and networks of data that cover thousands of years and run up to the present day are needed. Here we show the first Gram-negative bacterial 3-hydroxy fatty acid (3-OH-FA) based temperature and hydrological records from any paleoclimate archive globally. The data, covering the last 9 ka before present (BP), are generated from an individual stalagmite, collected from Heshang Cave, located on a tributary of the Yangtze River, central China (30°27‧N, 110°25‧E; 294 m). Our results indicate a clear early-to-middle Holocene Climatic Optimum (8.0-6.0 ka BP) followed by a long-term monotonic cooling and increasing variability over the last 0.9 ka BP. The hydrological record shows two relatively long wet periods (8.8-5.9 ka BP and 3.0-0 ka BP) and one relatively dry period (5.9-3.0 ka BP) in central China. We show that 3-OH-FA biomarkers hold promise as independent tools for paleoclimate reconstruction, with the potential to deconvolve temperature and hydrological signals from an individual stalagmite.

  15. Estimating Changes in Runoff and Carbon Exports From Northern Canadian Catchments Under a 2X CO2 Atmosphere

    NASA Astrophysics Data System (ADS)

    Clair, T. A.; Ehrman, J. M.

    2006-12-01

    The doubling of atmospheric CO2 on temperature and precipitation will change annual runoff and dissolved organic carbon (DOC) export patterns in northern Canada. Because of the physical size and the range of climatic changes of northern Canada, we found it necessary to model potential changes in river water and carbon exports in the region using a neural network approach. We developed a model for hydrology and one for DOC using as inputs, monthly General Circulation Model temperature and precipitation predictions, historical hydrology and dissolved organic carbon values, as well as catchment size and slope. Mining Environment Canada's historical hydrology and water chemistry databases allowed us to identify 20 sites suitable for our analysis. The site results were summarized within the Canadian Terrestrial Ecozone classification system. Our results show spring melts occurring one month sooner in all northern ecozones except for the Hudson Bay Plains zone, with changes in melt intensity occurring in most regions. The DOC model predicts that exports from catchments will increase by between 10 and 20% depending on the ecozone. Generally, we predict that major changes in both hydrology and carbon cycling should be expected in northern Canadian ecosystems in a warmer planet.

  16. Modeling alpine grasslands with two integrated hydrologic models: a comparison of the different process representation in CATHY and GEOtop

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Bertoldi, G.; Bortoli, E.; Wohlfahrt, G.

    2017-12-01

    Integrated hydrologic surface-subsurface models (IHSSMs) are increasingly used as prediction tools to solve simultaneously states and fluxes in and between multiple terrestrial compartments (e.g., snow cover, surface water, groundwater), in an attempt to tackle environmental problems in a holistic approach. Two such models, CATHY and GEOtop, are used in this study to investigate their capabilities to reproduce hydrological processes in alpine grasslands. The two models differ significantly in the complexity of the representation of the surface energy balance and the solution of Richards equation for water flow in the variably saturated subsurface. The main goal of this research is to show how these differences in process representation can lead to different predictions of hydrologic states and fluxes, in the simulation of an experimental site located in the Venosta Valley (South Tyrol, Italy). Here, a large set of relevant hydrological data (e.g., evapotranspiration, soil moisture) has been collected, with ground and remote sensing observations. The area of interest is part of a Long-Term Ecological Research (LTER) site, a mountain steep, heterogeneous slope, where the predominant land use types are meadow, pasture, and forest. The comparison between data and model predictions, as well as between simulations with the two IHSSMs, contributes to advance our understanding of the tradeoffs between different complexities in modeĺs process representation, model accuracy, and the ability to explain observed hydrological dynamics in alpine environments.

  17. A River Model Intercomparison Project in Preparation for SWOT

    NASA Astrophysics Data System (ADS)

    David, C. H.; Andreadis, K.; Famiglietti, J. S.; Beighley, E.; Boone, A. A.; Yamazaki, D.; Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Fisher, C. K.; Kim, H.; Biancamaria, S.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) mission is currently scheduled to launch at the beginning of next decade. SWOT is expected to retrieve unprecedented measurements of water extent, elevation, and slope in the largest terrestrial water bodies. Such potential transformative information motivates the investigation of our ability to ingest the associated data into continental-scale models of terrestrial hydrology. In preparation for the expected SWOT observations, an inter-comparison of continental-scale river models is being performed. This comparison experiment focuses on four of the world's largest river basins: the Amazon, the Mississippi, the Niger, and the Saint-Lawrence. This ongoing project focuses on two main research questions: 1) How can we best prepare for the expected SWOT continental to global measurements before SWOT even flies?, and 2) What is the added value of including SWOT terrestrial measurements into global hydro models for enhancing our understanding of the terrestrial water cycle and the climate system? We present here the results of the second year of this project which now includes simulations from six numerical models of rivers over the Mississippi and sheds light on the implications of various modeling choices on simulation quality as well as on the potential impact of SWOT observations.

  18. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  19. Evaluating biological and physical drivers of evapotranspiration trends at northeastern US watersheds

    Treesearch

    John L. Campbell; Matthew A. Vadeboncoeur; Heidi Asbjornsen; Mark B. Green; Mary Beth Adams; Elizabeth W. Boyer

    2016-01-01

    Despite a general consensus that the Earth’s hydrologic cycle is intensifying as a result of anthropogenic climate forcing (e.g. Huntington 2006), there remains substantial uncertainty over the consequences of this intensification for terrestrial evapotranspiration (ET; e.g., Hobbins and others 2004, Walter and others 2004, van Heerwaarden and others 2010). Most models...

  20. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods.

    PubMed

    Rateb, Ashraf; Kuo, Chung-Yen; Imani, Moslem; Tseng, Kuo-Hsin; Lan, Wen-Hau; Ching, Kuo-En; Tseng, Tzu-Pang

    2017-03-10

    Spherical harmonics (SH) and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE) mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL) release, herein) exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS) in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at -1.08 and -6.92 Gt/year, respectively, are higher than those previously reported.

  1. Wetland Microtopographic Structure is Revealed with Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Stovall, A. E.; Mclaughlin, D. L.; Slesak, R.

    2017-12-01

    Wetland microtopographic structure and its function has been the subject of research for decades, and several investigations suggest that microtopography is generated by autogenic ecohydrologic processes. But due to the difficulty of capturing the true spatial variability of wetland microtopography, many of the hypotheses for self-organization have remained elusive to test. We employ a novel method of Terrestrial Laser Scanning (TLS) that reveals an unprecedented high-resolution (<0.5 cm) glimpse at the true spatial structure of wetland microtopography in 10 black ash (Fraxinus nigra) stands of northern Minnesota, USA. Here we present the first efforts to synthesize this information and show that TLS provides a good representation of real microtopographic structure, where TLS accurately measured hummock height, but occlusion of low points led to a slight negative bias. We further show that TLS can accurately locate microtopographic high points (hummocks), as well as estimate their height and area. Using these new data, we estimate distributions in both microtopographic elevation and hummock area in each wetland and relate these to monitored hydrologic regime; in doing so, we test hypotheses linking emergent microtopographic patterns to putative hydrologic controls. Finally, we discuss future efforts to enumerate consequent influences of microtopography on wetland systems (soil properties and vegetation composition).

  2. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods

    PubMed Central

    Rateb, Ashraf; Kuo, Chung-Yen; Imani, Moslem; Tseng, Kuo-Hsin; Lan, Wen-Hau; Ching, Kuo-En; Tseng, Tzu-Pang

    2017-01-01

    Spherical harmonics (SH) and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE) mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL) release, herein) exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS) in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at −1.08 and −6.92 Gt/year, respectively, are higher than those previously reported. PMID:28287453

  3. Missions to the sun and to the earth. [planning of NASA Solar Terrestrial Program

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.

    1978-01-01

    The program outlined in the present paper represents an optimized plan of solar terrestrial physics. It is constrained only in the sense that it involves not more than one new major mission per year for the Solar Terrestrial Division during the 1980-1985 period. However, the flight activity proposed, if accepted by the Agency and by Congress, would involve a growth in the existing Solar Terrestrial budget by more than a factor of 2. Thus, the program may be considered as somewhat optimistic when viewed in the broader context of the NASA goals and budget. The Agency's integrated FY 1980 Five Year Plan will show how many missions proposed will survive this planning process.

  4. Land Conversion in Amazonia and Northern South America; Influences on Regional Hydrology and Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Knox, Ryan Gary

    A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region, and to see if those changes are significant enough to produce an ecological response. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes human deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant differences in hydrometeorology. Locations that show compelling differences are taken as case studies. The seasonal biases in precipitation at these locations are then used to create perturbations to long-term climate datasets. These perturbations then drive long-term simulations of dynamic vegetation to see if the climate consistent with a potential regional vegetation could elicit a change in the vegetation equilibrium at the site. Results show that South American land conversion has had consistent impacts on the regional patterning of precipitation. At some locations, changes in precipitation are persistent and constitute a significant fraction of total precipitation. Land-conversion has decreased mean continental evaporation and increased mean moisture convergence. Case study simulations of long term vegetation dynamic indicate that a hydrologic climate consistent with regional potential vegetation can indeed have significant influence on ecosystem structure and composition, particularly in water limited growth conditions. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  5. An Intensified Arctic Water Cycle? Trend Analysis of the Arctic System Freshwater Cycle: Observations and Expectations

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.

    2007-12-01

    It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.

  6. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Examining the complex Arctic biological-climatologic-hydrologic system

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.

    2012-12-01

    Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration

  7. A 120 ka record of reconstructed paleoprecipitation signals at Lake El'gygytgyn, NE Russia derived from compound-specific δD analysis of terrestrial biomarkers

    NASA Astrophysics Data System (ADS)

    Wilkie, K. M.; Chapligin, B.; Burns, S. J.; Petsch, S.; Meyer, H.; Brigham-Grette, J.

    2011-12-01

    Sediment cores recovered from Lake El'gygytgyn, NE Russia extend back to 3.6Ma, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. Comparison of the stable isotope composition of modern precipitation and compound-specific isotopic analyses of modern vegetation and sedimentary lipids from the last 120ka allows reconstruction of past hydrological conditions, thereby providing a powerful tool for reconstructing past Arctic climate changes. The stable isotopic composition of modern precipitation, streams, and lake water are presented and used to constrain isotope systematics of the Lake El'gygytgyn Basin hydrology. The hydrogen isotopic compositions (δD) of alkanoic acids from modern vegetation are compared with modern precipitation and lake core top sediments. Multi-species net fractionation values between source water and leaf wax lipid δD values (-113 ± 13%) agree with previous results in arid environments and provide a basis for applying this proxy further downcore. δD measurements of sedimentary alkanoic acids representing terrestrial sources (e.g. δDTER: nC30) show significant variation (up to 70%) over the past 120 ka. Interglacial periods are characterized by isotopic enrichment while the most negative δDTER values occur during glacial conditions (i.e. the Last Glacial Maximum and MIS 4). Preliminary reconstruction of the isotopic composition of past precipitation from the δDTER record correlates strongly with the δ18Ocalcite record from Sanbao and Hulu caves1 (China) and the δDvostok record2 (Antarctica) suggesting global teleconnections and 'circum-Pacific' coherence to paleo-precipitation archives. 1 Wang et al. (2005), Science 308, 854-857. 2 Petit et al. (1999), Nature 399, 429-436.

  8. Errors in Martian paleodischarges skew interpretations of hydrologic history: Case study of the Aeolis Dorsa, Mars, with insights from the Quinn River, NV

    NASA Astrophysics Data System (ADS)

    Jacobsen, Robert E.; Burr, Devon M.

    2018-03-01

    Changes in Martian fluvial geomorphology with time-stratigraphic age, including decreases in paleochannel widths, suggest waning paleodischarges through time. Where fluvial landforms do not preserve paleochannel widths (e.g., meander deposits), other landform dimensions (i.e., radius of curvature) may be used to estimate paleodischarges. In the Aeolis Dorsa region, topographically inverted and stacked fluvial deposits - wide meander point bars overlain by thin channel fills - preserve ostensible evidence of decreasing paleodischarges through time. However, a robust paleohydraulic analysis of these distinct deposits requires knowledge of the accuracy of a terrestrial-based empirical relationship that estimates channel width from point-bar radius of curvature. We assess the accuracy of this radius-width relationship by applying it to a well-studied terrestrial analog, the Quinn River, Nevada. We find that radii of curvature from the Quinn River exceed the values predicted from the empirical relationship. These anomalously high radii are associated with greater resistance in the channel cut banks, indicating that bank strength is a confounding factor in the radius-width relationship. Some deposits in the Aeolis Dorsa include irregular meander morphologies, suggesting variably resistant channel banks and overestimates of both paleochannel widths and paleodischarges. Furthermore, the morphometry of the overlying thin channel fills suggests their widths have been eroded, such that their paleodischarges are underestimates. These overestimates and underestimates, when considered together, suggest little change in paleodischarge during the stratigraphic transition from meander deposits to channel fills. This work demonstrates the importance of terrestrial analog studies for revealing confounding factors in Martian fluvial systems and cautions against simplistic interpretations of Martian fluvial history. The discovered inaccuracies of paleodischarge estimates expose sources of uncertainty in the extant paleodischarge data that bias inferences toward waning hydrologic activity through time.

  9. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  10. International cooperation in water resources

    USGS Publications Warehouse

    Jones, J.R.; Beall, R.M.; Giusti, E.V.

    1979-01-01

    Advancements in hydrology proceeded slowly until the late 1800's when new ventures created a surge of interest and accomplishment. Progress waned again until the middle 20th century when an International Hydrological Decade was conceived, eventually receiving wide multinational support from governmental agencies and nongovernmental institutions. Organized by UNESCO, the Decade program was launched January 1, 1965. Participation included 107 nations, six United Nations agencies, and more than a dozen international scientific organizations. The initial program emphasized scientific research, and international cooperation; the second half of the Decade, emphasized technical assistance and technology transfer, largerly through education, training and demonstration. The success of the Decade led to the establishment of the International Hydrological Program, again under the aegis of UNESCO, to continue the work of the Decade indefinitely. The five major program activities, now involving about 90 countries and several international organizations, include: the scientific program, the promotion of education and training, the enhancement of information exchange, support of technical assistance, and the enlargement of regional cooperation. A significant amount of activity related to hydrological data networks and forecasting is carried on in an Operational Hydrology Programme by the WMO, chiefly through its Commission for Hydrology. Other international governmental organizations with a strong interest in water include the UN, the UN Development Programme, the FAO, the WHO, the International Atomic Energy Agency, the UN Environment Programme, the International Standardization Organization, and developmental institutions such as the World Bank. The specialized interests of researchers outside of the governmental structure, are met through association in various scientific and technical organizations which are world wide in scope and membership. Notwithstanding a sometimes bewildering variety of organizations, there certainly exists, for any nation, group, or individual, a demonstrated mechanism for almost any conceivable form of international cooperation in hydrology and water resources. ?? 1979 Akademische Verlagsgesellschaft.

  11. Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W

    2014-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate ofmore » terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.« less

  12. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.

    PubMed

    Schulz, Ralf; Bundschuh, Mirco; Gergs, René; Brühl, Carsten A; Diehl, Dörte; Entling, Martin H; Fahse, Lorenz; Frör, Oliver; Jungkunst, Hermann F; Lorke, Andreas; Schäfer, Ralf B; Schaumann, Gabriele E; Schwenk, Klaus

    2015-12-15

    Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill these gaps, we propose a scientific framework, which considers abiotic and biotic aspects based on an interdisciplinary approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  14. Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management

    USGS Publications Warehouse

    Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.

    2014-01-01

    Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.

  15. Historical Climate Change Impacts on the Hydrological Processes of the Ponto-Caspian Basin

    NASA Astrophysics Data System (ADS)

    Koriche, Sifan A.; Singarayer, Joy S.; Coe, Michael T.; Nandini, Sri; Prange, Matthias; Cloke, Hannah; Lunt, Dan

    2017-04-01

    The Ponto-Caspian basin is one of the largest basins globally, composed of a closed basin (Caspian Sea) and open basins connecting to the global ocean (Black and Azov Sea). Over the historical time period (1850-present) Caspian Sea levels have varied between -25 and -29mbsl (Arpe et al., 2012), resulting in considerable changes to the area of the lake (currently 371,000 km2). Given projections of future climate change and the importance of the Caspian Sea for fisheries, agriculture, and industry, it is vital to understand how sea levels may vary in the future. Hydrological models can be used to assess the impacts of climate change on hydrological processes for future forecasts. However, it is critical to first evaluate such models using observational data for the present and recent past, and to understand the key hydrological processes driving past changes in sea level. In this study, the Terrestrial Hydrological Model (THMB) (Coe, 2000, 2002) is applied and evaluated to investigate the hydrological processes of the Ponto-Caspian basin for the historical period 1900 to 2000. The model has been forced using observational reanalysis datasets (ERA-Interim, ERA-20) and historical climate model data outputs (from CESM and HadCM3 models) to investigate the variability in the Caspian Sea level and the major river discharges. We examine the differences produced by driving the hydrological model with reanalysis data or climate models. We evaluate the model performance compared to observational discharge measurements and Caspian Sea level data. Secondly, we investigated the sensitivity of historical Caspian Sea level variations to different aspects of climate changes to examine the most important processes involved over this time period.

  16. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  17. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed Central

    Van Hook, R I

    1978-01-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772

  18. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  19. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  20. Modeling Jupiter's Great Red Spot with an Active Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Palotai, C. J.; Dowling, T. E.; Morales-Juberías, R.

    2003-05-01

    We are studying the interaction of Jupiter's hydrological cycle with the formation and maintenance of its long-lived vortices and jet streams using numerical simulations. We are particularly interested in establishing the importance of the large convective storm system to the northwest of Jupiter's Great Red Spot (GRS). We have adapted into the EPIC model the cloud microphysics scheme used at Colorado State University (Fowler et al. 1996, J. Cli. 9, 489), which contains prognostic equations for vapor, liquid cloud, ice cloud, rain and snow. We are focussing on the role of water, but the EPIC model can also handle multiple species (water, ammonia, etc.). Processes that are currently working in the microphysics model include large-scale condensation/deposition, cloud evaporation, melting/freezing, and Bergeron-Findeisen diffusional growth of ice from supercooled liquid. The form of precipitation on gas giants is a major unknown. We are currently using a simple scheme for precipitation, but are studying the effect that processes known to be important in terrestrial models have on our results, including formation and accretion of rain and snow, preciptation evaporation, detrainment and cloud-top entrainment. We will present comparisons of ``dry'' and ``wet'' runs of a channel Jupiter EPIC simulation covering -40S to the equator that includes various initial water-vapor profiles and a GRS model. The effects of latent heating on the energy budget and vertical transport will be discussed. This research is funded by NASA's Planetary Atmospheres and EPSCoR Programs.

  1. Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)

    EPA Science Inventory

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...

  2. Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)

    EPA Science Inventory

    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...

  3. The Rofental: a high Alpine research basin (1890-3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Marke, Thomas; Braun, Ludwig; Escher-Vetter, Heidi; Juen, Irmgard; Kuhn, Michael; Maussion, Fabien; Mayer, Christoph; Nicholson, Lindsey; Niedertscheider, Klaus; Sailer, Rudolf; Stötter, Johann; Weber, Markus; Kaser, Georg

    2018-01-01

    A comprehensive hydrometeorological and glaciological data set is presented, originating from a multitude of glaciological, meteorological, hydrological and laser scanning recordings at research sites in the Rofental (1891-3772 m a.s.l., Ötztal Alps, Austria). The data sets span a period of 150 years and hence represent a unique time series of rich high-altitude mountain observations. Their collection was originally initiated to support scientific investigation of the glaciers Hintereisferner, Kesselwandferner and Vernagtferner. Annual mass balance, glacier front variation, flow velocities and photographic records of the status of these glaciers were recorded. Later, additional measurements of meteorological and hydrological variables were undertaken, and over time a number of autonomous weather stations and runoff gauges were brought into operation; the available data now comprise records of temperature, relative humidity, short- and longwave radiation, wind speed and direction, air pressure, precipitation, and river water levels. Since 2001, a series of distributed (airborne and terrestrial) laser scans is available, along with associated digital surface models. In 2016 a permanent terrestrial laser scanner was installed on Im hintern Eis (3244 m a.s.l.) to continuously observe almost the entire area of Hintereisferner. The data and research undertaken at the sites of investigation in the Rofental area enable combined research of cryospheric, atmospheric and hydrological processes in complex terrain, and support the development of several state-of-the-art glacier mass balance and hydroclimatological models. The institutions taking part in the Rofental research framework promote their site in several international research initiatives. In INARCH (International Network for Alpine Research Catchment Hydrology, http://words.usask.ca/inarch), all original research data sets are now provided to the scientific community according to the Creative Commons Attribution License by means of the PANGAEA repository (https://doi.org/10.1594/PANGAEA.876120).

  4. The role of groundwater in hydrological processes and memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui

    The interactions between soil moisture and groundwater play important roles in controlling Earth's climate, by changing the terrestrial water cycle. However, most contemporary land surface models (LSMs) used for climate modeling lack any representation of groundwater aquifers. In this dissertation, the effects of water table dynamics on the National Center for Atmospheric Research (NCAR) Community Land Model (CLM) and Community Atmosphere Model (CAM) hydrology and land-atmosphere simulations are investigated. First, a simple, lumped unconfined aquifer model is incorporated into the CLM, in which the water table is interactively coupled to the soil moisture through groundwater recharge fluxes. The recent availability of GRACE water storage data provides a unique opportunity to constrain LSMs simulations of terrestrial hydrology. A multi-objective calibration framework using GRACE and streamflow data is developed. This approach improves parameter estimation and reduces the uncertainty of water table simulations in the CLM. Next, experiments are conducted with the off-line CLM to explore the effects of groundwater on land surface memory. Results show that feedbacks of groundwater on land surface memory can be positive, negative, or neutral depending on water table dynamics. The CAM-CLM is further utilized to investigate the effects of water table dynamics on spatial-temporal variations of precipitation. Results indicate that groundwater can increase short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth. Finally, lower tropospheric water vapor is increased due to the presence of groundwater in the model. However, the impact of groundwater on the spatial distribution of precipitation is not globally homogeneous. In the boreal summer, tropical land regions show a positive (negative) anomaly over the Northern (Southern) Hemisphere. The increased tropical precipitation follows the climatology of the convective zone rather than that of evapotranspiration. In contrast, evapotranspiration is the major contribution to the increased precipitation in the transition climatic zone (e.g., Central North America), where the land and atmosphere are strongly coupled. This dissertation reveals the highly nonlinear responses of precipitation and soil moisture to the groundwater representation in the model, and also underscores the importance of subsurface hydrological memory processes in the climate system.

  5. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Avanzino, R.J.

    1993-01-01

    The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel. ?? 1993 Kluwer Academic Publishers.

  6. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  7. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.

  8. IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...

  9. The Multispectral Imaging Science Working Group. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Results of the deliberations of the six multispectral imaging science working groups (Botany, Geography, Geology, Hydrology, Imaging Science and Information Science) are summarized. Consideration was given to documenting the current state of knowledge in terrestrial remote sensing without the constraints of preconceived concepts such as possible band widths, number of bands, and radiometric or spatial resolutions of present or future systems. The findings of each working group included a discussion of desired capabilities and critical developmental issues.

  10. A Palaeohydrological Shift during Neogene East Antarctic Ice Sheet Retreat

    NASA Astrophysics Data System (ADS)

    Rees-Owen, R. L.; Newton, R.; Ivanovic, R. F.; Francis, J.; Tindall, J. C.; Riding, J. B.

    2015-12-01

    The East Antarctic Ice Sheet is an important driver of global climate, playing a particular role in governing albedo and atmospheric circulation (eg. Singh et al., 2013). Recent evidence from marine sediment and terrestrial glaciovolcanic sequences suggests that the EAIS underwent periodic retreat and collapse in response to warmer climates during the late Neogene (14 to 3 million years ago). Mummified prostrate trees recovered from palaeosols at Oliver Bluffs in the Beardmore Glacier region, Transantarctic Mountains (85° S), represent a rare insight into the terrestrial palaeoclimate during one of these periods of retreat. Prostrate trees are an understudied but useful tool for interrogating endmember (e.g. periglacial) environments at high altitudes and latitudes. We present exciting new palaeoclimate data from the sequence at Oliver Bluffs. δ18O analysis of tree ring cellulose suggests that Antarctic summer palaeoprecipitation was enriched relative to today (-25 to -5‰ for ancient, -35 to -20‰ for modern); consistent with our isotope-enabled general circulation model simulations. The MBT/CBT palaeothermometer gives a summer temperature of 3-6ºC, consistent with other palaeobotanical climate indices. These geological and model data have wide-ranging implications for our understanding of the hydrological cycle during this time period. We present data suggesting that changes in moisture recycling and source region indicate a markedly different hydrological cycle.

  11. Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.

    tEarth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alterthe nature and rate of biogeochemical transformations and significantly impact the carbon balance ofthe ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedentmoisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidalfreshwater wetland system in the lower Columbia River, WA, USA. Our objective was to understand shiftsin biogeochemical processesmore » in response to changing soil moisture, based on soil respiration and methaneproduction rates, and to elucidate such responses based on the observed electron acceptor and metaboliteprofiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidencethat soil redox was the principal factor driving metabolic function. Fluctuating redox conditions alteredterminal electron acceptor and donor availability and recovery strengths of their concentrations in soilsuch that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradationprocesses like sulfate and iron reduction compared to carbon loss due to methanogenesis. Our resultsshow that extended and short-term saturation created conditions conducive to increasing metaboliteavailability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast,extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  12. Temporal dynamics of CO2and CH4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Chowdhury, Taniya; Bramer, Lisa M.; Hoyt, Davi

    2018-04-15

    tEarth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alterthe nature and rate of biogeochemical transformations and significantly impact the carbon balance ofthe ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedentmoisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidalfreshwater wetland system in the lower Columbia River, WA, USA. Our objective was to understand shiftsin biogeochemical processesmore » in response to changing soil moisture, based on soil respiration and methaneproduction rates, and to elucidate such responses based on the observed electron acceptor and metaboliteprofiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidencethat soil redox was the principal factor driving metabolic function. Fluctuating redox conditions alteredterminal electron acceptor and donor availability and recovery strengths of their concentrations in soilsuch that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradationprocesses like sulfate and iron reduction compared to carbon loss due to methanogenesis. Our resultsshow that extended and short-term saturation created conditions conducive to increasing metaboliteavailability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast,extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  13. Understanding the Amazon Hydrology for Sustainable Hydropower Development

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Chaudhari, S. N.

    2017-12-01

    Construction of 147 new hydropower dams, many of which are large, has been proposed in the Amazon river basin, despite the continuous stacking of negative impacts from the existing ones. These dams are continued to be built in a way that disrupts river ecology, causes large-scale deforestation, and negatively affects both the food systems nearby and downstream communities. In this study, we explore the impacts of the existing and proposed hydropower dams on the hydrological fluxes across the Amazonian Basin by incorporating human impact modules in an extensively validated regional hydrological model called LEAF-Hydro-Flood (LHF). We conduct two simulations, one in offline mode, forced by observed meteorological data for the historical period of 2000-2016 and the other in a coupled mode using the Weather Research and Forecasting (WRF) regional climate model. We mainly analyze terrestrial water storage and streamflow changes during the period of dam operations with and without human impacts. It is certain that the Amazon will undergo some major hydrological changes such as decrease in streamflow downstream in the coming decades caused due to these proposed dams. This study helps us understand and represent processes in a predictable manner, and provides the ability to evaluate future scenarios with dams and other major human influences while considering climate change in the basin. It also provides important insights on how to redesign the hydropower systems to make them truly renewable in terms of energy production, hydrology and ecology.

  14. Analysis of hydrological response to land use changes based on Low Impact Development—a case study on the southern area of Fangshan National Geopark in Nanjing city, China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fu, D., Sr.

    2016-12-01

    The hydrological response to Land Use/Land Cover Changes (LUCC) is the most active field in the international hydrological science research, and it is also a particular concern in the process of Chinese urban construction and renewal, many studies have shown that large-scale land use change is an important factor leading to the regional climate and hydrological cycle changes. Therefore, International Geosphere-Biosphere Program (IGBP) and International Human Dimensions Programme on Global Environmental Change (IHDP), World Climate Research Program (WCRP) and International Programme of Biodiversity Science (DIVERSITAS) program take land use change as one core program. The change of regional vegetation ecosystem caused by land use change, in turn, has a very significant impact on the regional hydrological cycle. Currently the influence of hydrological processes attributed correlated with land-use type were not fully considered in urban LUCC, the hydrological effect on urban-scale LUCC has just started. Since 2015, Chinese government began to implement "Sponge City" construction, however, the sponge city construction often takes the water resources management as the target, and mainly focuses on the rational allocation of urban water resources in conjunction with ignoring the response of LUCC on the water system. The hydrological response on LUCC need to use the scenario design method to quantitatively analyze the influence degree of the hydrological change on LUCC. According to the control rate of the runoff volume and land information, the coverage rate of sponge facilities determined before planning, such as bioretention, permeable pavement and greening roof, are adjusted and then are checked on the basis of storage volume, the coverage rate of the sponge facilities that can accommodate the total runoff volume are put forward. This research addresses the hydrological response changes on the land use before and after the use of LID using the scenario design method and identifies the sponge facilities with the aid of XPDrainage software on the southern area of Fangshan National Geopark in Nanjing city, China. A technical method to evaluate the influence of land use change on hydrological process and its response during the sponge city construction process is preliminarily discussed.

  15. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  16. An Evaluation System for the Online Training Programs in Meteorology and Hydrology

    ERIC Educational Resources Information Center

    Wang, Yong; Zhi, Xiefei

    2009-01-01

    This paper studies the current evaluation system for the online training program in meteorology and hydrology. CIPP model that includes context evaluation, input evaluation, process evaluation and product evaluation differs from Kirkpatrick model including reactions evaluation, learning evaluation, transfer evaluation and results evaluation in…

  17. Application of the satellite system of the earth's gravity field measurement (GRACE) for the evaluation of water balance in large Russian river catchments

    NASA Astrophysics Data System (ADS)

    Frolova, Natalia; Zotov, Leonid; Grigoriev, Vadim; Sazonov, Alexey; Kireeva, Maria; Krylenko, Inna

    2017-04-01

    Space-based Earth observing systems provided a substantially large amount of information to the scientific community in recent decades. Cumulative effects of redistribution of masses in the Earth system can be seen in the changes of the gravity field of the Earth. Gravity Recovery and Climate Experiment (GRACE) satellites, launched 17.03.2002 from Plesetsk, provide a set of monthly Earth's gravity field observations. GRACE data is very useful for hydrological and climatological studies, especially over large territory, not completely covered by the meteorological and hydrological networks, like Russia. Possible application of the satellite gravity survey data obtained under the GRACE for solving various hydrological problems is discussed. The GRACE-based monthly gravity field data are transformed into the maps of water level equivalent and averaged for the catchments of the largest rivers of Russia. The temporal variability of the parameter is analyzed. Possible application of the GRACE data for the evaluation of particular components of water balance within the largest river basins of the European part of Russia is discussed. After averaging over 15 large Russian rivers basins annual component shows amplitude increase since 2009. Trend component grows until 2009 and then reaches a plateau. It is mostly dominated by Siberian rivers. Map for the trend show gravity field increase in Siberia, at Back Sea and decrease over Caspian Sea since 2003. GRACE satellite gravimetry data can be used for estimating terrestrial water storage (TWS) in a river basin scale. Terrestrial water storage (TWS) is the integrated sum of all basin storages (surface water bodies, soil and ground aquifer, snowpack and glaciers) and the ability to estimate TWS dynamics is useful for understanding the basin's water cycle, its interconnection with the local climate, physics of predictability of extreme hydrological events. Despite the importance of the TWS estimates, reliable ground-based monitoring data of all TWS components are scarce or absent at all. Since observations are not sufficient to monitor TWS, hydrological models are considered as a comprehensive tool to simulate TWS components at a basin scale. However accuracy of the model-derived TWS is influenced by the uncertainty of the model structure and parameters, reliability of input data, etc. To improve the TWS-estimates, it is reasonable to combine the simulated TWS with independent observations provided by the GRACE gravity data. Ninety-seven monthly TWS retrieval from GRACE data (from April 2002 to December 2009) was examined and compared with TWS-estimates obtained by the ECOMAG hydrological model simulations. The case study was carried out for the Northern Dvina River basin. Quantitative analyze between the hydrological model and GRACE-based TWS showed that latter is in good consistency with the simulation results on both seasonal and inter-annual time scales. Overall, the results highlight the benefit of assimilating GRACE data for hydrological applications, particularly in data-sparse regions, while also providing insight on future refinements of the methodology of GRACE-data application in watershed hydrology. The study is financially supported by the Russian Foundation for Basic Research (Proj.№ 16-35-60080; 16-05-00753) and the Russian Science Foundation (Grant No. 14-17-00155).

  18. Quarantine provisions for unmanned extra-terrestrial missions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document sets forth requirements applicable to unmanned planetary flight programs which are necessary to enable the Associate Administrator for Space Science to fulfill those responsibilities pertaining to planetary quarantine as stated in NPD 8020.7 and NPD 8020.10A. This document is specifically directed to the control of terrestrial microbial contamination associated with unmanned space vehicles intended to encounter, orbit, flyby, or otherwise be in the vicinity of extra-terrestrial solar system bodies. The requirements of this document apply to all unmanned planetary flight programs. This includes solar system exploratory missions to the major planets as well as missions to planet satellites, or to other solar system objects that may be of scientific interest. This document is not applicable to terrestrial (including lunar) missions and manned missions. NASA officials having cognizance of applicable flight programs will invoke these requirements in such directives or contractual instruments as may be necessary to assure their implementation.

  19. Water-resources investigations of the U.S. Geological Survey in Montana, October 1983 through September 1984

    USGS Publications Warehouse

    Roberts, R.S.

    1984-01-01

    U.S. Geological Survey investigations of the water resources of Montana are described. Hydrologic information and knowledge of the water resources are gained and disseminated principally by programs of (1) collecting hydrologic data on a continuing basis , (2) conducting water-resources appraisals of surface and ground water, (3) conducting supportive research in hydrology and related fields, (4) disseminating water data and results of investigations to the public, (5) coordinating acquisition of water data by Federal agencies, and (6) providing technical assistance in hydrologic fields to other government agencies. The Montana district of the U.S. Geological Survey conducts its hydrologic work through a headquarters office in Helena, a subdistrict office in Billings, and field offices in Helena, Fort Peck, and Kalispell. The district employs 67 people to work on 25 funded projects that are organized under the general categories of data-collection programs, problem-oriented studies , a real appraisals, coal-related studies, research projects, and hydrologic studies and research performed under contracts to research organizations. (USGS)

  20. GLOBE Hydrology Workshop SEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.

  1. GLOBE Hydrology Workshop SEIP program

    NASA Image and Video Library

    2005-06-30

    Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.

  2. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  3. A Bayesian alternative for multi-objective ecohydrological model specification

    NASA Astrophysics Data System (ADS)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.

  4. Multisource data assimilation in a Richards equation-based integrated hydrological model: a real-world application to an experimental hillslope

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Botto, A.

    2017-12-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.

  5. The integrated water balance and soil data set of the Rollesbroich hydrological observatory

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye R.; Huisman, Johan A.; Schmidt, Marius; Kunkel, Ralf; Weuthen, Ansgar; Schiedung, Henning; Schilling, Bernd; Sorg, Jürgen; Vereecken, Harry

    2016-10-01

    The Rollesbroich headwater catchment located in western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive data set that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e., precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatiotemporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models, to improve the understanding of spatial temporal dynamics of soil water content, to optimize data assimilation and inverse techniques for hydrological models, and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net, doi:10.5880/TERENO.2016.001, doi:10.5880/TERENO.2016.004, doi:10.5880/TERENO.2016.003) and additionally referenced by three persistent identifiers securing the long-term data and metadata availability.

  6. Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.

    2011-12-01

    Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the Amazon and South American Convergence Zone, and does forest response in these regions influence that patterning of hydrologic information?

  7. Hydrologic and temperature variability at Lake Titicaca over the past 50,000 years

    NASA Astrophysics Data System (ADS)

    Fornace, K.; Shanahan, T. M.; Sylva, S.; Ossolinski, J.; Baker, P. A.; Fritz, S. C.; Hughen, K. A.

    2011-12-01

    The Bolivian Altiplano has been the focus of many paleoclimate studies due to the important role it plays in the South American climate system. Although the timing of climate shifts in this region is relatively well known, the magnitudes of hydrologic versus temperature changes remain poorly quantified. Here we apply hydrogen isotope analysis (δD) of terrestrial leaf waxes and the TEX86 temperature proxy in sediments from Lake Titicaca to reconstruct hydrologic and temperature variability over the past 50,000 years. Our record reveals that the Altiplano underwent a major climate shift during the last deglaciation, reflected in a ~70-80% enrichment in leaf wax δD at the onset of the Holocene. Using the global isotope-temperature relationship for meteoric water, only 25-40% of this enrichment can be explained by the 4-5°C deglacial warming shown by the TEX86 proxy, indicating that precipitation was significantly reduced (and evaporation/evapotranspiration increased) during the Holocene. Further, the timing of these hydrologic and temperature changes was asynchronous during the transition from a cold and wet glacial state to a warm and dry Holocene. The major hydrologic shift recorded by leaf wax δD occurred around ~11-12 ka, consistent with Northern Hemisphere deglacial patterns, whereas TEX86 data indicate that rapid warming began much earlier, more typical of a Southern Hemisphere deglacial pattern. Within the late glacial and Holocene mean climate states, however, there is evidence of synchronous hydrologic and temperature variability on millennial timescales. This study demonstrates that climate on the Altiplano was controlled by the interaction of local and remote forcing on a range of timescales.

  8. Evapotranspiration Calculator Desktop Tool

    EPA Pesticide Factsheets

    The Evapotranspiration Calculator estimates evapotranspiration time series data for hydrological and water quality models for the Hydrologic Simulation Program - Fortran (HSPF) and the Stormwater Management Model (SWMM).

  9. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  10. Second Conference on Early Mars: Geologic Hydrologic, and Climatic Evolution and the Implications for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.

  11. Long-term hydrometeorological trends in the Midwest region based on a century long gridded hydrometeorological dataset and simulations from a macro-scale hydrology model

    NASA Astrophysics Data System (ADS)

    Chiu, C. M.; Hamlet, A. F.

    2014-12-01

    Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.

  12. Characterizing hydrological activities over Yangtze River basin using the new HUST-Grace2016 model, MODIS, and NCEP/NCAR data

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Luo, Z.; Tangdamrongsub, N.; He, L.

    2017-12-01

    Accurate TWS estimation is important to evaluate the situation of the water resource over the Yangtze River basin. This study exploits the TWS observation from the new gravity model, HUST-Grace06, which is developed by a new low-frequency noise processing strategy. A novel GRACE post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the hydrological activities over the Yangtze River basin. The approach includes the effective noise reduction and the leakage error mitigation based on forward modeling. The HUST-Grace06 derived TWS presents good agreement with the CSR mascon solution as well as the PCR-GLOBWB hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the Yangtze River basin. In addition, for the first time, the NCEP/NCAR reanalysis data is incorporated with GRACE in the exploration of the climate induced hydrological activities. The comparison between GRACE and the MODIS-derived NDVI data is also conducted to investigate their connection regarding temporal and spatial distribution. The analysis suggests that the terrestrial reflectance data can be used to represent the TWS information. Importantly, such information can be used to fill the missing data in case of the early termination of GRACE or during the prelaunch of the GRACE Follow-On mission.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  14. Leaf wax records of late Holocene hydrologic changes on Abaco Island, Northern Bahamas

    NASA Astrophysics Data System (ADS)

    Tamalavage, A.; Feakins, S. J.; van Hengstum, P. J.; Louchouarn, P.; Fall, P. L.; Albury, N. A.; Donnelly, J. P.

    2016-12-01

    Previous pollen-based evidence from Abaco Island (Little Bahama Bank, Northern Bahamas) indicates that the terrestrial forest changed in dominance over the last 1500 years from palms to pines, and that this change is potentially driven by climate and/or anthropogenic factors. Geochemical markers (δ13Corg, δ15Norg,, C/N, and lignin phenols) measured from bulk sedimentary matter that has accumulated in Blackwood Sinkhole on Abaco Island also support the pollen-based evidence that vegetation has not been constant throughout the late Holocene (last 3000 years). More specifically, these geochemical markers document three intervals where sedimentary deposition was dominated by a different source of organic matter. These changes are likely driven by the combination of the ecological response to shoreline migration from Holocene sea-level rise, and a southward migration of the Intertropical Convergence Zone (ITCZ) at 1000 Cal yrs BP. However, the specific impact of a southward ITCZ displacement at 1000 Cal yrs BP on Abaco rainfall variability remains uncertain (e.g., quantity, seasonality). This research will explore hydrologic variability associated with regional vegetation changes by measuring precipitation isotopic composition based upon plant leaf wax n-alkanoic acid and n-alkane biomarkers. We find C29 and C31 n-alkanes and C24, C26, C28, and C30 n-alkanoic acids record the same hydrogen isotopic values within uncertainties indicating a uniform terrestrial vegetation source. We find a negative shift (-50‰) towards present in our initial analyses; the results of ongoing work will be presented at the meeting. This multi-proxy approach will allow us to resolve the nature of the leaf wax biomarker hydrogen isotope evidence for past precipitation, including testing for the impacts of vegetation on the hydrological proxy, and testing predictions of a shift in precipitation on Abaco Island over the late Holocene coincident with a southward displacement of the ITCZ.

  15. Arctic Temperature and Moisture Variability Associated with the Pliocene M2 Glacial Event from Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Salacup, J. M.; Castañeda, I. S.; Brigham-Grette, J.

    2014-12-01

    The early Late Pliocene (3.6-3.0 Ma) is the last time atmospheric CO2 concentrations equaled today's values (~400 ppm). Despite this, and the warmer than modern climate it fostered, this period experienced an intense global glaciation during marine isotope stage (MIS) M2 (~3.3 Ma). Constraints imposed by the estimated sea level drop associated with this event suggest ice growth was not isolated to Antarctica, as had previously been the case, but that ice grew in high northern latitudes as well. M2 is unique during the Pliocene and is likely the first attempt of Northern Hemisphere ice sheets to grow into those experienced during Pleistocene ice ages. However, the effects of MIS M2, and any attendant Northern Hemisphere ice sheets, on Arctic terrestrial temperature and hydrology are not well understood. Here we present and compare results from the biomarker-based MBT/CBT paleotemperature proxy with δDleaf wax results, sensitive to both temperature hydrology, from Lake El'gygytgyn (NE Russia) in an attempt to isolate and characterize variability in both air temperature and moisture source/availability. We compare our results with more coarsely resolved preexisting pollen-based temperature and moisture reconstructions. Our temperature reconstruction is, as far as we know, the highest resolution terrestrial record of this dramatic global cooling event. It implies a ~6°C cooling circa 3.29 Ma was accomplished in two steps before a rebound of ~7°C into the start of the mid-Pliocene Warm Period. Removal of the temperature effect from M2 δDleaf wax profiles using our MBT/CBT results provide insight into changes in local hydrology during this event that are compared with pollen-based estimates of minimum, maximum, and mean annual precipitation in order to discuss changes in amount and seasonality of moisture delivery to Lake El'gygytgyn (NE Russia) during the expansion of Northern Hemisphere ice sheets.

  16. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    NASA Astrophysics Data System (ADS)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the mechanistic differences between the model and observation. These outcomes will contribute to the WSWM for providing robust products.

  17. A cross-site comparison of factors controlling streamwater carbon flux in western North American catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.

    2013-12-01

    Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in concentrations, but these elevated concentrations persist for a longer period of time as increased solute sources are transported to surface water through persistent, subsurface flowpaths.

  18. Southwestern Division 2012 History Report

    DTIC Science & Technology

    2013-05-01

    maintenance to be performed. Examples of additional maintenance included hydraulic piping replacement, motor control center upgrades, miter gates anchorage...in CEBIS. WATER MANAGEMENT PROGRAM 2012 Hydrology , Hydraulics and Water Management Programs 2012: In March 2012, the Corps’ SWD office...hosted the annual “2012 Reservoir Control Center/Hydrology and Hydraulics annual meeting. The meeting was held in Tulsa, Oklahoma at the Tulsa

  19. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    NASA Astrophysics Data System (ADS)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.

  20. Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses

    NASA Astrophysics Data System (ADS)

    Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.

    2017-12-01

    Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.

  1. Extracting climate signals from large hydrological data cubes using multivariate statistics - an example for the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Kauer, Agnes; Dorigo, Wouter; Bauer-Marschallinger, Bernhard

    2017-04-01

    Global warming is expected to change ocean-atmosphere oscillation patterns, e.g. the El Nino Southern Oscillation, and may thus have a substantial impact on water resources over land. Yet, the link between climate oscillations and terrestrial hydrology has large uncertainties. In particular, the climate in the Mediterranean basin is expected to be sensitive to global warming as it may increase insufficient and irregular water supply and lead to more frequent and intense droughts and heavy precipitation events. The ever increasing need for water in tourism and agriculture reinforce the problem. Therefore, the monitoring and better understanding of the hydrological cycle are crucial for this area. This study seeks to quantify the effect of regional climate modes, e.g. the Northern Atlantic Oscillation (NAO) on the hydrological cycle in the Mediterranean. We apply Empirical Orthogonal Functions (EOF) to a wide range of hydrological datasets to extract the major modes of variation over the study period. We use more than ten datasets describing precipitation, soil moisture, evapotranspiration, and changes in water mass with study periods ranging from one to three decades depending on the dataset. The resulting EOFs are then examined for correlations with regional climate modes using Spearman rank correlation analysis. This is done for the entire time span of the EOFs and for monthly and seasonally sampled data. We find relationships between the hydrological datasets and the climate modes NAO, Arctic Oscillation (AO), Eastern Atlantic (EA), and Tropical Northern Atlantic (TNA). Analyses of monthly and seasonally sampled data reveal high correlations especially in the winter months. However, the spatial extent of the data cube considered for the analyses have a large impact on the results. Our statistical analyses suggest an impact of regional climate modes on the hydrological cycle in the Mediterranean area and may provide valuable input for evaluating process-oriented climate models. The study is supported by WACMOS-MED project of the European Space Agency.

  2. Holocene Hydrologic Variability of the Eastern Caribbean Derived from Speleothems of the Recent Two Millennia: a Progress Report

    NASA Astrophysics Data System (ADS)

    Sperberg, F.; Miller, T.; Winter, A.; Scholz, D.; Estrella, J.

    2013-12-01

    To improve models of future climate variability, knowledge of past temperature and precipitation is essential, especially in the Neotropics where proxies have been historically limited to sediment cores. Speleothems offer high resolution dating using uranium-series techniques, and in combination with stable carbon and oxygen isotopes can function as effective archives of terrestrial changes in precipitation, vegetation and mean annual temperature. Speleothem archives are relatively well documented throughout Europe and Asia as well as Central and South America to the extent that replication is possible among archives at nearby locations. This study aims to reconstruct hydrologic variability over the recent two millennia using two stalagmites each from Venezuela and Puerto Rico. The Venezuelan stalagmites were collected from Cueva Camillo within a Cariaco Basin terrestrial catchment. Preliminary analysis of Venezuelan stalagmite VECA1a stable oxygen isotopes over the last 600 years shows increasing precipitation from ~300 - 588 yBP and comparison with Cariaco Basin titanium concentrations and planktonic foraminifera oxygen isotopes show a weak correlation. Spectral analysis reveals solar influence from ~ 330 - 400 yBP and also appears to be influenced by the Atlantic Multidecadal Oscillation (AMO) from ~ 350 - 400 yBP and from ~550 - 588 yBP where the record terminates at a hiatus. Further examination of the geographic climate applicability of this locale's data will be tested through comparison with these terrestrial proxies, by analyzing annual, centennial, and millennial-scale variation of 18O in speleothems. The Puerto Rican stalagmites will be compared via dating and stable isotope analysis with Venezuelan stalagmites, as well as the local instrumental record. Cave monitoring of parameters at Cueva Dos Ojos (Puerto Rico) include temperature, relative humidity, spot pCO2 measurements, drip rate and drip water chemistry. Monitoring initiated in March of 2013 has already detected seasonality, and is expected to provide insight to the isotopic signature of speleothems collected there.

  3. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  4. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  5. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  6. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  7. An organic record of terrestrial ecosystem collapse and recovery at the Triassic-Jurassic boundary in East Greenland

    NASA Astrophysics Data System (ADS)

    Williford, Kenneth H.; Grice, Kliti; Holman, Alexander; McElwain, Jennifer C.

    2014-02-01

    Terrestrial ecosystem collapse at the end of the Triassic Period coincided with a major mass extinction in the marine realm and has been linked to increasing atmospheric carbon dioxide, global warming, and fire activity. Extractable hydrocarbons in samples from the fluvial Triassic-Jurassic boundary section at Astartekløft, East Greenland were analyzed to investigate the molecular and isotopic organic record of biotic and environmental change during this event. Carbon isotopic compositions of individual plant wax lipids show a >4‰ negative excursion coinciding with peak extinction and a further decrease of 2‰ coinciding with peak pCO2 as estimated from the stomatal indices of fossil Gingkoales. An increase of ˜30‰ in the hydrogen isotopic compositions of the same plant wax lipids coincides with ecosystem collapse, suggesting that the biotic crisis was accompanied by strong hydrologic change. Concentrations of polycyclic aromatic hydrocarbons related to combustion also increase together with abrupt plant diversity loss and peak with fossil charcoal abundance and maximum plant turnover, supporting the role of fire in terrestrial extinctions. Anomalously high concentrations of a monoaromatic diterpenoid related to gymnosperm resin derivatives (and similar to dehydroabietane) occur uniquely in samples from the boundary bed, indicating that environmental stress factors leading to peak plant extinction stimulated increased resin production, and that plant resin derivatives may be effective biomarkers of terrestrial ecosystem stress.

  8. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  9. Linking terrestrial P inputs to riverine export across the United ...

    EPA Pesticide Factsheets

    Human beings have greatly accelerated phosphorus (P) flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia. Although a variety of statistical and mechanistic models have been used to explore the relationship between terrestrial nutrient management and losses to waterways, our understanding of how natural and anthropogenic landscape characteristics mediate losses of P from watersheds lags behind that of nitrogen. The need for higher resolution data is often identified as an important barrier that limits our capacity to predict P loading. In order to address this gap, we constructed spatially explicit datasets of terrestrial P inputs and outputs (fertilizer, confined manure, crop harvest and sewage) across the continental U.S. for 2012. We then examined how these P sources, along with climate, hydrology, and land use, influenced P exports from 72 watersheds as total P (TP) and dissolved inorganic P (DIP) concentrations and yields, and TP fractional export. TP and DIP concentrations and TP yields were best correlated with runoff, but using simple linear regression, we were not able to explain more than 56% of the variance in any of the water quality variables (TP fractional export vs P manure inputs). The lack of clear and strong relationships between contemporary, high-resolution, anthropogenic, terrestrial P and riverine P export at the national scale highlights the fact that a complex suite of factors mediat

  10. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean

    NASA Astrophysics Data System (ADS)

    Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.

    2017-11-01

    Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).

  11. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-01-01

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  12. Integrating Data from GRACE and Other Observing Systems for Hydrological Research and Applications

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Famiglietti, J. S.; McWilliams, E.; Beaudoing, H. K.; Li, B.; Zaitchik, B.; Reichle, R.; Bolten, J.

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions.

  13. Cross-system nutrient transport: effects of locally-derived aeolian dust on oligotrophic lakes in West Greenland

    NASA Astrophysics Data System (ADS)

    Bullard, J. E.; Anderson, N. J.; McGowan, S.; Prater, C.; Watts, M.; Whitford, E.

    2017-12-01

    Terrestrially-derived nutrients can strongly affect production in aquatic environments. However, while some research has focused on nutrient delivery via hydrological inputs, the effects of atmospheric dry deposition are comparatively understudied. This paper examines the influence of aeolian-derived elements on water chemistry and microbial nutrient-limitation in oligotrophic lakes in West Greenland. Estimates of seasonal dust deposition and elemental leaching rates are combined with lake nutrient concentration measurements to establish the role of glacio-fluvial dust deposition in shaping nutrient stoichiometry of downwind lakes. The bioavailability of dust-associated elements is also explored using enzyme assays designed to indicate nutrient-limitation in microbial communities sampled across a dust deposition gradient. Together, these analyses demonstrate the importance of atmospheric dust inputs on hydrologically-isolated lakes found in arid high-latitude environments and demonstrate the need to better understand the role of aeolian deposition in cross-system nutrient transport.

  14. Assessing hydrometeorological impacts with terrestrial and aerial Lidar data in Monterrey, México

    NASA Astrophysics Data System (ADS)

    Yepez Rincon, F.; Lozano Garcia, D.; Vela Coiffier, P.; Rivera Rivera, L.

    2013-10-01

    Light Detection Ranging (Lidar) is an efficient tool to gather points reflected from a terrain and store them in a xyz coordinate system, allowing the generation of 3D data sets to manage geoinformation. Translation of these coordinates, from an arbitrary system into a geographical base, makes data feasible and useful to calculate volumes and define topographic characteristics at different scales. Lidar technological advancement in topographic mapping enables the generation of highly accurate and densely sampled elevation models, which are in high demand by many industries like construction, mining and forestry. This study merges terrestrial and aerial Lidar data to evaluate the effectiveness of these tools assessing volumetric changes after a hurricane event of riverbeds and scour bridges The resulted information could be an optimal approach to improve hydrological and hydraulic models, to aid authorities in proper to decision making in construction, urban planning, and homeland security.

  15. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  16. Climate change effects on the Baltic Sea borderland between land and sea.

    PubMed

    Strandmark, Alma; Bring, Arvid; Cousins, Sara A O; Destouni, Georgia; Kautsky, Hans; Kolb, Gundula; de la Torre-Castro, Maricela; Hambäck, Peter A

    2015-01-01

    Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.

  17. Simulating C fluxes along the terrestrial-aquatic continuum of the Amazon basin from 1861-2100

    NASA Astrophysics Data System (ADS)

    Lauerwald, R.; Regnier, P. A. G.; Ciais, P.

    2017-12-01

    To date, Earth System Models (ESM) ignore the lateral transfers of carbon (C) along the terrestrial-aquatic continuum down to the oceans and thus overestimate the terrestrial C storage. Here, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE, the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks in riparian wetlands. The model is calibrated and applied to the Amazon basin, including historical simulations starting from 1861 and future projections to the end of the 21st century. The model is found to reproduce well the observed dynamics in lateral DOC fluxes and CO2 evasion from the water surface. According to the simulations, half of the evading CO2 and 2/3 of the DOC transported in the rivers are produced within the water column or in flooded wetlands. We predict an increase in fluvial DOC exports to the coast and CO2 evasion to the atmosphere of about 1/4 over the 21st century (RCP 6.0). These long-term trends are mainly controlled by increasing atmospheric CO2 concentration and its fertilizing effect on terrestrial primary production in the model, while the effects of land-use change and increasing air temperature are minor. Interannual variations and seasonality of CO2 evasion and DOC transported by the river are however mainly controlled by hydrology. Over the simulation period, the actual land C sink represents less than half of the balance between terrestrial production and respiration in the Amazon basin, while the larger proportion is exported through the terrestrial-aquatic interface. These results highlight the importance of the terrestrial-aquatic continuum in the global C cycle.

  18. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    NASA Astrophysics Data System (ADS)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in terrestrial forest ecosystem.

  19. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities in...

  20. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance: Surface...

  1. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance: Surface...

  2. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities in...

  3. Water-resources investigations of the U.S. Geological Survey in Montana, October 1982 through September 1983

    USGS Publications Warehouse

    Roberts, Robert S.

    1983-01-01

    The investigative efforts of the U.S. Geological Survey toward the water resources of Montana are described. Hydrologic information and knowledge of the water resources are gained annd disseminated principally by programs of (1) collecting hydrologic data on a continuing basis, (2) conducting water-resources appraisals of surface and ground water, (3) conducting supportive research in hydrology and related fields, (4) disseminating water data and results of investigations to the public, (5) coordinating acquisition of water data by Federal agencies, and (6) providing technical assistance in hydrologic fields to other government agencies. The Montana district of the U.S. Geological Survey conducts its hydrologic work through a headquarters office in Helena, a subdistrict office in Billings, and field offices in Helena, Fort Peck, and Kalispell. The district employs 67 people to work on 24 funded projects that are organized under the general categories of data-collection programs, problem-oriented studies, areal appraisals, coal-related studies, research projects, and hydrologic studies and research performed under a system of contracts to research organizations. (USGS)

  4. Semiannual progress report, April - September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.

  5. Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  6. Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils

    DOE PAGES

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.; ...

    2017-06-27

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  7. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  8. Effects of Atmospheric Nitrate on an Upland Stream of the Northeastern USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2009-05-01

    Excess nitrogen cascades through terrestrial biogeochemical cycles and affects stream nitrate concentrations in upland forests where atmospheric deposition is an important source of anthropogenic nitrogen. We will discuss approaches including high-frequency sampling, isotopic tracers, and end-member mixing analysis that can be used to decipher the sources, transformations, and hydrological processes that affect nitrate transport through forested upland catchments to streams. We present results of studies at the Sleepers River Research Watershed in Vermont, USA, a site where we have intensively measured stream nitrate concentrations during baseflow and stormflow. Stream nitrate concentrations are typically low and nearly 75% of annual inorganic N inputs from atmospheric deposition are retained within the catchment. However, high concentrations and stream loadings of nitrate occur during storm events due to source variation and hydrological flushing of nitrate from catchment soils. Using isotopic tracers and end-member mixing analysis, we have quantified source inputs of unprocessed atmospheric nitrate and show that this stream is directly affected by nitrogen pollution. Using a long-term record of stream hydrochemistry and our findings on event- scale nitrate flushing dynamics, we then explore how stream nitrate loading may respond to anthropogenic climate forcing during the next century. Results suggest that stream runoff and nitrate loadings will change during future emission scenarios (i.e. longer growing seasons and higher winter precipitation rates). Understanding the timing and magnitude of hydrological and hydrochemical responses is important because climate change effects on catchment hydrology may alter how nitrate is retained, produced, and hydrologically flushed in headwater ecosystems with implications for aquatic metabolism, nutrient export from catchments, and downstream eutrophication.

  9. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  10. Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US

    NASA Astrophysics Data System (ADS)

    Fang, Kuai; Shen, Chaopeng

    2017-09-01

    Interannual changes in low, median, and high regimes of streamflow have important implications for flood control, irrigation, and ecologic and human health. The Gravity Recovery and Climate Experiment (GRACE) satellites record global terrestrial water storage anomalies (TWSA), providing an opportunity to observe, interpret, and potentially utilize the complex relationships between storage and full-flow-regime streamflow. Here we show that utilizable storage-streamflow correlations exist throughout vastly different climates in the continental US (CONUS) across low- to high-flow regimes. A panoramic framework, the storage-streamflow correlation spectrum (SSCS), is proposed to examine macroscopic gradients in these relationships. SSCS helps form, corroborate or reject hypotheses about basin hydrologic behaviors. SSCS patterns vary greatly over CONUS with climate, land surface, and geologic conditions. Data mining analysis suggests that for catchments with hydrologic settings that favor storage over runoff, e.g., a large fraction of precipitation as snow, thick and highly-permeable permeable soil, SSCS values tend to be high. Based on our results, we form the hypotheses that groundwater flow dominates streamflows in Southeastern CONUS and Great Plains, while thin soils in a belt along the Appalachian Plateau impose alimit on water storage. SSCS also suggests shallow water table caused by high-bulk density soil and flat terrain induces rapid runoff in several regions. Our results highlight the importance of subsurface properties and groundwater flow in capturing flood and drought. We propose that SSCS can be used as a fundamental hydrologic signature to constrain models and to provide insights thatlead usto better understand hydrologic functioning.

  11. Water resources in the twenty-first century; a study of the implications of climate uncertainty

    USGS Publications Warehouse

    Moss, Marshall E.; Lins, Harry F.

    1989-01-01

    The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.

  12. Television programming and advertisements: help or hindrance to effective science education?

    NASA Astrophysics Data System (ADS)

    McSharry, Gabrielle

    2002-05-01

    Investigations were carried out to find the amount of science portrayed by terrestrial television in the UK and the public comprehension of that science as shown on television. UK terrestrial programming was derived from the Radio Times. Advertisement information was derived from UK terrestrial commercial television commercials. Public opinions were solicited by a survey of 200 members of the public (n = 196). Science-based programming formed 5.36% of all terrestrial broadcasting time, with people watching an average of 1.75 science programmes per week (approx. 0.2% of programmes possible). 65% of all television advertisements were found to be science-based, although only 26% of advertisement categories were recognized as being science-based by the public. If interest in science is reflected in the amount of science programmes watched then the public are not interested in science. The lack of comprehension of the scientific basis of many advertisements is indicative of the lack of relevance of science education to people in modern society.

  13. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  14. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0161

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  15. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0192

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  16. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0139

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    1999-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  17. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0185

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  18. Pleistocene Lake Bonneville as an analog for extraterrestrial lakes and oceans: Chapter 21

    USGS Publications Warehouse

    Chan, M.A.; Jewell, P.; Parker, T.J.; Ormo, J.; Okubo, Chris; Komatsu, G.

    2016-01-01

    Geomorphic confirmation for a putative ancient Mars ocean relies on analog comparisons of coastal-like features such as shoreline feature attributes and temporal scales of process formation. Pleistocene Lake Bonneville is one of the few large, geologically young, terrestrial lake systems that exemplify well-preserved shoreline characteristics that formed quickly, on the order of a thousand years or less. Studies of Lake Bonneville provide two essential analog considerations for interpreting shorelines on Mars: (1) morphological variations in expression depend on constructional vs erosional processes, and (2) shorelines are not always correlative at an equipotential elevation across a basin due to isostasy, heat flow, wave setup, fetch, and other factors. Although other large terrestrial lake systems display supporting evidence for geomorphic comparisons, Lake Bonneville encompasses the most integrated examples of preserved coastal features related to basin history, sediment supply, climate, and fetch, all within the context of a detailed hydrograph. These collective terrestrial lessons provide a framework to evaluate possible boundary conditions for ancient Mars hydrology and large water body environmental feedbacks. This knowledge of shoreline characteristics, processes, and environments can support explorations of habitable environments and guide future mission explorations.

  19. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem

    USGS Publications Warehouse

    Calhoun, Aram J.K.; Mushet, David M.; Bell, Kathleen P.; Boix, Dani; Fitzsimons, James A.; Isselin-Nondedeu, Francis

    2017-01-01

    Frequent drying of ponded water, and support of unique, highly specialized assemblages of often rare species, characterize temporary wetlands, such as vernal pools, gilgais, and prairie potholes. As small aquatic features embedded in a terrestrial landscape, temporary wetlands enhance biodiversity and provide aesthetic, biogeochemical, and hydrologic functions. Challenges to conserving temporary wetlands include the need to: (1) integrate freshwater and terrestrial biodiversity priorities; (2) conserve entire ‘pondscapes’ defined by connections to other aquatic and terrestrial systems; (3) maintain natural heterogeneity in environmental gradients across and within wetlands, especially gradients in hydroperiod; (4) address economic impact on landowners and developers; (5) act without complete inventories of these wetlands; and (6) work within limited or non-existent regulatory protections. Because temporary wetlands function as integral landscape components, not singly as isolated entities, their cumulative loss is ecologically detrimental yet not currently part of the conservation calculus. We highlight approaches that use strategies for conserving temporary wetlands in increasingly human-dominated landscapes that integrate top-down management and bottom-up collaborative approaches. Diverse conservation activities (including education, inventory, protection, sustainable management, and restoration) that reduce landowner and manager costs while achieving desired ecological objectives will have the greatest probability of success in meeting conservation goals.

  20. Afforestation may have little effect on hydrological cycle over the Three-North region of China

    NASA Astrophysics Data System (ADS)

    Meng, S.; Xie, X.

    2017-12-01

    Afforestation or reforestation is generally effective to improve environmental conditions, and it may have substantial impact on hydrological cycle by increasing rainfall interception and transpiration. To combat desertification and to control dust storms, China has implemented a few Large-scale afforestation programs since 1980s, including the world's most ambitious afforestation program, the Three-North Forest Shelterbelt (TNFS) program in the arid and semiarid land areas. This afforestation plan covers about 4 million km2 (> 42%) of the land area of China. Although the TNFS program eased environmental problems in the region to some degree, the consequences of large-scale afforestation on hydrological cycles is still controversial. To identify the impact of the afforestation on hydrological cycle at regional scale, we employed a large-scale hydrological model, i.e., the Variable Infiltration Capacity (VIC) model, and satellite remote sensing data sets, i.e., leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Global LAnd Surface satellite (GLASS). The VIC modelling was forced with long-term dynamic LAI and gridded atmospheric data. We focused on the period of 2000-2015 when fewer afforestation activities implemented and the vegetation in steady growth stage in the three-north region. The results show that, despite the spatial heterogeneity, LAI in the growing season exhibits a slight increase across the three-north region, which is the contribution of the vegetation growth due to afforestation program. Evapotranspiration (ET) increased at a rate of 3.93 mm/yr over the whole region from 2000 to 2015. The spatial pattern of ET is consistent with the changes in LAI and precipitation, but this does not mean vegetation growth contributed equally. Based on factor-distinguishing simulations, we found that precipitation change has more significant influence on hydrological cycle than vegetation growth. Therefore, the afforestation practices are influential at small-catchment scale, but at regional scale, they may have little effect on the hydrological cycles. For sustainable water resource management, we should pay special attention on climate change rather than the afforestation efforts.

  1. Hydrological Monitoring System Design and Implementation Based on IOT

    NASA Astrophysics Data System (ADS)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  2. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  3. Hydrologic Evaluation of Landfill Performance (HELP) Model: B (Set Includes, A- User's Guide for Version 3 w/disks, B-Engineering Documentation for Version 3

    EPA Science Inventory

    The Hydrologic Evaluation of Landfill Performance (HELP) computer program is a quasi-two-dimensional hydrologic model of water movement across, into, through and out of landfills. The model accepts weather, soil and design data. Landfill systems including various combinations o...

  4. Time series analysis of hydrological drought under climate change with anthropogenic water management

    NASA Astrophysics Data System (ADS)

    Satoh, Y.; Yoshimura, K.; Pokhrel, Y. N.; KIM, H.; Oki, T.

    2014-12-01

    Human society have altered terrestrial hydrological cycles by water management infrastructure, such as reservoirs and weirs for irrigation, in order to enable stable water use against natural variability. On the other hand, anthropogenic climate change is projected to alter the hydro-meteorological cycles, and it is projected that drought frequency and/or intensity will increase in some regions. Thus reliable projection is a critical issue for our society in order to adapt for the change. However, only few studies have investigated the effect of anthropogenic intervention on drought under climate change. This study focuses on hydrological drought, particularly on stream flow, as stream flow is one of the most easy-to-access water resource. HiGW-MAT, a state of arts land surface model capable to reproduce energy and water cycle considering the anthropogenic water management, is used to simulate the historical and future terrestrial water cycles. The model includes reservoir operation, water withdrawal and irrigation process. Five CMIP5 GCM outputs with bias-correction provided by ISI-MIP for 1980-2099 are used to force a set of simulations. Time series data of global hydrological drought for 120 years, with and without human activity, is analyzed in order to estimate the impact of climate change and the adaptation capacity of anthropogenic water management. It is identified that Europe, Central and Eastern Asia, East and West part of USA, Chile, Amazon basin and Congo basin will have large increases of drought more than 90 days. According to uncertainty check particular increases in Central USA and Southern and Eastern South America have high robustness. Dividing global land into 26 regions, we characterized the variation of drought time series for each region. Drought does not show abrupt change and show almost linear increase in many regions. Also, it is found that human activity effectively reduces the increasing rate and suppresses the natural variability under projected warming climate. Nevertheless, the increasing trends are significant under RCP8.5 scenario. In the regions where large increase of drought is projected, drought will depart from historical condition to unexperienced phase in each region until 2050. It alarms human society has to consider countermeasures for the coming change promptly.

  5. The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Davis, K.; Kane, T.; Boyer, E.

    2009-04-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.

  6. Dissolved Organic Matter in the Gulf of Maine: Implications for Blue Carbon Cycling in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Aiken, G.

    2016-12-01

    Nutrients and dissolved organic matter (DOM) delivered from terrestrial sources to coastal oceans are critical for ocean productivity and the blue carbon cycle. Assessing influences of these inputs on marine productivity is difficult due to the difficulty in monitoring the processes controlling carbon cycling over short time frames, as well as the lack of historical data to assess possible trends. In this presentation, results of a long-term study designed to assess productivity and water quality in the Gulf of Maine (GoM), and waters delivering terrestrially derived DOM to the GoM are presented. DOM in the major tributaries and discrete samples collected along transects in the GoM were characterized by many analytical approaches including measurement of DOM optical properties, DOM fractionation, isotopic , 13C-NMR and FTICR-MS analyses. The compositional information provided by these was combined with optical data obtained by an in-situ glider and remotely sensed satellite data. Results indicate that DOM associated with inflowing waters to the GoM is rich in aromatic compounds resulting in a large influx of terrestrially derived, chromophoric DOM. The net result of these inflows is that DOM in the GoM is more chromophoric than samples from the Sargasso Sea and mid-Pacific Ocean. Hydrologic analyses using discharge:concentration relationships along with historical river discharge data indicate that the amount of DOM from rivers to the GoM has increased over the past 80 years leading to a `yellowing' of the waters in the GoM. Indeed, comparisons of ocean color between the present study and observations made by Henry Bigelow in 1912-1913 using the Forel-Ule color scale indicate an increase in chromophoric DOM in the past century. Chromophoric DOM influences the productivity of aquatic systems by reducing light available for phytoplankton photosynthesis and growth. Over the course of this study, a decline in primary productivity was also observed, perhaps resulting from increased DOM fluxes to the GoM. Climate and hydrologic models predict increasing precipitation and runoff in the GoM watershed during this century, possibly resulting in an increase of terrestrial OM delivered to the GoM of 30% during the next 80 years. This could potentially influence productivity and blue carbon cycling in this marine system.

  7. Legacy model integration for enhancing hydrologic interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common implementation of the message passing interface (MPI), which includes FORTRAN, C, Java, the .NET languages, Python, R, Matlab, and many others. The system is tested on a longstanding legacy hydrologic model, the Soil and Water Assessment Tool (SWAT), to observe and enhance speed-up capabilities for various optimization, parameter estimation, and model uncertainty characterization techniques, which is particularly important for computationally intensive hydrologic simulations. Initial results indicate that the legacy extension system significantly decreases developer time, computation time, and the cost of purchasing commercial parallel processing licenses, while enhancing interdisciplinary research by providing detailed two-way feedback mechanisms between various process models with minimal changes to legacy code.

  8. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE

    NASA Astrophysics Data System (ADS)

    Felfelani, Farshid; Wada, Yoshihide; Longuevergne, Laurent; Pokhrel, Yadu N.

    2017-10-01

    Hydrological models and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been widely used to study the variations in terrestrial water storage (TWS) over large regions. However, both GRACE products and model results suffer from inherent uncertainties, calling for the need to make a combined use of GRACE and models to examine the variations in total TWS and their individual components, especially in relation to natural and human-induced changes in the terrestrial water cycle. In this study, we use the results from two state-of-the-art hydrological models and different GRACE spherical harmonic products to examine the variations in TWS and its individual components, and to attribute the changes to natural and human-induced factors over large global river basins. Analysis of the spatial patterns of the long-term trend in TWS from the two models and GRACE suggests that both models capture the GRACE-measured direction of change, but differ from GRACE as well as each other in terms of the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations over 30 river basins shows notable differences not only between models and GRACE but also among different GRACE products and between the two models. Further, it is found that while one model performs well in highly-managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-induced changes in TWS in some of the managed basins reveals a consistently declining TWS trend during 2002-2010, however; significant differences are again obvious both between GRACE and models and among different GRACE products and models. Results from the decomposition of the TWS signal into the general trend and seasonality indicate that both models do not adequately capture both the trend and seasonality in the managed or snow-dominated basins implying that the TWS variations from a single model cannot be reliably used for all global regions. It is also found that the uncertainties arising from climate forcing datasets can introduce significant additional uncertainties, making direct comparison of model results and GRACE products even more difficult. Our results highlight the need to further improve the representation of human land-water management and snow processes in large-scale models to enable a reliable use of models and GRACE to study the changes in freshwater systems in all global regions.

  9. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    USGS Publications Warehouse

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and hydrologic data identified a range of habitat characteristics and differences in tidal-creek morphology. This endeavor related nearshore benthic habitat and hydrologic conditions with habitat suitability and fish assemblages and provides a template for similar applications in shallow and nearshore estuarine environments.

  10. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  11. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    USGS Publications Warehouse

    Taylor, George C.

    1971-01-01

    Hydrologic instrumentation and methodology for assessing water-resource potentials have originated largely in the developed countries of the temperature zone. The developing countries lie largely in the tropic zone, which contains the full gamut of the earth's climatic environments, including most of those of the temperate zone. For this reason, most hydrologic techniques have world-wide applicability. Techniques for assessing water-resource potentials for the high priority goals of economic growth are well established in the developing countries--but much more are well established in the developing countries--but much more so in some than in other. Conventional techniques for measurement and evaluation of basic hydrologic parameters are now well-understood in the developing countries and are generally adequate for their current needs and those of the immediate future. Institutional and economic constraints, however, inhibit growth of sustained programs of hydrologic data collection and application of the data to problems in engineering technology. Computer-based technology, including processing of hydrologic data and mathematical modelling of hydrologic parameters i also well-begun in many developing countries and has much wider potential application. In some developing counties, however, there is a tendency to look on the computer as a panacea for deficiencies in basic hydrologic data collection programs. This fallacy must be discouraged, as the computer is a tool and not a "magic box." There is no real substitute for sound programs of basic data collection. Nuclear and isotopic techniques are being used increasingly in the developed countries in the measurement and evaluation of virtually all hydrologic parameter in which conventional techniques have been used traditionally. Even in the developed countries, however, many hydrologists are not using nuclear techniques, simply because they lack knowledge of the principles involved and of the potential benefits. Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.

  12. OHD/HL/HSMB - Hydrologic Science & Modeling Branch

    Science.gov Websites

    apply these sciences to application software and data products developed within the HL and as a hydrologic services program. HSMB applies its scientific expertise to training material developed

  13. Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987

    USGS Publications Warehouse

    Duwelius, R.F.

    1990-01-01

    Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation wells are needed in the inter-till and bedrock aquifers. Finally, immediate access to instantaneous precipitation data is needed to assess flooding potential. (USGS)

  14. 1990 Hydrology Prize awarded

    NASA Astrophysics Data System (ADS)

    The International Association of Hydrological Sciences awarded its 1990 International Hydrology Prize to Z. Kaczmarek of Warsaw, Poland. The award was presented on March 16 in Paris, France, during Unesco's Commemorative Symposium on 25 Years of the International Hydrological Decade/International Hydrological Program.The IAHS International Hydrology Prize, a silver medal, was first approved in 1979 as an annual award to a person who has made an outstanding contribution to hydrology and gives the candidate universal recognition of his international stature. The IAHS national committees give nominations to the IAHS Secretary General for consideration by a nominating committee, which consists of the IAHS president, the first and second vice presidents and representatives of Unesco and the World Meteorological Organization. The citation for the award to Kaczmarek, which was given by IAHS president Vit Klemes, follows.

  15. MSFC/EV44 Natural Environment Capabilities

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.

    2014-01-01

    The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.

  16. 2016 International Land Model Benchmarking (ILAMB) Workshop Report

    NASA Technical Reports Server (NTRS)

    Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen; Lawrence, David M.; Riley, William J.; Randerson, James T.; Ahlstrom, Anders; Abramowitz, Gabriel; Baldocchi, Dennis D.; Best, Martin J.; hide

    2016-01-01

    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections.

  17. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  18. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    NASA Astrophysics Data System (ADS)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking, conference presentations, peer instruction, and mentoring among young hydrologic researchers. Furthermore, we have provided guidance in research ethics, in presentations to technical audiences and the general public, and in writing research proposals and publications via an online professional practice course. Outreach and sustainability (A3) has been accomplished through outreach programs that communicate research findings on water use, conservation, and pollution prevention to schools and communities. The ARCHES program has now trained over 30 students and young professionals from four countries (Morocco, Egypt, Turkey, and Indonesia), with each participant providing 40 hours of outreach. The program provides access to teaching and outreach materials, instructional videos, facilitates scientific exchange (e.g., LinkedIn database), and fosters collaboration (e.g., Facebook working groups).

  19. Soil Metabolome and Metabolic Fate: Microbial Insights into Freshwater Tidal Wetland Redox Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, T.; Bramer, L.; Hoyt, D. W.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.; Bailey, V. L.

    2017-12-01

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands will experience the immediate consequence of climate change as shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the structure and function of the soil microbial populations that in turn will alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of shifting hydrology on the soil microbiome and the role of antecedent moisture condition on redox active microbial processes in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. Our objectives were to characterize changes in the soil microbial community composition in response to soil moisture legacy effects, and to elucidate relationships between community response, geochemical signatures and metabolite profiles in this soil. The 16S rRNA gene sequencing showed significant decreases in bacterial abundance capable of anaerobic metabolism in response to drying, but quickly recovered to the antecedent moisture condition, as observed by redox processes. Metabolomics and biogeochemical process rates generated evidence for moisture-driven redox conditions as principal controls on the community and metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of these pools in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction in compared to methanogenesis. Our results show that anoxic conditions impact microbial communities in both permanently and temporarily saturated conditions and that rapid change in hydrology can increase substrate availability for both aerobic and anaerobic decomposition processes, including methanogenesis.

  20. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  1. Monitoring Freeze-Thaw States in the Pan-Arctic: Application of Microwave Remote Sensing to Monitoring Hydrologic and Ecological Processes

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Kimball, J. S.

    2004-12-01

    The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.

  2. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  3. Century long observation constrained global dynamic downscaling and hydrologic implication

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  4. Towards improved hydrologic predictions using data assimilation techniques for water resource management at the continental scale

    NASA Astrophysics Data System (ADS)

    Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan

    2017-04-01

    More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.

  5. Terrestrial liming to promote Atlantic Salmon recovery in Nova Scotia - approaches needed and knowledge gained after a trial application

    NASA Astrophysics Data System (ADS)

    Sterling, S. M.; Angelidis, C.; Armstrong, M.; Biagi, K. M.; Clair, T. A.; Jackson, N.; Breen, A.

    2014-09-01

    Populations of Atlantic salmon (Salmo salar) in Southwest Nova Scotia (SWNS) have plummeted since the 1980s. Acidification is considered a main threat to this population. The lakes and streams of SWNS were among the most heavily acidified in North America during the last century and calcium levels are predicted to continue to fall in coming decades. One of the most promising mitigation options to reduce the risk of extirpation of the SWNS Salmo salar is terrestrial liming; however, both the chemistry of SWNS rivers, and effective strategies for terrestrial liming in SWNS are poorly understood. Here we have launched the first terrestrial liming study in Nova Scotia, employing a test hydrologic source area liming strategy in a 5 ha experimental catchment in SWNS, Maria Brook; we apply an average local application rate of 13 t ha-1 to 10% of the 47 ha catchment. We employ high frequency stream monitoring to complement grab sampling to identify which constituents pose a threat to Salmo salar and to identify strategies for larger scale terrestrial liming that would fit the local conditions. Results indicate that the water chemistry conditions are currently at toxic levels for Salmo salar throughout the year, with levels of ionic aluminium exceeding toxic thresholds almost 100% of the time. The stream chemistry in Maria Brook is remarkably similar to pre-recovery conditions in other heavily acidified watersheds, such as Birkenes in Norway. Our results support the hypothesis that there has been no recovery from acidification in SWNS. Results from the first year of post-liming do not show an improvement in stream chemistry levels, and further lime application is needed to improve the water chemistry conditions to needed levels for the recovery of Salmo salar.

  6. Fate of water pumped from underground and contributions to sea-level rise

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-08-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/-0.004) mm yr-1 in 1900 and increased to 0.27 (+/-0.04) mm yr-1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 (+/-0.04) mm yr-1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  7. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    USGS Publications Warehouse

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  8. Lipid biomarkers in Holocene and glacial sediments from ancient Lake Ohrid (Macedonia, Albania)

    NASA Astrophysics Data System (ADS)

    Holtvoeth, J.; Vogel, H.; Wagner, B.; Wolff, G. A.

    2010-11-01

    Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.

  9. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes.

    PubMed

    Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A

    2018-03-15

    Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.

  10. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models

    DTIC Science & Technology

    2016-07-01

    through the food chain. Human health may also be affected by ingesting contaminated water or fish. As a result, the criteria for protecting human...ER D C/ EL T R- 16 -8 Environmental Quality Technology Research Program Aquatic Contaminant and Mercury Simulation Modules Developed...Quality Technology Research Program ERDC/EL TR-16-8 July 2016 Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and

  11. GEWEX Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Try, Paul

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.

  12. Learning from catchments to understand hydrological drought (HS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne

    2017-04-01

    Drought is a global challenge. To be able to manage drought effectively on global or national scales without losing smaller scale variability and local context, we need to understand what the important hydrological drought processes are at different scales. Global scale models and satellite data are providing a global overview and catchment scale studies provide detailed site-specific information. I am interested in bridging these two scale levels by learning from catchments from around the world. Much information from local case studies is currently underused on larger scales because there is too much complexity. However, some of this complexity might be crucial on the level where people are facing the consequences of drought. In this talk, I will take you on a journey around the world to unlock catchment scale information and see if the comparison of many catchments gives us additional understanding of hydrological drought processes on the global scale. I will focus on the role of storage in different compartments of the terrestrial hydrological cycle, and how we as humans interact with that storage. I will discuss aspects of spatial and temporal variability in storage that are crucial for hydrological drought development and persistence, drawing from examples of catchments with storage in groundwater, lakes and wetlands, and snow and ice. The added complexity of human activities shifts the focus from natural to catchments with anthropogenic increases in storage (reservoirs), decreases in storage (groundwater abstraction), and changes in hydrological processes (urbanisation). We learn how local information is providing valuable insights, in some cases challenging theoretical understanding or model outcomes. Despite the challenges of working across countries, with a high number of collaborators, in a multitude of languages, under data-scarce conditions, the scientific advantages of bridging scales are substantial. The comparison of catchments around the world can inform global scale models, give the needed spatial variability to satellite data, and help us make steps in understanding and managing the complex challenge of drought, now and in the future.

  13. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin.

    PubMed

    Ndehedehe, Christopher E; Awange, Joseph L; Corner, Robert J; Kuhn, Michael; Okwuashi, Onuwa

    2016-07-01

    Multiple drought episodes over the Volta basin in recent reports may lead to food insecurity and loss of revenue. However, drought studies over the Volta basin are rather generalised and largely undocumented due to sparse ground observations and unsuitable framework to determine their space-time occurrence. In this study, we examined the utility of standardised indicators (standardised precipitation index (SPI), standardised runoff index (SRI), standardised soil moisture index (SSI), and multivariate standardised drought index (MSDI)) and Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage to assess hydrological drought characteristics over the basin. In order to determine the space-time patterns of hydrological drought in the basin, Independent Component Analysis (ICA), a higher order statistical technique was employed. The results show that SPI and SRI exhibit inconsistent behaviour in observed wet years presupposing a non-linear relationship that reflects the slow response of river discharge to precipitation especially after a previous extreme dry period. While the SPI and SSI show a linear relationship with a correlation of 0.63, the correlation between the MSDIs derived from combining precipitation/river discharge and precipitation/soil moisture indicates a significant value of 0.70 and shows an improved skill in hydrological drought monitoring over the Volta basin during the study period. The ICA-derived spatio-temporal hydrological drought patterns show Burkina Faso and the Lake Volta areas as predominantly drought zones. Further, the statistically significant negative correlations of pacific decadal oscillations (0.39 and 0.25) with temporal evolutions of drought in Burkina Faso and Ghana suggest the possible influence of low frequency large scale oscillations in the observed wet and dry regimes over the basin. Finally, our approach in drought assessment over the Volta basin contributes to a broad framework for hydrological drought monitoring that will complement existing methods while looking forward to a longer record of GRACE observations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Relationship Between Landscape Character, UV Exposure, and Amphibian Decline

    NASA Astrophysics Data System (ADS)

    O'Reilly, C. M.; Brooks, P. D.; Corn, P. S.; Muths, E.; Campbell, D. H.; Diamond, S.; Tonnessen, K.

    2001-12-01

    Widespread reports of amphibian declines have been considered a warning of large-scale environmental degradation, yet the reasons for these declines remain unclear. This study suggests that exposure to ultraviolet radiation may act as an environmental stressor that affects population breeding success or susceptibility to disease. Ultraviolet radiation is attenuated by dissolved and particulate compounds in water, which may be of either terrestrial or aquatic origin. UV attenuation by dissolved organic carbon (DOC) is primarily due to compounds in the fulvic acid fraction, which originate in soil environments. These terrestrially-derived fulvic acids are transported to during hydrologic flushing events such as snowmelt and episodic precipitation and play an important role in controlling UV exposure in surface waters. As part of a previously published project, amphibian surveys were conducted at seventeen sites in Rocky Mountain National Park both during, and subsequent to, a three-year drought (1988 - 1990). During this period, ten sites lost one amphibian species, while only one site gained a previously unreported species. One possible explanation for these localized species losses is increased exposure to UV radiation, mediated by reduced terrestrial DOC inputs during dry periods. Several subsequent years of water chemistry data showed that the sites with documented species losses were characterized by a range of DOC concentrations, but tended to have a greater proportion of terrestrial DOC than sites that did not undergo species loss. This suggests that terrestrial inputs exert a strong control on DOC concentrations that may influence species success. We used physical environmental factors to develop a classification scheme for these sites. There are many physical factors that can influence terrestrial DOC inputs, including landscape position, geomorphology, soil type, and watershed vegetation. In addition, we considered the possible effects on internal aquatic inputs, such as nutrient status, food web composition, and aquatic vegetation. Finally, we examined other sites in Rocky Mountain National Park to determine their susceptibility to species loss.

  15. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved organic matter. However, the role of food web structure in mediating these dynamics remains unclear.

  16. The Hydrologic Instrumentation Facility of the U.S. Geological Survey

    USGS Publications Warehouse

    Wagner, C.R.; Jeffers, Sharon

    1984-01-01

    The U.S. Geological Survey Water Resources Division has improved support to the agencies field offices by the consolidation of all instrumentation support services in a single facility. This facility known as the Hydrologic Instrumentation Facility (HIF) is located at the National Space Technology Laboratory, Mississippi, about 50 miles east of New Orleans, Louisiana. The HIF is responsible for design and development, testing, evaluation, procurement, warehousing, distribution and repair of a variety of specialized hydrologic instrumentation. The centralization has resulted in more efficient and effective support of the Survey 's hydrologic programs. (USGS)

  17. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  18. Modeling Best Management Practices (BMPs) with HSPF

    EPA Science Inventory

    The Hydrological Simulation Program-Fortran (HSPF) is a semi-distributed watershed model, which simulates hydrology and water quality processes at user-specified spatial and temporal scales. Although HSPF is a comprehensive and highly flexible model, a number of investigators not...

  19. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  20. Application of Terrestrial Environments in Orion Assessments

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  1. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  2. Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines

    NASA Astrophysics Data System (ADS)

    Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc

    2014-11-01

    Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.

  3. A study of Bangladesh's sub-surface water storages using satellite products and data assimilation scheme.

    PubMed

    Khaki, M; Forootan, E; Kuhn, M; Awange, J; Papa, F; Shum, C K

    2018-06-01

    Climate change can significantly influence terrestrial water changes around the world particularly in places that have been proven to be more vulnerable such as Bangladesh. In the past few decades, climate impacts, together with those of excessive human water use have changed the country's water availability structure. In this study, we use multi-mission remotely sensed measurements along with a hydrological model to separately analyze groundwater and soil moisture variations for the period 2003-2013, and their interactions with rainfall in Bangladesh. To improve the model's estimates of water storages, terrestrial water storage (TWS) data obtained from the Gravity Recovery And Climate Experiment (GRACE) satellite mission are assimilated into the World-Wide Water Resources Assessment (W3RA) model using the ensemble-based sequential technique of the Square Root Analysis (SQRA) filter. We investigate the capability of the data assimilation approach to use a non-regional hydrological model for a regional case study. Based on these estimates, we investigate relationships between the model derived sub-surface water storage changes and remotely sensed precipitations, as well as altimetry-derived river level variations in Bangladesh by applying the empirical mode decomposition (EMD) method. A larger correlation is found between river level heights and rainfalls (78% on average) in comparison to groundwater storage variations and rainfalls (57% on average). The results indicate a significant decline in groundwater storage (∼32% reduction) for Bangladesh between 2003 and 2013, which is equivalent to an average rate of 8.73 ± 2.45mm/year. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Science and applications-driven OSSE platform for terrestrial hydrology using NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Peters-Lidard, C. D.; Harrison, K.; Santanello, J. A.; Bach Kirschbaum, D.

    2014-12-01

    Observing System Simulation Experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader ``Earth systems'' focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Towards this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. In this presentation, we present the development of an end-to-end and end-use application oriented OSSE platform using the capabilities of the NASA Land Information System (LIS) developed for terrestrial hydrology. Four case studies that demonstrate the capabilities of the system will be presented: (1) A soil moisture OSSE that employs simulated L-band measurements and examines their impacts towards applications such as floods and droughts. The experiment also uses a decision-theory based analysis to assess the economic utility of observations towards improving drought and flood risk estimates, (2) A GPM-relevant study quantifies the impact of improved precipitation retrievals from GPM towards improving landslide forecasts, (3) A case study that examines the utility of passive microwave soil moisture observations towards weather prediction, and (4) OSSEs used for developing science requirements for the GRACE-2 mission. These experiments also demonstrate the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms and end-use application models in a single integrated framework.

  5. Terrestrial "Islands" in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Cartwright, J. M.; Wolfe, W. J.

    2016-12-01

    Terrestrial insular ecosystems—such as rock outcrops, depression wetlands, high-elevation balds, flood-scoured riparian corridors, and insular prairies—occupy a small fraction of land area but constitute an important source of regional and global biodiversity, including concentrations of rare and endemic plant taxa. Maintenance of this biodiversity depends upon regimes of abiotic stress and disturbance, such as soil-surface temperature, extreme hydrologic conditions, fires, flood-scouring, and episodic droughts, all of which may be subject to alteration by climate change. Over several decades, numerous site-specific investigations have yielded important information on the floristics, physical environments, and ecological dynamics of these insular ecosystems, but this literature has generally remained fragmented. Regional and cross-system syntheses are needed to discern larger patterns in the drivers of plant biodiversity in these ecosystems, identify knowledge gaps, and lay the groundwork for climate-change vulnerability analysis. For eight categories of insular ecosystems of the southeastern United States, a synthetic literature review was completed to assess the state-of-the-science concerning (1) physical geography including geologic, topographic, edaphic, hydrologic, and geomorphic context; (2) ecological determinants of community structures including factors regulating successional dynamics and spatial vegetation patterns; (3) contributions of the insular ecosystem to regional and global biodiversity; (4) historic and current anthropogenic threats as well as conservation approaches to mitigate these threats; and (5) key knowledge gaps relevant to conservation, particularly in terms of climate-change effects on biodiversity. From this synthesis, new conceptual models were developed to assess ecosystem-level exposure, sensitivity, and adaptive capacity to climate change and other anthropogenic influences.

  6. Export of dissolved organic matter in relation to land use along a European climatic gradient.

    PubMed

    Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal

    2009-03-01

    The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.

  7. Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.; Vaniman, David T.

    2014-05-01

    A distinctive sulfur cycle dominates many geological processes on Mars and hydrated sulfate minerals are found in numerous topographic settings with widespread occurrences on the Martian surface. However, many of the key processes controlling the hydrological transport of sulfur, including sulfur sources, climate and the depositional history that led to precipitation of these minerals, remain unclear. In this paper, we use a model for the formation of sulfate efflorescent salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semiarid Southwest U.S., to assess the origin and environmental conditions that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. Our terrestrial geochemical results (δS34 of -36.0 to +11.1‰) show that an ephemeral arid hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and dry/wet atmospheric deposition can lead to widespread surface accumulations of hydrated sulfate efflorescences. Repeating cycles of salt dissolution and reprecipitation appear to be major processes that migrate sulfate efflorescences to sites of surface deposition and ultimately increase the aqueous SO42- flux along the watershed (average 41,273 metric tons/yr). We suggest that similar shallow processes may explain the occurrence of hydrated sulfates detected on the scarps and valley floors of Valles Marineris on Mars. Our estimates of salt mass and distribution are in accord with studies that suggest a rather short-lived process of sulfate formation (minimum rough estimate ∼100 to 1000 years) and restriction by prevailing arid conditions on Mars.

  8. Evaluating Vegetation Potential for Wildfire Impacted Watershed Using a Bayesian Network Modeling Approach

    NASA Astrophysics Data System (ADS)

    Jaramillo, L. V.; Stone, M. C.; Morrison, R. R.

    2017-12-01

    Decision-making for natural resource management is complex especially for fire impacted watersheds in the Southwestern US because of the vital importance of water resources, exorbitant cost of fire management and restoration, and the risks of the wildland-urban interface (WUI). While riparian and terrestrial vegetation are extremely important to ecosystem health and provide ecosystem services, loss of vegetation due to wildfire, post-fire flooding, and debris flows can lead to further degradation of the watershed and increased vulnerability to erosion and debris flow. Land managers are charged with taking measures to mitigate degradation of the watershed effectively and efficiently with limited time, money, and data. For our study, a Bayesian network (BN) approach is implemented to understand vegetation potential for Kashe-Katuwe Tent Rocks National Monument in the fire-impacted Peralta Canyon Watershed, New Mexico, USA. We implement both two-dimensional hydrodynamic and Bayesian network modeling to incorporate spatial variability in the system. Our coupled modeling framework presents vegetation recruitment and succession potential for three representative plant types (native riparian, native terrestrial, and non-native) under several hydrologic scenarios and management actions. In our BN model, we use variables that address timing, hydrologic, and groundwater conditions as well as recruitment and succession constraints for the plant types based on expert knowledge and literature. Our approach allows us to utilize small and incomplete data, incorporate expert knowledge, and explicitly account for uncertainty in the system. Our findings can be used to help land managers and local decision-makers determine their plan of action to increase watershed health and resilience.

  9. Drought Indicators Based on Model Assimilated GRACE Terrestrial Water Storage Observations

    NASA Technical Reports Server (NTRS)

    Houborg, Rasmus; Rodell, Matthew; Li, Bailing; Reichle, Rolf; Zaitchik, Benjamin F.

    2012-01-01

    The Gravity Recovery and Climate Experiment (GRACE) twin satellites observe time variations in Earth's gravity field which yield valuable information about changes in terrestrial water storage (TWS). GRACE is characterized by low spatial (greater than 150,000 square kilometers) and temporal (greater than 10 day) resolution but has the unique ability to sense water stored at all levels (including groundwater) systematically and continuously. The GRACE Data Assimilation System (GRACE-DAS), based on the Catchment Land Surface Model (CLSM) enhances the value of the GRACE water storage data by enabling spatial and temporal downscaling and vertical decomposition into moisture 39 components (i.e. groundwater, soil moisture, snow), which individually are more useful for scientific applications. In this study, GRACE-DAS was applied to North America and GRACE-based drought indicators were developed as part of a larger effort that investigates the possibility of more comprehensive and objective identification of drought conditions by integrating spatially, temporally and vertically disaggregated GRACE data into the U.S. and North American Drought Monitors. Previously, the Drought Monitors lacked objective information on deep soil moisture and groundwater conditions, which are useful indicators of drought. Extensive datasets of groundwater storage from USGS monitoring wells and soil moisture from the Soil Climate Analysis Network (SCAN) were used to assess improvements in the hydrological modeling skill resulting from the assimilation of GRACE TWS data. The results point toward modest, but statistically significant, improvements in the hydrological modeling skill across major parts of the United States, highlighting the potential value of GRACE assimilated water storage field for improving drought detection.

  10. Compound-Specific Hydrogen Isotopic Records of Holocene Climate Dynamics in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Shuman, B. N.

    2017-12-01

    The northeastern United States, located between the location of Laurentide ice sheet and the dynamic North Atlantic Ocean, is an ideal region for studying paleoclimate changes on centennial to multi-millennial time scales because the region experienced multiple abrupt climate changes and variations over the past 14 ka. Over the Holocene, the region's long-term climate trend was influenced by isolation changes, the retreat of the Laurentide Ice Sheet (LIS), changes in atmospheric composition and changes in the North Atlantic Meridional Overturning Circulation (AMOC). Hydrological and pollen records show that multiple abrupt climate changes punctuate the long-term trends, even after the widely recognized events associated with the LIS and AMOC, but the mechanisms behind the abrupt climate changes observed are not well understood. To understand the mechanisms behind abrupt climate shifts, their impact on hydrology, ecosystems, regional and local climates, additional insights are needed. Compound-specific hydrogen isotope (D/H) ratios derived from terrestrial and aquatic leaf waxes and preserved in lake sediments, have been shown to record D/H ratios of environmental water and we use such data to further investigate the regional climate history. Here we present hydrogen isotope records of precipitation using compound specific hydrogen isotope of leaf wax n-alkanes derived from aquatic and terrestrial leaf waxes from three lakes: Twin Ponds, Vermont; Blanding Pond, Pennsylvania; and Crooked Pond, Massachusetts. We use the results to evaluate common climate trends across the region from an isotopic perspective and to assess changes in the spatial isotopic gradients across the northeastern US during the Holocene.

  11. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less

  12. Genetic Programming for Automatic Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11).

  13. Monitoring Tropical Cyclone Impacts on the Coastal Vegetation of the Southeastern USA in the First Decade of the 21st Century

    NASA Astrophysics Data System (ADS)

    Brun, J.; Barros, A. P.

    2010-12-01

    Hurricanes and tropical storms are powerful and hazardous meteorological phenomena causing damages to natural and built areas all around the world. However, on the flip side, Tropical cyclones provide a significant influx of freshwater resources to surface and subsurface reservoirs during the warm season. Therefore it is important to understand ecosystem response to such extreme climatic events, especially in a context of potential changes in the track, frequency or strength of these phenomena that could be induced by climatic change. Here we present a method to measure vegetation disturbance persistence in the aftermath of tropical cyclones based on MODIS North American Carbon Program (NACP) vegetation indices (8-day composite at 500m spatial resolution) was developed with the objective of assessing the eco-hydrological impact of hurricanes in the South-East United States. This technique is based on the relationship between vegetation stress and the persistence of standardized Enhanced Vegetation Index (EVI) anomalies along the terrestrial path of hurricanes. An independent evaluation was conducted against 25 years (1982-2006) of AVHRR data from the Global Inventory Modeling and Mapping Studies (GIMMS) database. The data show that in the aftermath of hurricane landfall, there is a significant decrease in chlorophyll activity at very low elevations, including coastal marshes, wetlands, and the drainage networks of major river systems aligned with the terrestrial path of the storm. This vegetation activity disturbance persists longer (up two 2 years) in coastal areas than in inland forests and could be consistent with impact of salt intrusion in shallow coastal aquifers. In alluvial plains, the spatial pattern of the vegetation anomalies persistence seems to be mostly associated with flooding.

  14. Global and regional ecosystem modeling: comparison of model outputs and field measurements

    NASA Astrophysics Data System (ADS)

    Olson, R. J.; Hibbard, K.

    2003-04-01

    The Ecosystem Model-Data Intercomparison (EMDI) Workshops provide a venue for global ecosystem modeling groups to compare model outputs against measurements of net primary productivity (NPP). The objective of EMDI Workshops is to evaluate model performance relative to observations in order to improve confidence in global model projections terrestrial carbon cycling. The questions addressed by EMDI include: How does the simulated NPP compare with the field data across biome and environmental gradients? How sensitive are models to site-specific climate? Does additional mechanistic detail in models result in a better match with field measurements? How useful are the measures of NPP for evaluating model predictions? How well do models represent regional patterns of NPP? Initial EMDI results showed general agreement between model predictions and field measurements but with obvious differences that indicated areas for potential data and model improvement. The effort was built on the development and compilation of complete and consistent databases for model initialization and comparison. Database development improves the data as well as models; however, there is a need to incorporate additional observations and model outputs (LAI, hydrology, etc.) for comprehensive analyses of biogeochemical processes and their relationships to ecosystem structure and function. EMDI initialization and NPP data sets are available from the Oak Ridge National Laboratory Distributed Active Archive Center http://www.daac.ornl.gov/. Acknowledgements: This work was partially supported by the International Geosphere-Biosphere Programme - Data and Information System (IGBP-DIS); the IGBP-Global Analysis, Interpretation and Modelling Task Force (GAIM); the National Center for Ecological Analysis and Synthesis (NCEAS); and the National Aeronautics and Space Administration (NASA) Terrestrial Ecosystem Program. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725

  15. smwrGraphs—An R package for graphing hydrologic data, version 1.1.2

    USGS Publications Warehouse

    Lorenz, David L.; Diekoff, Aliesha L.

    2017-01-31

    This report describes an R package called smwrGraphs, which consists of a collection of graphing functions for hydrologic data within R, a programming language and software environment for statistical computing. The functions in the package have been developed by the U.S. Geological Survey to create high-quality graphs for publication or presentation of hydrologic data that meet U.S. Geological Survey graphics guidelines.

  16. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is knownmore » as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which ecological systems are experiencing anthropogenic disturbance and change in structure and function is critical for long term conservation of biotic diversity in the face of changing landscapes and land use. KTOI and the RDRT propose a concept based on incorporating hydrologic, aquatic, and terrestrial components into an operations-based assessment framework to assess ecological losses as shown in Figure E-1.« less

  17. 30,000 years of hydroclimatic variability in the coastal southwest United States: regional synthesis and forcings analysis.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.

    2015-12-01

    The coastal southwest United States is characterized by a winter dominated hydroclimate. Far from dependable, this region's supply of winter precipitation is highly variable and often characterized by hydrologic opposites - droughts and floods. Predicting future precipitation and hydrologic dynamics requires a paleoperspective. Here, we present an up-to-date synthesis of hydroclimatic variability over the past 30,000 years. A variety of terrestrial-based studies are examined and compared to understand patterns of regional hydroclimatic change. This comparison is extended into the San Joaquin Basin of California where future climate change will impact the region's agricultural stability and economy. Particularly interesting is the apparent role that Pacific sea surface temperatures (SSTs) play in modulating the region's hydroclimate over a variety of timescales. Are past periods of above average Pacific SSTs analogs for future global warming? If yes, the region might expect an increase in winter precipitation as SSTs rise in response to global warming. However, how this potential precipitation increase is manifest is unknown. For example, will the intensity of precipitation events increase and thus present increased flood hazards and diminished freshwater capture? Finally, we present evidence for changes in the source of winter precipitation over time as well as ecological responses to past hydrologic change.

  18. Peatland hydrology and carbon release: why small-scale process matters.

    PubMed

    Holden, Joseph

    2005-12-15

    Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon.

  19. Annual Variations in Water Storage and Precipitation in the Amazon Basin: Bounding Sink Terms in the Terrestrial Hydrological Balance using GRACE Satellite Gravity Data

    NASA Technical Reports Server (NTRS)

    Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.

    2007-01-01

    We combine satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) and precipitation measurements from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center's (CPC) Merged Analysis of Precipitation (CMAP) and the Tropical Rainfall Measuring Mission (TRMM), over the period from mid-2002 to mid-2006, to investigate the relative importance of sink (runoff and evaporation) and source (precipitation) terms in the hydrological balance of the Amazon Basin. When linear and quadratic terms are removed, the time series of land water storage variations estimated from GRACE exhibits a dominant annual signal of 250 mm peak-to-peak, which is equivalent to a water volume change of approximately 1800 cubic kilometers. A comparison of this trend with accumulated (i.e., integrated) precipitation shows excellent agreement and no evidence of basin saturation. The agreement indicates that the net runoff and evaporation contributes significantly less than precipitation to the annual hydrological mass balance. Indeed, raw residuals between the detrended water storage and precipitation anomalies range from plus or minus 40 mm. This range is consistent with streamflow measurements from the region, although the latter are characterized by a stronger annual signal than ow residuals, suggesting that runoff and evaporation may act to partially cancel each other.

  20. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins.

    PubMed

    Feng, Xiaojuan; Vonk, Jorien E; van Dongen, Bart E; Gustafsson, Örjan; Semiletov, Igor P; Dudarev, Oleg V; Wang, Zhiheng; Montluçon, Daniel B; Wacker, Lukas; Eglinton, Timothy I

    2013-08-27

    Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.

  1. Contributions of groundwater pumping to global sea level rise: Continental-scale and interannual analysis

    NASA Astrophysics Data System (ADS)

    Yeh, P. J. F.; Chen, Y.; Lo, M. H.; Wada, Y.; Famiglietti, J. S.; Reager, J. T., II; Zhang, C.; Wu, R. J.

    2017-12-01

    Groundwater depletion (GWD) is an anthropogenic driver of changes in terrestrial water storage (TWS). Despite small in magnitudes comparing to most terrestrial hydrologic fluxes, it has important long-term contributions to global sea level rise (SLR). Past studies on the evaluation of the contributions from GWD to SLR were generally limited to a global-scale context and a long-term average perspective. This study examines the impacts of GWD on both terrestrial and atmospheric water balances and quantify the respective contribution to global sea level rise (SLR) using a global climate modelling approach. The annual contributions to global SLR from each continent during the modelling period 1900-1999 are quantified and compared. The contribution from each continent can be decomposed into a direct effect via the change in continental river discharges (R) and an indirect effect via the change in atmosphere water vapour convergence from ocean to land (C). An increase in R and a reduction in C would contribute positively to global SLR. The contribution due to GWD to SLR is compared with the contribution due to natural variability of TWS. Through this study, different dynamics and mechanisms responsible for the GWD contribution to SLR in different continents and time horizons can be identified for better understanding this globally significant environmental issue under warming climate.

  2. Effect of Tundra Fires on Stream Chemistry in Alaska's Yukon-Kuskokwim Delta

    NASA Astrophysics Data System (ADS)

    Jimmie, J. A.; Mann, P. J.; Schade, J. D.; Natali, S.; Fiske, G.; Holmes, R. M.

    2017-12-01

    Surface air temperatures in the Arctic have been increasing at approximately twice the global average, contributing to myriad changes including shifting vegetation, thawing permafrost, and altered surface and groundwater hydrology. Wildfire frequency and intensity has also been increasing, and in summer 2015, more area burned in the Yukon-Kuskowkwim Delta than in the previous 64 years combined. We investigated the impact of tundra fire on stream water chemistry, and by extension, on the movement of nutrients and organic matter between terrestrial and aquatic ecosystems. Using a high-resolution Digital Elevation Model, we characterized the contributing sub-watershed area at each of our stream water sampling locations and calculated the percent of each sub-watershed that was burned in summer 2015. We found that nitrate, ammonium, and phosphate concentrations increased with burn area in a watershed, indicating that terrestrial inputs of these constituents to aquatic systems increased following fire. Patterns were less striking for dissolved organic carbon and dissolved organic nitrogen, but there was a positive relationship between burn area and the concentration of these constituents as well. These results highlight the significant impact of tundra fires on terrestrial-aquatic linkages in the Arctic, and suggest that these impacts may increase in the future if fire in Arctic and boreal regions continues to become more common.

  3. The requirements and feasibility of business planning in the office of space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.; Miller, B. P.

    1979-01-01

    The feasibility of applying strategic business planning techniques which are developed and used in the private sector to the planning of certain projects within the NASA Office of Space and Terrestrial Applications was assessed. The methods of strategic business planning that are currently in use in the private sector are examined. The typical contents of a private sector strategic business plan and the techniques commonly used to develop the contents of the plan are described, along with modifications needed to apply these concepts to public sector projects. The current long-range planning process in the Office of Space and Terrestrial Applications is reviewed and program initiatives that might be candidates for the use of strategic business planning techniques are identified. In order to more fully illustrate the information requirements of a strategic business plan for a NASA program, a sample business plan is prepared for a hypothetical Operational Earth Resources Satellite program.

  4. Solar-terrestrial research for the 1980's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solar-terrestrial system is described. Techniques for observations involving all relevant platforms: spacecraft, the Earth's surface, aircraft, balloons, and rockets are proposed. The need for interagency coordination of programs, efficient data management, theoretical studies and modeling, the continuity of long time series observations, and innovative instrument design is emphasized. Examples of the practical impact of interactions between solar terrestrial phenomena and the environment, including technological systems are presented.

  5. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A. Peyton; Bond-Lamberty, Ben; Benscoter, Brian W.

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soilmore » moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.« less

  6. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    USGS Publications Warehouse

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  7. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  8. Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water

    NASA Astrophysics Data System (ADS)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Siebert, Stefan; Wada, Yoshihide

    2018-05-01

    In the hydrologic cycle, continental landmasses constitute a sink for atmospheric moisture as annual terrestrial precipitation commonly exceeds evapotranspiration. Simultaneously, humans intervene in the hydrologic cycle and pump groundwater to sustain, for example, drinking water and food production. Here we use a coupled groundwater-to-atmosphere modeling platform, set up over the European continent, to study the influence of groundwater pumping and irrigation on the net atmospheric moisture import of the continental landmasses, which defines the strength of the continental sink. Water use scenarios are constructed to account for uncertainties of atmospheric feedback during the heatwave year 2003. We find that human water use induces groundwater-to-atmosphere feedback, which potentially weaken the continental sink over arid watersheds in southern Europe. This feedback is linked to groundwater storage, which suggests that atmospheric feedbacks to human water use may contribute to drying of watersheds, thereby raising water resources and socio-economic concerns beyond local sustainability considerations.

  9. SWOT Hydrology in the classroom

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river discharge. This is also important to the GLOBE Program as curriculum integration of its hydrology measurements can be enhanced by strengthened ties to the concepts of watersheds and the hydrologic cycle. Understanding can also be increased of the relation of lake and river levels to drought and water supply.

  10. BOREAS HYD-6 Aircraft Gamma Ray Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Carroll, Thomas; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-6 team collected several data sets related to the moisture content of soil and overlying humus layers. This data set contains percent soil moisture (by weight) (and/or water content if there is a moss/humus layer) measured from aircraft using a terrestrial gamma ray instrument. There are also data that indicate the location of the aircraft at the time it collected the terrestrial gamma ray data for the various flight lines and bins. The location information contains a list of coordinates that indicate the path of the aircraft for each bin. The data were collected during four time periods from September 1993 to September 1994 over the southern study area (SSA) and two time periods from February to August 1994 over the northern study area (NSA). The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. On the conversion of tritium units to mass fractions for hydrologic applications

    USGS Publications Warehouse

    Stonestrom, David A.; Andraski, Brian J.; Cooper, Clay A.; Mayers, Charles J.; Michel, Robert L.

    2013-01-01

    We develop a general equation for converting laboratory-reported tritium levels, expressed either as concentrations (tritium isotope number fractions) or mass-based specific activities, to mass fractions in aqueous systems. Assuming that all tritium is in the form of monotritiated water simplifies the derivation and is shown to be reasonable for most environmental settings encountered in practice. The general equation is nonlinear. For tritium concentrations c less than 4.5×1012 tritium units (TU) - i.e. specific tritium activities11 Bq kg-1 - the mass fraction w of tritiated water is approximated to within 1 part per million by w ≈ c×2.22293×10-18, i.e. the conversion is linear for all practical purposes. Terrestrial abundances serve as a proxy for non-tritium isotopes in the absence of sample-specific data. Variation in the relative abundances of non-tritium isotopes in the terrestrial hydrosphere produces a minimum range for the mantissa of the conversion factor of [2.22287; 2.22300].

  12. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  13. Of microbes and men: Determining sources of nitrate in a high alpine catchment in the Front Range of Colorado and science outreach on alpine hydrology

    NASA Astrophysics Data System (ADS)

    Hafich, Katya A.

    High elevation ecosystems throughout the Colorado Front Range are undergoing changes in biogeochemical cycling due to an increase in nitrogen deposition in precipitation and a changing climate. While nitrate concentrations continue to rise in surface water of the Green Lakes Valley (GLV) by 0.27 umol L-1 per year, atmospheric deposition of inorganic nitrogen has recently curtailed due to drought, leaving a gap in our understanding of the source of the increased export of nitrate. Here, we employ a novel triple isotope method, using Delta 17O-NO3- for the first time in an alpine catchment to quantify the terrestrial and atmospheric contribution of nitrate to numerous water types in GLV. Results show that nitrate in surface waters, including talus, soil water and rock glacier melt, is more than 75% terrestrial, with the strongest atmospheric signals present during snowmelt. Results suggest that alpine catchment biogeochemistry in GLV has transitioned to a net nitrification system.

  14. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  15. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO 2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplifiedmore » global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  16. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGES

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; ...

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO 2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplifiedmore » global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  17. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Hawkins, W.L.; Mathews, M.

    This report describes research done at Los Alamos in FY 1993 for the Hydrologic Resources Management Program. The US Department of Energy funds this research through two programs at the Nevada Test Site (NTS): defense and groundwater characterization. Los Alamos personnel have continued to study the high-pressure zone created in the aquifer under Yucca Flat. We analyzed data from a hole in this area (U-7cd) and drilled another hole and installed a water monitoring tube at U-4t. We analyzed water from a number of locations on the NTS where we know there are radionuclides in the groundwater and critiqued themore » effectiveness of this monitoring effort. Our program for analyzing postshot debris continued with material from the last nuclear test in September 1992. We supported both the defense program and the groundwater characterization program by analyzing water samples from their wells and by reviewing documents pertaining to future drilling. We helped develop the analytical methodology to be applied to water samples obtained in the environmental restoration and waste management efforts at the NTS. Los Alamos involvement in the Hydrologic Resources Management Program is reflected in the appended list of documents reviewed, presentations given, papers published, and meetings attended.« less

  18. Disagreement between Hydrological and Land Surface models on the water budgets in the Arctic: why is this and which of them is right?

    NASA Astrophysics Data System (ADS)

    Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.

    2017-12-01

    The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment of snow and evapotranspiration. The study reveals that expertise in the role of snow on runoff generation and evapotranspiration in Hydrological and Land Surface could be combined to improve the representation of the fresh water flows in the Arctic in both approaches. Improved observations are essential to make these modelling advances possible.

  19. Investigating different filter and rescaling methods on simulated GRACE-like TWS variations for hydrological applications

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Dobslaw, Henryk; Dahle, Christoph; Thomas, Maik; Neumayer, Karl-Hans; Flechtner, Frank

    2017-04-01

    By operating for more than one decade now, the GRACE satellite provides valuable information on the total water storage (TWS) for hydrological and hydro-meteorological applications. The increasing interest in use of the GRACE-based TWS requires an in-depth assessment of the reliability of the outputs and also its uncertainties. Through years of development, different post-processing methods have been suggested for TWS estimation. However, since GRACE offers an unique way to provide high spatial and temporal scale TWS, there is no global ground truth data available to fully validate the results. In this contribution, we re-assess a number of commonly used post-processing methods using a simulated GRACE-type gravity field time-series based on realistic orbits and instrument error assumptions as well as background error assumptions out of the updated ESA Earth System Model. Three non-isotropic filter methods from Kusche (2007) and a combined filter from DDK1 and DDK3 based on the ground tracks are tested. Rescaling factors estimated from five different hydrological models and the ensemble median are applied to the post-processed simulated GRACE-type TWS estimates to correct the bias and leakage. Time variant rescaling factors as monthly scaling factors and scaling factors for seasonal and long-term variations separately are investigated as well. Since TWS anomalies out of the post-processed simulation results can be readily compared to the time-variable Earth System Model initially used as "truth" during the forward simulation step, we are able to thoroughly check the plausibility of our error estimation assessment (Zhang et al., 2016) and will subsequently recommend a processing strategy that shall also be applied for planned GRACE and GRACE-FO Level-3 products for terrestrial applications provided by GFZ. Kusche, J., 2007:Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geodesy, 81 (11), 733-749, doi:10.1007/s00190-007-0143-3. Zhang L, Dobslaw H, Thomas M (2016) Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications. Geophysical Journal International 206(1):368-378, DOI 10.1093/gji/ggw153.

  20. Vegetation physiology controls continental water cycle responses to climate change

    NASA Astrophysics Data System (ADS)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the precipitation), and under no single driver influence (grey). Based on an article in review at Nature Climate Change as of Aug, 2nd 2017

  1. Non-renewable water use on the globe and its implication to sea level change

    NASA Astrophysics Data System (ADS)

    Oki, T.; Pokhrel, Y. N.; Hanasaki, N.; Koirala, S.; Kanae, S.

    2012-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules, such as reservoir operation, crop growth and water demand in croplands, and environmental flows, were incorporated into a land surface model to form a new model, MAT-HI. Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. MAT-HI was further coupled with a module representing the ground water level fluctuations, and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands which enabled the assessment of the origin of water producing major crops. Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, Western part of India, north and western parts of China, some regions in the Arabian Peninsula, and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation of ground water for 2000 estimated by HiGW-MAT is 360 km3/y as an excess of ground water withdrawal over natural recharge into aquifer. This unsustainable groundwater use, together with artificial reservoir water impoundment, climate-driven changes in terrestrial water storage and the loss of water from closed basins, could have contributed a sea-level rise of about 0.77mm/y between 1961 and 2003, about 42% of the observed sea-level rise.

  2. USGS Toxic Substances Hydrology Program, 2010

    USGS Publications Warehouse

    Buxton, Herbert T.

    2010-01-01

    The U.S. Geological Survey (USGS) Toxic Substances Hydrology Program adapts research priorities to address the most important contamination issues facing the Nation and to identify new threats to environmental health. The Program investigates two major types of contamination problems: * Subsurface Point-Source Contamination, and * Watershed and Regional Contamination. Research objectives include developing remediation methods that use natural processes, characterizing and remediating contaminant plumes in fractured-rock aquifers, identifying new environmental contaminants, characterizing new and understudied pesticides in common pesticide-use settings, explaining mercury methylation and bioaccumulation, and developing approaches for remediating watersheds affected by active and historic mining.

  3. National Program for Inspection of Non-Federal Dams. Lake Mark Dam (CT 00337), Thames River Basin, Stafford, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    detected. Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the esta- blished Guidelines, the...the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage...SECTION 5: EVALUATION OF HYDRAULIC /HYDROLOGIC FEATURES U 5.1 General........................................ 5-1 5.2 Design Data

  4. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  5. STP (Solar-Terrestrial Physics) Newsletter 87-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    Contents include: SCOSTEP organization; draft minutes of SCOSTEP Bureau meeting, August 20-21, 1987; solar-terrestrial energy program (STEP), preliminary report; USSR participation in STEP; STEP Steering Committee meeting, August 1987; CEDAR Steering Committee report; future meetings; and SCOSTEP adherents, secretaries and correspondents.

  6. The First Hydrology (Geoscience) Degree at a Tribal College or University: Salish Kootenai College

    NASA Astrophysics Data System (ADS)

    Lesser, G.; Berthelote, A. R.

    2010-12-01

    A new Hydrology Degree Program was developed at Salish and Kootenai College in western Montana. This program will begin to address the fact that our nation only awards 20 to 30 Geoscience degrees annually to Native American students. Previously absent from SKC and the other 36 Tribal Colleges or Universities (TCU) Science, Technology, Engineering, and Mathematics (STEM) related programs are specific Geoscience disciplines, particularly those focusing on hydrological and water based sciences. Though 23 TCU’s offer some classes to supplement their environmental science or natural resource programs. This program is timely and essential for addressing the concerns that Native Americans have who maintain sovereignty over approximately 20% of our nation’s fresh water resources which are becoming more stressed each year. The overall objective of this new SKC Hydrology degree program is to produce students who are able to “give voice” to the perspectives of Native peoples on natural resources and particularly water-related issues, including water rights, agriculture, environmental health (related to water), beliefs and spirituality related to water, and sustainability of water resources. It will provide the opportunity for interdisciplinary study in physical, chemical, and biological water resources and their management. Students will gain theoretical, conceptual, computational, and practical knowledge/experiences in quantifying, monitoring, qualifying, and managing today’s water resource challenges with particular emphasis on Tribal lands. Completion of the Associate of Science Degree will provide the student with the necessary skills to work as a hydrology- water quality- or geo-technician within the Reservation area, the U. S. Forest Service, the Environmental Protection Agency, the Bureau of Reclamation, the United States Geological Society, and other earth science disciplines. The Bachelor’s Degree program provides students with a broad-based theoretical and technological understanding of environmental and physical sciences and prepares students to design and direct research and programs related to water resources. Graduates of the Bachelor of Science Degree program are prepared to continue their education in graduate school or obtain employment as managers or directors of programs in industry, consulting, local, state, federal and tribal programs. Graduates will find that due to sovereignty issues, most tribes either have in place or are seeking trained professionals to monitor, manage, and protect their respective water resources. Hydrology and Geoscience job openings are expected to continue to exceed the number of qualified jobseekers through the 2018 projection period. And, nationally, 1 in 4 geoscientist positions are employed as hydrologists (30% engineering related services, 30 % Government, and 20% management and technical consulting). The mission of SKC is to provide quality postsecondary educational opportunities for Native Americans, locally and from throughout the United States, and defines cultural understanding as: "The awareness of your own system of values, beliefs, traditions and history, and knowledge and respect for the systems of others, particularly those of American Indian Tribes, and specifically the Salish, Pend d'Oreille and Kootenai People".

  7. Status of FEP encapsulated solar cell modules used in terrestrial applications

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Forestieri, A. F.

    1974-01-01

    The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems.

  8. Monitoring Ecosystem Dynamics Ecosystem Using Hyperspectral Reflectance and a Robotic Tram System in Barrow Alaska

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2012-12-01

    Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.

  9. High resolution modeling of reservoir storage and extent dynamics at the continental scale

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2017-12-01

    Over the past decade, significant progress has been made in developing reservoir schemes in large scale hydrological models to better simulate hydrological fluxes and storages in highly managed river basins. These schemes have been successfully used to study the impact of reservoir operation on global river basins. However, improvements in the existing schemes are needed for hydrological fluxes and storages, especially at the spatial resolution to be used in hyper-resolution hydrological modeling. In this study, we developed a reservoir routing scheme with explicit representation of reservoir storage and extent at the grid scale of 5km or less. Instead of setting reservoir area to a fixed value or diagnosing it using the area-storage equation, which is a commonly used approach in the existing reservoir schemes, we explicitly simulate the inundated storage and area for all grid cells that are within the reservoir extent. This approach enables a better simulation of river-floodplain-reservoir storage by considering both the natural flood and man-made reservoir storage. Results of the seasonal dynamics of reservoir storage, river discharge at the downstream of dams, and the reservoir inundation extent are evaluated with various datasets from ground-observations and satellite measurements. The new model captures the dynamics of these variables with a good accuracy for most of the large reservoirs in the western United States. It is expected that the incorporation of the newly developed reservoir scheme in large-scale land surface models (LSMs) will lead to improved simulation of river flow and terrestrial water storage in highly managed river basins.

  10. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen

    2018-01-01

    Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.

  11. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE PAGES

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; ...

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  12. On the Concept of Hydrologic Space

    NASA Astrophysics Data System (ADS)

    Ellison, D.

    2017-12-01

    Forests provide a number of important water-related ecosystem services including water purification and flood mitigation. We illustrate that the forest role in precipitation recycling and the regulation of the hydrologic cycle must also be clearly recognized as an ecosystem service. Deforestation leads to more local runoff and reduced precipitation. However, the importance of afforestation in contributing to the flow of atmospheric moisture and thus promoting precipitation recycling is underappreciated. Since much of the evapotranspiration from forests falls again as precipitation, the terrestrial, forest-based production of atmospheric moisture has important consequences, both for local and downwind precipitation and water availability. We emphasize the importance of inter-basin connectivity: what happens in one basin cannot be separated from what happens in others. This spatial interconnectedness is poorly reflected in the study of land-atmosphere interactions and the contribution of forests to the hydrologic regime. Focusing on the supply-side characteristics of rainfall, we define and develop the concept of hydrologic space and apply the concept to the derivation of the catchment basin water balance. Conventional approaches to the c-basin water balance typically fail to consider the import and export of atmospheric moisture as a principal determinant of locally and regionally available water supply. Land use modification has important implications for the availability of atmospheric moisture, the production of precipitation, the re-export of available moisture and the availability of runoff: the total amount of water available for productive and consumptive purposes. These consequences are not adequately recognized in most policy efforts at multiple scales and levels of governance.

  13. Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Di Achille, Gaetano; Neesemann, Adrian; Ori, Gian Gabriele; Hauber, Ernst

    2016-02-01

    Moa Valles is a well-preserved, likely Amazonian (younger than 2 Ga old), paleodrainage system that is nearly 300 km long and carved into ancient highland terrains west of Idaeus Fossae. The fluvial system apparently originated from fluidized ejecta blankets, and it consists of a series of dam breach paleolakes with associated fan-shaped sedimentary deposits. The paleolakes are interconnected and drain eastward into Liberta crater, forming a complex and multilobate deltaic deposit exhibiting a well-developed channelized distributary pattern with evidence of switching on the delta plain. A breach area, consisting of three spillover channels, is present in the eastern part of the crater rim. These channels connect the Liberta crater to the eastward portion of the valley system, continuing toward Moa Valles with a complex pattern of anabranching channels that is more than 180 km long. Based on hydrological calculations of infilling and spillover discharges of the Liberta crater lake, the formation of the whole fluvial system is compatible with short to medium (<1000 year) timescales, although the length and morphology of the observed fluvial-lacustrine features suggest long-term periods of activity based on terrestrial analogs. Water for the 300 km long fluvial system may have been primarily sourced by the melting of shallow ice due to the thermal anomaly produced by impact craters. The occurrence of relatively recent (likely Amazonian) hydrological activity, which could have been primarily supported by groundwater replenishment, supports the hypothesis that hydrological activity could have been possible after the Noachian-Hesperian boundary, which is commonly considered as the onset epoch of the present cold-dry climate.

  14. SOURCE CONTROL BY HYDROLOGICAL ISOLATION: APPLICATION OF THE ANKENY MOAT

    EPA Science Inventory

    Treatment of NAPLs as source areas for plumes of contamination in ground water has proven problematic under certain regulatory programs. Under the EPA risk management paradigm, hydrological isolation of a fuel spill is a valid and acceptable alternative to treatment. A system o...

  15. 47 CFR 76.1909 - Redistribution control of unencrypted digital terrestrial broadcast content.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... content. Where a multichannel video programming distributor retransmits unencrypted digital terrestrial... 47 Telecommunication 4 2011-10-01 2011-10-01 false Redistribution control of unencrypted digital... (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Encoding Rules § 76.1909...

  16. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  18. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository

    USGS Publications Warehouse

    Levich, R.A.; Linden, R.M.; Patterson, R.L.; Stuckless, J.S.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program. The first day focuses on the regional setting with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The field trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, an element of the hydrologic system that historically has received little attention. Discussions during the second day will compromise selected topics of Yucca Mountain geology, hydrology and geochemistry and will include the probabilistic volcanic hazard analysis and the seismicity and seismic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the results of recent hydrologic studies by the Nye County Nuclear Waste Program Office, and the relationship of the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  19. Operational and LIS-Based North American Land Data Assimilation Systems at National Centers for Environmental Prediction: Capability in Simulating Water and Energy Budget over the Western United States

    NASA Astrophysics Data System (ADS)

    Mitchell, K.; Xia, Y.; Ek, M. B.; Mocko, D. M.; Kumar, S.; Peters-Lidard, C. D.

    2016-12-01

    NLDAS is a multi-institutional collaborative project sponsored by NOAA's Climate Program Office and NASA's Terrestrial Hydrological Program. NLDAS has a long successful history of producing soil moisture, snow cover, total runoff and streamflow products via application of surface meteorology and precipitation datasets to drive four land-surface models (i.e., Noah, Mosaic, SAC, VIC). The purpose of the NLDAS system is to support numerous research and operational applications in the land modeling and water resources management communities. Since the operational NLDAS version was successfully implemented at NCEP in August 2014, NLDAS products are being used by over 5000 users annually worldwide, including academia, governmental agencies, and private enterprises. Over 71 million files and 144 Tb of data were downloaded in 2015. As we endeavor to increase the quality and breadth of NLDAS products, a joint effort between NASA and NCEP is underway to enable the assimilation of hydrology-relevant remote sensing datasets within NLDAS through the NASA Land Information System (LIS). The use of LIS will also enable easier transition of newly upgraded land surface models into NCEP NLDAS operations. Cold season processes significantly affect water and energy cycles, and their partitioning. As such, in the evaluation of NLDAS systems it is important to assess water and energy exchanges and/or partitioning processes over high-elevations. The Rocky Mountain region of the western U. S. is chosen as such a region to analyze and compare snow water equivalent (SWE), snow cover, snow melt, snow sublimation, total runoff, and sensible heat and latent heat flux. Reference data sets (observation-based and reanalysis) of monthly SWE, streamflow, evapotranspiration, GRACE-based total water storage change, and energy fluxes are used to evaluate model-simulated results. The results show several key factors that affect model simulations: (1) forcing errors such as precipitation partitioning into snowfall and rainfall, (2) snow albedo, (3) refreezing of melted snow, (4) boundary layer stability, and (5) freezing and thawing of soil. Though the anomaly correlations indicate good agreement with the observations or reanalysis products, large quantitative differences are evident in certain cases.

  20. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  1. The International Solar Terrestrial Physics Program: A Model for International Cooperation in Space Research

    NASA Astrophysics Data System (ADS)

    Acuña, M.

    The International Solar Terrestrial Physics Program (ISTP) evolved from the individual plans of US, Japanese and European countries to develop space missions to expand our knowledge of the Sun-Earth connection as a "system". Previous experience with independent missions amply illustrated the critical need for coordinated and simultaneous observations in key regions of Sun-Earth space in order to resolve time-space ambiguities and cause-effect relationships. Mission studies such as the US Origins of Plasmas in the Earth's Neighborhood (OPEN), Geotail in Japan, the Solar Heliospheric Observatory in Europe and the Regatta and other magnetospheric missions in the former Soviert Union, formed the early conceptual elements that eventually led to the ISTP program. The coordinating role developed by the Inter-Agency-Consultative-Group (IACG) integrated by NASA, ESA, ISAS and IKI and demonstrated during the comet Halley apparition in 1986, was continued to include solar-terrestrial research and the mission elements described above. In addition to the space elements, a most important component of the coordination effort was the inclusion of data networks, analysis and planning tools as well as globally accessible data sets by the scientific community at large. This approach enabled the active and direct participation of scientists in developing countries in one of the most comprehensive solar-terrestrial research programs implemented to date. The creation of multiple ISTP data repositories throughout the world has enabled a large number of scientists in developing countries to have direct access to the latest spacecraft observations and a most fruitful interaction with fellow researchers throughout the world. This paper will present a review of the evolution of the ISTP program, its products, analysis tools, data bases, infrastructure and lessons learned applicable to future international collaborative programs.

  2. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed on JUQUEEN with processor counts on the order of 10,000. The instrumentation is used in weak and strong scaling studies with real data cases and hypothetical idealized numerical experiments for detailed profiling and tracing analysis. The profiling is not only useful in identifying wait states that are due to the MPMD execution model, but also in fine-tuning resource allocation to the component models in search of the most suitable load balancing. This is especially necessary, as with numerical experiments that cover multiple (high resolution) spatial scales, the time stepping, coupling frequencies, and communication overheads are constantly shifting, which makes it necessary to re-determine the model setup with each new experimental design.

  3. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    EPA Science Inventory

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  4. APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA

    EPA Science Inventory

    The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...

  5. Terrestrial ecosystems: national inventory of vegetation and land use

    USGS Publications Warehouse

    Gergely, Kevin J.; McKerrow, Alexa

    2013-11-12

    The Gap Analysis Program (GAP)/Landscape Fire and Resource Management Planning Tools (LANDFIRE) National Terrestrial Ecosystems Data represents detailed data on the vegetation and land-use patterns of the United States, including Alaska, Hawaii, and Puerto Rico. This national dataset combines detailed land cover data generated by the GAP with LANDFIRE data (http://www.landfire.gov/). LANDFIRE is an interagency vegetation, fire, and fuel characteristics mapping program sponsored by the U.S. Department of the Interior (DOI) and the U.S. Department of Agriculture Forest Service.

  6. NASA's Terrestrial Planet Finder: The Search for (Habitable) Planets

    NASA Technical Reports Server (NTRS)

    Beichman, C.

    1999-01-01

    One of the primary goals of NASA's Origins program is the search for habitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond the Earth.

  7. The Shale Hills Sensorium for Embedded Sensors, Simulation, & Visualization: A Prototype for Land-Vegetation-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Duffy, C.

    2008-12-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.

  8. Component technology for stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    1991-01-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  9. Variable thickness transient ground-water flow model. Volume 3. Program listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less

  10. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.

  11. Data and Models as Social Objects in the HydroShare System for Collaboration in the Hydrology Community and Beyond

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.; Crawley, S.; Ramirez, M.; Sadler, J.; Xue, Z.; Bandaragoda, C.

    2016-12-01

    How do you share and publish hydrologic data and models for a large collaborative project? HydroShare is a new, web-based system for sharing hydrologic data and models with specific functionality aimed at making collaboration easier. HydroShare has been developed with U.S. National Science Foundation support under the auspices of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) to support the collaboration and community cyberinfrastructure needs of the hydrology research community. Within HydroShare, we have developed new functionality for creating datasets, describing them with metadata, and sharing them with collaborators. We cast hydrologic datasets and models as "social objects" that can be shared, collaborated around, annotated, published and discovered. In addition to data and model sharing, HydroShare supports web application programs (apps) that can act on data stored in HydroShare, just as software programs on your PC act on your data locally. This can free you from some of the limitations of local computing capacity and challenges in installing and maintaining software on your own PC. HydroShare's web-based cyberinfrastructure can take work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This presentation will describe HydroShare's collaboration functionality that enables both public and private sharing with individual users and collaborative user groups, and makes it easier for collaborators to iterate on shared datasets and models, creating multiple versions along the way, and publishing them with a permanent landing page, metadata description, and citable Digital Object Identifier (DOI) when the work is complete. This presentation will also describe the web app architecture that supports interoperability with third party servers functioning as application engines for analysis and processing of big hydrologic datasets. While developed to support the cyberinfrastructure needs of the hydrology community, the informatics infrastructure for programmatic interoperability of web resources has a generality beyond the solution of hydrology problems that will be discussed.

  12. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.

    2011-01-01

    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  13. Leveraging this Golden Age of Remote Sensing and Modeling of Terrestrial Hydrology to Understand Water Cycling in the Water Availability Grand Challenge for North America

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Famiglietti, J. S.; Stephens, G. L.

    2016-12-01

    We live in a time of increasing strains on our global fresh water availability due to increasing population, warming climate, changes in precipitation, and extensive depletion of groundwater supplies. At the same time, we have seen enormous growth in capabilities to remotely sense the regional to global water cycle and model complex systems with physically based frameworks. The GEWEX Water Availability Grand Challenge for North America is poised to leverage this convergence of remote sensing and modeling capabilities to answer fundamental questions on the water cycle. In particular, we envision an experiment that targets the complex and resource-critical Western US from California to just into the Great Plains, constraining physically-based hydrologic modeling with the US and international remote sensing capabilities. In particular, the last decade has seen the implementation or soon-to-be launch of water cycle missions such as GRACE and GRACE-FO for groundwater, SMAP for soil moisture, GPM for precipitation, SWOT for terrestrial surface water, and the Airborne Snow Observatory for snowpack. With the advent of convection-resolving mesoscale climate and water cycle modeling (e.g. WRF, WRF-Hydro) and mesoscale models capable of quantitative assimilation of remotely sensed data (e.g. the JPL Western States Water Mission), we can now begin to test hypotheses on the nature and changes in the water cycle of the Western US from a physical standpoint. In turn, by fusing water cycle science, water management, and ecosystem management while addressing these hypotheses, this golden age of remote sensing and modeling can bring all fields into a markedly less uncertain state of present knowledge and decadal scale forecasts.

  14. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.

  15. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  16. Riverine Bacterial Communities Reveal Environmental Disturbance Signatures within the Betaproteobacteria and Verrucomicrobia.

    PubMed

    Balmonte, John Paul; Arnosti, Carol; Underwood, Sarah; McKee, Brent A; Teske, Andreas

    2016-01-01

    Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities, and illustrate the response of temperate riverine bacteria on fine taxonomic scales to a disturbance.

  17. Dam busy: beavers and their influence on the structure and function of river systems

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Larsen, A.; Lane, S. N.

    2017-12-01

    Beavers (Castor fiber, Castor canadensis) are the most influential mammalian ecosystem engineer, heavily modifying rivers and floodplains and influencing the hydrology, geomorphology, carbon and nutrient cycling, and ecology. They do this by constructing dams, digging canals and burrows, felling trees and introducing wood into streams, which in turn impounds water, raises shallow water tables, and alters the partitioning of the water balance, sediment transport and channel patters, biogeochemical cycling, and aquatic and terrestrial habitats. However, largely in the absence of predators, beaver numbers have been rapidly increasing throughout Europe since the 1980s, but also in parts of the US and South America, prompting a need to comprehensively review the current state of knowledge on how beavers influence the structure and function of river systems. Here, we synthesize the overall impacts on hydrology, geomorphology, biogeochemistry, and aquatic and terrestrial ecosystems. We then examine the key feedbacks and overlaps between these changes induced by beavers, finding that modifications to the longitudinal connectivity drive many key process feedbacks. However, the magnitude of these feedbacks is also heavily dependent on the landscape and climatic context, with the ability to promote lateral connectivity determining the extent of beaver impacts as stream order increases. Crucially, beavers shape a river corridor, introducing distinct processes and feedbacks that would have existed prior to the historical collapse of beaver populations. There is thus a need to adapt current river management and restoration practices such that they can accommodate and enhance the ecosystem engineering services provided by beavers. We summarize key knowledge gaps that remain in our understanding of beaver impacts, which help map an interdisciplinary future research agenda.

  18. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  19. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  20. Marine phages as excellent tracers for reactive colloidal transport in porous media

    NASA Astrophysics Data System (ADS)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and availability.

  1. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans

    NASA Astrophysics Data System (ADS)

    Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.

    2016-03-01

    The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.

  2. Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds

    NASA Astrophysics Data System (ADS)

    Xu, N.; Wilson, H.; Saiers, J. E.

    2010-12-01

    Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.

  3. A high CO2 -driven decrease in plant transpiration leads to perturbations in the hydrological cycle and may link terrestrial and marine loss of biodiversity: deep-time evidence.

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Woodward, F. Ian; Surlyk, Finn; McElwain, Jennifer C.

    2013-04-01

    CO2 is obtained and water vapor simultaneously transpired through plant stomata, driving the water uptake of roots. Stomata are key elements of the Earth's hydrological cycle, since a large part of the evapotranspiration from the surface to the atmosphere takes place via stomatal pores. Plants exercise stomatal control, by adjusting stomatal size and/or density in order to preserve water while maintaining carbon uptake for photosynthesis. A global decrease in stomatal density and/or size causes a decrease in transpiration and has the potential to increase global runoff. Here we show, from 91 fossil leaf cuticle specimens from the Triassic/Jurassic boundary transition (Tr-J) of East Greenland, that both stomatal size and density decreased dramatically during the Tr-J, coinciding with mass extinctions, major environmental upheaval and a negative C-isotope excursion. We estimate that these developmental and structural changes in stomata resulted in a 50-60% drop in stomatal and canopy transpiration as calibrated using a stomatal model, based on empirical measurements and adjusted for fossil plants. We additionally present new field evidence indicating a change to increased erosion and bad-land formation at the Tr-J. We hypothesize that plant physiological responses to high carbon dioxide concentrations at the Tr-J may have increased runoff at the local and perhaps even regional scale. Increased runoff may result in increased flux of nutrients from land to oceans, leading to eutrophication, anoxia and ultimately loss of marine biodiversity. High-CO2 driven changes in stomatal and canopy transpiration therefore provide a possible mechanistic link between terrestrial ecological crisis and marine mass extinction at the Tr-J.

  4. Using NEXRAD and Rain Gauge Precipitation Data for Hydrologic Calibration of SWAT in a Northeastern Watershed

    USDA-ARS?s Scientific Manuscript database

    The value of watershed-scale, hydrologic/water quality models to ecosystem management is increasingly evident as more programs adopt these tools to evaluate the effectiveness of different management scenarios and their impact on the environment. Quality of precipitation data is critical for appropri...

  5. A Skylab program for the International Hydrological Decade (IHD). [Lake Ontario Basin

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C. (Principal Investigator); Rebel, D. L.

    1974-01-01

    The author has identified the following significant results. The development of the algorithm (using real data) relating red and IR reflectance to surface soil moisture over regions of variable vegetation cover will enable remote sensing to make direct inputs into determination of this important hydrologic parameter.

  6. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although freshwater supply and surface water quality were sustained or enhanced overall, these hydrologic services declined in ~60% and 20% of the landscape, respectively. The greatest improvement for most hydrologic services corresponded to areas of restored wetland, forest and perennial crops, which were less vulnerable to future degradation. In the Investment in Innovation scenario, freshwater supply declined in almost the entire watershed; improvement of surface water quality and flood regulation occurred mainly in urban areas, where highly engineered systems made them less vulnerable. Overall, our results indicated that hydrologic services will respond differently to future climate and land-use change, and sustaining one may involve tradeoffs of another. Technological progress can conserve particular services but might not be the panacea for the future. How society reacts in the face of changes can have an important role in determining the pathways to the future and the provision and spatial patterns of ecosystem services.

  7. Construction, Geologic, and Hydrologic Data for Observation Wells in the Reelfoot Lake Area, Tennessee and Kentucky

    DTIC Science & Technology

    1987-01-01

    AND HYDROLOGIC DATA FOR OBSERVATION WELLS IN THE REELFOOT LAKE AREA, TENNESSEE AND KENTUCKY ($3 1 .cz Prepared in cooperation with the...Observation Wells in The Reelfoot Lake Area, Tennessee and Kentucky 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Prescribed by ANSI Std Z39-18 CONSTRUCTION, GEOLOGIC, AND HYDROLOGIC DATA FOR OBSERVATION WELLS IN THE REELFOOT LAKE AREA, TENNESSEE AND KENTUCKY Michael

  8. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Lauerwald, Ronny; Regnier, Pierre; Camino-Serrano, Marta; Guenet, Bertrand; Guimberteau, Matthieu; Ducharne, Agnès; Polcher, Jan; Ciais, Philippe

    2017-10-01

    Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial-aquatic interface range from 1.5 to 2.7 Pg C yr-1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2-5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy-soil-water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial-aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle-climate feedbacks in future projections.

  9. waterData--An R package for retrieval, analysis, and anomaly calculation of daily hydrologic time series data, version 1.0

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2012-01-01

    Hydrologic time series data and associated anomalies (multiple components of the original time series representing variability at longer-term and shorter-term time scales) are useful for modeling trends in hydrologic variables, such as streamflow, and for modeling water-quality constituents. An R package, called waterData, has been developed for importing daily hydrologic time series data from U.S. Geological Survey streamgages into the R programming environment. In addition to streamflow, data retrieval may include gage height and continuous physical property data, such as specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The package allows for importing daily hydrologic data into R, plotting the data, fixing common data problems, summarizing the data, and the calculation and graphical presentation of anomalies.

  10. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  11. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  12. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  13. Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric

    2010-05-01

    Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.

  14. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  15. North American water availability under stress and duress: building understanding from simulations, observations and data products

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  16. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, Holly; Brooks, Paul

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a naturalmore » experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.« less

  17. Polar motion interpretation using gravimetric observations

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Bizouard, C.; Gambis, D.

    2008-04-01

    Polar motion is interpreted as the effect of i) the Earth’s inertia moment changes asso- ciated with the so-called mass term of the Earth’s angular momentum ii) the Earth’s relative angular momentum in the terrestrial frame. Thanks to the GRACE mission and in a lesser extent to LAGEOS missions, the mass term is determined since 2002, independently from any geophysical model. Besides the modeled excitations of the polar motion, i.e the atmospheric angular momentum (AAM), the Oceanic Angular Momentum (OAM), the Hydrological Angular Momentum (HAM), this gravimetric mass term is a new kind of information which can be matched to the observed excitation of the polar motion after removal of the effect of the relative angular momentum, mostly caused by the wind and the oceanic cur- rents. Such comparison, already performed by various authors, is updated for the last releases (RL04) of the gravity field changes i.e. those of the GFZ, CSR, JPL and explored for the mixed LAGEOS-GRACE solution of the GRGS. We confirm that a fair general agreement, especially for the y-component of the equatorial excitation. After removing the modeled oceanic and atmospheric excitations from the signals, we obtain the non-modeled excitation, mostly of hydrological nature; this allows us to compare them to the existing hydrological models, differences might comes from others Earth’s phenomena, for example, earthquakes.

  18. Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants

    USGS Publications Warehouse

    Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.

    1998-01-01

    Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.

  19. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  20. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  1. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  2. Rivermouth alteration of agricultural impacts on consumer tissue δ15N

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.

  3. Integrating Hydrology and Historical Geography in an Interdisciplinary Environmental Masters Program in Northern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Greer, Kirsten; James, April

    2016-04-01

    Research in hydrology and other sciences are increasingly calling for new collaborations that "…simultaneously explore the biogeophysical, social and economic forces that shape an increasingly human-dominated global hydrologic system…" (Vorosmarty et al. 2015, p.104). With many environmental programs designed to help students tackle environmental problems, these initiatives are not without fundamental challenges (for example, they are often developed around a single epistemology of positivism). Many environmental graduate programs provide narrow interdisciplinary training (within the sciences, or bridging to the social sciences) but do not necessarily engage with the humanities. Geography however, has a long tradition and history of bridging the geophysical, social sciences, and humanities. In this paper, we reflect on new programming in an Interdisciplinary Master's program in Northern Ontario, Canada, inspired by the rich tradition of geography. As Canada Research Chairs trained in different geographical traditions (historical geography and hydrology), we aim to bring together approaches in the humanities and geophysical sciences to understand hydrological and environmental change over time. We are teaching in a small, predominantly undergraduate University located in Northern Ontario, Canada, a region shaped significantly by colonial histories and resource development. The Masters of Environmental Studies/Masters of Environmental Sciences (MES/MESc) program was conceived from a decade of interdisciplinary dialogue across three undergraduate departments (Geography, Biology and Chemistry, History) to promote an understanding of both humanistic and scientific approaches to environmental issues. In the fall of 2015, as part of our 2015-2020 Canada Research Chair mandates, we introduced new initiatives to further address the integration of humanities and sciences to our graduate program. We believe the new generation of environmental scientists and practioners should be equipped to deal with the complex histories of colonialism, resource development, and scientific practices in addition to the skills necessary to conduct rigorous scientific environmental research. The following paper discusses some of our initiatives, including (1) a cross-disciplinary 'Workship', which assembled students, faculty and community members on a cruise of the 800 km2 Lake Nipissing to explore imaginative geographies of the lake; (2) a co-taught core course (Perspectives on the Environment) which included a theme specifically on the hydrosocial cycle (Linton and Budds 2014); and (3) student-group projects focused on developing interdisciplinary research proposals. Early reflections on this new programing is illustrating how existing literature in geography is adding ability to help bridge the sciences-humanities divides in our environmental graduate program.

  4. Investigatigating inter-/intra-annual variability of surface hydrology at northern high latitude from spaceborne measurements

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.

    2014-12-01

    Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.

  5. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi-layer canopy through vertically stratified mapped leaf area index. Model outputs are validated against multi-year measurements taken at an eddy-covariance flux tower located within Mer Bleue bog, a typical raised bog near Ottawa, Ontario, Canada. Model results for seasonal water table dynamics and evapotranspiration at daily time steps in 2003 are in good agreement with measurements with R2=0.74 and R2=0.79, respectively, and indicate the suitability of our pursued approach.

  6. Historical and potential future impacts of extreme hydrological events on the Amazonian floodplain hydrology and inundation dynamics

    NASA Astrophysics Data System (ADS)

    Macedo, M.; Panday, P. K.; Coe, M. T.; Lefebvre, P.; Castello, L.

    2015-12-01

    The Amazonian floodplains and wetlands cover one fifth of the basin and are highly productive promoting diverse biological communities and sustaining human populations with fisheries. Seasonal inundation of the floodplains fluctuates in response to drought or extreme rainfall as observed in the recent droughts of 2005 and 2010 where river levels dropped to among the lowest recorded. We model and evaluate the historical (1940-2010) and projected future (2010-2100) impacts of droughts and floods on the floodplain hydrology and inundation dynamics in the central Amazon using the Integrated Biosphere Simulator (IBIS) and the Terrestrial Hydrology Model and Biogeochemistry (THMB). Simulated discharge correlates well with observed discharges for tributaries originating in Brazil but underestimates basins draining regions in the non-Brazilian Amazon (Solimões, Japuŕa, Madeira, and Negro) by greater than 30%. A volume bias-correction from the simulated and observed runoff was used to correct the input precipitation across the major tributaries of the Amazon basin that drain the Andes. Simulated hydrological parameters (discharge, inundated area and river height) using corrected precipitation has a strong correlation with field measured discharge at gauging stations, surface water extent data (Global Inundation Extent from Multi-Satellites (GIEMS) and NASA Earth System Data Records (ESDRs) for inundation), and satellite radar altimetry (TOPEX/POSEIDON altimeter data for 1992-1998 and ENVISAT data for 2002-2010). We also used an ensemble of model outputs participating in the IPCC AR5 to drive two sets of simulations with and without carbon dioxide fertilization for the 2006-2100 period, and evaluated the potential scale and variability of future changes in discharge and inundation dynamics due to the influences of climate change and vegetation response to carbon dioxide fertilization. Preliminary modeled results for future scenarios using Representative Concentration Pathways (RCP) 4.5 indicate decreases in projected discharge and extent of inundated area on the mainstem Amazon by the late 21st century owing to influences of future climate change only.

  7. Hydrologic Connectivity and Land Use Effects on Sediment Accumulation on Stream Floodplains of the Savannah River Site, South Carolina.

    NASA Astrophysics Data System (ADS)

    Eddy, J.; Yeager, K. M.; Barton, C.; Phillips, J. D.

    2016-12-01

    Natural sediment accumulation on floodplains is important to maintain water quality of streams, to support regional biodiversity as an ecotone between aquatic and terrestrial environments, and to serve as a sink for organic and inorganic carbon. Recent research suggests that land use and hydrologic connectivity play important roles in determining rates of sediment accumulation. This study hypothesizes that changes in hydrologic connectivity have a greater impact on sediment accumulation rates than changes in land use. Nine sediment cores from seven sub-basins were taken from the Savannah River Site, South Carolina, and processed for grain-size, radioisotope dating, particulate organic carbon (POC), and microscopy. Stratigraphic columns were created for all nine cores. Extensive historical records, aerial, and satellite imagery are used to identify anthropogenic disturbances which may have influenced rates of sediment accumulation, as well as to calculate the percentage of natural vegetation in 1951 and 2014. Grain-size analysis and microscopy indicate that the majority of sediment studied is sand-sized quartz; changes in grain-size classification is used to indicate potential differences in sediment sources. LiDAR and field survey data were used to identify 251 stream flow impediments that potentially affect hydrologic connectivity. Results from radioisotope dating and POC have been used to calculate sediment mass accumulation rates (SMAR; g cm-2 y-1) and linear accumulation rates (LAR; cm y-1) for each of the cores. Preliminary findings show that plots of SMAR versus the number of flow impediments have steeper slopes than plots of SMAR versus the percent difference in vegetation (from 1951 to 2014). This signifies that flow impediments, as a proxy for hydrologic connectivity, have a stronger effect on sediment accumulation rates than changes in land use. This knowledge can help future stream restoration efforts by focusing resources to more efficiently attain stated goals.

  8. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.

  9. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    NASA Astrophysics Data System (ADS)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial hydrology strengthens our understanding of the nature of meltwater drainage beneath ice sheets and informs better theory and numerical models.

  10. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the terrestrial-aquatic continuum.

  11. Denitrification across landscapes and waterscapes: A synthesis

    USGS Publications Warehouse

    Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G.

    2006-01-01

    Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled.In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves.Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N·km−2·yr−1) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.

  12. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.

  13. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Moore, David J.; Cooley, Sarah R.; Alin, Simone R.; Brown, Molly; Butman, David E.; French, Nancy H. F.; Johnson, Zackary I.; Keppel-Aleks; Lohrenz, Steven E.; Ocko, Ilissa; hide

    2016-01-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO2 on carbon storage.

  14. The U.S. Geological Survey Coal Hydrology Program and the potential of hydrologic models for impact assessments

    USGS Publications Warehouse

    Doyle, W. Harry

    1981-01-01

    A requirement of Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977, is the understanding of the hydrology in actual and proposed surface-mined areas. Surface-water data for small specific-sites and for larger areas such as adjacent and general areas are needed also to satisfy the hydrologic requirements of the Act. The Act specifies that surface-water modeling techniques may be used to generate the data and information. The purpose of this report is to describe how this can be achieved for smaller watersheds. This report also characterizes 12 ' state-of-the-art ' strip-mining assessment models that are to be tested with data from two data-intensive studies involving small watersheds in Tennessee and Indiana. Watershed models are best applied to small watersheds with specific-site data. Extending the use of modeling techniques to larger watersheds remains relatively untested, and to date the upper limits for application have not been established. The U.S. Geological Survey is currently collecting regional hydrologic data in the major coal provinces of the United States and this data will be used to help satisfy the ' general-area ' data requirements of the Act. This program is reviewed and described in this report. (USGS)

  15. 47 CFR 76.1000 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...

  16. 47 CFR 76.1000 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...

  17. 47 CFR 76.1000 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...

  18. 47 CFR 76.1000 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...

  19. 47 CFR 76.1000 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CABLE TELEVISION SERVICE Competitive Access to Cable Programming § 76.1000 Definitions. As used in this..., satellite cable programming vendors, satellite broadcast programming vendors, or terrestrial cable programming vendors will be attributed to their holders and may subject the interest holders to the rules of...

  20. Water-resources investigations in Pennsylvania; programs and activities of the U.S. Geological Survey, 1990-91

    USGS Publications Warehouse

    McLanahan, L.O.

    1991-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific 'classification of the public lands, and examination of the geological structure, mineral resources, and products of national domain'. Since 1879, the research and fact-finding role of the USGS has grown and has been modified to meet the changing needs of the Nation it serves. Moneys for program operation of the USGS in Pennsylvania come from joint-funding agreements with State and local agencies , transfer of funds from other Federal agencies, and direct Federal allotments to the USGS. Funding is distributed among the following programs: National Water Quality Assessment; water quality programs; surface water programs; groundwater programs; logging and geophysical services; computer services; scientific publication and information; hydrologic investigations; and hydrologic surveillance. (Lantz-PTT)

  1. On the importance of measurement error correlations in data assimilation for integrated hydrological models

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Botto, Anna

    2017-04-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows us to integrate multisource observation data in modeling predictions and, in doing so, to reduce uncertainty. For this reason, data assimilation has been recently the focus of much attention also for physically-based integrated hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). One of the typical assumptions in these studies is that the measurement errors are uncorrelated, whereas in certain situations it is reasonable to believe that some degree of correlation occurs, due for example to the fact that a pair of sensors share the same soil type. The goal of this study is to show if and how the measurement error correlations between different observation data play a significant role on assimilation results in a real-world application of an integrated hydrological model. The model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope. The physical model, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m, and width of 2 m. The hillslope is equipped with sensors to monitor the pressure head and soil moisture responses to a series of generated rainfall events applied onto a 60 cm thick sand layer overlying a sandy clay soil. The measurement network is completed by two tipping bucket flow gages to measure the two components (subsurface and surface) of the outflow. By collecting data at a temporal resolution of 0.5 Hz (relatively high, compared to the hydrological dynamics), we can perform a comprehensive statistical analysis of the observations, including the cross-correlations between data from different sensors. We report on the impact of taking these correlations into account in a series of assimilation scenarios, where the EnKF is used to assimilate pressure head and/or soil moisture and/or subsurface outflow.

  2. A Skylab program for the International Hydrological Decade (IHD). [Lake Ontario Basin

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C. (Principal Investigator); Rebel, D. L.

    1975-01-01

    The author has identified the following significant results. Demonstration of the procedure for utilizing the model relating red and IR reflectance to surface soil moisture over regions of variable vegetation cover indicates that remote sensing may be able to make direct inputs into determination of this hydrologic parameter.

  3. PREFACE: XXIVth Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Bonacci, Ognjen; Nachtnebel, Peter Hans; Szolgay, Ján; Balint, Gabor

    2008-10-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the 24th Conference of the Danube Countries. Within the framework of the International Hydrological Program IHP of UNESCO. Since 1961 the Danube countries have successfully co-operated in organizing conferences on Hydrological Forecasting and Hydrological Water Management Issues. The 24th Conference of the Danube Countries took place between 2-4 June 2008 in Bled, Slovenia and was organized by the National Committee of Slovenia for the International Hydrological Program of UNESCO, under the auspices of the President of Republic of Slovenia. It was organized jointly by the Slovenian National Commission for UNESCO and the Environmental Agency of the Republic of Slovenia, under the support of UNESCO, WMO, and IAHS. Support for the attendance of some participants was provided by UNESCO. Additional support for the symposium was provided by the Slovene Commission for UNESCO, Environmental Agency of Slovenia, Karst Research Institute, Hydropower plants on the lower Sava River and Chair of Hydraulics Engineering FGG University of Ljubljana. All participants expressed great interest and enthusiasm in presenting the latest research results and sharing practical experiences in the Hydrology of the Danube River basin. The Editorial Board, who were nominated at the Conference, initially selected 80 full papers for publication from 210 submitted extended abstracts and papers provided by authors from twenty countries. Altogether 51 revised papers were accepted for publishing in this volume. Papers are divided by conference topics: Hydrological forecasting Hydro-meteorological extremes, floods and droughts Global climate change and antropogenic impacts on hydrological processes Water management Floods, morphological processes, erosion, sediment transport and sedimentation Developments in hydrology Mitja Brilly, Ognjen Bonacci, Peter Hans Nachtnebel, Ján Szolgay and Gabor Balint Editorial Board International Scientific Committee: P Hubert: Centre d'Informatique Géologique, France H P Nachtnebel: Universität für Bodenkultur Wien, Austria H Weber: Bavarian Water Management Administration, Germany H Moser: Federal Institute of Hydrology, Germany M Domokos: VITUKI, Hungary P Stanciu: National Institute of Meteorology and Hydrology, Romania O Bonacci: University of Split, Croatia S Prohaska: Institute Jaroslav Černi, Belgrade, Serbia J Szolgay: Faculty of Civil Engineering, Bratislava, Slovak Republic K Tzankov: Institute of Meteorology and Hydrology, Sofia, Bulgaria E Soukalová: Czech Hydrometeorological Institute, Czech Republic B Matičič: National Committee on Irrigation and Drainage, Slovenia M Mikoš: University of Ljubljana, Ljubljana, Slovenia J Rakovec: University of Ljubljana, Ljubljana, Slovenia M Brilly: University of Ljubljana, Ljubljana, Slovenia M Veselič: ARAO, Slovenia

  4. Integrating Hydrology, Ecology, and Biogeochemistry in Stormwater Management: the Vermont Experience

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.

    2005-12-01

    Although Vermont has had a stormwater management program since the 1970's, support for the program languished during a period intense suburban development in several counties in the state, most notably Chittenden County next to Lake Champlain. Beginning in 2000, the state renewed efforts to address concerns that stormwater runoff from suburban developments had significantly degraded streams in the area and threatened the health of the Lake. The state employs an extensive, EPA-approved biomonitoring program (based on macroinvertebrates and fish) to assess the health of streams. However, it is difficult to translate these data into targets for stormwater management or to predict how and especially when they will change as a result of future management practices. The challenge of managing stormwater in this area is further compounded by a complete lack of historical hydrologic monitoring data. Ultimately a stakeholder-driven process developed that has lead to an innovative partnership among state agencies, resource managers, NGO's, the US-EPA and scientists. Through this partnership a unique consensus evolved that management for hydrologic targets by themselves would address most of the stakeholders' concerns. The new regulations that are emerging are based on two components. The first component relies on flow-duration curves (FDC's) derived from a simple, widely-used stormwater model (P-8) for which adequate input data are available. The model was calibrated for streams in other areas for which long-term hydrologic data were available and then used to generate `synthetic' FDC's for the stormwater impaired and a suite of `attainment' (developing, but currently un-impaired) watersheds in Vermont. Statistical (cluster) analyses of synthetic FDC's provide watershed-wide targets for hydrologic reduction. Sub-watershed mapping linked to further multivariate analysis of the flow data identify specific locations to implement best management practices (BMP's) that will achieve these targets. This approach is firmly grounded in first principles of stormwater hydrology and recognition of the impacts of altered hydrology on stream ecology and biogeochemistry. Stakeholders have accepted the approach because it is objective, defensible, and subject to future, quantitative analysis and adjustment (adaptive management). This approach is not specific to Vermont and could be employed in any region.

  5. Hydrologic Literacy in the Southwest

    NASA Astrophysics Data System (ADS)

    Washburne, J.; Madden, J.

    2008-12-01

    Improving hydrologic literacy at all levels has been the keystone to the education mission at NSF's SAHRA Science and Technology Center since its inception in 2000. Water issues and water education are particularly relevant in the semi-arid southwest, which has experienced a series of droughts and tremendous growth throughout this period. One of our strategies has been to focus our efforts on the high school and undergraduate level, for which there are far fewer water education materials available. Early on, we worked with local water educators and employed an Understanding by Design methodology to develop a series of Enduring Understandings in the critical areas of water quality, aquatic life, watersheds and urban hydrology. These basic concepts have helped guide our development of content and training opportunities. A prime example of this process is our Watershed Visualization project, which includes a series of animated videos focused on understanding the geographic and hydrologic setting of the Verde Watershed in central Arizona. This series also addresses the interaction of climate and groundwater recharge in this rapidly changing area. This past year, we developed a new program called Arizona Rivers, which emphasizes local and student- based monitoring and research of the interactions between riparian hydrology and ecology. One key feature of this program is an extended summer field trip/research experience for high school students called the Riparian Research Experience. A goal of this program is to raise the level of critical analysis and environmental stewardship among high school students and their teachers. A more comprehensive effort of raising the hydrologic literacy of non-science university freshman has been taking place at the University of Arizona for the past five years through the general education course titled Arizona Water Issues or HWR203. This course focuses equally on fundamental hydrologic understandings, beginning with the water cycle as well as the host of political and social issues that arise as this scarce resource is stretched among many stakeholders claiming ever larger water needs. This course covers a range of topics from water law to water resource management using decision support modeling tools. All of these projects can be found on our web site referenced below.

  6. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS); or Peter Schlosser, schlosser@ldeo.columbia.edu, SEARCH SSC Chair.

  7. Solar-Terrestrial Physics in the 1990s: Key Science Objectives for the IACG Mission Set

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The International Solar-Terrestrial Physics (ISTP) program is an internationally coordinated multi-spacecraft mission that will study the production of the supersonic magnetized solar wind, its interaction with the Earth's magnetosphere, and the resulting transport of plasma, momentum and energy through the magnetosphere and into the ionosphere and upper atmosphere. The mission will involve l4spacecraft to be launched between 1992 and 1996, along with complementary ground-based observations and theoretical programs. A list of the spacecraft, their nominal orbits, and responsible agencies is shown.

  8. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  9. Update on terrestrial ecological classification in the highlands of West Virginia

    Treesearch

    James P. Vanderhorst

    2010-01-01

    The West Virginia Natural Heritage Program (WVNHP) maintains databases on the biological diversity of the state, including species and natural communities, to help focus conservation efforts by agencies and organizations. Information on terrestrial communities (also called vegetation, or habitat, depending on user or audience focus) is maintained in two databases. The...

  10. Multiple-Feed Design For DSN/SETI Antenna

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Bathker, D. A.

    1988-01-01

    Frequency bands changed with little interruption of operation. Modification of feedhorn mounting on existing 34-m-diameter antenna in Deep Space Network (DSN) enables antenna to be shared by Search for Extra-Terrestrial Intelligence (SET) program with minimal interruption of DSN spacecraft tracking. Modified antenna useful in terrestrial communication systems requiring frequent changes of operating frequencies.

  11. Invertebrates in managed waterfowl marshes

    USGS Publications Warehouse

    Stafford, Joshua D.; Janke, Adam K.; Webb, Elisabeth B.; Chipps, Steven R.

    2016-01-01

    Invertebrates are an important food for breeding, migrating, and wintering waterfowl. Sparse study has been devoted to understanding the influence of waterfowl and wetland management on production of invertebrates for waterfowl foods; however, manipulation of hydrology and soils may change or enhance production. Fish can compete with waterfowl for invertebrate forage in wetlands and harm aquatic macrophytes; biomanipulation (e.g., stocking piscivores) may improve waterfowl habitat quality. Similarly, some terrestrial vertebrates (e.g., beaver (Castor canadensis)) may positively or negatively impact invertebrate communities in waterfowl habitats. Various challenges exist to wetland management for invertebrates for waterfowl, but the lack of data on factors influencing production may be the most limiting.

  12. Ames Research Center C-130

    NASA Technical Reports Server (NTRS)

    Koozer, Mark A.

    1991-01-01

    The C130 Earth Resources Aircraft provides a platform for a variety of sensors that collect data in support of terrestrial and atmospheric projects sponsored by NASA in coordination with Federal, state, university, and industry investigators. This data is applied to research in the areas of forestry, agriculture, land use and land cover analysis, hydrology, geology, photogrammetry, oceanography, meteorology, and other earth science disciplines. The C130 is a platform aircraft flying up to 25,000 feet above sea level at speeds between 150 and 330 knots True Air Speed. The aircraft is capable of precise flight line navigation by means of an optical borescope from which line guidance is provided to the pilots.

  13. Ecological resource management: A call to arms

    USGS Publications Warehouse

    Emlen, J.M.; Kapustka, Lawrence; Barnthouse, L.; Beyer, N.; Biddinger, G.; Kedwards, T.; Landis, W.; Menzie, C.; Munns, W.; Sorenson, M.; Wentsel, R.

    2002-01-01

    As the human population enlarges, it becomes increasingly difficult to sustain valued ecological resources. Human use of resources, whether it is the harvest of ocean fisheries, logging of forests, or farming of arable lands, has resulted in significant population declines in many wildlife species. The growth of urban areas and the expansion of impermeable surfaces alter landscape diversity and modify hydrologic patterns in ways that decrease habitat quality for many desired plant, fish, and wildlife species. Impaired water, air, and soil quality related to industrial, municipal, and agricultural activities have altered the composition of aquatic and terrestrial communities.

  14. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  15. Predicting Mountainous Watershed Biogeochemical Dynamics, Including Response to Droughts and Early Snowmelt

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Long, P.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.

    2016-12-01

    Climate change, extreme weather, land-use change, and other perturbations are significantly reshaping interactions with in watersheds throughout the world. While mountainous watersheds are recognized as the water towers for the world, hydrological processes in watersheds also mediate biogeochemical processes that support all terrestrial life. Developing predictive understanding of watershed hydrological and biogeochemical functioning is challenging, as complex interactions occurring within a heterogeneous watershed can lead to a cascade of effects on downstream water availability and quality. Although these interactions can have significant implications for energy production, agriculture, water quality, and other benefits valued by society, uncertainty associated with predicting watershed function is high. The Watershed Function project aims to substantially reduce this uncertainty through developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. The Watershed Function project is being carried out in a headwater mountainous catchment of the Upper Colorado River Basin, within a watershed characterized by significant gradients in elevation, vegetation and hydrogeology. A system-within system project perspective posits that the integrated watershed response to disturbances can be adequately predicted through consideration of interactions and feedbacks occurring within a limited number of subsystems, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A key technological goal is the development of scale-adaptive simulation capabilities that can incorporate genomic information where and when it is useful for predicting the overall watershed response to disturbance. Through developing and integrating new microbial ecology, geochemical, hydrological, ecohydrological, computational and geophysical approaches, the project is developing new insights about biogeochemical dynamics from genome to watershed scales.

  16. Assessment of 3D hydrologic deformation using GRACE and GPS

    NASA Astrophysics Data System (ADS)

    Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.

    2009-12-01

    Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of validating the amplitude and phase of quasi-periodic signals present in GPS time series.

  17. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE PAGES

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; ...

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  18. What did the Romans ever do for us? Putting humans in global land models

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wada, Y.; Dermody, B.; Van Beek, L. P.

    2016-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (abstraction, application, consumption, return flow) in the hydrology; simulating the effects of land use change. We identify four major challenges that hamper the further development of integrated water resources modelling and thus prohibit realistic projections of the future terrestrial water cycle in the Anthropocene. These are: 1) including the ability to model infrastructural changes and measures; 2) projecting future water demand and water use and associated measures; 3) including virtual water trade; 4) including land use change and landscape change. While all these challenges will likely benefit from hydro-economics and the newly developing field of socio-hydrology, we also show that especially for challenges 3 and 4 lessons can be drawn from the (pre)historic past. To make this point we provide two case studies: one modelling the virtual water trade in the Roman Empire and one modelling human-landscape interaction in prehistoric Calabria (Italy).

  19. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    USGS Publications Warehouse

    Miller, Matthew P.

    2012-01-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  20. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

Top