Sample records for terrestrial laser scanner

  1. Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems

    PubMed Central

    Hong, Seunghwan; Park, Ilsuk; Lee, Jisang; Lim, Kwangyong; Choi, Yoonjo; Sohn, Hong-Gyoo

    2017-01-01

    This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS). On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D) terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively. PMID:28264457

  2. Drawing and Landscape Simulation for Japanese Garden by Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kumazaki, R.; Kunii, Y.

    2015-05-01

    Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

  3. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hancock, S.

    2013-12-01

    Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive

  4. Comparison of working efficiency of terrestrial laser scanner in day and night conditions

    NASA Astrophysics Data System (ADS)

    Arslan, A. E.; Kalkan, K.

    2013-10-01

    Terrestrial Laser Scanning is a popular and widely used technique to scan existing objects, document historical sites and items, and remodel them if and when needed. Their ability to collect thousands of point data per second makes them an invaluable tool in many areas from engineering to historical reconstruction. There are many scanners in the market with different technical specifications. One main technical specification of laser scanners is range and illumination. In this study, it is tested to be determined the optimal working times of a laser scanner and the scanners consistency with its specifications sheet. In order to conduct this work, series of GNSS measurements in Istanbul Technical University have been carried out, connected to the national reference network, to determine precise positions of target points and the scanner, which makes possible to define a precise distance between the scanner and targets. Those ground surveys has been used for calibration and registration purposes. Two different scan campaigns conducted at 12 am and 11 pm to compare working efficiency of laser scanner in different illumination conditions and targets are measured with a handheld spectro-radiometer in order to determine their reflective characteristics. The obtained results are compared and their accuracies have been analysed.

  5. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  6. Comparing the accuracy of terrestrial laser scanner in measuring forest inventory variables to enhance better decision making for potential fire hazards

    NASA Astrophysics Data System (ADS)

    Ghimire, Suman; Xystrakis, Fotios; Koutsias, Nikos

    2017-04-01

    Forest inventory variables are essential in accessing the potential of wildfire hazard, obtaining above ground biomass and carbon sequestration which helps developing strategies for sustainable management of forests. Effective management of forest resources relies on the accuracy of such inventory variables. This study aims to compare the accuracy in obtaining the forest inventory variables like diameter at breast height (DBH) and tree height from Terrestrial Laser Scanner (Faro Focus 3D X 330) with that from the traditional forest inventory techniques in the Mediterranean forests of Greece. The data acquisition was carried out on an area of 9,539.8 m2 with six plots each of radius 6 m. Computree algorithm was applied for automatic detection of DBH from terrestrial laser scanner data. Similarly, tree height was estimated manually using CloudCompare software for the terrestrial laser scanner data. The field estimates of DBH and tree height was carried out using calipers and Nikon Forestry 550 Laser Rangefinder. The comparison of DBH measured between field estimates and Terrestrial Laser Scanner (TLS), resulted in R squared values ranging from 0.75 to 0.96 at the plot level. An average R2 and RMSE value of 0.80 and 1.07 m respectively was obtained when comparing the tree height between TLS and field data. Our results confirm that terrestrial laser scanner can provide nondestructive, high-resolution, and precise determination of forest inventory for better decision making in sustainable forest management and assessing potential of forest fire hazards.

  7. Modelling Single Tree Structure with Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Yurtseven, H.; Akgül, M.; Gülci, S.

    2017-11-01

    Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.

  8. Three-Dimensional Recording of Bastion Middleburg Monument Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Majid, Z.; Lau, C. L.; Yusoff, A. R.

    2016-06-01

    This paper describes the use of terrestrial laser scanning for the full three-dimensional (3D) recording of historical monument, known as the Bastion Middleburg. The monument is located in Melaka, Malaysia, and was built by the Dutch in 1660. This monument serves as a major hub for the community when conducting commercial activities in estuaries Malacca and the Dutch build this monument as a control tower or fortress. The monument is located on the banks of the Malacca River was built between Stadhuys or better known as the Red House and Mill Quayside. The breakthrough fort on 25 November 2006 was a result of the National Heritage Department through in-depth research on the old map. The recording process begins with the placement of measuring targets at strategic locations around the monument. Spherical target was used in the point cloud data registration. The scanning process is carried out using a laser scanning system known as a terrestrial scanner Leica C10. This monument was scanned at seven scanning stations located surrounding the monument with medium scanning resolution mode. Images of the monument have also been captured using a digital camera that is setup in the scanner. For the purposes of proper registration process, the entire spherical target was scanned separately using a high scanning resolution mode. The point cloud data was pre-processed using Leica Cyclone software. The pre-processing process starting with the registration of seven scan data set through overlapping spherical targets. The post-process involved in the generation of coloured point cloud model of the monument using third-party software. The orthophoto of the monument was also produced. This research shows that the method of laser scanning provides an excellent solution for recording historical monuments with true scale of and texture.

  9. Towards System Calibration of Panoramic Laser Scanners from a Single Station

    PubMed Central

    Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner

    2017-01-01

    Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548

  10. Using a terrestrial laser scanner to measure spatiotemporal surface moisture dynamics

    NASA Astrophysics Data System (ADS)

    Smit, Y.; Donker, J.; Ruessink, G.

    2017-12-01

    A terrestrial laser scanner (TLS) is an active remote sensing technique that utilizes the round trip time of an emitted laser beam to provide the range between the laser scanner and the backscattering object. It is routinely used for topographic mapping, forest measurements or 3D city models since it derives useful object representations by means of a dense three-dimensional (3D) point cloud. Here, we present a novel application using the returned intensity of the emitted beam to detect surface moisture with the RIEGL VZ-400. Because this TLS operates at a wavelength near a water absorption band (1550 nm), reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Concurrent gravimetric surface moisture samples were collected to calibrate the relation between reflectance and surface moisture. Results reveal the reflectance output is a robust parameter to measure surface moisture from the thin upper layer over its full range from 0% to 25%. The obtained calibration curve of the presented TLS, describing the relationship between reflectance and surface moisture, has a root-mean-square error of 2.7% and a correlation coefficient squared of 0.85. This relation holds to about 60 m from the TLS. Within this distance the TLS typically produces O(10^6-10^7) data points, which we averaged into surface moisture maps with a 1 x 1 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. Concluding, TLS (RIEGL-VZ 400) is a highly suited technique to accurately and robustly measure spatiotemporal surface moisture variations on a coastal beach with high spatial ( 1 x 1 m) and temporal ( 15-30min.) resolution.

  11. Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data

    NASA Astrophysics Data System (ADS)

    Rachakonda, Prem; Muralikrishnan, Bala; Cournoyer, Luc; Cheok, Geraldine; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel

    2017-10-01

    The Dimensional Metrology Group at the National Institute of Standards and Technology is performing research to support the development of documentary standards within the ASTM E57 committee. This committee is addressing the point-to-point performance evaluation of a subclass of 3D imaging systems called terrestrial laser scanners (TLSs), which are laser-based and use a spherical coordinate system. This paper discusses the usage of sphere targets for this effort, and methods to minimize the errors due to the determination of their centers. The key contributions of this paper include methods to segment sphere data from a TLS point cloud, and the study of some of the factors that influence the determination of sphere centers.

  12. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    NASA Astrophysics Data System (ADS)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  13. Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration

    NASA Astrophysics Data System (ADS)

    Lichti, Derek D.; Chow, Jacky; Lahamy, Hervé

    One of the important systematic error parameters identified in terrestrial laser scanners is the collimation axis error, which models the non-orthogonality between two instrumental axes. The quality of this parameter determined by self-calibration, as measured by its estimated precision and its correlation with the tertiary rotation angle κ of the scanner exterior orientation, is strongly dependent on instrument architecture. While the quality is generally very high for panoramic-type scanners, it is comparably poor for hybrid-style instruments. Two methods for improving the quality of the collimation axis error in hybrid instrument self-calibration are proposed herein: (1) the inclusion of independent observations of the tertiary rotation angle κ; and (2) the use of a new collimation axis error model. Five real datasets were captured with two different hybrid-style scanners to test each method's efficacy. While the first method achieves the desired outcome of complete decoupling of the collimation axis error from κ, it is shown that the high correlation is simply transferred to other model variables. The second method achieves partial parameter de-correlation to acceptable levels. Importantly, it does so without any adverse, secondary correlations and is therefore the method recommended for future use. Finally, systematic error model identification has been greatly aided in previous studies by graphical analyses of self-calibration residuals. This paper presents results showing the architecture dependence of this technique, revealing its limitations for hybrid scanners.

  14. Remote Sensing to Estimate Saturation Differences of Chosen Building Materials Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Suchocki, Czesław; Katzer, Jacek; Panuś, Arkadiusz

    2017-06-01

    Terrestrial Laser Scanner (TLS) method which is commonly used for geodetic applications has a great potential to be successfully harnessed for multiple civil engineering applications. One of the most promising uses of TLS in construction industry is remote sensing of saturation of building materials. A research programme was prepared in order to prove that harnessing TLS for such an application is viable. Results presented in the current paper are a part of a much larger research programme focused on harnessing TLS for remote sensing of saturation of building materials. The paper describes results of the tests conducted with an impulse scanner Leica C-10. Tests took place both indoors (in a stable lab conditions) and outdoors (in a real environment). There were scanned specimens of the most popular building materials in Europe. Tested specimens were dried and saturated (including capillary rising moisture). One of the tests was performed over a period of 95 hours. Basically, a concrete specimen was scanned during its setting and hardening. It was proven that absorption of a laser signal is influenced by setting and hardening of concrete. Outdoor tests were based on scanning real buildings with partially saturated facades. The saturation assessment was based on differences of values of intensity. The concept proved to be feasible and technically realistic.

  15. An Efficient, Hierarchical Viewpoint Planning Strategy for Terrestrial Laser Scanner Networks

    NASA Astrophysics Data System (ADS)

    Jia, F.; Lichti, D. D.

    2018-05-01

    Terrestrial laser scanner (TLS) techniques have been widely adopted in a variety of applications. However, unlike in geodesy or photogrammetry, insufficient attention has been paid to the optimal TLS network design. It is valuable to develop a complete design system that can automatically provide an optimal plan, especially for high-accuracy, large-volume scanning networks. To achieve this goal, one should look at the "optimality" of the solution as well as the computational complexity in reaching it. In this paper, a hierarchical TLS viewpoint planning strategy is developed to solve the optimal scanner placement problems. If one targeted object to be scanned is simplified as discretized wall segments, any possible viewpoint can be evaluated by a score table representing its visible segments under certain scanning geometry constraints. Thus, the design goal is to find a minimum number of viewpoints that achieves complete coverage of all wall segments. The efficiency is improved by densifying viewpoints hierarchically, instead of a "brute force" search within the entire workspace. The experiment environments in this paper were simulated from two buildings located on University of Calgary campus. Compared with the "brute force" strategy in terms of the quality of the solutions and the runtime, it is shown that the proposed strategy can provide a scanning network with a compatible quality but with more than a 70 % time saving.

  16. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  17. Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner

    PubMed Central

    Lin, Yi; Puttonen, Eetu; Hyyppä, Juha

    2013-01-01

    In mobile terrestrial hyperspectral imaging, individual trees often present large variations in spectral reflectance that may impact the relevant applications, but the related studies have been seldom reported. To fill this gap, this study was dedicated to investigating the spectral reflectance characteristics of individual trees with a Sensei mobile mapping system, which comprises a Specim line spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial distributions of tree spectral reflectance with variations at different levels. Then, the parts of trees with relatively low-level variations can be extracted. At the same time, since it is difficult to manipulate the whole spectrum, the traditional concept of vegetation indices (VI) based on some particular spectral bands was taken into account here. Whether the assumed VIs capable of behaving consistently for the whole crown of each tree was also checked. The specific analyses were deployed based on four deciduous tree species and six kinds of VIs. The test showed that with the help of the laser scanner data, the parts of individual trees with relatively low-level variations can be located. Based on these parts, the relatively stable spectral reflectance characteristics for different tree species can be learnt. PMID:23877127

  18. Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management

    PubMed Central

    Di Benedetto, Alessandro; Fiani, Margherita

    2017-01-01

    The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too. PMID:29278386

  19. Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management.

    PubMed

    Barbarella, Maurizio; D'Amico, Fabrizio; De Blasiis, Maria Rosaria; Di Benedetto, Alessandro; Fiani, Margherita

    2017-12-26

    The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.

  20. Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries

    DOT National Transportation Integrated Search

    2016-05-01

    Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...

  1. Multi-temporal Terrestrial Laser Scanner monitoring of coastal instability processes at Coroglio cliff

    NASA Astrophysics Data System (ADS)

    Caputo, Teresa; Somma, Renato; Marino, Ermanno; Matano, Fabio; Troise, Claudia; De Natale, Giuseppe

    2016-04-01

    The Coroglio cliff is a morphological evolution of the caldera rim of Neapolitan Yellow Tuff (NYT) in Campi Flegrei caldera (CFc) with an elevation of 150 m a.s.l. and a length of about 200 m. The lithology consists of NYT, extremely lithified, overlaid by less lithified recent products of the Phlegrean volcanism., These materials are highly erodible and, due to proximity to the sea, the sea wave and wind actions cause very strong erosion process. In the recent years Terrestrial Laser Scanner (TLS) technique is used for environmental monitoring purposes through the creation of high resolution Digital Surface Model (DSM) and Digital Terrain Model (DTM). This method allows the reconstruction, by means of a dense cloud of points, of a 3D model for the entire investigated area. The scans need to be performed from different points of view in order to ensure a good coverage of the area, because a widespread problem is the occurrence of shaded areas. In our study we used a long-range laser scanner model RIEGL VZ1000®. Numerous surveys (April 2013, June 2014, February 2015) have been performed for monitoring coastal cliff morphological evolution. An additional survey was executed in March 2015, shortly after a landslide occurrence. To validate the multi-temporal monitoring of the laser scanner, a "quick" comparison of the acquired point clouds has been carried out using an algorithm cloud-to-cloud, in order to identify 3D changes. Then 2.5D raster images of the different scans has been performed in GIS environment, also in order to allow a map overlay of the produced thematic layer, both raster and vector data (geology, contour map, orthophoto, and so on). The comparison of multi-temporal data have evidenced interesting geomorphological processes on the cliff. It was observed a very intense (about 6 m) local moving back at the base of the cliff, mainly due to the sea wave action during storms, while in cliff sectors characterized by less compact lithologies widespread

  2. Terrestrial laser scanning in monitoring of anthropogenic objects

    NASA Astrophysics Data System (ADS)

    Zaczek-Peplinska, Janina; Kowalska, Maria

    2017-12-01

    The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan's density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam's incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.

  3. A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis

    PubMed Central

    Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge

    2015-01-01

    Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247

  4. Simulated full-waveform lidar compared to Riegl VZ-400 terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Kim, Angela M.; Olsen, Richard C.; Béland, Martin

    2016-05-01

    A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and ab- sorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a Riegl VZ-400 terrestrial laser scanner. The VoxLAD model uses terrestrial LiDAR scanner data to determine Leaf Area Density (LAD) measurements for small volume voxels (20 cm sides) of a single tree canopy. VoxLAD is also used in a non-traditional fashion in this case to generate a voxel model of wood density. Information from the VoxLAD model is used within the LiDAR simulation to determine the probability of LiDAR energy interacting with materials at a given voxel location. The LiDAR simulation is defined to replicate the scanning arrangement of the Riegl VZ-400; the resulting simulated full-waveform LiDAR signals compare favorably to those obtained with the Riegl VZ-400 terrestrial laser scanner.

  5. New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner

    PubMed Central

    Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli

    2015-01-01

    In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726

  6. An Automatic Procedure for Combining Digital Images and Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Moussa, W.; Abdel-Wahab, M.; Fritsch, D.

    2012-07-01

    Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM) of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter) transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM) reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.

  7. Terrestrial Laser Scanner Two-Face Measurements for Analyzing the Elevation-Dependent Deformation of the Onsala Space Observatory 20-m Radio Telescope's Main Reflector in a Bundle Adjustment.

    PubMed

    Holst, Christoph; Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner

    2017-08-09

    For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.

  8. Application of Terrestrial Laser Scanner with an Integrated Thermal Camera in Non-Destructive Evaluation of Concrete Surface of Hydrotechnical Objects

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz Dominik; Dobak, Paweł Józef; Kiełbasiński, Kamil

    2017-12-01

    The authors present possible applications of thermal data as an additional source of information on an object's behaviour during the technical assessment of the condition of a concrete surface. For the study one of the most recent propositions introduced by Zoller + Fröhlich company was used, which is an integration of a thermal camera with a terrestrial laser scanner. This solution enables an acquisition of geometric and spectral data on the surveyed object and also provides information on the surface's temperature in the selected points. A section of the dam's downstream concrete wall was selected as the subject of the study for which a number of scans were carried out and a number of thermal images were taken at different times of the day. The obtained thermal data was confronted with the acquired spectral information for the specified points. This made it possible to carry out broader analysis of the surface and an inspection of the revealed fissure. The thermal analysis of said fissure indicated that the temperature changes within it are slower, which may affect the way the concrete works and may require further elaboration by the appropriate experts. Through the integration of a thermal camera with a terrestrial laser scanner one can not only analyse changes of temperature in the discretely selected points but on the whole surface as well. Moreover, it is also possible to accurately determine the range and the area of the change affecting the surface. The authors note the limitations of the presented solution like, inter alia, the resolution of the thermal camera.

  9. Terrestrial Laser Scanner Two-Face Measurements for Analyzing the Elevation-Dependent Deformation of the Onsala Space Observatory 20-m Radio Telescope’s Main Reflector in a Bundle Adjustment

    PubMed Central

    Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner

    2017-01-01

    For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes’ main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85∘ to 5∘ elevation angle. Further local deformations of the main reflector are not detected. PMID:28792449

  10. Next-Generation Terrestrial Laser Scanning to Measure Forest Canopy Structure

    NASA Astrophysics Data System (ADS)

    Danson, M.

    2015-12-01

    Terrestrial laser scanners (TLS) are now capable of semi-automatic reconstruction of the structure of complete trees or forest stands and have the potential to provide detailed information on tree architecture and foliage biophysical properties. The trends for the next generation of TLS are towards higher resolution, faster scanning and full-waveform data recording, with mobile, multispectral laser devices. The convergence of these technological advances in the next generation of TLS will allow the production of information for forest and woodland mapping and monitoring that is far more detailed, more accurate, and more comprehensive than any available today. This paper describes recent scientific advances in the application of TLS for characterising forest and woodland areas, drawing on the authors' development of the Salford Advanced Laser Canopy Analyser (SALCA), the activities of the Terrestrial Laser Scanner International Interest Group (TLSIIG), and recent advances in laser scanner technology around the world. The key findings illustrated in the paper are that (i) a complete understanding of system measurement characteristics is required for quantitative analysis of TLS data, (ii) full-waveform data recording is required for extraction of forest biophysical variables and, (iii) multi-wavelength systems provide additional spectral information that is essential for classifying different vegetation components. The paper uses a range of recent experimental TLS measurements to support these findings, and sets out a vision for new research to develop an information-rich future-forest information system, populated by mobile autonomous multispectral TLS devices.

  11. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef

    2013-12-01

    Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  12. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  13. a New Approach for the Semi-Automatic Texture Generation of the Buildings Facades, from Terrestrial Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Oniga, E.

    2012-07-01

    The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue) values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.

  14. Assessment of deformations in mining areas using the Riegl VZ-400 terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Szwarkowski, Dariusz; Moskal, Magdalena

    2018-04-01

    The article discusses the use of terrestrial laser scanning to assess deformations in mining areas. Using the terrestrial laser scanning Riegl VZ-400, control measurements within the historical location of the underground coal mine in Zabrze were made. Two laser scanning measurements were taken over the course of one year. The research made it possible to determine changes in surface deformation on the shallowly located mining excavations. Differences in the terrain may be due to subsidence associated with the influence of underground mining and pose a threat to the adjacent road infrastructure and structures.

  15. The UF GEM Research Center Mobile Terrestrial Laser Scanner System M-TLSS Applied to Beach Morphology Studies in St. Augustine, Florida.

    NASA Astrophysics Data System (ADS)

    Fernandez, J. C.; Shrestha, R. L.; Carter, W. E.; Slatton, C. K.; Singhania, A.

    2006-12-01

    The UF GEM Research Center is working towards developing a Mobile Terrestrial Laser Scanning System (M- TLSS). The core of the M-TLSS is a commercial 2-axis ground based laser scanner, Optech ILRIS-36D, which is capable of generating XYZ with laser intensity or RGB textured point clouds in a range from 3m to 1500m. The laser operates at a wavelength of 1535 nm. The sample separation can be adjusted down to 0.00115°, and the scanning speed is 2,000 points per second. The scanner is integrated to a mobile telescoping, rotating and tilting platform which is essentially a telescopic lift mounted on the back of a pick up truck. This provides up to 6 degrees of freedom for performing scanning operations. A scanner built-in 6 megapixel digital camera and a digital video camera provide the M-TLSS moving and still imagining capability. The applications of the M-TLSS data sets are numerous in both the fields of science and engineering. This paper will focus on the application of M-TLSS as a complement to ALSM in the study of beach morphology in the St. Augustine, Florida area. ALSM data covers a long stretch of beach with a moderate sample density of approximately 1 laser return per square meter, which enables the detection of submeter-scale changes in shoreline position and dune heights over periods of few months. The M-TLSS, on the other hand, can provide high density point clouds (centimeter scale point spacing) of smaller areas known to be highly prone to erosion. From these point clouds centimeter level surface grids are created. These grids will be compared with the ALSM data and with a time series of M-TLSS data over the same area to provide high resolution, short term beach erosion monitoring. Surface morphological parameters that will be compared among the ALSM and M-TLSS data sets include shoreline position and gradients and standard deviations of elevations on cross- shore transects.

  16. A novel optical scanner for laser radar

    NASA Astrophysics Data System (ADS)

    Yao, Shunyu; Peng, Renjun; Gao, Jianshuang

    2013-09-01

    Laser radar are ideally suitable for recognizing objects, detection, target tracking or obstacle avoidance, because of the high angular and range resolution. In recent years, scannerless ladar has developed rapidly. In contrast with traditional scanner ladar, scannerless ladar has distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. However, the scannerless ladar is still in the stage of laboratory and the performance cannot meet the demands of practical applications. Hence, traditional scanner laser radar is still mainly applied. In scanner ladar system, optical scanner is the key component which can deflect the direction of laser beam to the target. We investigated a novel scanner based on the characteristic of fiber's light-conductive. The fiber bundles are arranged in a special structure which connected to a motor. When motor working properly, the laser passes through the fibers on incident plane and the location of laser spot on output plane will move along with a straight line in a constant speed. The direction of light will be deflected by taking advantage of transmitting optics, then the linear sweeping of the target can be achieved. A laser radar scheme with high speed and large field of view can be realized. Some researches on scanner are simply introduced on section1. The structure of the optical scanner will be described and the practical applications of the scanner in transmitting and receiving optical paths are discussed in section2. Some characteristic of scanner is calculated in section3. In section4, we report the simulation and experiment of our prototype.

  17. Rockfall hazard assessment of nearly vertical rhyolite tuff cliff faces by using terrestrial laser scanner, UAV and FEM analyses

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Görög, Péter; Lovas, Tamás; Bögöly, Gyula; Czinder, Balázs; Vásárhelyi, Balázs; Molnár, Bence; József Somogyi, Árpád

    2017-04-01

    Nearly vertical rhyolite tuff cliff faces are located in NE-Hungary representing rock fall hazard in the touristic region of Sirok. Larger blocks of the cliff have fallen in recent years menacing tourists and human lives. The rhyolite tuff, that forms the Castle Hill was formed during Miocene volcanism and comprises of brecciated lapilli tuffs and tuffs with intercalating ignimbritic horizons. The paper focuses on the 3D mapping of cliff faces and modeling of rock fall hazard. The topography and 3D model of the cliff was obtained by using GNSS supported terrestrial laser scanner and UAV. With imaging techniques of UAV a Triangulated Irregular Network (TIN) model was developed that contained triangles with 5-10 cm side lengths. GNSS supported terrestrial laser scanning allowed the observation with a resolution 1-5 cm of point spacing. The point clouds were further processed and with the combination of laser scanner and UAV data a 3D model of the studied cliff faces were obtained. Geological parameters for rock fall analyses included both field observations and laboratory tests. The lithotypes were identified on the field and were sampled for rock mechanical laboratory analyses. Joint- and fault system was mapped and visualized by using Rocscience Dip. EN test methods were used to obtain the density properties of various lithotypes of rhyolite tuff. Other standardized EN tests included ultrasonic pulse velocity, water absorption, indirect tensile strength (Brasilian), uniaxial compressive strength and modulus of elasticity of air dry and of water saturated samples. GSI values were denoted based on filed observations and rock mass properties. The stability analyses of cliff faces were made by using 2D FEM software (Phase 2). Cross sections were evaluated and global factor of safety was also calculated. The modeled displacements were in the order of few centimeters; however several locations were pinpointed where wedge failure and planar slip surfaces were identified

  18. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  19. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  20. Co-Registration of DSMs Generated by Uav and Terrestrial Laser Scanning Systems

    NASA Astrophysics Data System (ADS)

    Ancil Persad, Ravi; Armenakis, Costas

    2016-06-01

    An approach for the co-registration of Digital Surface Models (DSMs) derived from Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  1. Automatic Reconstruction of 3D Building Models from Terrestrial Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    El Meouche, R.; Rezoug, M.; Hijazi, I.; Maes, D.

    2013-11-01

    With modern 3D laser scanners we can acquire a large amount of 3D data in only a few minutes. This technology results in a growing number of applications ranging from the digitalization of historical artifacts to facial authentication. The modeling process demands a lot of time and work (Tim Volodine, 2007). In comparison with the other two stages, the acquisition and the registration, the degree of automation of the modeling stage is almost zero. In this paper, we propose a new surface reconstruction technique for buildings to process the data obtained by a 3D laser scanner. These data are called a point cloud which is a collection of points sampled from the surface of a 3D object. Such a point cloud can consist of millions of points. In order to work more efficiently, we worked with simplified models which contain less points and so less details than a point cloud obtained in situ. The goal of this study was to facilitate the modeling process of a building starting from 3D laser scanner data. In order to do this, we wrote two scripts for Rhinoceros 5.0 based on intelligent algorithms. The first script finds the exterior outline of a building. With a minimum of human interaction, there is a thin box drawn around the surface of a wall. This box is able to rotate 360° around an axis in a corner of the wall in search for the points of other walls. In this way we can eliminate noise points. These are unwanted or irrelevant points. If there is an angled roof, the box can also turn around the edge of the wall and the roof. With the different positions of the box we can calculate the exterior outline. The second script draws the interior outline in a surface of a building. By interior outline we mean the outline of the openings like windows or doors. This script is based on the distances between the points and vector characteristics. Two consecutive points with a relative big distance will form the outline of an opening. Once those points are found, the interior outline

  2. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser

  3. Automatic Registration of Terrestrial Laser Scanner Point Clouds Using Natural Planar Surfaces

    NASA Astrophysics Data System (ADS)

    Theiler, P. W.; Schindler, K.

    2012-07-01

    Terrestrial laser scanners have become a standard piece of surveying equipment, used in diverse fields like geomatics, manufacturing and medicine. However, the processing of today's large point clouds is time-consuming, cumbersome and not automated enough. A basic step of post-processing is the registration of scans from different viewpoints. At present this is still done using artificial targets or tie points, mostly by manual clicking. The aim of this registration step is a coarse alignment, which can then be improved with the existing algorithm for fine registration. The focus of this paper is to provide such a coarse registration in a fully automatic fashion, and without placing any target objects in the scene. The basic idea is to use virtual tie points generated by intersecting planar surfaces in the scene. Such planes are detected in the data with RANSAC and optimally fitted using least squares estimation. Due to the huge amount of recorded points, planes can be determined very accurately, resulting in well-defined tie points. Given two sets of potential tie points recovered in two different scans, registration is performed by searching for the assignment which preserves the geometric configuration of the largest possible subset of all tie points. Since exhaustive search over all possible assignments is intractable even for moderate numbers of points, the search is guided by matching individual pairs of tie points with the help of a novel descriptor based on the properties of a point's parent planes. Experiments show that the proposed method is able to successfully coarse register TLS point clouds without the need for artificial targets.

  4. Application of a laser scanner to three dimensional visual sensing tasks

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.

    1992-01-01

    The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.

  5. The application of a 3D laser scanner in contemporary education of civil engineering students

    NASA Astrophysics Data System (ADS)

    Szafranko, E.; Pawłowicz, J. A.

    2017-10-01

    The programs of study in field of civil engineering include a number of objects, which concern with details of the planning, design and realization of buildings. These are buildings and structures such as, roads, bridges, tunnels, viaducts. Most of these objects are located far from university and it was difficult to show them on the lessons. Discussing the structure based on the description of the object, photographs or drawings do not always allow to imagine the actual shapes and sizes of buildings, roads, bridges and viaducts. In such a situation, terrestrial photogrammetric technology could be helpful. One of them is 3D laser scanning technology Measurements performed with a laser scanner allows to introduce selected objects in the form of spatial models. They give you the ability to rotate and zoom them in order to know the details of construction of the object. The article presents the possibility of using a 3D laser scanner in teaching.

  6. Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali, West Java (Indonesia)

    NASA Astrophysics Data System (ADS)

    Gumilar, Irwan; Fattah, Alif; Abidin, Hasanuddin Z.; Sadarviana, Vera; Putri, Nabila S. E.; Kristianto

    2017-07-01

    West Java is one of the provinces in Indonesia which is prone to landslide. Over the past few years, landslides in this area have resulted in a large number of victims. One of the areas in West Java with the highest risk of landslide occurrence is Rancabali Ciwidey. In general, the morphology around the landslide location is steep hills, with the slope > 30° and the altitude between 1550 - 1865 m above sea level. Several indications of ground movements can be seen in the form of slumps and cracks on the village roads and tea plantation, as well as slanting trees and electricity poles. The ground movement monitoring in this area is necessary for disaster mitigation. Several methods that can be used to monitor the landslide are using Terrestrial Laser Scanner (TLS) and robotic total station. This research aims is monitoring the landslide using these methods. The methodology used in this research is by obtaining the scanning data using TLS C-10 and Robotic total station MS05 measurements to obtain the coordinates of monitoring point clouds and prism. The TLS software that we used are Cyclone 8.1 and Maptek I-Site. For robotic total station, the software that we used is MSP software. These method hopefully can be used for early warning system of landslide in Rancabali area.

  7. Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target.

    PubMed

    Muralikrishnan, Bala; Rachakonda, Prem; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel; Cheok, Geraldine; Cournoyer, Luc

    2017-12-01

    Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud by measuring the range and two angles to a point. The fundamental measurement of a TLS is range. Relative range error is one component of the overall range error of TLS and its estimation is therefore an important aspect in establishing metrological traceability of measurements performed using these systems. Target geometry is an important aspect to consider when realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a plate target for the relative range tests. While a plate target may reasonably be expected to produce distortion free data even at far distances, the target itself needs careful alignment at each of the relative range test positions. In this paper, we discuss relative range experiments performed using a plate target and then address the advantages and limitations of using a sphere target. We then present a novel dual-sphere-plate target that draws from the advantages of the sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate target are used simply as fiducials to identify a point on the surface of the plate that is common to both the scanner and the reference instrument, thus overcoming the need to carefully align the target.

  8. Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu

    2016-06-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  9. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  10. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    PubMed

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  11. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Ruessink, Gerben; Brakenhoff, Laura B.; Donker, Jasper J. A.

    2018-04-01

    Wind-alone predictions of aeolian sand deposition on the most seaward coastal dune ridge often exceed measured deposition substantially. Surface moisture is a major factor limiting aeolian transport on sandy beaches, but existing measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content. Here, we present a new method for detecting surface moisture at high temporal and spatial resolution using a near-infrared terrestrial laser scanner (TLS), the RIEGL VZ-400. Because this TLS operates at a wavelength (1550 nm) near a water absorption band, TLS reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric surface moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0%-25%), with a correlation-coefficient squared of 0.85 and a root-mean-square error of 2.7%. This relation holds between 20 and 60 m from the TLS. Within this distance the TLS typically produces O (106-107) data points, which we averaged into surface moisture maps with a 1 × 1 m resolution. This grid size largely removes small reflectance disturbances induced by, for example, footprints or tire tracks, while retaining larger scale moisture trends.

  12. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.

    2014-06-01

    The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.

  13. Dealing with systematic laser scanner errors due to misalignment at area-based deformation analyses

    NASA Astrophysics Data System (ADS)

    Holst, Christoph; Medić, Tomislav; Kuhlmann, Heiner

    2018-04-01

    The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory's radio telescope's main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.

  14. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  15. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  16. Modeling and Calibration of a Novel One-Mirror Galvanometric Laser Scanner

    PubMed Central

    Yu, Chengyi; Chen, Xiaobo; Xi, Juntong

    2017-01-01

    A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method. PMID:28098844

  17. Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures

    NASA Astrophysics Data System (ADS)

    Muszyński, Zbigniew; Rybak, Jarosław

    2017-12-01

    In many cases of monitoring or load testing of hydrotechnical structures, the measurement results obtained from dial gauges may be affected by random or systematic errors resulting from the instability of the reference beam. For example, the measurement of wall displacement or pile settlement may be increased (or decreased) by displacements of the reference beam due to ground movement. The application of surveying methods such as high-precision levelling, motorized tacheometry or even terrestrial laser scanning makes it possible to provide an independent reference measurement free from systematic errors. It is very important in the case of walls and piles embedded in the rivers, where the construction of reference structure is even more difficult than usually. Construction of an independent reference system is also complicated when horizontal testing of sheet piles or diaphragm walls are considered. In this case, any underestimation of the horizontal displacement of an anchored or strutted construction leads to an understated value of the strut's load. These measurements are even more important during modernization works and repairs of the hydrotechnical structures. The purpose of this paper is to discuss the possibilities of using modern measurement methods for monitoring of horizontal displacements of an excavation wall. The methods under scrutiny (motorized tacheometry and terrestrial laser scanning) have been compared to classical techniques and described in the context of their practical use on the example hydrotechnical structure. This structure was a temporary cofferdam made from sheet pile wall. The research continuously conducted at Wroclaw University of Science and Technology made it possible to collect and summarize measurement results and practical experience. This paper identifies advantages and disadvantages of both analysed methods and presents a comparison of obtained measurement results of horizontal displacements. In conclusion, some

  18. Terrestrial Laser Scanner for assessing rockfall susceptibility in the Cilento rocky coast (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Sorrentino, Valerio; Matasci, Battista; Abellan, Antonio; Jaboyedoff, Michel; Marino, Ermanno; Pignalosa, Antonio; Santo, Antonio

    2016-04-01

    Rockfalls and other types of landslides are the dominant processes causing a retreat of sea cliffs. The coastal areas constitute an important tourist attraction and a large number of people rest beneath the cliffs on a daily basis, considerably increasing the risk associated to rockfalls. We present an approach to assess rockfall susceptibility at the cliff scale based on terrestrial laser scanner (TLS) point clouds. The test area is a coastal cliff situated in the southern part of the Cilento (Centola Municipality, Campania Region), in which a natural arch was formed. This cliff is constituted by heavy fractured carbonate rock mass with a strong structural control. In June 2015 TLS data were acquired with long-range scanner RIEGL VZ1000®. The structural analysis of the cliff was performed in the field and using Coltop 3D software on the point cloud. As a result, 10 discontinuity sets (joint, faults and bedding planes) were individuated and the different characteristics such as orientation, spacing and persistence were measured. The kinematically unstable areas were highlighted using a script that computes an index of susceptibility to rockfalls based on the spatial distribution of failure mechanisms. The susceptibility index computation is based on the average surface that every joint set (or combinations of two joint sets in the case of wedge failure) forms on the topography according to its spacing, trace length, and incidence angle. This susceptibility index also depends on the steepness of the joint set (or of the intersection line in the case of wedge failure). As a result the most important discontinuity sets in terms of potential planar failure, wedge failure and toppling were individuated and an assessment of rockfall susceptibility at the cliff scale was achieved. Results show that the kinematically feasible failures are not equally distributed along the cliff but concentrated on certain areas. The most susceptible areas for planar failure are related to

  19. Geometric identification and damage detection of structural elements by terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min

    2016-04-01

    In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.

  20. Measuring the spatial variation in surface moisture on a coastal beach with an infra-red terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Donker, Jasper; Ruessink, Gerben

    2016-04-01

    Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and

  1. Complementary equipment for controlling multiple laser beams on single scanner MPLSM systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Nase, Gabriele; Heggelund, Paul; Reppen, Trond

    2010-02-01

    Multi-Photon-Laser-Scanning-Microscopy (MPLSM) now stands as one of the most powerful experimental tools in biology. Specifically, MPLSM based in-vivo studies of structures and processes in the brains of small rodents and imaging in brain-slices have led to considerable progress in the field of neuroscience. Equipment allowing for independent control of two laser-beams, one for imaging and one for photochemical manipulation, strongly enhances any MPLSM platform. Some industrial MPLSM producers have introduced double scanner options in MPLSM systems. Here, we describe the upgrade of a single scanner MPLSM system with equipment that is suitable for independently controlling the beams of two Titanium Sapphire lasers. The upgrade is compatible with any actual MPLSM system and can be combined with any commercial or self assembled system. Making use of the pixel-clock, frame-active and line-active signals provided by the scanner-electronics of the MPLSM, the user can, by means of an external unit, select individual pixels or rectangular ROIs within the field of view of an overview-scan to be exposed, or not exposed, to the beam(s) of one or two lasers during subsequent scans. The switching processes of the laser-beams during the subsequent scans are performed by means of Electro-Optical-Modulators (EOMs). While this system does not provide the flexibility of two-scanner modules, it strongly enhances the experimental possibilities of one-scanner systems provided a second laser and two independent EOMs are available. Even multi-scanner-systems can profit from this development, which can be used to independently control any number of laser beams.

  2. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale

    NASA Astrophysics Data System (ADS)

    Xie, Weiming; He, Qing; Zhang, Keqi; Guo, Leicheng; Wang, Xianye; Shen, Jian; Cui, Zheng

    2017-09-01

    Quantification of tidal flat morphological changes at varying timescales is critical from a management point of view. High-resolution tidal flat morphology data, including those for mudflats and salt-marshes, are rare due to monitoring difficulty by traditional methods. Recent advances in Terrestrial Laser Scanner (TLS) technology allow rapid acquisition of high-resolution and large-scale morphological data, but it remains problematic for its application on salt-marshes due to the presence of dense vegetation. In this study, we applied a TLS system to retrieve high-accuracy digital elevation models in a tidal flat of the Yangtze Estuary by using a robust and accurate Progressive Morphological filter (PM) to separate ground and non-ground points. Validations against GPS-supported RTK measurements suggested remarkable performance. In this case the average estimation error was about 0.3 cm, while the Root Mean Square Error (RMSE) was 2.0 cm. We conducted three TLS surveys on the same field including salt-marshes and mudflats at the time points 5 days before, 3 days after, and 45 days after a typhoon event. The retrieved data showed that the mudflats suffered from profound erosion while the salt-marshes slightly accreted during the typhoon period. The average elevation change of the total area was about - 4 cm (- 0.28 cm per day). However, both the mudflats and salt-marshes deposited in the post-typhoon period and the accretion over salt-marshes occurred at a higher rate than that during the typhoon. The elevation of the total area increased by 15.9 cm (0.37 cm per day), suggesting fast recovery under calm conditions. Quantification of the erosion and deposition rates was aided by the high quality TLS data. This study shows the effectiveness of TLS in quantifying morphological changes of tidal flats at an event (and post-event) timescale. The data and analysis also provide sound evidence on vegetation impact in stimulating salt-marsh development and restoration

  3. Timestamp Offset Determination Between AN Actuated Laser Scanner and its Corresponding Motor

    NASA Astrophysics Data System (ADS)

    Voges, R.; Wieghardt, C. S.; Wagner, B.

    2017-05-01

    Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield the same results although operating independently on different data, which demonstrates that the results reflect reality with a high probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.

  4. Creating A 3D urban model by terrestrial laser scanners and photogrammetry techniques: a case study on the historical peninsula of Istanbul

    NASA Astrophysics Data System (ADS)

    Ergun, Bahadir

    2007-07-01

    Today, terrestrial laser scanning has been a frequently used methodology for the documentation of historical buildings and cultural heritages. The historical peninsula region is the documentation of historical buildings and cover approximately 1500 ha. Terrestrial laser scanning and close range image photogrammetry techniques are integrated to each other to create a 3D urban model of Istanbul including the most important landmarks and the buildings reflecting the most brilliant areas of Byzantine and Ottoman Empires.

  5. Localization of a mobile laser scanner via dimensional reduction

    NASA Astrophysics Data System (ADS)

    Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas

    2016-11-01

    We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.

  6. High speed micro scanner for 3D in-volume laser micro processing

    NASA Astrophysics Data System (ADS)

    Schaefer, D.; Gottmann, J.; Hermans, M.; Ortmann, J.; Kelbassa, I.

    2013-03-01

    Using an in-house developed micro scanner three-dimensional micro components and micro fluidic devices in fused silica are realized using the ISLE process (in-volume selective laser-induced etching). With the micro scanner system the potential of high average power femtosecond lasers (P > 100 W) is exploited by the fabrication of components with micrometer precision at scan speeds of several meters per second. A commercially available galvanometer scanner is combined with an acousto-optical and/or electro-optical beam deflector and translation stages. For focusing laser radiation high numerical aperture microscope objectives (NA > 0.3) are used generating a focal volume of a few cubic micrometers. After laser exposure the materials are chemically wet etched in aqueous solution. The laser-exposed material is etched whereas the unexposed material remains nearly unchanged. Using the described technique called ISLE the fabrication of three-dimensional micro components, micro holes, cuts and channels is possible with high average power femtosecond lasers resulting in a reduced processing time for exposure. By developing the high speed micro scanner up-scaling of the ISLE process is demonstrated. The fabricated components made out of glass can be applied in various markets like biological and medical diagnostics as well as in micro mechanics.

  7. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.

    PubMed

    Ergun, Bahadir; Sahin, Cumhur; Baz, Ibrahim; Ustuntas, Taner

    2010-06-01

    Terrestrial laser scanning is a popular methodology that is used frequently in the process of documenting historical buildings and cultural heritage. The historical peninsula region sprawls over an area of approximately 1,500 ha and is one of the main aggregate areas of the historical buildings in Istanbul. In this study, terrestrial laser scanning and close range photogrammetry techniques are integrated into each other to create a 3D city model of this part of Istanbul, including some of the buildings that represent the most brilliant areas of Byzantine and Ottoman Empires. Several terrestrial laser scanners with their different specifications were used to solve various geometric scanning problems for distinct areas of the subject city. Photogrammetric method was used for the documentation of the façades of these historical buildings for architectural purposes. This study differentiates itself from the similar ones by its application process that focuses on the geometry, the building texture, and density of the study area. Nowadays, the largest-scale studies among 3D modeling studies, in terms of the methodology of measurement, are urban modeling studies. Because of this large scale, the application of 3D urban modeling studies is executed in a gradual way. In this study, a modeling method based on the façades of the streets was used. In addition, the complimentary elements for the process of modeling were combined in several ways. A street model was presented as a sample, as being the subject of the applied study. In our application of 3D modeling, the modeling based on close range photogrammetry and the data of combined calibration with the data of terrestrial laser scanner were used in a compatible way. The final work was formed with the pedestal data for 3D visualization.

  8. Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications

    NASA Astrophysics Data System (ADS)

    Zeisler, J.; Maas, H.-G.

    2015-08-01

    In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.

  9. Quantitative geometric description of fracture systems in an andesite lava flow using terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth

    2017-07-01

    Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.

  10. Determining geometric error model parameters of a terrestrial laser scanner through Two-face, Length-consistency, and Network methods

    PubMed Central

    Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel

    2017-01-01

    Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607

  11. Conceptual study of Earth observation missions with a space-borne laser scanner

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takashi; Sato, Yohei; Yamakawa, Shiro

    2017-11-01

    The Japan Aerospace Exploration Agency (JAXA) has started a conceptual study of earth observation missions with a space-borne laser scanner (GLS, as Global Laser Scanner). Laser scanners are systems which transmit intense pulsed laser light to the ground from an airplane or a satellite, receive the scattered light, and measure the distance to the surface from the round-trip delay time of the pulse. With scanning mechanisms, GLS can obtain high-accuracy three-dimensional (3D) information from all over the world. High-accuracy 3D information is quite useful in various areas. Currently, following applications are considered. 1. Observation of tree heights to estimate the biomass quantity. 2. Making the global elevation map with high resolution. 3. Observation of ice-sheets. This paper aims at reporting the present state of our conceptual study of the GLS. A prospective performance of the GLS for earth observation missions mentioned above.

  12. Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, M.; Xing, L.; Liu, Y.

    2018-04-01

    Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.

  13. Terrestrial laser scanning used to detect asymmetries in boat hulls

    NASA Astrophysics Data System (ADS)

    Roca-Pardiñas, Javier; López-Alvarez, Francisco; Ordóñez, Celestino; Menéndez, Agustín; Bernardo-Sánchez, Antonio

    2012-01-01

    We describe a methodology for identifying asymmetries in boat hull sections reconstructed from point clouds captured using a terrestrial laser scanner (TLS). A surface was first fit to the point cloud using a nonparametric regression method that permitted the construction of a continuous smooth surface. Asymmetries in cross-sections of the surface were identified using a bootstrap resampling technique that took into account uncertainty in the coordinates of the scanned points. Each reconstructed section was analyzed to check, for a given level of significance, that it was within the confidence interval for the theoretical symmetrical section. The method was applied to the study of asymmetries in a medium-sized yacht. Identified were differences of up to 5 cm between the real and theoretical sections in some parts of the hull.

  14. Using Laser Scanners to Augment the Systematic Error Pointing Model

    NASA Astrophysics Data System (ADS)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  15. Three-dimensional tracking and imaging laser scanner for space operations

    NASA Astrophysics Data System (ADS)

    Laurin, Denis G.; Beraldin, J. A.; Blais, Francois; Rioux, Marc; Cournoyer, Luc

    1999-05-01

    This paper presents the development of a laser range scanner (LARS) as a three-dimensional sensor for space applications. The scanner is a versatile system capable of doing surface imaging, target ranging and tracking. It is capable of short range (0.5 m to 20 m) and long range (20 m to 10 km) sensing using triangulation and time-of-flight (TOF) methods respectively. At short range (1 m), the resolution is sub-millimeter and drops gradually with distance (2 cm at 10 m). For long range, the TOF provides a constant resolution of plus or minus 3 cm, independent of range. The LARS could complement the existing Canadian Space Vision System (CSVS) for robotic manipulation. As an active vision system, the LARS is immune to sunlight and adverse lighting; this is a major advantage over the CSVS, as outlined in this paper. The LARS could also replace existing radar systems used for rendezvous and docking. There are clear advantages of an optical system over a microwave radar in terms of size, mass, power and precision. Equipped with two high-speed galvanometers, the laser can be steered to address any point in a 30 degree X 30 degree field of view. The scanning can be continuous (raster scan, Lissajous) or direct (random). This gives the scanner the ability to register high-resolution 3D images of range and intensity (up to 4000 X 4000 pixels) and to perform point target tracking as well as object recognition and geometrical tracking. The imaging capability of the scanner using an eye-safe laser is demonstrated. An efficient fiber laser delivers 60 mW of CW or 3 (mu) J pulses at 20 kHz for TOF operation. Implementation of search and track of multiple targets is also demonstrated. For a single target, refresh rates up to 137 Hz is possible. Considerations for space qualification of the scanner are discussed. Typical space operations, such as docking, object attitude tracking, and inspections are described.

  16. Integration of Point Clouds from Terrestrial Laser Scanning and Image-Based Matching for Generating High-Resolution Orthoimages

    NASA Astrophysics Data System (ADS)

    Salach, A.; Markiewicza, J. S.; Zawieska, D.

    2016-06-01

    An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the "Blue Chamber" of the Museum of King Jan III's Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.

  17. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed Central

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R.; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A.; Arnó, Jaume

    2016-01-01

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers. PMID:26797618

  18. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A; Arnó, Jaume

    2016-01-19

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  19. Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction

    DOT National Transportation Integrated Search

    2015-08-28

    Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...

  20. Surveying a fossil oyster reef using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Haring, A.; Exner, U.; Harzhauser, M.

    2009-04-01

    The Korneuburg Basin, situated north-west of Vienna, is well known to contain a rich variety of fossils from the Early Miocene (16.5 ma) and therefore has been investigated extensively by scientists in the past decades. An exceptional discovery was made in 2005: a large fossil oyster reef has been excavated and documented carefully during the last years. Aside from the giant-sized oyster (Crassostrea gryphoides), the excavation site contains numerous species of molluscs along with teeth of sharks and rays and even isolated bones of sea cows. The oysters, having lengths of up to 80 cm, are protruding from the ground surface, which is more or less a tilted plane (25˚ ) with a size of about 300 m2. The entire site is crosscut by a network of geological faults, often also offsetting individual oyster shells. Displacements along the normal faults do not exceed ~ 15 cm. The faulted fossils offer a unique opportunity to measure displacement distribution along the faults in great detail and provide insight in deformation mechanisms in porous, barely lithified sediments. In order to get a precise 3D model of the oyster reef, the terrestrial laser scanner system Leica HDS 6000 is used. It is a phase-based laser scanner, i.e. the distance measurement is performed using the phase-shift principle. Compared to the time-of-flight principle, this method is generally more appropriate to projects like this one, where the distances to be measured are relatively small (< 35 m) and where a high point density (point spacing of about 1 cm) and precision (some mm) is required for capturing the oysters adequately. However, due to fact that they occlude each other, one single scan is not sufficient to get all sides of their surface. Therefore, scans from different positions had to be acquired. These scans have to be merged, which involves the problem of sensor orientation as well as sampling of the entire 3D point cloud. Furthermore, a representation of the surface data is required that

  1. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    NASA Astrophysics Data System (ADS)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  2. Laser Scanner Tests For Single-Event Upsets

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.

    1992-01-01

    Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.

  3. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  4. Analysis of the regimes in the scanner-based laser hardening process

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Lamikiz, A.; Ukar, E.; Calleja, A.; Arrizubieta, J. A.; Lopez de Lacalle, L. N.

    2017-03-01

    Laser hardening is becoming a consolidated process in different industrial sectors such as the automotive industry or in the die and mold industry. The key to ensure the success in this process is to control the surface temperature and the hardened layer thickness. Furthermore, the development of reliable scanners, based on moving optics for guiding high power lasers at extremely fast speeds allows the rapid motion of laser spots, resulting on tailored shapes of swept areas by the laser. If a scanner is used to sweep a determined area, the laser energy density distribution can be adapted by varying parameters such us the scanning speed or laser power inside this area. Despite its advantages in terms of versatility, the use of scanners for the laser hardening process has not yet been introduced in the thermal hardening industry because of the difficulty of the temperature control and possible non-homogeneous hardness thickness layers. In the present work the laser hardening process with scanning optics applied to AISI 1045 steel has been studied, with special emphasis on the influence of the scanning speed and the results derived from its variation, the evolution of the hardened layer thickness and different strategies for the control of the process temperature. For this purpose, the hardened material has been studied by measuring microhardness at different points and the shape of the hardened layer has also been evaluated. All tests have been performed using an experimental setup designed to keep a nominal temperature value using a closed-loop control. The tests results show two different regimes depending on the scanning speed and feed rate values. The experimental results conclusions have been validated by means of thermal simulations at different conditions.

  5. Integration of terrestrial laser scanner, ultrasonic and petrographical data in the diagnostic process on stone building materials

    NASA Astrophysics Data System (ADS)

    Casula, Giuseppe; Fais, Silvana; Giovanna Bianchi, Maria; Cuccuru, Francesco; Ligas, Paola

    2015-04-01

    The Terrestrial Laser Scanner (TLS) is a modern contactless non-destructive technique (NDT) useful to 3D-model complex-shaped objects with a few hours' field survey. A TLS survey produces very dense point clouds made up of coordinates of point and radiometric information given by the reflectivity parameter i.e. the ratio between the amount of energy emitted by the sensor and the energy reflected by the target object. Modern TLSs used in architecture are phase instruments where the phase difference obtained by comparing the emitted laser pulse with the reflected one is proportional to the sensor-target distance expressed as an integer multiple of the half laser wavelength. TLS data are processed by registering point clouds i.e. by referring them to the same reference frame and by aggregation after a fine registration procedure. The resulting aggregate point cloud can be compared with graphic primitives as single or multiple planes, cylinders or spheres, and the resulting residuals give a morphological map that affords information about the state of conservation of the building materials used in historical or modern buildings, in particular when compared with other NDT techniques. In spite of its great productivity, the TLS technique is limited in that it is unable to penetrate the investigated materials. For this reason both the 3D residuals map and the reflectivity map need to be correlated with the results of other NDT techniques such as the ultrasonic method, and a complex study of the composition of building materials is also necessary. The application of a methodology useful to evaluate the quality of stone building materials and locate altered or damaged zones is presented in this study based on the integrated application of three independent techniques, two non destructive such as the TLS and the ultrasonic techniques in the 24-54 kHz range, and a third to analyze the petrographical characteristics of the stone materials, mainly the texture, with optical and

  6. Characterisation of Intensity Values on Terrestrial Laser Scanning for Recording Enhancement

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J. L.

    2017-08-01

    Mapping surveys based on terrestrial laser scanning (TLS) are common nowadays for different purposes such as documentation of cultural heritage assets. The chance to extract relevant information from TLS surveys depends not only on the fast acquisition of XYZ coordinates, but also on the meaningful intensity values of the fired objects. TLS behaviour depends on several known factors such as distance, texture, roughness, colour and albedo. This paper seeks to find out the mathematical relationship between the TLS intensity values and the colorimetric data using a colour chart. In order to do so, objective colour specification based on well-known colour spaces is needed. The approach used here started with scanning a colour chart containing a number of colour patches with known chromatic and reflection characteristics. After several transformations, the results allowed us to characterise the intensity behaviour of a time-of-flight laser scanner. The characterisation of the intensity values are tested indoor on the colour chart and outdoor on an archaeological shelter. Promising results are obtained to enhance the behaviour of the intensity values coming from the TLS.

  7. Comparison of solid shapes geometry derived by a laser scanner and a total station

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Andreas; Lakakis, Konstantinos

    2016-08-01

    The laser scanning technology has become a common method for the daily applications of a large variety of scientists and professionals. Even for more sophisticated projects, laser scanners have been proved a very useful tool at researchers' and engineers' disposal. In this paper, we investigated the ability of a laser scanner compared to the ability of a total station to provide the geometry of solids. The tests were made in the laboratory facilities of the Aristotle University of Thessaloniki, in a variety of distances between the measuring instrument and the object. The solids that were used differ in shape, material and color. The objects are a wooden cube, a metal cube and a wooden pyramid. The absolute dimensions of the solid shapes were provided by the use of a caliper and were compared to the dimensions that were calculated by the coordinates produced by the total station and laser scanner measurements.

  8. Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding

    NASA Astrophysics Data System (ADS)

    Barroi, A.; Gonçalves, D. Albertazzi; Hermsdorf, J.; Kaierle, S.; Overmeyer, L.

    The shape of the cladding tracks is extremely important for producing layers or structures by adding them sequently. This paper shows the influence of the laser power of a diode laser in the range of 500 to 1000 W on the shapes of single tracks in scanner based laser wire cladding. The scanner was used to oscillate the beam perpendiculary to the welding direction. Stainless steel (ER 318 Si) wire with a 0.6 mm diameter was used as deposition material. Height, width, penetration, molten area and weld seam angles of single tracks were obtained from cross-sections at three different positions of each track. The influence of these different positions on the results depends on the traverse speed. The paper discusses this influence in respect to the heat dissipation in the substrate material.

  9. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  10. Laser identification system based on acousto-optical barcode scanner principles

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.

    2016-09-01

    The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.

  11. Calibration procedure for a laser triangulation scanner with uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio

    2016-11-01

    Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.

  12. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  13. Design of a laser scanner for a digital mammography system.

    PubMed

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  14. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  15. Using mid-range laser scanners to digitize cultural-heritage sites.

    PubMed

    Spring, Adam P; Peters, Caradoc; Minns, Tom

    2010-01-01

    Here, we explore new, more accessible ways of modeling 3D data sets that both professionals and amateurs can employ in areas such as architecture, forensics, geotechnics, cultural heritage, and even hobbyist modeling. To support our arguments, we present images from a recent case study in digital preservation of cultural heritage using a mid-range laser scanner. Our appreciation of the increasing variety of methods for capturing 3D spatial data inspired our research. Available methods include photogrammetry, airborne lidar, sonar, total stations (a combined electronic and optical survey instrument), and midand close-range scanning.1 They all can produce point clouds of varying density. In our case study, the point cloud produced by a mid-range scanner demonstrates how open source software can make modeling and disseminating data easier. Normally, researchers would model this data using expensive specialized software, and the data wouldn't extend beyond the laser-scanning community.

  16. Methods and apparatus for laser beam scanners with different actuating mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  17. People counting and re-identification using fusion of video camera and laser scanner

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Olivera, Santiago; Wagley, Raj

    2016-05-01

    We present a system for people counting and re-identification. It can be used by transit and homeland security agencies. Under FTA SBIR program, we have developed a preliminary system for transit passenger counting and re-identification using a laser scanner and video camera. The laser scanner is used to identify the locations of passenger's head and shoulder in an image, a challenging task in crowed environment. It can also estimate the passenger height without prior calibration. Various color models have been applied to form color signatures. Finally, using a statistical fusion and classification scheme, passengers are counted and re-identified.

  18. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA.

    PubMed

    Orwig, D A; Boucher, P; Paynter, I; Saenz, E; Li, Z; Schaaf, C

    2018-04-06

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock ( Tsuga canadensis ) canopy health affected by an invasive insect, the hemlock woolly adelgid ( Adelges tsugae ). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study.

  19. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

    PubMed Central

    Boucher, P.; Saenz, E.; Li, Z.

    2018-01-01

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock (Tsuga canadensis) canopy health affected by an invasive insect, the hemlock woolly adelgid (Adelges tsugae). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study. PMID:29503723

  20. 3D Laser Scanner for Underwater Manipulation.

    PubMed

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  1. Automating slope monitoring in mines with terrestrial lidar scanners

    NASA Astrophysics Data System (ADS)

    Conforti, Dario

    2014-05-01

    Static terrestrial laser scanners (TLS) have been an important component of slope monitoring for some time, and many solutions for monitoring the progress of a slide have been devised over the years. However, all of these solutions have required users to operate the lidar equipment in the field, creating a high cost in time and resources, especially if the surveys must be performed very frequently. This paper presents a new solution for monitoring slides, developed using a TLS and an automated data acquisition, processing and analysis system. In this solution, a TLS is permanently mounted within sight of the target surface and connected to a control computer. The control software on the computer automatically triggers surveys according to a user-defined schedule, parses data into point clouds, and compares data against a baseline. The software can base the comparison against either the original survey of the site or the most recent survey, depending on whether the operator needs to measure the total or recent movement of the slide. If the displacement exceeds a user-defined safety threshold, the control computer transmits alerts via SMS text messaging and/or email, including graphs and tables describing the nature and size of the displacement. The solution can also be configured to trigger the external visual/audio alarm systems. If the survey areas contain high-traffic areas such as roads, the operator can mark them for exclusion in the comparison to prevent false alarms. To improve usability and safety, the control computer can connect to a local intranet and allow remote access through the software's web portal. This enables operators to perform most tasks with the TLS from their office, including reviewing displacement reports, downloading survey data, and adjusting the scan schedule. This solution has proved invaluable in automatically detecting and alerting users to potential danger within the monitored areas while lowering the cost and work required for

  2. Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics

    DOE PAGES

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...

    2016-10-18

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  3. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  4. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  5. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE PAGES

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...

    2016-04-04

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  6. Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia.

    PubMed

    Barikbin, Behrooz; Khodamrdi, Zeinab; Kholoosi, Leila; Akhgri, Mohammad Reza; Haj Abbasi, Majid; Hajabbasi, Mojgan; Razzaghi, Zahra; Akbarpour, Samaneh

    2017-05-17

    This study aimed to evaluate the effectiveness of a combined set of low level diode laser scanner (665 nm and 808nm) on hair growth, and assessment of safety and effectiveness of a new laser scanner on hair growth treatment procedure in androgenic alopecia. 90 patients (18 to 70 years) with androgenic alopecia were randomized into three groups. The first group (n=30) received 655 nm red light using laser hat, the second group (n=30) received 655 nm red laser plus 808 nm infrared laser using a laser scanner of hair growth device (with the patent number: 77733) and the third group (n=30) received no laser as the control group. Patients in laser scanner group had better results and showed a higher increase in terminal hair density compared with laser hat group (mean of 9.61 versus 9.16 per cm 2 ). We found significant decrease in terminal hair density from baseline in control group (mean -1.8 per cm 2 , p<0.0001). Results showed a statistically significant improvement in the laser scanner of the hair growth group compared with laser hat and the control group. The study showed that treatment with new laser devise had a promising result without any observable adverse effects.

  7. High speed three-dimensional laser scanner with real time processing

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph P. (Inventor); Schuet, Stefan R. (Inventor)

    2008-01-01

    A laser scanner computes a range from a laser line to an imaging sensor. The laser line illuminates a detail within an area covered by the imaging sensor, the area having a first dimension and a second dimension. The detail has a dimension perpendicular to the area. A traverse moves a laser emitter coupled to the imaging sensor, at a height above the area. The laser emitter is positioned at an offset along the scan direction with respect to the imaging sensor, and is oriented at a depression angle with respect to the area. The laser emitter projects the laser line along the second dimension of the area at a position where a image frame is acquired. The imaging sensor is sensitive to laser reflections from the detail produced by the laser line. The imaging sensor images the laser reflections from the detail to generate the image frame. A computer having a pipeline structure is connected to the imaging sensor for reception of the image frame, and for computing the range to the detail using height, depression angle and/or offset. The computer displays the range to the area and detail thereon covered by the image frame.

  8. Development of Laser Scanner for Full Cross-Sectional Deformation Monitoring of Underground Gateroads

    PubMed Central

    Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi

    2017-01-01

    The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449

  9. Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: A simulation study

    NASA Astrophysics Data System (ADS)

    Forsman, Mona; Börlin, Niclas; Olofsson, Kenneth; Reese, Heather; Holmgren, Johan

    2018-01-01

    In this study we have investigated why diameters of tree stems, which are approximately cylindrical, are often overestimated by mobile laser scanning. This paper analyzes the physical processes when using ground-based laser scanning that may contribute to a bias when estimating cylinder diameters using circle-fit methods. A laser scanner simulator was implemented and used to evaluate various properties, such as distance, cylinder diameter, and beam width of a laser scanner-cylinder system to find critical conditions. The simulation results suggest that a positive bias of the diameter estimation is expected. Furthermore, the bias follows a quadratic function of one parameter - the relative footprint, i.e., the fraction of the cylinder width illuminated by the laser beam. The quadratic signature opens up a possibility to construct a compensation model for the bias.

  10. Vegetation response to the 2016-2017 extreme Sierra Nevada snowfall event using multitemporal terrestrial laser scanning: initial results

    NASA Astrophysics Data System (ADS)

    Greenberg, J. A.; Hou, Z.; Ramirez, C.; Hart, R.; Marchi, N.; Parra, A. S.; Gutierrez, B.; Tompkins, R.; Harpold, A.; Sullivan, B. W.; Weisberg, P.

    2017-12-01

    The Sierra Nevada Mountains experienced record-breaking snowfall during the 2016-2017 winter after a prolonged period of drought. We hypothesized that at lower elevations, the increased snowmelt would result in a significant increase in biomass across vegetation strata, but at higher elevations, the snowpack would result in a diminished growing season, and yield a suppression of growth rates particularly in the understory vegetation. To test these hypotheses, we sampled sites across the Plumas National Forest and Lake Tahoe Basin using a terrestrial laser scanner (TLS) in the early growing season, and then rescanned these sites in the late growing season. Herein, we present initial, early results from this analysis, focusing on the biomass and height changes in trees.

  11. D Survey in Complex Archaeological Environments: AN Approach by Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ebolese, D.; Dardanelli, G.; Lo Brutto, M.; Sciortino, R.

    2018-05-01

    The survey of archaeological sites by appropriate geomatics technologies is an important research topic. In particular, the 3D survey by terrestrial laser scanning has become a common practice for 3D archaeological data collection. Even if terrestrial laser scanning survey is quite well established, due to the complexity of the most archaeological contexts, many issues can arise and make the survey more difficult. The aim of this work is to describe the methodology chosen for a terrestrial laser scanning survey in a complex archaeological environment according to the issues related to the particular structure of the site. The developed approach was used for the terrestrial laser scanning survey and documentation of a part of the archaeological site of Elaiussa Sebaste in Turkey. The proposed technical solutions have allowed providing an accurate and detailed 3D dataset of the study area. In addition, further products useful for archaeological analysis were also obtained from the 3D dataset of the study area.

  12. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  13. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    NASA Astrophysics Data System (ADS)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  14. Multi-temporal terrestrial laser scanning for identifying rockslide modifications: potentialities and problems

    NASA Astrophysics Data System (ADS)

    Castagnetti, Cristina; Bertacchini, Eleonora; Capra, Alessandro; Rivola, Riccardo

    2013-04-01

    The heart of this research is to provide an efficient methodology for a reliable acquisition and interpretation of Terrestrial Laser Scanner (TLS) data in the application field of landslide monitoring. In particular, rockslides, which are characterized by vertical walls of rock and by a complex morphology, are of great concern in the study. In these cases the airborne laser scanning is not able to provide useful and reliable description and the terrestrial laser scanning might be the only possible choice to obtain a good and reliable description of the geomorphology or to identify the changes occurred over time. The last purpose is still a challenging task when long distances are involved because the accurate and punctual identification of displacements is not possible due to the laser beam divergence. The final purpose of the research is a proposal of a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested together with algorithms both for filtering and post-processing. The case study is the Collagna Landslide that is located in the North Appennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector that, after high precipitation rates, disrupted the National Road 63 in December 2008. An integrated monitoring system is installed since 2009 and comprises both point-based technologies such as extensometers, total station and global positioning system, and also area-based technologies such as airborne laser scanner, long-range TLS and ground-based radar. This choice allows to couple the advantages of both

  15. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  16. Laser Scanner Reliefs of Selected Archeological Structures in the Submerged Baiae (naples)

    NASA Astrophysics Data System (ADS)

    Davidde Petriaggi, B.; Gomez de Ayala, G.

    2015-04-01

    In 2011 the ISCR (Rome), in the frame of the Project Restoring Underwater directed by Barbara Davidde Petriaggi, started to test Naumacos Laser Scann 1, designed by Gabriele Gomez de Ayala, in order to document the restoration of a room paved with opus sectile probably part of the Bath of Punta Epitaffio (Underwater Park of Baiae - Marine Protected Area, Naples). The experimentation conducted in Baiae by ISCR has shown the effectiveness of the Laser Scanner; this method also allowed to considerably reduce times and costs of underwater surveying. Moreover, the 3D relief obtained, has the characteristic of being geometrically (accuracy is sub-millimetric) and chromatically faithful to the reconstructed structure, as well as being exportable in various forms and usable in several contexts. From 2011 to 2013 the evolution of the instrument Naumacos Laser Scanner 3 was developed and tested in the restoration work of the Villa con ingresso a protiro, where three structures were documented in 3D (a paved with black and white mosaic decorated with hexagons and peltae, a very fragmentary black and white mosaic and a stone artefact. This paper shows the results of this documentation campaign and it underlines the prominent role in documentation and in museum display of Underwater Cultural Heritage played by the three-dimensional laser scanning survey. This technique also contributes to the increase of the value of scientific dissemination.

  17. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  18. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  19. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  20. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  1. Design and implementation of an inexpensive target scanner for the growth of thin films by the laser-ablation process

    NASA Astrophysics Data System (ADS)

    Rao, A. M.; Moodera, J. S.

    1991-04-01

    The design of a target scanner that is inexpensive and easy to construct is described. Our target scanner system does not require an expensive personal computer to raster the laser beam uniformily over the target material, unlike the computer driven target scanners that are currently being used in the thin-film industry. The main components of our target scanner comprise a bidirectional motor, a two-position switch, and a standard optical mirror mount.

  2. Evaluation of a laser scanner for large volume coordinate metrology: a comparison of results before and after factory calibration

    NASA Astrophysics Data System (ADS)

    Ferrucci, M.; Muralikrishnan, B.; Sawyer, D.; Phillips, S.; Petrov, P.; Yakovlev, Y.; Astrelin, A.; Milligan, S.; Palmateer, J.

    2014-10-01

    Large volume laser scanners are increasingly being used for a variety of dimensional metrology applications. Methods to evaluate the performance of these scanners are still under development and there are currently no documentary standards available. This paper describes the results of extensive ranging and volumetric performance tests conducted on a large volume laser scanner. The results demonstrated small but clear systematic errors that are explained in the context of a geometric error model for the instrument. The instrument was subsequently returned to the manufacturer for factory calibration. The ranging and volumetric tests were performed again and the results are compared against those obtained prior to the factory calibration.

  3. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and

  4. Terrestrial laser scanning for heritage conservation: the Cologne Cathedral documentation project

    NASA Astrophysics Data System (ADS)

    Pritchard, D.; Sperner, J.; Hoepner, S.; Tenschert, R.

    2017-08-01

    Contemporary terrestrial laser scanners and photogrammetric imaging systems are an invaluable tool in providing objectively precise, as-built records of existing architectural, engineering and industrial sites. The comprehensive three-dimensional (3D) recording of culturally important sites such as heritage buildings, monuments, and sites can serve a variety of invaluable purposes; the data can assist in the conservation, management, and repair of a structure, as well as provide a visually engaging educational resource for both the public and scholars. The acquired data acts as a form of digital preservation, a timeless virtual representation of the as-built structure. The technical capability of these systems is particularly suited for the documentation of a richly articulated and detailed building such as the high Gothic Cologne Cathedral. The 3D documentation of the Cologne Cathedral UNESCO World Heritage Site is a multiphase project developed by Heriot-Watt University, Edinburgh in partnership with the Fresenius University of Applied Sciences, Cologne, and the Metropolitankapitel der Hohen Domkirche Köln Dombauhütte. The project has also received generous support from Zoller + Fröhlich (Z+F) and the City of Cologne.

  5. On a Fundamental Evaluation of a Uav Equipped with a Multichannel Laser Scanner

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Suzuki, H.; Omori, K.; Hayakawa, K.; Kurodai, M.

    2018-05-01

    Unmanned aerial vehicles (UAVs), which have been widely used in various fields such as archaeology, agriculture, mining, and construction, can acquire high-resolution images at the millimetre scale. It is possible to obtain realistic 3D models using high-overlap images and 3D reconstruction software based on computer vision technologies such as Structure from Motion and Multi-view Stereo. However, it remains difficult to obtain key points from surfaces with limited texture such as new asphalt or concrete, or from areas like forests that may be concealed by vegetation. A promising method for conducting aerial surveys is through the use of UAVs equipped with laser scanners. We conducted a fundamental performance evaluation of the Velodyne VLP-16 multi-channel laser scanner equipped to a DJI Matrice 600 Pro UAV at a construction site. Here, we present our findings with respect to both the geometric and radiometric aspects of the acquired data.

  6. Application of 3D Laser Scanner to Forensic Engineering.

    PubMed

    Park, Chan-Seong; Jeon, Hong-Pil; Choi, Kwang-Soo; Kim, Jin-Pyo; Park, Nam-Kyu

    2018-05-01

    In the case of building collapses and overturned structures, a three-dimensional (3D) collapse or overturn model is required to reconstruct the accident. As construction sites become increasingly complex and large, 3D laser scanning is sometimes the best tool to accurately document and store the site conditions. This case report presents one case of a structure collapse and one case of an overturned crane reconstructed by a 3D laser scanner. In the case of structural collapse of a prefabricated shoring system, a 3D model reconstructed all the members successfully, a task that is nearly impossible using a scale such as a tape measure. The reconstructed prefabricated shoring system was verified through a structural analysis through comparison with the construction drawings to investigate faults in construction. In the case of the overturned crane, the jib angle and other major dimensions were successfully acquired through 3D laser scanning and used to estimate the working radius. As a result, the propriety of the working radius with the given lifting load was successfully determined. © 2017 American Academy of Forensic Sciences.

  7. D Recording, Modelling and Visualisation of the Fortification Kristiansten in Trondheim (norway) by Photogrammetric Methods and Terrestrial Laser Scanning in the Framework of Erasmus Programmes

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Lindstaedt, M.; Maziull, L.; Schreyer, K.; Tschirschwitz, F.; Holm, K.

    2015-02-01

    In this contribution the 3D recording, 3D modelling and 3D visualisation of the fortification Kristiansten in Trondheim (Norway) by digital photogrammetry and terrestrial laser scanning are presented. The fortification Kristiansten was built after the large city fire in the year 1681 above the city and has been a museum since 1997. The recording of the fortress took place in each case at the end of August/at the beginning of September 2010 and 2011 during two two-week summer schools with the topic "Digital Photogrammetry & Terrestrial Laser Scanning for Cultural Heritage Documentation" at NTNU Trondheim with international students in the context of ERASMUS teaching programs. For data acquisition, a terrestrial laser scanner and digital SLR cameras were used. The establishment of a geodetic 3D network, which was later transformed into the Norwegian UTM coordinate system using control points, ensured a consistent registration of the scans and an orientation of the photogrammetric images. The fortress buildings were constructed in detail from photogrammetric photographs and point clouds using AutoCAD, while the fortress area and walls were modelled by triangle meshing in Geomagic. The visualisation of the fortress was carried out 2013 with the software Cinema 4D in the context of a lecture in the Master study programme Geomatics. The 3D model was textured and afterwards presented in a video. This 3D model was finally transferred into the game engine Unity for an interactive 3D visualisation on 3D monitors.

  8. Developments in holographic-based scanner designs

    NASA Astrophysics Data System (ADS)

    Rowe, David M.

    1997-07-01

    Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.

  9. Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning

    PubMed Central

    Lin, Yi; Hyyppä, Juha; Kukko, Antero

    2013-01-01

    This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development. PMID:23799493

  10. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    NASA Astrophysics Data System (ADS)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  11. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners

    PubMed Central

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-01-01

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled. PMID:23443369

  12. Integrated calibration between digital camera and laser scanner from mobile mapping system for land vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang

    The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.

  13. Delineating Beach and Dune Morphology from Massive Terrestrial Laser Scanning Data Using the Generic Mapping Tools

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Wang, G.; Yan, B.; Kearns, T.

    2016-12-01

    Terrestrial laser scanning (TLS) techniques have been proven to be efficient tools to collect three-dimensional high-density and high-accuracy point clouds for coastal research and resource management. However, the processing and presenting of massive TLS data is always a challenge for research when targeting a large area with high-resolution. This article introduces a workflow using shell-scripting techniques to chain together tools from the Generic Mapping Tools (GMT), Geographic Resources Analysis Support System (GRASS), and other command-based open-source utilities for automating TLS data processing. TLS point clouds acquired in the beach and dune area near Freeport, Texas in May 2015 were used for the case study. Shell scripts for rotating the coordinate system, removing anomalous points, assessing data quality, generating high-accuracy bare-earth DEMs, and quantifying beach and sand dune features (shoreline, cross-dune section, dune ridge, toe, and volume) are presented in this article. According to this investigation, the accuracy of the laser measurements (distance from the scanner to the targets) is within a couple of centimeters. However, the positional accuracy of TLS points with respect to a global coordinate system is about 5 cm, which is dominated by the accuracy of GPS solutions for obtaining the positions of the scanner and reflector. The accuracy of TLS-derived bare-earth DEM is primarily determined by the size of grid cells and roughness of the terrain surface for the case study. A DEM with grid cells of 4m x 1m (shoreline by cross-shore) provides a suitable spatial resolution and accuracy for deriving major beach and dune features.

  14. Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking.

    PubMed

    Cash, David M; Sinha, Tuhin K; Chapman, William C; Terawaki, Hiromi; Dawant, Benoit M; Galloway, Robert L; Miga, Michael I

    2003-07-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust

  15. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  16. Laser Scanner Technology, Ground-Penetrating Radar and Augmented Reality for the Survey and Recovery of Artistic, Archaeological and Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.

    2017-11-01

    In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.

  17. Point Cloud Analysis for Uav-Borne Laser Scanning with Horizontally and Vertically Oriented Line Scanners - Concept and First Results

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.

    2017-08-01

    In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  18. Design and simulation of MEMS-actuated adjustable optical wedge for laser beam scanners

    NASA Astrophysics Data System (ADS)

    Bahgat, Ahmed S.; Zaki, Ahmed H.; Abdo Mohamed, Mohamed; El Sherif, Ashraf Fathy

    2018-01-01

    This paper introduces both optical and mechanical design and simulation of large static deflection MOEMS actuator. The designed device is in the form of an adjustable optical wedge (AOW) laser scanner. The AOW is formed of 1.5-mm-diameter plano-convex lens separated by air gap from plano-concave fixed lens. The convex lens is actuated by staggered vertical comb drive and suspended by rectangular cross-section torsion beam. An optical analysis and simulation of air separated AOW as well as detailed design, analysis, and static simulation of comb -drive are introduced. The dynamic step response of the full system is also introduced. The analytical solution showed a good agreement with the simulation results. A general global minimum optimization algorithm is applied to the comb-drive design to minimize driving voltage. A maximum comb-drive mechanical deflection angle of 12 deg in each direction was obtained under DC actuation voltage of 32 V with a settling time of 90 ms, leading to 1-mm one-dimensional (1-D) steering of laser beam with continuous optical scan angle of 5 deg in each direction. This optimization process provided a design of larger deflection actuator with smaller driving voltage compared with other conventional devices. This enhancement could lead to better performance of MOEMS-based laser beam scanners for imaging and low-speed applications.

  19. Conservation and valorization of the historical heritage through laser scanner tecnology

    NASA Astrophysics Data System (ADS)

    Guzzetti, F.; Cattaneo, N.; Toso, F.; Privitera, A.

    2013-10-01

    In Italy there is a very widespread multitude of buildings important and interesting in the field of Cultural Heritage. Several of them have been abandoned in the last decades and now they show all the deterioration and the structural damages due to abandon. This is also the case of about forty traditional farmsteads located in the close suburbs of the city of Milano and belonging to the local administration. Among these farmsteads, Cascina Linterno, for its rich historical background going back to the 14th century and earlier, was chosen to carry out a test in the planning process with the participation of local associations under the supervision of a group of experts in the field of structural assessment, preservation and design from Politecnico of Milan. Time and resources saving and effectiveness of appropriate activities is the main guideline of this process, where the first step consists necessarily on the topographical survey. The choice of Terrestrial Laser Scanner to carry out the survey complied naturally most necessities, but it was also meant to provide new challenges in the fruition of the point cloud by groups of experts without topographical knowledge. The aim is to analyze the procedures and the output needed by the different specialists involved in this kind of intervention on Cultural Heritage, in order to provide friendly tools to work directly on the point cloud, taking advantage of its rapidity in acquisition and of its richness of details, thus avoiding the production of traditional "lossy" layouts.

  20. High throughput laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  1. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  2. An enhanced inertial navigation system based on a low-cost IMU and laser scanner

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok

    2012-06-01

    This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.

  3. Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis

    NASA Astrophysics Data System (ADS)

    Bureick, Johannes; Alkhatib, Hamza; Neumann, Ingo

    2016-03-01

    In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers. Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points. The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.

  4. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  5. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Treesearch

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  6. A novel 360-degree shape measurement using a simple setup with two mirrors and a laser MEMS scanner

    NASA Astrophysics Data System (ADS)

    Jin, Rui; Zhou, Xiang; Yang, Tao; Li, Dong; Wang, Chao

    2017-09-01

    There is no denying that 360-degree shape measurement technology plays an important role in the field of threedimensional optical metrology. Traditional optical 360-degree shape measurement methods are mainly two kinds: the first kind, by placing multiple scanners to achieve 360-degree measurements; the second kind, through the high-precision rotating device to get 360-degree shape model. The former increases the number of scanners and costly, while the latter using rotating devices lead to time consuming. This paper presents a low cost and fast optical 360-degree shape measurement method, which possesses the advantages of full static, fast and low cost. The measuring system consists of two mirrors with a certain angle, a laser projection system, a stereoscopic calibration block, and two cameras. And most of all, laser MEMS scanner can achieve precise movement of laser stripes without any movement mechanism, improving the measurement accuracy and efficiency. What's more, a novel stereo calibration technology presented in this paper can achieve point clouds data registration, and then get the 360-degree model of objects. A stereoscopic calibration block with special coded patterns on six sides is used in this novel stereo calibration method. Through this novel stereo calibration technology we can quickly get the 360-degree models of objects.

  7. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  8. Digital dental surface registration with laser scanner for orthodontics set-up planning

    NASA Astrophysics Data System (ADS)

    Alcaniz-Raya, Mariano L.; Albalat, Salvador E.; Grau Colomer, Vincente; Monserrat, Carlos A.

    1997-05-01

    We present an optical measuring system based on laser structured light suitable for its diary use in orthodontics clinics that fit four main requirements: (1) to avoid use of stone models, (2) to automatically discriminate geometric points belonging to teeth and gum, (3) to automatically calculate diagnostic parameters used by orthodontists, (4) to make use of low cost and easy to use technology for future commercial use. Proposed technique is based in the use of hydrocolloids mould used by orthodontists for stone model obtention. These mould of the inside of patient's mouth are composed of very fluent materials like alginate or hydrocolloids that reveal fine details of dental anatomy. Alginate mould are both very easy to obtain and very low costly. Once captured, alginate moulds are digitized by mean of a newly developed and patented 3D dental scanner. Developed scanner is based in the optical triangulation method based in the projection of a laser line on the alginate mould surface. Line deformation gives uncalibrated shape information. Relative linear movements of the mould with respect to the sensor head gives more sections thus obtaining a full 3D uncalibrated dentition model. Developed device makes use of redundant CCD in the sensor head and servocontrolled linear axis for mould movement. Last step is calibration to get a real and precise X, Y, Z image. All the process is done automatically. The scanner has been specially adapted for 3D dental anatomy capturing in order to fulfill specific requirements such as: scanning time, accuracy, security and correct acquisition of 'hidden points' in alginate mould. Measurement realized on phantoms with known geometry quite similar to dental anatomy present errors less than 0,1 mm. Scanning of global dental anatomy is 2 minutes, and generation of 3D graphics of dental cast takes approximately 30 seconds in a Pentium-based PC.

  9. High-tech breakthrough DNA scanner for reading sequence and detecting gene mutation: A powerful 1 lb, 20 {mu}m resolution, 16-bit personal scanner (PS) that scans 17inch x 14inch x-ray film in 48 s, with laser, uv and white light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeineh, J.A.; Zeineh, M.M.; Zeineh, R.A.

    1993-06-01

    The 17inch x 14inch X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2-4% of the bulky and costly 30-95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available onlymore » through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 {mu}m, higher speed (scan up to 17inch x 14inch molecular X-ray film in 48 s), 1-32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability. Its programs image the film, read DNA sequences automatically, and detect gene mutation. In parallel to the wide laboratory use of PC computers instead of mainframes, this PS scanner might become an integral part of a PC-PS powerful and cost-effective system where the PS performs the digital imaging and the PC acts on the data.« less

  10. A Research Coordination Network for Ecological Applications of Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Condon, T. D.; Strahler, A. H.

    2016-12-01

    Enhancing the development of terrestrial laser scanning for ecological applications is the objective of a Research Coordination Network (RCN) now funded by the US National Science Foundation. The activity has two primary goals: (1) development of a low-cost lidar scanner that will provide accurate estimates of above-ground forest biomass for carbon modeling and monitoring procedures; and (2) development of a range of new ecological applications for TLS, based on rapid forest structure measurements and 3-D reconstructions of forest plots and stands. The network, first constituted in 2015, presently includes 69 participants, including researchers, professors, postdocs, and students at 32 institutions from Australia, Belgium, Canada, China, Finland, Netherlands, Switzerland, United Kingdom, and the United States. It is led by a Steering Committee of 15 researchers from 12 of these institutions. A primary activity of the TLSRCN is to facilitate communication of TLS developments and applications both within the group and to the broader scientific community at meetings and workshops. In 2015, RCN participants presented 27 papers and posters at international meetings and forums, including the Annual Conference of the Remote Sensing and Photogrammetry Society of the UK, SilviLaser 2015, and the Fall Meeting of the AGU. Within the group, bimonthly telecons allow the exchange of recent research developments and planning for group meetings and international conference presentations. Encouraging collaborative publications is also a focus of the RCN; 9 of 11 journal papers published in 2015 that reported TLS research by participants also combined authors from more than one research group participating in the network. The TLSRCN is supported by NSF Grant DBI-1455636 to Boston University, Alan Strahler Principal Investigator. Information for researchers interested in joining the network is available on the TLSRCN web site, tlsrcn.bu.edu. The image below shows a stand of Himalayan

  11. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 2: Scanner operations manual

    NASA Technical Reports Server (NTRS)

    Edwards, B. B.; Coffey, E. W.

    1974-01-01

    The theory and operation of the scanner portion of the laser Doppler system for detecting and monitoring aircraft trailing vortices in an airport environment are discussed. Schematics, wiring diagrams, component values, and operation and checkout procedures are included.

  12. Characterizing the geomorphic setting of precariously balanced rocks using terrestrial laser scanning technology

    NASA Astrophysics Data System (ADS)

    Haddad, D. E.; Arrowsmith, R.

    2009-12-01

    Terrestrial laser scanning (TLS) technology is rapidly becoming an effective three-dimensional imaging tool. Precariously balanced rocks are a subset of spheroidally weathered boulders. They are balanced on bedrock pedestals and are formed in upland drainage basins and pediments of exhumed plutons. Precarious rocks are used as negative evidence of earthquake-driven extreme ground motions. Field surveys of PBRs are coupled with cosmogenic radionuclide (CRN) surface exposure dating techniques to determine their exhumation rates. These rates are used in statistical simulations to estimate the magnitudes and recurrences of earthquake-generated extreme ground shaking as a means to physically validate seismic hazard analyses. However, the geomorphic setting of PBRs in the landscape is poorly constrained when interpreting their exhumation rates from CRN surface exposure dates. Are PBRs located on steep or gentle hillslopes? Are they located near drainages or hillslope crests? What geomorphic processes control the spatial distribution of PBRs in a landscape, and where do these processes dominate? Because the fundamental hillslope transport laws are largely controlled by local hillslope gradient and contributing area, the location of a PBR is controlled by the geomorphic agents and their rates acting on it. Our latest efforts involve using a combination of TLS and airborne laser swath mapping (ALSM) to characterize the geomorphic situation of PBRs. We used a Riegl LPM 800i (LPM 321) terrestrial laser scanner to scan a ~1.5 m tall by ~1 m wide precariously balanced rock in the Granite Dells, central Arizona. The PBR was scanned from six positions, and the scans were aligned to a point cloud totaling 3.4M points. We also scanned a ~50 m by ~150 m area covering PBR hillslopes from five scan positions. The resulting 5.5M points were used to create a digital terrain model of precarious rocks and their hillslopes. Our TLS- and ALSM-generated surface models and DEMs provide a

  13. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    NASA Astrophysics Data System (ADS)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  14. Control Measurements of Crane Rails Performed by Terrestrial Laser Scanning

    PubMed Central

    Kregar, Klemen; Možina, Jan; Ambrožič, Tomaž; Kogoj, Dušan; Marjetič, Aleš; Štebe, Gašper; Savšek, Simona

    2017-01-01

    This article presents a method for measuring the geometry of crane rails with terrestrial laser scanning (TLS). Two sets of crane rails were divided into segments, their planes were adjusted, and the characteristic rail lines were defined. We used their profiles to define the positional and altitude deviations of the rails, the span and height difference between the two rails, and we also verified that they complied with the Eurocode 3 standard. We tested the method on crane rails at the hydroelectric power plant in Krško and the thermal power plant in Brestanica. We used two scanning techniques: “pure” TLS (Riegel VZ-400) and “hybrid” TLS (Leica MS50) scanning. This article’s original contribution lies in the detailed presentation of the computations used to define the characteristic lines of the rails without using the numeric procedures from existing software packages. We also analysed the influence of segment length and point density on the rail geometry results, and compared the two laser scanning techniques. We also compared the results obtained by terrestrial laser scanning with the results obtained from the classic polar method, which served as a reference point for its precision. PMID:28726755

  15. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  16. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    PubMed

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  17. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems

    PubMed Central

    Stenz, Ulrich; Neumann, Ingo

    2017-01-01

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less. PMID:28812998

  18. Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore

    USGS Publications Warehouse

    Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.

    2013-01-01

    The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.

  19. a Light-Weight Laser Scanner for Uav Applications

    NASA Astrophysics Data System (ADS)

    Tommaselli, A. M. G.; Torres, F. M.

    2016-06-01

    Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.

  20. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  1. Terrestrial Laser Scanning for Coastal Geomorphologic Research in Western Greece

    NASA Astrophysics Data System (ADS)

    Hoffmeister, D.; Tilly, N.; Curdt, C.; Aasen, H.; Ntageretzis, K.; Hadler, H.; Willershäuser, T.; Vött, A.; Bareth, G.

    2012-07-01

    We used terrestrial laser scanning (TLS) for (i) accurate volume estimations of dislocated boulders moved by high-energy impacts and for (ii) monitoring of annual coastal changes. In this contribution, we present three selected sites in Western Greece that were surveyed during a time span of four years (2008-2011). The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro). Each scan position and a further target were recorded for georeferencing and merging of the point clouds. For the annual detection of changes, reference points for the base station of the DGPS system were marked. Our studies show that TLS is capable to accurately estimate volumes of boulders, which were dislocated and deposited inland from the littoral zone. The mass of each boulder was calculated from this 3D-reconstructed volume and according density data. The masses turned out to be considerably smaller than common estimated masses based on tape-measurements and according density approximations. The accurate mass data was incorporated into wave transport equations, which estimate wave velocities of high-energy impacts. As expected, these show smaller wave velocities, due to the incorporated smaller mass. Furthermore, TLS is capable to monitor annual changes on coastal areas. The changes are detected by comparing high resolution digital elevation models from every year. On a beach site, larger areas of sea-weed and sandy sediments are eroded. In contrast, bigger gravel with 30-50 cm diameter was accumulated. At the other area with bigger boulders and a different coastal configuration only slightly differences were detectable. In low-lying coastal areas and along recent beaches, post-processing of point clouds turned out to be more difficult, due to noise effects by water and shadowing effects. However, our studies show that the application of TLS in different littoral settings is an appropriate and promising tool. The combination of both instruments

  2. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  3. Out of lab calibration of a rotating 2D scanner for 3D mapping

    NASA Astrophysics Data System (ADS)

    Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas

    2017-06-01

    Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was

  4. Creation of a Digital Surface Model and Extraction of Coarse Woody Debris from Terrestrial Laser Scans in an Open Eucalypt Woodland

    NASA Astrophysics Data System (ADS)

    Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.

    2014-12-01

    Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest

  5. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  6. Estimation of Tree Position and STEM Diameter Using Simultaneous Localization and Mapping with Data from a Backpack-Mounted Laser Scanner

    NASA Astrophysics Data System (ADS)

    Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.

    2017-10-01

    A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.

  7. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision.

    PubMed

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.

  8. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision

    PubMed Central

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image. PMID:28912940

  9. Laser Scanner For Automatic Inspection Of Printed Wiring Boards

    NASA Astrophysics Data System (ADS)

    Geise, Philip; George, Eugene; Freese, Fritz; Brown, Robert; Ruwe, Victor

    1980-11-01

    An, Instrument is described which inspects unpopulated, populated (components onserted and leads clinched), and soldered printed wiring boards for correct hole location, component presence, correct lead clinch direction and solder bridges. The instrument consists of a low power heliumneon laser, an x-y moving iron galvanometer scanner and several folding mirros. A unique shadow signature is detected by silicon photodiodes located at the optium geometry to allow rapid and reliable detection of components with correctly clinched leads. A reflective glint screen is utilized to inspect for a solder bridges. The detected signal are processed and evaluated by a minocomputer which also controls the scan inspection rate of at least 25 components or 50 components holes per second. The return of investment on this instrument for high volume production of printed wirind boards is less than one yea and only slightly longer for medium run military application.

  10. Thermally induced light-driven microfluidics using a MOEMS-based laser scanner for particle manipulation

    NASA Astrophysics Data System (ADS)

    Kremer, Matthias P.; Tortschanoff, Andreas

    2014-03-01

    One key challenge in the field of microfluidics and lab-on-a-chip experiments for biological or chemical applications is the remote manipulation of fluids, droplets and particles. These can be volume elements of reactants, particles coated with markers, cells or many others. Light-driven microfluidics is one way of accomplishing this challenge. In our work, we manipulated micrometre sized polystyrene beads in a microfluidic environment by inducing thermal flows. Therefore, the beads were held statically in an unstructured microfluidic chamber, containing a dyed watery solution. Inside this chamber, the beads were moved along arbitrary trajectories on a micrometre scale. The experiments were performed, using a MOEMS (micro-opto-electro-mechanical-systems)-based laser scanner with a variable focal length. This scanner system is integrated in a compact device, which is flexibly applicable to various microscope setups. The device utilizes a novel approach for varying the focal length, using an electrically tunable lens. A quasi statically driven MOEMS mirror is used for beam steering. The combination of a tunable lens and a dual axis micromirror makes the device very compact and robust and is capable of positioning the laser focus at any arbitrary location within a three dimensional working space. Hence, the developed device constitutes a valuable extension to manually executed microfluidic lab-on-chip experiments.

  11. Accuracy assessment of modeling architectural structures and details using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Kedzierski, M.; Walczykowski, P.; Orych, A.; Czarnecka, P.

    2015-08-01

    One of the most important aspects when performing architectural documentation of cultural heritage structures is the accuracy of both the data and the products which are generated from these data: documentation in the form of 3D models or vector drawings. The paper describes an assessment of the accuracy of modelling data acquired using a terrestrial phase scanner in relation to the density of a point cloud representing the surface of different types of construction materials typical for cultural heritage structures. This analysis includes the impact of the scanning geometry: the incidence angle of the laser beam and the scanning distance. For the purposes of this research, a test field consisting of samples of different types of construction materials (brick, wood, plastic, plaster, a ceramic tile, sheet metal) was built. The study involved conducting measurements at different angles and from a range of distances for chosen scanning densities. Data, acquired in the form of point clouds, were then filtered and modelled. An accuracy assessment of the 3D model was conducted by fitting it with the point cloud. The reflection intensity of each type of material was also analyzed, trying to determine which construction materials have the highest reflectance coefficients, and which have the lowest reflection coefficients, and in turn how this variable changes for different scanning parameters. Additionally measurements were taken of a fragment of a building in order to compare the results obtained in laboratory conditions, with those taken in field conditions.

  12. Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images

    PubMed Central

    Pu, Shi; Vosselman, George

    2009-01-01

    Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539

  13. Bore-sight calibration of the profile laser scanner using a large size exterior calibration field

    NASA Astrophysics Data System (ADS)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin

    2014-10-01

    The bore-sight calibration procedure and results of a profile laser scanner using a large size exterior calibration field is presented in the paper. The task is a part of Autonomous Mapping Airship (AMA) project which aims to create s surveying system with specific properties suitable for effective surveying of medium-wide areas (units to tens of square kilometers per a day). As is obvious from the project name an airship is used as a carrier. This vehicle has some specific properties. The most important properties are high carrying capacity (15 kg), long flight time (3 hours), high operating safety and special flight characteristics such as stability of flight, in terms of vibrations, and possibility to flight at low speed. The high carrying capacity enables using of high quality sensors like professional infrared (IR) camera FLIR SC645, high-end visible spectrum (VIS) digital camera and optics in the visible spectrum and tactical grade INSGPS sensor iMAR iTracerRT-F200 and profile laser scanner SICK LD-LRS1000. The calibration method is based on direct laboratory measuring of coordinate offset (lever-arm) and in-flight determination of rotation offsets (bore-sights). The bore-sight determination is based on the minimization of squares of individual point distances from measured planar surfaces.

  14. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  15. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  16. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  17. Endoscopic laser range scanner for minimally invasive, image guided kidney surgery

    NASA Astrophysics Data System (ADS)

    Friets, Eric; Bieszczad, Jerry; Kynor, David; Norris, James; Davis, Brynmor; Allen, Lindsay; Chambers, Robert; Wolf, Jacob; Glisson, Courtenay; Herrell, S. Duke; Galloway, Robert L.

    2013-03-01

    Image guided surgery (IGS) has led to significant advances in surgical procedures and outcomes. Endoscopic IGS is hindered, however, by the lack of suitable intraoperative scanning technology for registration with preoperative tomographic image data. This paper describes implementation of an endoscopic laser range scanner (eLRS) system for accurate, intraoperative mapping of the kidney surface, registration of the measured kidney surface with preoperative tomographic images, and interactive image-based surgical guidance for subsurface lesion targeting. The eLRS comprises a standard stereo endoscope coupled to a steerable laser, which scans a laser fan beam across the kidney surface, and a high-speed color camera, which records the laser-illuminated pixel locations on the kidney. Through calibrated triangulation, a dense set of 3-D surface coordinates are determined. At maximum resolution, the eLRS acquires over 300,000 surface points in less than 15 seconds. Lower resolution scans of 27,500 points are acquired in one second. Measurement accuracy of the eLRS, determined through scanning of reference planar and spherical phantoms, is estimated to be 0.38 +/- 0.27 mm at a range of 2 to 6 cm. Registration of the scanned kidney surface with preoperative image data is achieved using a modified iterative closest point algorithm. Surgical guidance is provided through graphical overlay of the boundaries of subsurface lesions, vasculature, ducts, and other renal structures labeled in the CT or MR images, onto the eLRS camera image. Depth to these subsurface targets is also displayed. Proof of clinical feasibility has been established in an explanted perfused porcine kidney experiment.

  18. Sampling and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry in railway environment

    NASA Astrophysics Data System (ADS)

    Assali, P.; Grussenmeyer, P.; Pollet, N.; Viguier, F.; Villemin, T.

    2012-04-01

    reliable and the recommendations optimized with the unfavourable sectors. Then, risk analysis can be targeted on the potential disorders zones and not on the whole of the studied sector. Keywords : Discontinuities, fractures, railway exploitation, terrestrial laser-scanner, dense image matching, rock mass characterization, directional families, data processing

  19. Application of terrestrial laser scanning for coastal geomorphologic research questions in western Greece

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Curdt, Constanze; Tilly, Nora; Ntageretzis, Konstantin; Aasen, Helge; Vött, Andreas; Bareth, Georg

    2013-04-01

    Coasts are areas of permanent change, influenced by gradual changes and sudden impacts. In particular, western Greece is a tectonically active region, due to the nearby plate boundary of the Hellenic Arc. The region has suffered from numerous earthquakes and tsunamis during prehistoric and historic times and is thus characterized by a high seismic and tsunami hazard risk. Additionally, strong winter storms may reach considerable dimensions. In this study, terrestrial laser scanning was applied for (i) annual change detection at seven coastal areas of western Greece for three years (2009-2011) and (ii) accurate parameter detection of large boulders, dislocated by high-energy wave impacts. The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro) for all surveys. Each scan position and a further target were recorded for georeferencing and merging of the point clouds. (i) For the annual detection of changes, reference points for the base station of the DGPS system were marked. High-resolution digital elevation models (HRDEM) were generated from each dataset of the different years and are compared to each other, resulting in mass balances. (ii) 3D-models of dislocated boulders were reconstructed and parameters (e.g. volume in combination with density measurements, distance and height above present sea-level) were derived for the solution of wave transport equations, which estimate the minimum wave height or velocity that is necessary for boulder movement. (i) Our results show that annual changes are detectable by multi-temporal terrestrial laser scanning. In general, volumetric changes and affected areas are quantifiable and maps of changes can be established. On exposed beach areas, bigger changes were detectable, where seagrass and sand is eroded and gravel accumulated. In opposite, only minor changes for elevated areas are derived. Dislocated boulders on several sites showed no movement. At coastal areas with a high

  20. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  1. Experiment on Uav Photogrammetry and Terrestrial Laser Scanning for Ict-Integrated Construction

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Wakutsu, R.; Kato, T.; Wakaizumi, T.; Ooishi, T.; Matsuoka, R.

    2017-08-01

    In the 2016 fiscal year the Ministry of Land, Infrastructure, Transport and Tourism of Japan started a program integrating construction and ICT in earthwork and concrete placing. The new program named "i-Construction" focusing on productivity improvement adopts such new technologies as UAV photogrammetry and TLS. We report a field experiment to investigate whether the procedures of UAV photogrammetry and TLS following the standards for "i-Construction" are feasible or not. In the experiment we measured an embankment of about 80 metres by 160 metres immediately after earthwork was done on the embankment. We used two sets of UAV and camera in the experiment. One is a larger UAV enRoute Zion QC730 and its onboard camera Sony α6000. The other is a smaller UAV DJI Phantom 4 and its dedicated onboard camera. Moreover, we used a terrestrial laser scanner FARO Focus3D X330 based on the phase shift principle. The experiment results indicate that the procedures of UAV photogrammetry using a QC730 with an α6000 and TLS using a Focus3D X330 following the standards for "i-Construction" would be feasible. Furthermore, the experiment results show that UAV photogrammetry using a lower price UAV Phantom 4 was unable to satisfy the accuracy requirement for "i-Construction." The cause of the low accuracy by Phantom 4 is under investigation. We also found that the difference of image resolution on the ground would not have a great influence on the measurement accuracy in UAV photogrammetry.

  2. Integrating Laser Scanner and Bim for Conservation and Reuse: "the Lyric Theatre of Milan"

    NASA Astrophysics Data System (ADS)

    Utica, G.; Pinti, L.; Guzzoni, L.; Bonelli, S.; Brizzolari, A.

    2017-12-01

    The paper underlines the importance to apply a methodology that integrates the Building Information Modeling (BIM), Work Breakdown Structure (WBS) and the Laser Scanner tool in conservation and reuse projects. As it is known, the laser scanner technology provides a survey of the building object which is more accurate rather than that carried out using traditional methodologies. Today most existing buildings present their attributes in a dispersed way, stored and collected in paper documents, in sheets of equipment information, in file folders of maintenance records. In some cases, it is difficult to find updated technical documentation and the research of reliable data can be a cost and time-consuming process. Therefore, this new survey technology, embedded with BIM systems represents a valid tool to obtain a coherent picture of the building state. The following case consists in the conservation and reuse project of Milan Lyric Theatre, started in 2013 from the collaboration between the Milan Polytechnic and the Municipality. This project first attempts to integrate these new techniques which are already professional standards in many other countries such as the US, Norway, Finland, England and so on. Concerning the methodology, the choice has been to use BIM software for the structured analysis of the project, with the aim to define a single code of communication to develop a coherent documentation according to rules in a consistent manner and in tight schedules. This process provides the definition of an effective and efficient operating method that can be applied to other projects.

  3. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation.

    PubMed

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  4. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  5. Measuring general relativity effects in a terrestrial lab by means of laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Beverini, N.; Allegrini, M.; Beghi, A.; Belfi, J.; Bouhadef, B.; Calamai, M.; Carelli, G.; Cuccato, D.; Di Virgilio, A.; Maccioni, E.; Ortolan, A.; Porzio, A.; Santagata, R.; Solimeno, S.; Tartaglia, A.

    2014-07-01

    GINGER is a proposed tridimensional array of laser gyroscopes with the aim of measuring the Lense-Thirring effect, predicted by the general relativity theory, in a terrestrial laboratory environment. We discuss the required accuracy, the methods to achieve it, and the preliminary experimental work in this direction.

  6. Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance

    PubMed Central

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications. PMID:22164079

  7. Odometry and laser scanner fusion based on a discrete extended Kalman Filter for robotic platooning guidance.

    PubMed

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.

  8. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  9. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  10. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    PubMed

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Cacciari, Pedro Pazzoto; Futai, Marcos Massao

    2017-05-01

    Discontinuity mapping and analysis are extremely important for modeling shallow tunnels constructed in fractured rock masses. However, the limited exposure and variability of rock face orientation in tunnels must be taken into account. In this paper, an automatic method is proposed to generate discrete fracture networks (DFNs) using terrestrial laser scanner (TLS) geological mapping and to continuously calculate the volumetric intensities ( P 32) along a tunnel. The number of fractures intersecting rectangular sampling planes with different orientations, fitted in tunnel sections of finite lengths, is used as the program termination criteria to create multiple DFNs and to calculate the mean P 32. All traces and orientations from three discontinuity sets of the Monte Seco tunnel (Vitória Minas Railway) were mapped and the present method applied to obtain the continuous variation in P 32 along the tunnel. A practical approach to creating single and continuous DFNs (for each discontinuity set), considering the P 32 variations, is also presented, and the results are validated by comparing the trace intensities ( P 21) from the TLS mapping and DFNs generated. Three examples of 3DEC block models generated from different sections of the tunnel are shown, including the ground surface and the bedrock topographies. The results indicate that the proposed method is a practical and powerful tool for modeling fractured rock masses of uncovered tunnels. It is also promising for application during tunnel construction when TLS mapping is a daily task (for as-built tunnel controls), and the complete geological mapping (traces and orientations) is available.

  12. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  13. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner.

    PubMed

    Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun

    2017-04-22

    A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing.

  14. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less

  15. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  16. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.

    PubMed

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-04-24

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.

  17. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques.

    PubMed

    Shah, Sinal; Sundaram, Geeta; Bartlett, David; Sherriff, Martyn

    2004-11-01

    Several studies have made comparisons in the dimensional accuracy of different elastomeric impression materials. Most have used two-dimensional measuring devices, which neglect to account for the dimensional changes that exist along a three-dimensional surface. The aim of this study was to compare the dimensional accuracy of an impression technique using a polyether material (Impregum) and a vinyl poly siloxane material (President) using a laser scanner with three-dimensional superimpositional software. Twenty impressions, 10 with a polyether and 10 with addition silicone, of a stone master model that resembled a dental arch containing three acrylic posterior teeth were cast in orthodontic stone. One plastic tooth was prepared for a metal crown. The master model and the casts were digitised with the non-contacting laser scanner to produce a 3D image. 3D surface viewer software superimposed the master model to the stone replica and the difference between the images analysed. The mean difference between the model and the stone replica made from Impregum was 0.072mm (SD 0.006) and that for the silicone 0.097mm (SD 0.005) and this difference was statistically significantly, p=0.001. Both impression materials provided an accurate replica of the prepared teeth supporting the view that these materials are highly accurate.

  18. Shift-variant linear system modeling for multispectral scanners

    NASA Astrophysics Data System (ADS)

    Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.

    1995-07-01

    Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.

  19. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner

    PubMed Central

    Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun

    2017-01-01

    A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing. PMID:28441728

  20. Issue of data acquisition and processing using short range photogrammetry and terrestrial laser scanning for educational portals and virtual museums based on Wawel cathedral. (Polish Title: Problematyka pozyskiwania i przetwarzania danych fotogrametrycznych i z naziemnego skaningu laserowego na potrzeby tworzenia portali edukacyjnych i wirtualnych muzeów na przykładzie Katedry Wawelskiej)

    NASA Astrophysics Data System (ADS)

    Mitka, B.; Szelest, P.

    2013-12-01

    This paper presents the issues related to the acquisition and processing of terrestrial photogrammetry and laser scanning for building educational portals and virtual museums. Discusses the specific requirements of measurement technology and data processing for all kinds of objects, ranging from architecture through sculpture and architectural detail on the fabric and individual museum exhibits. Educational portals and virtual museums require a modern, high-quality visuals (3D models, virtual tours, animations, etc.) supplemented by descriptive content or audio commentary. Source for obtaining such materials are mostly terrestrial laser scanning and photogrammetry as technologies that provide complete information about the presented geometric objects. However, the performance requirements of web services impose severe restrictions on the presented content. It is necessary to use optimalization geometry process to streamline the way of its presentation. Equally important problem concerns the selection of appropriate technology and process measurement data processing presented for each type of objects. Only skillful selection of measuring equipment and data processing tools effectively ensure the achievement of a satisfactory end result. Both terrestrial laser scanning technology and digital close range photogrammetry has its strengths which should be used but also the limitations that must be taken into account in this kind of work. The key is choosing the right scanner for both the measured object and terrain such as pixel size in the performance of his photos.

  1. High-resolution Terrestrial Laser Scanning (TLS) on cushion peatlands - a case study from the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Forbriger, M.; Höfle, B.; Siart, C.; Schittek, K.; Bubenzer, O.

    2012-04-01

    So-called cushion peatlands located in the high mountain areas of the Peruvian Andes are unique ecotopes, which are of major importance for both palaeoenvironmental reconstructions and permanent water supply of the valley oases in the presently hyperarid Peruvian desert. In this context, a case study was performed on the Cerro Llamoca peatland (southern Peru, province Lucanas, 14° S) in the uppermost reaches of the Rió Grande catchment area (4000-4450 m a.s.l.) within the framework of the BMBF-funded project 'Andean Transect - Climate Sensitivity of pre-Columbian Man-Environment-Systems' and serves as a basis for a long-term, multitemporal observation study. As small-scale geomorphologic investigations require high-resolution elevation data, which is still not available for this remote study site, and local microrelief is characterised by features not visible from aerial view (e.g. channel cuttings within the peatland), terrestrial laser scanning (TLS) was applied. Data acquisition was carried out with one of the latest 'time-of-flight'-scanners (Riegl VZ-400). A total of 46 positions was recorded to capture the whole area of interest leading to more 370 million single laser points within an area of approximately 1,8 km2. Registration of scan positions was performed by means of GPS measurements, coarse registration and the iterative closest point (ICP) algorithm provided by the plugin Multi-Station Adjustment within the RiSCAN PRO software (Riegl). The large amount of output data required the use of special LiDAR software for further processing and digital elevation raster generation (OPALS software). The defined target raster resolution was set to values between 0.1 and 2 m depending on the average point density. It is important to have access to the original point cloud including additional laser point attributes (e.g. signal amplitude and echo width) for digital terrain model generation (i.e. terrain point filtering) and geomorphologic mapping by means of

  2. Laser-based satellite communication systems stabilized by non-mechanical electro-optic scanners

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael; Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Benjamin; Gamble, Joseph D.; Anderson, Mike

    2016-05-01

    Laser communications systems provide numerous advantages for establishing satellite-to-ground data links. As a carrier for information, lasers are characterized by high bandwidth and directionality, allowing for fast and secure transfer of data. These systems are also highly resistant to RF influences since they operate in the infrared portion of the electromagnetic spectrum, far from radio bands. In this paper we will discuss an entirely non-mechanical electro-optic (EO) laser beam steering technology, with no moving parts, which we have used to form robust 400 Mbps optical data connections through air. This technology will enable low cost, compact, and rugged free space optical (FSO) communication modules for small satellite applications. The EO beam-steerer at the heart of this system is used to maintain beam pointing as the satellite orbits. It is characterized by extremely low values for size, weight and power consumption (SWaP) - approximately 300 cm3, 300 g, and 5 W respectively, which represents a marked improvement compared to heavy, and power-consuming gimbal mechanisms. It is capable of steering a 500 mW, 1 mm short wave infrared (SWIR) beam over a field of view (FOV) of up to 50° x 15°, a range which can be increased by adding polarization gratings, which provide a coarse adjust stage at the EO beam scanner output. We have integrated this device into a communication system and demonstrated the capability to lock on and transmit a high quality data stream by modulation of SWIR power.

  3. Research on online 3D laser scanner dimensional measurement system for heavy high-temperature forgings

    NASA Astrophysics Data System (ADS)

    Zhu, Jingguo; Li, Menglin; Jiang, Yan; Xie, Tianpeng; Li, Feng; Jiang, Chenghao; Liu, Ruqing; Meng, Zhe

    2017-10-01

    Online 3-D laser-scanner is a non-contact measurement system with high speed, high precision and easy operation, which can be used to measure heavy and high-temperature forgings. But the current online laser measurement system is mainly a mobile light indicator, which can only be used in the limited environment and lacks the capability of 3-D accurate measurement. This paper mainly introduces the structure of the online high-speed real-time 3-D measurement for heavy high-temperature forgings of Academy of Opto-Electronics (AOE), Chinese Academy of Sciences. Combining TOF pulse distance measurement with hybrid scan mode, the system can scan and acquire point cloud data of an area of 20m×10m with a 75°×40° field of view at the distance of 20m. The entire scanning time is less than 5 seconds with an accuracy of 8mm, which can meet the online dimensional measurement requirements of heavy high-temperature forgings.

  4. Quantifying streambank erosion: a comparative study using an unmanned aerial system (UAS) and a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Rizzo, D.; Hamshaw, S. D.; Dewoolkar, M.; ONeil-Dunne, J.; Frolik, J.; Bryce, T. G.; Waldron, A. Y.

    2015-12-01

    Streambank erosion is a common non-point source contributing to suspended sediment and nutrient loading of waterways, and recently has been estimated to account for 30-80% of sediment loading into receiving waters. There is interest in developing reliable methods to quantify bank erosion in watersheds, so effective management strategies can be devised. However, current methods can be either cost prohibitive or unreliable. Direct measurement approaches (surveys and erosion pins) are labor intensive and yield site-specific measurements that are limited for extrapolation to larger scales. Similar issues arise with analytical methods such as slope stability analysis, which require material parameters that are resource intensive to determine. Newer approaches such as use of aerial LiDAR data have proved effective for watershed level assessment, but come with long turnaround times and high cost. Terrestrial laser scanning (TLS) is also effective and offers high accuracy, however collection over large areas is impractical and post-processing is labor intensive. New technology in the form of unmanned aerial systems (UAS) has the potential to significantly enhance the ability to monitor channel migration and quantify bank erosion at variable scales. In this study, 20 km of the Mad and Winooski Rivers in Vermont were flown using a senseFly eBee UAS. Flights were made in spring and fall 2015 in leaf-off conditions with selected portions also flown after large storms in the summer. Change in bank profiles between spring and fall flights provide a comprehensive estimate of bank erosion along the study reaches. Six sites with varying bank heights, erosion sensitivity, and vegetation conditions were selected for simultaneous surveying using a TLS. Point cloud data from both the TLS and UAS were compared to assess the accuracy of the UAS for capturing the bank profile. Changes in bank cross-sections and in volumes calculated from 3D digital surface models were used to compare the

  5. Laser-based structural sensing and surface damage detection

    NASA Astrophysics Data System (ADS)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of

  6. A coherent light scanner for optical processing of large format transparencies

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.; Shackelford, R. G.; Walsh, J. R.

    1975-01-01

    A laser scanner is discussed in which the scanning beam is random-access addressable and perpendicular to the image input plane and the irradiance of the scanned beam is controlled so that a constant average irradiance is maintained after passage through the image plane. The scanner's optical system and design are described, and its performance is evaluated. It is noted that with this scanner, data in the form of large-format transparencies can be processed without the expense, space, maintenance, and precautions attendant to the operation of a high-power laser with large-aperture collimating optics. It is shown that the scanned format as well as the diameter of the scanning beam may be increased by simple design modifications and that higher scan rates can be achieved at the expense of resolution by employing acousto-optic deflectors with different relay optics.

  7. Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner.

    PubMed

    An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai

    2016-07-20

    There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation.

  8. D Textured Modelling of both Exterior and Interior of Korean Styled Architectures

    NASA Astrophysics Data System (ADS)

    Lee, J.-D.; Bhang, K.-J.; Schuhr, W.

    2017-08-01

    This paper describes 3D modelling procedure of two Korean styled architectures which were performed through a series of processing from data acquired with the terrestrial laser scanner. These two case projects illustate the use of terrestrial laser scanner as a digital documentation tool for management, conservation and restoration of the cultural assets. We showed an approach to automate reconstruction of both the outside and inside models of a building from laser scanning data. Laser scanning technology is much more efficient than existing photogrammetry in measuring shape and constructing spatial database for preservation and restoration of cultural assets as well as for deformation monitoring and safety diagnosis of structures.

  9. Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor

    PubMed Central

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-01-01

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370

  10. Terrestrial Laser Scanning Applications in Paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Arrowsmith, R.; Haddad, D. E.; Akciz, S. O.; Oldow, J. S.; Mauer, J.; Rhodes, D. D.

    2009-12-01

    Essential information about past earthquakes includes their locations, ages, and magnitudes. Documentation requires high accuracy three-dimensional measurements. We present three examples of recent earthquake geology research using terrestrial laser scanning (TLS): 1) the stratigraphic record and age of earthquakes along the south-central San Andreas Fault at Bidart, 2) geomorphic modification of surface rupture from the 1992 M7.3 Landers, California earthquake, and 3) negative indications of strong ground motion from precariously balanced rocks (PBRs) in an area of relative low seismicity in central Arizona. Sedimentary structures and earthquake-related features exposed in excavations are documented with mosaic photography, a time consuming process. Even carefully prepared mosaics have geometric errors due to edge matching, camera distortion, and non-planar walls. Instead of using photomosaics, we recently scanned the walls of 1-m wide trenches with short range TLS. We projected the resulting point cloud colored by photography acquired by the scanner to vertical planes representing the walls. With only a small overlap between adjacent co-registered scans, the orthophotos have sufficient resolution and superior geometric accuracy compared to the photomosaics. We have monitored the erosional modifications of a prominent ~1-m high fault scarp that formed in the 1992 Landers earthquake. Our repeated observations include photography and topographic survey. In 2008, we scanned the site and co-registered the scans and the prior surveys to document the geometry of the fault scarp. By subtracting the current topography from surface models based on prior surveys, we measured the erosion along the scarp. The largest changes are in the narrow knick channels that cross the scarp at the lower end of 104 m2 drainage basins. The knickpoints are a few 10s of cm wide, ~1 m deep, and a few m long. Separated abruptly from the knickpoint moving upstream, a ~10 m reach of the channel

  11. Application of Terrestrial Laser Scanning to Study the Geometry of Slender Objects

    NASA Astrophysics Data System (ADS)

    Muszynski, Zbigniew; Milczarek, Wojciech

    2017-12-01

    Slender objects are a special group among the many types of industrial structures. These objects are characterized by a considerable height which is at least several times bigger than the diameter of the base. Mainly various types of industrial chimneys, as well as truss masts, towers, radio and television towers and also windmill columns belong to this group. During their operation slender objects are exposed to a number of unfavourable factors. For this reason, these objects require regular inspection, including geodetic measurements. In the paper the results of geodetic control of geometry of industrial chimney with a height of 120 m has been presented. The measurements were made by means of terrestrial laser scanning technique under rather unfavourable conditions (at night, during snowfall, with low air temperature) which allowed to verify the real usefulness and accuracy of this technique in engineering practice. On the basis of point cloud, the values of deviations from the vertical for main axis of the chimney have been calculated. Using point cloud, the selected horizontal cross sections of chimney were analysed and were compared with the archival geodetic documentation. On this basis the final conclusions about the advantages and limitations of the using of terrestrial laser scanning technique for the control of geometry of high industrial chimneys have been formulated.

  12. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  13. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  14. Use of terrestrial laser scanning (TLS) for monitoring and modelling of geomorphic processes and phenomena at a small and medium spatial scale in Polar environment (Scott River — Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar; Kubisz, Waldemar; Zagórski, Piotr

    2014-05-01

    The application of Terrestrial Laser Scanning (TLS) for precise modelling of land relief and quantitative estimation of spatial and temporal transformations can contribute to better understanding of catchment-forming processes. Experimental field measurements utilising the 3D laser scanning technology were carried out within the Scott River catchment located in the NW part of the Wedel Jarlsberg Land (Spitsbergen). The measurements concerned the glacier-free part of the Scott River valley floor with a length of 3.5 km and width from 0.3 to 1.5 km and were conducted with a state-of-the-art medium-range stationary laser scanner, a Leica Scan Station C10. A complex set of measurements of the valley floor were carried out from 86 measurement sites interrelated by the application of 82 common 'target points'. During scanning, from 5 to 19 million measurements were performed at each of the sites, and a point-cloud constituting a 'model space' was obtained. By merging individual 'model spaces', a Digital Surface Model (DSM) of the Scott River valley was obtained, with a co-registration error not exceeding ± 9 mm. The accuracy of the model permitted precise measurements of dimensions of landforms of varied scales on the main valley floor and slopes and in selected sub-catchments. The analyses verified the efficiency of the measurement system in Polar meteorological conditions of Spitsbergen in mid-summer.

  15. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and

  16. Comparison of 3D representations depicting micro folds: overlapping imagery vs. time-of-flight laser scanner

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, Aristidis D.; Georgopoulos, Andreas; Lozios, Stylianos G.

    2012-10-01

    A relatively new field of interest, which continuously gains grounds nowadays, is digital 3D modeling. However, the methodologies, the accuracy and the time and effort required to produce a high quality 3D model have been changing drastically the last few years. Whereas in the early days of digital 3D modeling, 3D models were only accessible to computer experts in animation, working many hours in expensive sophisticated software, today 3D modeling has become reasonably fast and convenient. On top of that, with online 3D modeling software, such as 123D Catch, nearly everyone can produce 3D models with minimum effort and at no cost. The only requirement is panoramic overlapping images, of the (still) objects the user wishes to model. This approach however, has limitations in the accuracy of the model. An objective of the study is to examine these limitations by assessing the accuracy of this 3D modeling methodology, with a Terrestrial Laser Scanner (TLS). Therefore, the scope of this study is to present and compare 3D models, produced with two different methods: 1) Traditional TLS method with the instrument ScanStation 2 by Leica and 2) Panoramic overlapping images obtained with DSLR camera and processed with 123D Catch free software. The main objective of the study is to evaluate advantages and disadvantages of the two 3D model producing methodologies. The area represented with the 3D models, features multi-scale folding in a cipollino marble formation. The most interesting part and most challenging to capture accurately, is an outcrop which includes vertically orientated micro folds. These micro folds have dimensions of a few centimeters while a relatively strong relief is evident between them (perhaps due to different material composition). The area of interest is located in Mt. Hymittos, Greece.

  17. Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner

    PubMed Central

    An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai

    2016-01-01

    There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation. PMID:27447640

  18. An optoelectronic detecting based environment perception experiment for primer students using multiple-layer laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Shifeng; Wang, Rui; Zhang, Pengfei; Dai, Xiang; Gong, Dawei

    2017-08-01

    One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students' main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.

  19. A Computer-Controlled Laser Bore Scanner

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  20. Studying monogenetic volcanoes with Terrestrial Laser Scanner: Case study at Croscat volcano (Garrotxa Volcanic Zone, Spain)

    NASA Astrophysics Data System (ADS)

    Geyer Traver, A.; Garcia-Selles, D.; Peddrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J.

    2013-12-01

    Monogenetic basaltic zones are common in many volcanic environments and may develop under very different geodynamic conditions. Despite existing clear similarities between the eruptive activity of different monogenetic volcanic fields, important distinctions may arise when investigating in detail the individual eruptive sequences. Interpretation of the deposits and consequently, the reconstruction and characterization of these eruptive sequences is crucial to evaluate the potential hazard in case of active areas. In diverse occasions, erosional processes (natural and/or anthropogenic) may partly destroy these relatively small-sized volcanic edifices exposing their internal parts. Furthermore, despite human activity in volcanic areas is sometimes unimportant due to the remote location of the monogenetic cones, there are places where this form of erosion is significant, e.g. Croscat volcano (Catalan Volcanic Field, Spain). In any case, when studying monogenetic volcanism, it is usual to find outcrops where the internal structure of the edifices is, for one or other reason, well exposed. However, the access to these outcrops may be extremely difficult or even impossible. During the last years, it has been demonstrated that the study of outcrops with problematic or completely restricted access can be carried out by means of digital representations of the outcrop surface. Digital outcrops make possible the study of those areas with natural access limitations or safety issues and may facilitate visualization of the features of interest over the entire outcrop, as long as the digital outcrop can be analysed while navigated in real- time, with optional displays for perspective, scale distortions, and attribute filtering. In particular, Terrestrial Laser Scanning (TSL) instruments using Light Detection And Ranging technology (LIDAR) are capable of capturing topographic details and achieve modelling accuracy within a few centimetres. The data obtained enables the creation of

  1. Integrating Airborne and Terrestrial Laser Scanning data to monitor active landsliding

    NASA Astrophysics Data System (ADS)

    Székely, B.; Molnár, G.; Roncat, A.; Lehner, H.; Gaisecker, Th.; Drexel, P.

    2009-04-01

    Active slope processes often endanger various built-up objects and, as a consequence, sometimes human lives as well. Data acquision on the status and evolution of such slopes, especially those that had already affected by landsliding, therefore is a primary target for engineering geomorphic research. The method of laser scanning provides an appropriate data collection technique with the requested accuracy. Data from repeated Airborne Laser Scanning (ALS) campaigns are suitable to be analysed for the slow, incipient movements of the slope. The problem of this surveying technique is that repetition time is strongly dependent on the financial resources of the monitoring project, and often the requested recurrence of flight campaigns cannot be achieved. A possible solution to densify the data acquisition in time is the application of Terrestrial Laser Scanning (TLS) and intergration of its data with ALS data sets. TLS has the advantage of flexibility and shorter observation distances compared to ALS. This technique needs special considerations and tedious processing since the geometric setting of the data acquision considerably differ in TLS and ALS. Furthermore, obstacles in the landscape may partly hamper the data acqusition which rarely the case in ALS. Our case study area is a several-decade-long active landsliding in Doren (Federal State Vorarlberg, Austria) that as it develops, it is about to endangers houses of the locality. The site is especially suitable for the project, because multi-temporal data sets (from ALS flight campaigns in 2003, 2006 and 2007, respectively) of this area are available. The data integration is carried out in the form of production of point clouds (sensed from various points of the valley sides) and we compared the results with the results of the previous ALS campaigns. With the planned repetition of the TLS measurements new and detailed insights can be achieved concerning the evolution of the incipient and on-going slow motions. This

  2. Digital Photonic Production of Micro Structures in Glass by In-Volume Selective Laser-Induced Etching using a High Speed Micro Scanner

    NASA Astrophysics Data System (ADS)

    Gottmann, Jens; Hermans, Martin; Ortmann, Jürgen

    Digital photonic production of 3D microfluidic devices and assembled micro mechanics inside fused silica glass is carried out using ISLE directly from digital CAD data. To exploit the potential productivity of new high average power fs-lasers >150 W a modular high speed scanning system has been developed. Acousto-optical beam deflection, galvo-scanners and translation stages are controlled by CAM software. Using a lens with 10 mm focal length a focus radius of 1 μm is scanned with a velocity of 12 m/s on 400 μm track radius enabling the up-scaling of the ISLE- process using fs-laser radiation with up to 30 W.

  3. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  4. Application of terrestrial laser scanning to the development and updating of the base map

    NASA Astrophysics Data System (ADS)

    Klapa, Przemysław; Mitka, Bartosz

    2017-06-01

    The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland's base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej - Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The

  5. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  6. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  7. Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe.

    PubMed

    Anderson, Kyle E; Glenn, Nancy F; Spaete, Lucas P; Shinneman, Douglas J; Pilliod, David S; Arkle, Robert S; McIlroy, Susan K; Derryberry, DeWayne R

    2017-10-23

    Terrestrial laser scanning (TLS) provides fast collection of high-definition structural information, making it a valuable field instrument to many monitoring applications. A weakness of TLS collections, especially in vegetation, is the occurrence of unsampled regions in point clouds where the sensor's line-of-sight is blocked by intervening material. This problem, referred to as occlusion, may be mitigated by scanning target areas from several positions, increasing the chance that any given area will fall within the scanner's line-of-sight from at least one position. Because TLS collections are often employed in remote regions where the scope of sampling is limited by logistical factors such as time and battery power, it is important to design field protocols which maximize efficiency and support increased quantity and quality of the data collected. This study informs researchers and practitioners seeking to optimize TLS sampling methods for vegetation monitoring in dryland ecosystems through three analyses. First, we quantify the 2D extent of occluded regions based on the range from single scan positions. Second, we measure the efficacy of additional scan positions on the reduction of 2D occluded regions (area) using progressive configurations of scan positions in 1 ha plots. Third, we test the reproducibility of 3D sampling yielded by a 5-scan/ha sampling methodology using redundant sets of scans. Analyses were performed using measurements at analysis scales of 5 to 50 cm across the 1-ha plots, and we considered plots in grass and shrub-dominated communities separately. In grass-dominated plots, a center-scan configuration and 5 cm pixel size sampled at least 90% of the area up to 18 m away from the scanner. In shrub-dominated plots, sampling at least 90% of the area was only achieved within a distance of 12 m. We found that 3 and 5 scans/ha are needed to sample at least ~ 70% of the total area (1 ha) in the grass and shrub-dominated plots, respectively

  8. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses.

    PubMed

    Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori

    2017-07-26

    The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.

  9. Method for estimating rice plant height without ground surface detection using laser scanner measurement

    NASA Astrophysics Data System (ADS)

    Thi Phan, Anh Thu; Takahashi, Kazuyoshi; Rikimaru, Atsushi; Higuchi, Yasuhiro

    2016-10-01

    A method for estimating the height of rice plants, using three-dimensional laser range data from point clouds, is proposed and assessed. Rice plant height (H) is estimated using a reference position at the top of the rice plant, avoiding the need to determine the ground position. Field experiments were performed with a SICK LMS 200 laser scanner in 2013 and 2014 on a test field with five different planting geometries. Percentile analysis identified the closest percentile to the top of the rice plant (pt=1), with vertical distances at the first percentile unaffected by planting geometry. The plant bottom position was identified using three different percentile ranks (pb=95, pb =80, and pb =70). Relative vertical distances (rD) were computed from the difference between the top and bottom positions of the rice plant. These correlated well with measured H, with slopes greater than 1.0. A greater number of stems in 2014 led to steeper slopes. Estimated H was more accurate when plant bottom positions were closer to the ground surface, and the best results were obtained with pb=95 (r2>0.87 RMSE≈4 cm). Overall, H was typically 16.0 cm greater than rD with pb=95.

  10. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  11. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner

    PubMed Central

    San José, Verónica; Bellot-Arcís, Carlos; Tarazona, Beatriz; Zamora, Natalia; O Lagravère, Manuel

    2017-01-01

    Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patients’ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764

  12. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  13. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Ullrich, Andreas

    2010-04-01

    Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.

  14. Rockfall monitoring by Terrestrial Laser Scanning - case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Abellán, A.; Vilaplana, J. M.; Calvet, J.; García-Sellés, D.; Asensio, E.

    2011-03-01

    This case study deals with a rock face monitoring in urban areas using a Terrestrial Laser Scanner. The pilot study area is an almost vertical, fifty meter high cliff, on top of which the village of Castellfollit de la Roca is located. Rockfall activity is currently causing a retreat of the rock face, which may endanger the houses located at its edge. TLS datasets consist of high density 3-D point clouds acquired from five stations, nine times in a time span of 22 months (from March 2006 to January 2008). The change detection, i.e. rockfalls, was performed through a sequential comparison of datasets. Two types of mass movement were detected in the monitoring period: (a) detachment of single basaltic columns, with magnitudes below 1.5 m3 and (b) detachment of groups of columns, with magnitudes of 1.5 to 150 m3. Furthermore, the historical record revealed (c) the occurrence of slab failures with magnitudes higher than 150 m3. Displacements of a likely slab failure were measured, suggesting an apparent stationary stage. Even failures are clearly episodic, our results, together with the study of the historical record, enabled us to estimate a mean detachment of material from 46 to 91.5 m3 year-1. The application of TLS considerably improved our understanding of rockfall phenomena in the study area.

  15. Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Gigele, T.; Fromm, R.

    2017-11-01

    This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.

  16. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  17. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    PubMed

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  18. Accuracy in estimation of timber assortments and stem distribution - A comparison of airborne and terrestrial laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2014-11-01

    Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.

  19. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less

  20. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  1. Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner.

    PubMed

    Wonneberger, Uta; Schnackenburg, Bernhard; Wlodarczyk, Waldemar; Rump, Jens; Walter, Thula; Streitparth, Florian; Teichgräber, Ulf Karl Mart

    2010-01-01

    The purpose of this study was to evaluate different methods of magnetic resonance thermometry (MRTh) for the monitoring of intradiscal laser ablation therapy in an open 1.0 Tesla magnetic resonance (MR) scanner. MRTh methods based on the two endogenous MR temperature indicators of spin-lattice relaxation time T1 and water proton resonance frequency (PRF) shift were optimised and compared in vitro. For the latter, we measured the effective spin-spin relaxation times T2* in intervertebral discs of volunteers. Then we compared four gradient echo-based imaging techniques to monitor laser ablations in human disc specimens. Criteria of assessment were outline of anatomic detail, immunity against needle artefacts, signal-to-noise ratio (SNR) and accuracy of the calculated temperature. T2* decreased in an inverse and almost linear manner with the patients' age (r = 0.9) from 70 to 30 ms (mean of 49 ms). The optimum image quality (anatomic details, needle artefacts, SNR) and temperature accuracy (+/-1.09 degrees C for T1-based and +/-1.11 degrees C for PRF-based MRTh) was achieved with a non-spoiled gradient-echo sequence with an echo time of TE = 10 ms. Combination of anatomic and thermometric non-invasive monitoring of laser ablations in the lumbar spine is feasible. The temperature accuracy of the investigated T1- and PRF-based MRTh methods in vitro is high enough and promises to be reliable in vivo as well.

  2. Measuring Leaf Water Content Using Multispectral Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Junttila, S.; Vastaranta, M.; Linnakoski, R.; Sugano, J.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, H.; Hyyppä, J.

    2017-10-01

    Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC) is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS). LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2) in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  3. The Registration and Segmentation of Heterogeneous Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Mohannad M.

    Light Detection And Ranging (LiDAR) mapping has been emerging over the past few years as a mainstream tool for the dense acquisition of three dimensional point data. Besides the conventional mapping missions, LiDAR systems have proven to be very useful for a wide spectrum of applications such as forestry, structural deformation analysis, urban mapping, and reverse engineering. The wide application scope of LiDAR lead to the development of many laser scanning technologies that are mountable on multiple platforms (i.e., airborne, mobile terrestrial, and tripod mounted), this caused variations in the characteristics and quality of the generated point clouds. As a result of the increased popularity and diversity of laser scanners, one should address the heterogeneous LiDAR data post processing (i.e., registration and segmentation) problems adequately. Current LiDAR integration techniques do not take into account the varying nature of laser scans originating from various platforms. In this dissertation, the author proposes a methodology designed particularly for the registration and segmentation of heterogeneous LiDAR data. A data characterization and filtering step is proposed to populate the points' attributes and remove non-planar LiDAR points. Then, a modified version of the Iterative Closest Point (ICP), denoted by the Iterative Closest Projected Point (ICPP) is designed for the registration of heterogeneous scans to remove any misalignments between overlapping strips. Next, a region-growing-based heterogeneous segmentation algorithm is developed to ensure the proper extraction of planar segments from the point clouds. Validation experiments show that the proposed heterogeneous registration can successfully align airborne and terrestrial datasets despite the great differences in their point density and their noise level. In addition, similar testes have been conducted to examine the heterogeneous segmentation and it is shown that one is able to identify common

  4. Validation of lower limb segmental volumetry with hand-held, self-positioning three-dimensional laser scanner against water displacement.

    PubMed

    Mestre, Sandrine; Veye, Florent; Perez-Martin, Antonia; Behar, Thomas; Triboulet, Jean; Berron, Nicolas; Demattei, Christophe; Quéré, Isabelle

    2014-01-01

    Measurement of limb volume is helpful for the evaluation and follow-up of edema, especially in patients with chronic venous insufficiency (CVI) or lymphedema. Water displacement (WD) is the reference method for limb volumetry but is not really suitable for clinical routine. Indirect volumetry based on circumference measurements as well as the more expansive but automatic optoelectronic techniques do not allow detailed measurement at the extremity of the limb. We used a self-positioning laser scanner with dynamic referencing for acquisition and real-time three-dimensional (3D) reconstruction of the lower limb volume in 30 patients with CVI, 30 patients with lymphedema, and 30 healthy controls. Two independent observers performed either one or two laser scans, whose results were tested for intra- and interobserver reproducibility and compared with WD volumetry by Lin's concordance correlation coefficient and Bland and Altman graphic analysis. Automatic volume calculation from 3D laser scanning data failed in one patient with major lymphedema. Lin's concordance correlation coefficient was 0.99 and 0.98, respectively, for intraobserver no. 1 and no. 2, 0.98 for interobserver reproducibility, and 0.98 and 0.96, respectively, for observer no. 1 and observer no. 2 vs WD comparison. The 3D laser scanning yielded 1.99% precision. Accuracy was 3.12% for observer no. 1 and 2.71% for observer no. 2, laser scanning values being 90 mL higher than WD, which could be attributed to the different posture during measurement. Three-dimensional laser scanning is accurate and reproducible, and appears suitable for the evaluation of limb volume in patients with CVI or lymphedema. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  6. Characterizing effects of wind erosion on soil microtopography in a semiarid grassland using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Washington-Allen, R. A.; Okin, G. S.

    2010-12-01

    Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.

  7. As- built inventory of the office building with the use of terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Przyborski, Marek; Tysiąc, Paweł

    2018-01-01

    Terrestrial Laser Scanning (TLS) is an efficient tool for building inventories. Based on the red- laser beam technology it is possible to provide the high accuracy data with complete spatial information about a scanned object. In this article, authors present the solution of use a TLS in as-built inventory of the office building. Based on the provided data, it is possible to evaluate the correctness of built details of a building and provide information for further construction works, for example an area needed for Styrofoam installation. The biggest problem in this research is that an error which equals over 1cm could generate costs, which could be a problem to cover by a constructor. Based on a complicated place of the construction works (centre of a city) it was a challenge to maintain the accuracy.

  8. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser

  9. Tls Field Data Based Intensity Correction for Forest Environments

    NASA Astrophysics Data System (ADS)

    Heinzel, J.; Huber, M. O.

    2016-06-01

    Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

  10. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    NASA Astrophysics Data System (ADS)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    . Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  11. Land-Based Mobile Laser Scanning Systems: a Review

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  12. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  13. Spectra of clinical CT scanners using a portable Compton spectrometer.

    PubMed

    Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S

    2015-04-01

    Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  14. Using flatbed scanners in the undergraduate optics laboratory—An example of frugal science

    NASA Astrophysics Data System (ADS)

    Koopman, Thomas; Gopal, Venkatesh

    2017-05-01

    We describe the use of a low-cost commercial flatbed scanner in the undergraduate teaching laboratory to image large (˜25 cm) interference and diffraction patterns in two dimensions. Such scanners usually have an 8-bit linear photosensor array that can scan large areas (˜28 cm × 22 cm) at very high spatial resolutions (≥100 Megapixels), which makes them versatile large-format imaging devices. We describe how the scanner can be used to image interference and diffraction from rectangular single-slit, double-slit, and circular apertures. The experiments are very simple to setup and require no specialized components besides a small laser and a flatbed scanner. Due to the presence of Automatic Gain Control in the scanner, which we were not able to override, we were unable to get an excellent fit to the data. Interestingly, we found that the less-than-ideal data were actually pedagogically superior as it forced the students to think about the process of data acquisition in much greater detail instead of simply performing the experiment mechanically.

  15. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  16. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  17. Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: a Case Study in Italy

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Dellapasqua, M.; Girelli, V. A.; Sbaraglia, S.; Tinia, M. A.

    2017-05-01

    The current dramatic episodes of destruction of archaeological sites have again highlighted the problem of the safeguarding the threatened heritage and, if possible, recovering those damaged by all the armed conflicts of the past. The historical photogrammetry offers the possibility to recover a posteriori the geometrical and material properties of destroyed structures, reconstructing their 3D model to document, study and maintain their memory, until to support their real anastylosis. The presented work is about the 3D reconstruction of the civic tower of the little town of Sant'Alberto, near the city of Ravenna, Italy. The tower, as a symbol of resistance and pride of the town's population, was destroyed in December 1944 by German troops in retaliation, when they were forced to leave the area. A city committee has subsequently collected all the historical evidence concerning the tower, including a series of photographic images that can be used for the photogrammetric reconstruction; the images calibration and orientation have been solved using the geometric information derived by a terrestrial laser scanner survey realized in the area where the tower was originally located. Despite the scarcity and very poor quality of the available images, the conducted photogrammetric procedure has allowed a complete and qualitatively satisfying object reconstruction, also thanks to the use of geometric constraint tools offered by the chosen software. The integration between the obtained model of the old tower and the 3D TLS survey of the square made it possible to reconstruct the ancient situation of the area.

  18. Automatic Construction of 3D Basic-Semantic Models of Inhabited Interiors Using Laser Scanners and RFID Sensors

    PubMed Central

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results. PMID:22778609

  19. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  20. SPF-RR sequential photothermal fractional resurfacing and remodeling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser.

    PubMed

    Marini, Leonardo

    2009-12-01

    Many different lasers, polychromatic high-intensity light sources (PCLs), and RF devices have claimed clinical efficacy in rejuvenating the skin. In this study, the sequential combination of two different laser wavelengths was evaluated to produce reliably significant clinical improvements optimizing treatment parameters. The left volar aspects of the forearms of four volunteers were treated with nine different parameter settings using a variable pulsewidth fractional Er:YAG 2940-nm laser with and without air cooling. The pain perception level was recorded on a 0-10 point scale (0=No pain; 10=Most severe pain). Three evaluations were made: during treatment, immediately after treatment, and 5 minutes after treatment. The same investigation was made on the right volar aspects of the same four volunteers using a short-pulse, random pattern, 3-mm spot, scanner-assisted Nd-YAG 1064-nm laser at 0.3 ms pulsewidth at seven different parameter settings. Clinical evaluations were made concerning erythema and edema 3 days after treatment, as well as pre-operative and 60 days postoperative skin texture plus color uniformity. Considering that the majority of cosmetic patients are willing to accept a relatively short and uneventful downtime (2-4 days according to a study we are presently conducting) and do prefer to limit their intra- and postoperative pain to a minimum, the best combination of clinical improvement matching these two important parameters were selected for our study. A treatment strategy combining two sequential passes of long-pulse Nd:YAG laser (Nd:YAG-LP) at 0.3 and 35 ms followed by two passes of long-pulse fractional Er:YAG laser (Er:YAG-FT) at 600 micros was designed to treat the facial regions of 10 volunteers affected by a combination of intrinsic (chrono-) and extrinsic (mostly photo-) aging. The pain perception level was recorded on a 0-10 scale (0=No pain; 10=Most severe pain). Three evaluations were made: during, immediately after, and 5 minutes after

  1. Boresight Calibration of Construction Misalignments for 3D Scanners Built with a 2D Laser Rangefinder Rotating on Its Optical Center

    PubMed Central

    Morales, Jesús; Martínez, Jorge L.; Mandow, Anthony; Reina, Antonio J.; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso

    2014-01-01

    Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder. PMID:25347585

  2. High-Accuracy Multisensor Geolocation Technology to Support Geophysical Data Collection at MEC Sites

    DTIC Science & Technology

    2012-12-01

    image with intensity data in a single step. Flash LiDAR can use both basic solutions to emit laser , either a single pulse with large aperture will...45 6. LASER SENSOR DEVELOPMENTS...and a terrestrial laser scanner (TLS). State-of-the-art GPS navigation allows for cm- accurate positioning in open areas where a sufficient number

  3. Validation of snow depth reconstruction from lapse-rate webcam images against terrestrial laser scanner measurements in centrel Pyrenees

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio

    2015-04-01

    Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS

  4. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  5. An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro

    This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.

  6. A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors

    PubMed Central

    Zhang, Chi; Zhang, Gaofei; You, Zheng

    2009-01-01

    A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621

  7. A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.

    PubMed

    Zhang, Chi; Zhang, Gaofei; You, Zheng

    2009-01-01

    A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.

  8. Characterization and control of EUV scanner dose uniformity and stability

    NASA Astrophysics Data System (ADS)

    Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick

    2018-03-01

    The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.

  9. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  11. Non-laser-based scanner for three-dimensional digitization of historical artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Daniel V.; Baldwin, Kevin C.; Duncan, Donald D

    2007-05-20

    A 3D scanner, based on incoherent illumination techniques, and associated data-processing algorithms are presented that can be used to scan objects at lateral resolutions ranging from 5 to100 {mu}m (or more) and depth resolutions of approximately 2 {mu}m.The scanner was designed with the specific intent to scan cuneiform tablets but can be utilized for other applications. Photometric stereo techniques are used to obtain both a surface normal map and a parameterized model of the object's bidirectional reflectance distribution function. The normal map is combined with height information,gathered by structured light techniques, to form a consistent 3D surface. Data from Lambertianmore » and specularly diffuse spherical objects are presented and used to quantify the accuracy of the techniques. Scans of a cuneiform tablet are also presented. All presented data are at a lateral resolution of 26.8 {mu}m as this is approximately the minimum resolution deemed necessary to accurately represent cuneiform.« less

  12. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  13. Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners

    NASA Astrophysics Data System (ADS)

    Barkan, Eric; Swartz, Jerome

    1982-04-01

    Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.

  14. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.

    PubMed

    Friedli, Michael; Kirchgessner, Norbert; Grieder, Christoph; Liebisch, Frank; Mannale, Michael; Walter, Achim

    2016-01-01

    Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and

  15. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    NASA Astrophysics Data System (ADS)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  16. Characterising Vegetation Structural and Functional Differences Across Australian Ecosystems From a Network of Terrestrial Laser Scanning Survey Sites and Airborne and Satellite Image Archives

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.

    2015-12-01

    Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative

  17. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  18. Wetland Microtopographic Structure is Revealed with Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Stovall, A. E.; Mclaughlin, D. L.; Slesak, R.

    2017-12-01

    Wetland microtopographic structure and its function has been the subject of research for decades, and several investigations suggest that microtopography is generated by autogenic ecohydrologic processes. But due to the difficulty of capturing the true spatial variability of wetland microtopography, many of the hypotheses for self-organization have remained elusive to test. We employ a novel method of Terrestrial Laser Scanning (TLS) that reveals an unprecedented high-resolution (<0.5 cm) glimpse at the true spatial structure of wetland microtopography in 10 black ash (Fraxinus nigra) stands of northern Minnesota, USA. Here we present the first efforts to synthesize this information and show that TLS provides a good representation of real microtopographic structure, where TLS accurately measured hummock height, but occlusion of low points led to a slight negative bias. We further show that TLS can accurately locate microtopographic high points (hummocks), as well as estimate their height and area. Using these new data, we estimate distributions in both microtopographic elevation and hummock area in each wetland and relate these to monitored hydrologic regime; in doing so, we test hypotheses linking emergent microtopographic patterns to putative hydrologic controls. Finally, we discuss future efforts to enumerate consequent influences of microtopography on wetland systems (soil properties and vegetation composition).

  19. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  20. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  1. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry

    PubMed Central

    Parker, Brent C.; Neck, Daniel W.; Henkelmann, Greg; Rosen, Isaac I.

    2010-01-01

    The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges. PACS number: 87.55.Qr

  2. Indoor Modelling from Slam-Based Laser Scanner: Door Detection to Envelope Reconstruction

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Verbree, E.; Zlatanova, S.; Diakité, A.

    2017-09-01

    Updated and detailed indoor models are being increasingly demanded for various applications such as emergency management or navigational assistance. The consolidation of new portable and mobile acquisition systems has led to a higher availability of 3D point cloud data from indoors. In this work, we explore the combined use of point clouds and trajectories from SLAM-based laser scanner to automate the reconstruction of building indoors. The methodology starts by door detection, since doors represent transitions from one indoor space to other, which constitutes an initial approach about the global configuration of the point cloud into building rooms. For this purpose, the trajectory is used to create a vertical point cloud profile in which doors are detected as local minimum of vertical distances. As point cloud and trajectory are related by time stamp, this feature is used to subdivide the point cloud into subspaces according to the location of the doors. The correspondence between subspaces and building rooms is not unambiguous. One subspace always corresponds to one room, but one room is not necessarily depicted by just one subspace, for example, in case of a room containing several doors and in which the acquisition is performed in a discontinue way. The labelling problem is formulated as combinatorial approach solved as a minimum energy optimization. Once the point cloud is subdivided into building rooms, envelop (conformed by walls, ceilings and floors) is reconstructed for each space. The connectivity between spaces is included by adding the previously detected doors to the reconstructed model. The methodology is tested in a real case study.

  3. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  4. Use of terrestrial laser scanning for the documentation of quaternary caves

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kramkowski, Mateusz; Wiśniewska, Daria; Urban, Jan

    2016-04-01

    Due to the nature of their occurrence and genesis, caves in the Polish Lowlands represent a peculiarity of geological heritage, unique on the European scale. They are developed in Quaternary deposits, mostly at the contact of slabs or irregular bodies of cemented glacial or glaciofluvial deposits: conglomerates and sandstones, with unconsolidated deposits, mostly sands, gravels and clays. So far, 20 such caves have been recorded in Polish Lowlands. Most caves are only several meters long, the largest one is over 60 m long. Regardless of their origins, the character of host rocks is the reason that processes leading to their formation are simultaneously the destroying processes. Thus, the studied caves, as well as other caves of this region, are unstable, gradually evolving objects. The changes taking place in them are continuous and intense enough, therefore the documentation of their shape with the greatest possible accuracy and resolution becomes crucial. Such possibility can provide the technique of laser scanning. In 2014 three caves, including one recently discovered, were scanned using the TLS. Measurements of caves and their surroundings were conducted in May and July 2014 with a scanner RIEGL VZ-4000. Point clouds from several scanner positions were combined using the module Multi Station Adjustment in the RiSCAN software. This module allows to connect point clouds from successive positions without any objects of reference. After the merger of point clouds from individual positions and their filtration, a collection of several million points was obtained. The number of points projected on the wall was over 20 000 per m2. The using of TLS enabled to present the morphometric features impossible to obtain using traditional methods. High density of the point clouds allows registering even small details on the cave walls, as well as monitoring leaching, falling, grinding and flaking processes taking place in them. Thus, the most important advantage of the TLS is

  5. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  6. Geomorphological processes in a semiarid badland area using new technologies: TLS, terrestrial and aerial SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Ferrer, Victor; Errea, Paz; Alonso, Esteban; Gómez-Gutiérrez, Álvaro; Nadal-Romero, Estela

    2017-04-01

    We used three different methods Terrestrial Laser Scanner (TLS), terrestrial Structure from Motion photogrammetry (SfM) and aerial SfM photogrammetry with an Unmanned Aerial Vehicle (UAV) to analyse geomorphological processes in a semiarid badland landscape. Los Aguarales badlands, located in the Ebro Depression (Spain), occur in the Holocene sediment accumulated in a wide valley infilled with silt and clay. The morphology of Los Aguarales badlands is complex, making the geomorphological interpretation a difficult task. Los Aguarales badlands are characterized by the sequence of incision and piping processes developing an abrupt and complex landscape. Three different representative and small study sites were selected to carry out a detailed analysis of the geomorphological processes. Moreover, the capability of the three methods to produce high resolution point clouds was evaluated. The obtained topographical changes were very low during the first 6 months (March-October 2016). Measured topographical changes, with TLS and terrestrial SfM, were very low, and these values fall within the range of the acquisition error of the devices used (2-6 cm). The preliminary results indicated the possibilities of a multiscale approach using new technologies to study geomorphological and erosion processes, although long-term studies will be necessary to obtain erosion rates in this semiarid badland area. Acknowledgement This research was supported by ESPAS and eTERA 3D projects (CGL2015- 65569-R and CGL2014-54822-R, funded by the MINECO-FEDER). Estela Nadal-Romero is the recipient of a Ramón y Cajal postdoctoral contract (Spanish Ministry of Economy and Competitiveness).

  7. Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.

    2016-06-01

    Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.

  8. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture

    PubMed Central

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535

  9. Comparison of different laser systems in the treatment of hypertrophic and atrophic scars and keloids

    NASA Astrophysics Data System (ADS)

    Scharschmidt, D.; Algermissen, Bernd; Willms-Jones, J.-C.; Philipp, Carsten M.; Berlien, Hans-Peter

    1997-12-01

    Different laser systems and techniques are used for the treatment of hypertrophic scars, keloids and acne scars. Significant criteria in selecting a suitable laser system are the scar's vascularization, age and diameter. Flashlamp- pumped dye-lasers, CO2-lasers with scanner, Argon and Nd:YAG-lasers are used. Telangiectatic scars respond well to argon lasers, erythematous scars and keloids to dye-laser treatment. Using interstitial Nd:YAG-laser vaporization, scars with a cross-section over 1 cm can generally be reduced. For the treatment of atrophic and acne scars good cosmetic results are achieved with a CO2-laser/scanner system, which allows a precise ablation of the upper dermis with low risk of side-effects.

  10. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    PubMed Central

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  11. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi

    2017-04-01

    Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.

  12. Comparison of the FaroArm Laser Scanner With the MicroScribe Digitizer Using Basicranial Measurements.

    PubMed

    Vu, Alexander F; Chundury, Rao V; Perry, Julian D

    2017-07-01

    To compare the results of a mechanical 3-dimensional laser scanner for craniofacial measurements of the basicranium to a validated coordinate device. Access was granted by the Cleveland Natural History Museum to evaluate the Hamann-Todd Human Osteological Collection for this study. The MicroScribe and the FaroArm were used to gather coordinate data of various bony landmarks measurements including the prosthion, staphylion, hormion, and basion. Seventy-three human skulls were measured and scanned. Distances calculated from the coordinates were tested for agreement using the Bland-Altman test. There were no significant differences in the bias or slope measures between the MicroScribe and the FaroArm. In addition to the univariate test for slope significance, multivariable analysis using age, gender, and race as additional predictors showed no significant difference in any variable (P < 0.05). This is the first study demonstrating agreement of the FaroArm in any human skull measurement with the validated MicroScribe digitizer. Compared with the MicroScribe digitizer, the FaroArm allows for 3-dimensional imaging and the ability to store, handle, and view data digitally. Future use of real-time facial measurements using the FaroArm offers potential for improved surgical planning and outcomes.

  13. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  14. Laser scanning system for object monitoring

    DOEpatents

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  15. Complete-arch accuracy of intraoral scanners.

    PubMed

    Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling

    2018-04-30

    Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners

  16. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  17. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Ouédraogo, Mohamar Moussa; Degré, Aurore; Debouche, Charles; Lisein, Jonathan

    2014-06-01

    Agricultural watersheds tend to be places of intensive farming activities that permanently modify their microtopography. The surface characteristics of the soil vary depending on the crops that are cultivated in these areas. Agricultural soil microtopography plays an important role in the quantification of runoff and sediment transport because the presence of crops, crop residues, furrows and ridges may impact the direction of water flow. To better assess such phenomena, 3-D reconstructions of high-resolution agricultural watershed topography are essential. Fine-resolution topographic data collection technologies can be used to discern highly detailed elevation variability in these areas. Knowledge of the strengths and weaknesses of existing technologies used for data collection on agricultural watersheds may be helpful in choosing an appropriate technology. This study assesses the suitability of terrestrial laser scanning (TLS) and unmanned aerial system (UAS) photogrammetry for collecting the fine-resolution topographic data required to generate accurate, high-resolution digital elevation models (DEMs) in a small watershed area (12 ha). Because of farming activity, 14 TLS scans (≈ 25 points m- 2) were collected without using high-definition surveying (HDS) targets, which are generally used to mesh adjacent scans. To evaluate the accuracy of the DEMs created from the TLS scan data, 1098 ground control points (GCPs) were surveyed using a real time kinematic global positioning system (RTK-GPS). Linear regressions were then applied to each DEM to remove vertical errors from the TLS point elevations, errors caused by the non-perpendicularity of the scanner's vertical axis to the local horizontal plane, and errors correlated with the distance to the scanner's position. The scans were then meshed to generate a DEMTLS with a 1 × 1 m spatial resolution. The Agisoft PhotoScan and MicMac software packages were used to process the aerial photographs and generate a DEMPSC

  18. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  19. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  20. Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe

    USGS Publications Warehouse

    Anderson, Kyle E.; Glenn, Nancy; Spaete, Lucas; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2017-01-01

    Terrestrial laser scanning (TLS) provides fast collection of high-definition structural information, making it a valuable field instrument to many monitoring applications. A weakness of TLS collections, especially in vegetation, is the occurrence of unsampled regions in point clouds where the sensor’s line-of-sight is blocked by intervening material. This problem, referred to as occlusion, may be mitigated by scanning target areas from several positions, increasing the chance that any given area will fall within the scanner’s line-of-sight from at least one position. Because TLS collections are often employed in remote regions where the scope of sampling is limited by logistical factors such as time and battery power, it is important to design field protocols which maximize efficiency and support increased quantity and quality of the data collected. This study informs researchers and practitioners seeking to optimize TLS sampling methods for vegetation monitoring in dryland ecosystems through three analyses. First, we quantify the 2D extent of occluded regions based on the range from single scan positions. Second, we measure the efficacy of additional scan positions on the reduction of 2D occluded regions (area) using progressive configurations of scan positions in 1 ha plots. Third, we test the reproducibility of 3D sampling yielded by a 5-scan/ha sampling methodology using redundant sets of scans. Analyses were performed using measurements at analysis scales of 5 to 50 cm across the 1-ha plots, and we considered plots in grass and shrub-dominated communities separately. In grass-dominated plots, a center-scan configuration and 5 cm pixel size sampled at least 90% of the area up to 18 m away from the scanner. In shrub-dominated plots, sampling at least 90% of the area was only achieved within a distance of 12 m. We found that 3 and 5 scans/ha are needed to sample at least ~ 70% of the total area (1 ha) in the grass and shrub-dominated plots

  1. Towards mapping of rock walls using a UAV-mounted 2D laser scanner in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Turner, Glen

    In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to

  2. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    NASA Astrophysics Data System (ADS)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  3. Change Analysis of Laser Scans of Laboratory Rock Slopes Subject to Wave Attack Testing

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Lindenbergh, R.; Hofland, B.; Kramer, R.

    2017-09-01

    For better understanding how coastal structures with gentle slopes behave during high energy events, a wave attack experiment representing a storm of 3000 waves was performed in a flume facility. Two setups with different steepness of slope were compared under the same conditions. In order to quantify changes in the rock slopes after the wave attack, a terrestrial laser scanner was used to obtain 3D coordinates of the rock surface before and after each experiment. Next, through a series of processing steps, the point clouds were converted to a suitable 2D raster for change analysis. This allowed to estimate detailed and quantitative change information. The results indicate that the area around the artificial coast line, defined as the intersection between sloped surface and wave surface, is most strongly affected by wave attacks. As the distances from the sloped surface to the waves are shorter, changes for the mildly sloped surface, slope 1 (1 : 10), are distributed over a larger area compared to the changes for the more steeply sloped surface, slope 2 (1 : 5). The results of this experiment show that terrestrial laser scanning is an effective and feasible method for change analysis of rock slopes in a laboratory setting. Most striking results from a process point of view is that the transport direction of the rocks change between the two different slopes: from seaward transport for the steeper slope to landward transport for the milder slope.

  4. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    NASA Astrophysics Data System (ADS)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  5. Terrestrial hyperspectral image shadow restoration through fusion with terrestrial lidar

    NASA Astrophysics Data System (ADS)

    Hartzell, Preston J.; Glennie, Craig L.; Finnegan, David C.; Hauser, Darren L.

    2017-05-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from exclusively airborne observations to include terrestrial modalities. In contrast to airborne collection geometry, hyperspectral imagery captured from terrestrial cameras is prone to extensive solar shadowing on vertical surfaces leading to reductions in pixel classification accuracies or outright removal of shadowed areas from subsequent analysis tasks. We demonstrate the use of lidar spatial information for sub-pixel HSI shadow detection and the restoration of shadowed pixel spectra via empirical methods that utilize sunlit and shadowed pixels of similar material composition. We examine the effectiveness of radiometrically calibrated lidar intensity in identifying these similar materials in sun and shade conditions and further evaluate a restoration technique that leverages ratios derived from the overlapping lidar laser and HSI wavelengths. Simulations of multiple lidar wavelengths, i.e., multispectral lidar, indicate the potential for HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance of shadowed HSI pixels is quantified for imagery of a geologic outcrop through improvements in spectral shape, spectral scale, and HSI band correlation.

  6. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  7. Ground penetrating radar and terrestrial laser scanner surveys on deposits of dilute pyroclastic density current deposits: insights for dune bedform genesis

    NASA Astrophysics Data System (ADS)

    Rémi Dujardin, Jean; Amin Douillet, Guilhem; Abolghasem, Amir; Cordonnier, Benoit; Kueppers, Ulrich; Bano, Maksim; Dingwell, Donald B.

    2014-05-01

    Dune bedforms formed by dilute pyroclastic density currents (PDC) are often described or interpreted as antidunes and chute and pools. However, the interpretation remains essentially speculative and is not well understood. This is largely due to the seeming impossibility of in-situ measurements and experimental scaling, as well as the lack of recent, 3D exposures. Indeed, most dune bedform cross-stratifications from the dilute PDC record outcrop in 2D sections. The 2006 eruption of Tungurahua has produced well-developed bedforms that are well-exposed on the surface of the deposits with easy access. We performed a survey of these deposits combining ground penetrating radar (GPR) profiling with terrestrial laser scanning of the surface. The GPR survey was carried in dense arrays (from 10 to 25 cm spacing between profiles) over ca. 10 m long bedforms. GPR profiles were corrected for topography from photogrammetry data. An in-house software, RadLab (written in matlab), was used for common processing of individual profiles and 2D & 3D topographic migration. Each topography-corrected profile was then loaded into a seismic interpretation software, OpenDtect, for 3D visualization and interpretation. Most bedforms show high lateral stability that is independent of the cross-stratification pattern (that varies between stoss-aggrading bedsets, stoss-erosive bedsets and stoss-depositional lensoidal layers). Anecdotic bedforms have their profiles that evolve laterally (i.e. in a direction perpendicular to the flow direction). Cannibalization of two dune bedforms into a single one on one end of the profile can evolve into growth of a single bedform at the other lateral end. Also, lateral variation in the migration direction occurs, i.e. a single bedform can show upstream aggradation at one lateral end of the bedform, but show downstream migration at the other end. Some bedforms have great variations in their internal structure. Several episodes of growth and erosion can be

  8. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  9. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  10. Line Segmentation of 2d Laser Scanner Point Clouds for Indoor Slam Based on a Range of Residuals

    NASA Astrophysics Data System (ADS)

    Peter, M.; Jafri, S. R. U. N.; Vosselman, G.

    2017-09-01

    Indoor mobile laser scanning (IMLS) based on the Simultaneous Localization and Mapping (SLAM) principle proves to be the preferred method to acquire data of indoor environments at a large scale. In previous work, we proposed a backpack IMLS system containing three 2D laser scanners and an according SLAM approach. The feature-based SLAM approach solves all six degrees of freedom simultaneously and builds on the association of lines to planes. Because of the iterative character of the SLAM process, the quality and reliability of the segmentation of linear segments in the scanlines plays a crucial role in the quality of the derived poses and consequently the point clouds. The orientations of the lines resulting from the segmentation can be influenced negatively by narrow objects which are nearly coplanar with walls (like e.g. doors) which will cause the line to be tilted if those objects are not detected as separate segments. State-of-the-art methods from the robotics domain like Iterative End Point Fit and Line Tracking were found to not handle such situations well. Thus, we describe a novel segmentation method based on the comparison of a range of residuals to a range of thresholds. For the definition of the thresholds we employ the fact that the expected value for the average of residuals of n points with respect to the line is σ / √n. Our method, as shown by the experiments and the comparison to other methods, is able to deliver more accurate results than the two approaches it was tested against.

  11. Comparing terrestrial laser scanning with ground and UAV-based imaging for national-level assessment of upland soil erosion

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; Farrow, Luke; Morgan, David; Glendell, Miriam; James, Mike; Quinton, John; Evans, Martin; Anderson, Karen; Rawlins, Barry; Quine, Timothy; Debell, Leon; Benaud, Pia; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rickson, Jane; Brazier, Richard

    2015-04-01

    Quantifying soil loss through erosion processes at a high resolution can be a time consuming and costly undertaking. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods for collecting suitable topographic measurements via remote sensing. The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, to quantify dynamic processes, such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, both processed using structure-from-motion (SfM) 3D reconstruction software. Compared to other established techniques, such as expensive TLS, SfM offers a potentially low-cost alternative for the reconstruction of 3D high-resolution micro-topographic models from photographs taken with consumer grade cameras. However, whilst an increasing number of research papers examine the relative merits of these novel versus more established survey techniques, no study to date has compared both ground-based and aerial SfM photogrammetry with TLS scanning across a range of scales (from m2 to 16ha). The evaluation of these novel low cost techniques is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. Volumetric estimates of soil loss are quantified using the digital surface models (DSMs) derived from the data from each technique and subtracted from a modelled pre-erosion surface. The results from each technique are compared. The UAV was able to capture information over a wide area, a range of altitudes and angles over the study area. Combined with automated SfM-based processing, this technique was able to produce rapid orthophotos to support ground-based data

  12. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  13. Collection, processing and error analysis of Terrestrial Laser Scanning data from fluvial gravel surfaces

    NASA Astrophysics Data System (ADS)

    Hodge, R.; Brasington, J.; Richards, K.

    2009-04-01

    The ability to collect 3D elevation data at mm-resolution from in-situ natural surfaces, such as fluvial and coastal sediments, rock surfaces, soils and dunes, is beneficial for a range of geomorphological and geological research. From these data the properties of the surface can be measured, and Digital Terrain Models (DTM) can be constructed. Terrestrial Laser Scanning (TLS) can collect quickly such 3D data with mm-precision and mm-spacing. This paper presents a methodology for the collection and processing of such TLS data, and considers how the errors in this TLS data can be quantified. TLS has been used to collect elevation data from fluvial gravel surfaces. Data were collected from areas of approximately 1 m2, with median grain sizes ranging from 18 to 63 mm. Errors are inherent in such data as a result of the precision of the TLS, and the interaction of factors including laser footprint, surface topography, surface reflectivity and scanning geometry. The methodology for the collection and processing of TLS data from complex surfaces like these fluvial sediments aims to minimise the occurrence of, and remove, such errors. The methodology incorporates taking scans from multiple scanner locations, averaging repeat scans, and applying a series of filters to remove erroneous points. Analysis of 2.5D DTMs interpolated from the processed data has identified geomorphic properties of the gravel surfaces, including the distribution of surface elevations, preferential grain orientation and grain imbrication. However, validation of the data and interpolated DTMs is limited by the availability of techniques capable of collecting independent elevation data of comparable quality. Instead, two alternative approaches to data validation are presented. The first consists of careful internal validation to optimise filter parameter values during data processing combined with a series of laboratory experiments. In the experiments, TLS data were collected from a sphere and planes

  14. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less

  15. MFP scanner diagnostics using a self-printed target to measure the modulation transfer function

    NASA Astrophysics Data System (ADS)

    Wang, Weibao; Bauer, Peter; Wagner, Jerry; Allebach, Jan P.

    2014-01-01

    In the current market, reduction of warranty costs is an important avenue for improving profitability by manufacturers of printer products. Our goal is to develop an autonomous capability for diagnosis of printer and scanner caused defects with mid-range laser multifunction printers (MFPs), so as to reduce warranty costs. If the scanner unit of the MFP is not performing according to specification, this issue needs to be diagnosed. If there is a print quality issue, this can be diagnosed by printing a special test page that is resident in the firmware of the MFP unit, and then scanning it. However, the reliability of this process will be compromised if the scanner unit is defective. Thus, for both scanner and printer image quality issues, it is important to be able to properly evaluate the scanner performance. In this paper, we consider evaluation of the scanner performance by measuring its modulation transfer function (MTF). The MTF is a fundamental tool for assessing the performance of imaging systems. Several ways have been proposed to measure the MTF, all of which require a special target, for example a slanted-edge target. It is unacceptably expensive to ship every MFP with such a standard target, and to expect that the customer can keep track of it. To reduce this cost, in this paper, we develop new approach to this task. It is based on a self-printed slanted-edge target. Then, we propose algorithms to improve the results using a self-printed slanted-edge target. Finally, we present experimental results for MTF measurement using self-printed targets and compare them to the results obtained with standard targets.

  16. SOIMUMPs micromirror scanner and its application in laser line generator

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Nia, Farzad Hossein; He, Siyuan

    2017-01-01

    A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.

  17. Assessment of a Static Multibeam Sonar Scanner for 3d Surveying in Confined Subaquatic Environments

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Samat, O.; Pagès, C.

    2016-06-01

    Mechanical Scanning Sonar (MSS) is a promising technology for surveying underwater environments. Such devices are comprised of a multibeam echosounder attached to a pan & tilt positioner, that allows sweeping the scene in a similar way as Terrestrial Laser Scanners (TLS). In this paper, we report on the experimental assessment of a recent MSS, namely, the BlueView BV5000, in a confined environment: lock number 50 on the Marne-Rhin canal (France). To this aim, we hung the system upside-down to scan the lock chamber from the surface, which allows surveying the scanning positions, up to an horizontal orientation. We propose a geometric method to estimate the remaining angle and register the scans in a coordinate system attached to the site. After reviewing the different errors that impair sonar data, we compare the resulting point cloud to a TLS model that was acquired the day before, while the lock was completely empty for maintenance. While the results exhibit a bias that can be partly explained by an imperfect setup, the maximum difference is less than 15 cm, and the standard deviation is about 3.5 cm. Visual inspection shows that coarse defects of the masonry, such as stone lacks or cavities, can be detected in the MSS point cloud, while smaller details, e.g. damaged joints, are harder to notice.

  18. Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy.

    PubMed

    Zhao, Yi-Jiao; Xiong, Yu-Xue; Wang, Yong

    2017-01-01

    In this study, the practical accuracy (PA) of optical facial scanners for facial deformity patients in oral clinic was evaluated. Ten patients with a variety of facial deformities from oral clinical were included in the study. For each patient, a three-dimensional (3D) face model was acquired, via a high-accuracy industrial "line-laser" scanner (Faro), as the reference model and two test models were obtained, via a "stereophotography" (3dMD) and a "structured light" facial scanner (FaceScan) separately. Registration based on the iterative closest point (ICP) algorithm was executed to overlap the test models to reference models, and "3D error" as a new measurement indicator calculated by reverse engineering software (Geomagic Studio) was used to evaluate the 3D global and partial (upper, middle, and lower parts of face) PA of each facial scanner. The respective 3D accuracy of stereophotography and structured light facial scanners obtained for facial deformities was 0.58±0.11 mm and 0.57±0.07 mm. The 3D accuracy of different facial partitions was inconsistent; the middle face had the best performance. Although the PA of two facial scanners was lower than their nominal accuracy (NA), they all met the requirement for oral clinic use.

  19. The Use of Terrestrial Laser Scanning for Determining the Driver’s Field of Vision

    PubMed Central

    Zemánek, Tomáš; Cibulka, Miloš; Skoupil, Jaromír

    2017-01-01

    Terrestrial laser scanning (TLS) is currently one of the most progressively developed methods in obtaining information about objects and phenomena. This paper assesses the TLS possibilities in determining the driver’s field of vision in operating agricultural and forest machines with movable and immovable components in comparison to the method of using two light point sources for the creation of shade images according to ISO (International Organization for Standardization) 5721-1. Using the TLS method represents a minimum time saving of 55% or more, according to the project complexity. The values of shading ascertained by using the shadow cast method by the point light sources are generally overestimated and more distorted for small cabin structural components. The disadvantage of the TLS method is the scanner’s sensitivity to a soiled or scratched cabin windscreen and to the glass transparency impaired by heavy tinting. PMID:28902177

  20. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    PubMed

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  1. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    PubMed Central

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  2. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  3. A three-dimensional evaluation of a laser scanner and a touch-probe scanner.

    PubMed

    Persson, Anna; Andersson, Matts; Oden, Agneta; Sandborgh-Englund, Gunilla

    2006-03-01

    The fit of a dental restoration depends on quality throughout the entire manufacturing process. There is difficulty in assessing the surface topography of an object with a complex form, such as teeth, since there is no exact reference form. The purpose of this study was to determine the repeatability and relative accuracy of 2 dental surface digitization devices. A computer-aided design (CAD) technique was used for evaluation to calculate and present the deviations 3-dimensionally. Ten dies of teeth prepared for complete crowns were fabricated in presintered yttria-stabilized tetragonal zirconia (Y-TZP). The surfaces were digitized 3 times each with an optical or mechanical digitizer. The number of points in the point clouds from each reading were calculated and used as the CAD reference model (CRM). Alignments were performed by registration software that works by minimizing a distance criterion. In color-difference maps, the distribution of the discrepancies between the surfaces in the CRM and the 3-dimensional surface models was identified and located. The repeatability of both scanners was within 10 microm, based on SD and absolute mean values. The qualitative evaluation resulted in an even distribution of the deviations in the optical digitizer, whereas the dominating part of the surfaces in the mechanical digitizer showed no deviations. The relative accuracy of the 2 surface digitization devices was within +/- 6 microm, based on median values. The repeatability of the optical digitizer was comparable with the mechanical digitization device, and the relative accuracy was similar.

  4. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  5. Two-dimensional radial laser scanning for circular marker detection and external mobile robot tracking.

    PubMed

    Teixidó, Mercè; Pallejà, Tomàs; Font, Davinia; Tresanchez, Marcel; Moreno, Javier; Palacín, Jordi

    2012-11-28

    This paper presents the use of an external fixed two-dimensional laser scanner to detect cylindrical targets attached to moving devices, such as a mobile robot. This proposal is based on the detection of circular markers in the raw data provided by the laser scanner by applying an algorithm for outlier avoidance and a least-squares circular fitting. Some experiments have been developed to empirically validate the proposal with different cylindrical targets in order to estimate the location and tracking errors achieved, which are generally less than 20 mm in the area covered by the laser sensor. As a result of the validation experiments, several error maps have been obtained in order to give an estimate of the uncertainty of any location computed. This proposal has been validated with a medium-sized mobile robot with an attached cylindrical target (diameter 200 mm). The trajectory of the mobile robot was estimated with an average location error of less than 15 mm, and the real location error in each individual circular fitting was similar to the error estimated with the obtained error maps. The radial area covered in this validation experiment was up to 10 m, a value that depends on the radius of the cylindrical target and the radial density of the distance range points provided by the laser scanner but this area can be increased by combining the information of additional external laser scanners.

  6. Characterising the Geomorphology of Forested Floodplains Using High Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Brasington, J.; Darby, S. E.

    2007-12-01

    Forested floodplain environments represent the undisturbed land cover of most temperate and tropical river systems, but they are under threat from human resource management (Hughes et al., 2005, FLOBAR II Project report). A scientific understanding of forest floodplain processes therefore has relevance to ecosystem conservation and restoration, and the interpretation of pre-historic river and floodplain evolution. Empirical research has highlighted how overbank flows are relatively shallow and strongly modified by floodplain topography and the presence of vegetation and organic debris on the woodland floor [Jeffries et al., 2003, Geomorphology, 51, 61-80; Millington and Sear, 2007, Earth. Surf. Proc. Landforms, 32, doi: 10.1002/esp.1552]. In such instances flow blockage and diversions are common, and there is the possibility of frequent switches from sub-critical to locally super-critical flow. Such conditions also favour turbulence generation, both by wakes and by shear. Consequently, the floodplain terrain (where we take 'terrain' to include the underlying topography, root structures, and organic debris) plays a key role in modulating the processes of erosion and sedimentation that underpin the physical habitat diversity and hydraulic characteristics of complex wooded floodplain surfaces. However, despite the importance of these issues, as yet there are no formal, quantitative, descriptions of the highly complex and spatially diverse micro- and meso-topography that appears to be characteristic of forested floodplain surfaces. To address this gap, we have undertaken detailed surveys on a small floodplain reach within the Highland Water Research Catchment (HWRC: see http://www.geog.soton.ac.uk/research/nfrc/default.asp), which is a UK national reference site for lowland floodplain forest streams. This involved the deployment of a Leica ScanStation terrestrial laser-scanner from 14 setups and ranges of less than 30 m to acquire an extremely high resolution, accurate

  7. Using terrestrial laser scanning in inventorying of a hybrid constructed wetland system.

    PubMed

    Obroślak, Radomir; Mazur, Andrzej; Jóźwiakowski, Krzysztof; Dorozhynskyy, Oleksandr; Grzywna, Antoni; Rybicki, Roman; Nieścioruk, Kamil; Król, Żanna; Gabryszuk, Justyna; Gajewska, Magdalena

    2017-11-01

    The goal of this paper was to evaluate the possibility of using terrestrial laser scanning (TLS) for inventorying of a hybrid constructed wetland (CW) wastewater treatment plant. The object under study was a turtle-shaped system built in 2015 in Eastern Poland. Its main purpose is the treatment of wastewater from the Museum and Education Centre of Polesie National Park. The study showed that the CW system had been built in compliance with the technical documentation, as differences between values obtained from the object and those given in the design project (max. ± 20 cm for situation and ±5 cm for elevation) were within the range defined by the legislator. It was also shown that the results were sufficiently precise to be used for as-built surveying of the aboveground elements of the CW system. The TLS technique can also be employed to analyse quantitative changes in object geometry arising during long-term use (e.g. landmass slides or erosion), the identification of which can help in selecting the hot-spots at risk of damage and thus restore the object to its original state as well as prevent new changes.

  8. Active and passive multispectral scanner for earth resources applications: An advanced applications flight experiment

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Peterson, L. M.; Thomson, F. J.; Work, E. A.; Kriegler, F. J.

    1977-01-01

    The development of an experimental airborne multispectral scanner to provide both active (laser illuminated) and passive (solar illuminated) data from a commonly registered surface scene is discussed. The system was constructed according to specifications derived in an initial programs design study. The system was installed in an aircraft and test flown to produce illustrative active and passive multi-spectral imagery. However, data was not collected nor analyzed for any specific application.

  9. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.

    PubMed

    Weisberg, N K; Kuo, T; Torkian, B; Reinisch, L; Ellis, D L

    1998-10-01

    To develop methods to compare carbon dioxide (CO2) resurfacing lasers, fluence, and debridement effects on tissue shrinkage and histological thermal denaturation. In vitro human or in vivo porcine skin samples received up to 5 passes with scanner or short-pulsed CO2 resurfacing lasers. Fluences ranging from 2.19 to 17.58 J/cm2 (scanner) and 1.11 to 5.56 J/cm2 (short pulsed) were used to determine each laser's threshold energy for clinical effect. Variable amounts of debridement were also studied. Tissue shrinkage was evaluated by using digital photography to measure linear distance change of the treated tissue. Tissue histological studies were evaluated using quantitative computer image analysis. Fluence-independent in vitro tissue shrinkage was seen with the scanned and short-pulsed lasers above threshold fluence levels of 5.9 and 2.5 J/cm2, respectively. Histologically, fluence-independent thermal depths of damage of 77 microns (scanner) and 25 microns (pulsed) were observed. Aggressive debridement of the tissue increased the shrinkage per pass of the laser, and decreased the fluence required for the threshold effect. In vivo experiments confirmed the in vitro results, although the in vivo threshold fluence level was slightly higher and the shrinkage obtained was slightly lower per pass. Our methods allow comparison of different resurfacing lasers' acute effects. We found equivalent laser tissue effects using lower fluences than those currently accepted clinically. This suggests that the morbidity associated with CO2 laser resurfacing may be minimized by lowering levels of tissue input energy and controlling for tissue debridement.

  10. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Karila, Kirsi; Hyyppä, Juha; Litkey, Paula; Puttonen, Eetu; Ahokas, Eero

    2017-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with passive multispectral information from aerial images, has shown its high feasibility for automated mapping processes. The main benefits have been achieved in the mapping of elevated objects such as buildings and trees. Recently, the first multispectral airborne laser scanners have been launched, and active multispectral information is for the first time available for 3D ALS point clouds from a single sensor. This article discusses the potential of this new technology in map updating, especially in automated object-based land cover classification and change detection in a suburban area. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from an object-based random forests analysis suggest that the multispectral ALS data are very useful for land cover classification, considering both elevated classes and ground-level classes. The overall accuracy of the land cover classification results with six classes was 96% compared with validation points. The classes under study included building, tree, asphalt, gravel, rocky area and low vegetation. Compared to classification of single-channel data, the main improvements were achieved for ground-level classes. According to feature importance analyses, multispectral intensity features based on several channels were more useful than those based on one channel. Automatic change detection for buildings and roads was also demonstrated by utilising the new multispectral ALS data in combination with old map vectors. In change detection of buildings, an old digital surface model (DSM) based on single-channel ALS data was also used. Overall, our analyses suggest that the new data have high potential for further increasing the automation level in mapping. Unlike passive aerial imaging commonly used in mapping, the multispectral ALS technology is independent of external illumination conditions, and there are

  11. Terrestrial laser scanning for biomass assessment and tree reconstruction: improved processing efficiency

    NASA Astrophysics Data System (ADS)

    Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor

    2017-09-01

    Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.

  12. The potential of high resolution airborne laser scanning for deriving geometric properties of single trees

    NASA Astrophysics Data System (ADS)

    Morsdorf, F.; Meier, E.; Koetz, B.; Nüesch, D.; Itten, K.; Allgöwer, B.

    2003-04-01

    The potential of airborne laserscanning for mapping forest stands has been intensively evaluated in the past few years. Algorithms deriving structural forest parameters in a stand-wise manner from laser data have been successfully implemented by a number of researchers. However, with very high point density laser (>20 points/m^2) data we pursue the approach of deriving these parameters on a single-tree basis. We explore the potential of delineating single trees from laser scanner raw data (x,y,z- triples) and validate this approach with a dataset of more than 2000 georeferenced trees, including tree height and crown diameter, gathered on a long term forest monitoring site by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). The accuracy of the laser scanner is evaluated trough 6 reference targets, being 3x3 m^2 in size and horizontally plain, for validating both the horizontal and vertical accuracy of the laser scanner by matching of triangular irregular networks (TINs). Single trees are segmented by a clustering analysis in all three coordinate dimensions and their geometric properties can then be derived directly from the tree cluster.

  13. Integration of Geomatics Techniques for Digitizing Highly Relevant Geological and Cultural Heritage Sites: the Case of San Leo (italy)

    NASA Astrophysics Data System (ADS)

    Girelli, V. A.; Borgatti, L.; Dellapasqua, M.; Mandanici, E.; Spreafico, M. C.; Tini, M. A.; Bitelli, G.

    2017-08-01

    The research activities described in this contribution were carried out at San Leo (Italy). The town is located on the top of a quadrangular rock slab affected by a complex system of fractures and has a wealth of cultural heritage, as evidenced by the UNESCO's nomination. The management of this fragile set requires a comprehensive system of geometrical information to analyse and preserve all the geological and cultural features. In this perspective, the latest Geomatics techniques were used to perform some detailed surveys and to manage the great amount of acquired geometrical knowledge of both natural (the cliff) and historical heritage. All the data were also georeferenced in a unique reference system. In particular, high accurate terrestrial laser scanner surveys were performed for the whole cliff, in order to obtain a dense point cloud useful for a large number of geological studies, among others the analyses of the last rockslide by comparing pre- and post-event data. Moreover, the geometrical representation of the historical centre was performed using different approaches, in order to generate an accurate DTM and DSM of the site. For these purposes, a large scale numerical map was used, integrating the data with GNSS and laser surveys of the area. Finally, many surveys were performed with different approaches on some of the most relevant monuments of the town. In fact, these surveys were performed by terrestrial laser scanner, light structured scanner and photogrammetry, the last mainly applied with the Structure from Motion approach.

  14. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    PubMed

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption

  15. Optimization of a fast optical CT scanner for nPAG gel dosimetry

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; DeDeene, Yves

    2009-05-01

    A fast laser scanning optical CT scanner was constructed and optimized at the Ghent university. The first images acquired were contaminated with several imaging artifacts. The origins of the artifacts were investigated. Performance characteristics of different components were measured such as the laser spot size, light attenuation by the lenses and the dynamic range of the photo-detector. The need for a differential measurement using a second photo-detector was investigated. Post processing strategies to compensate for hardware related errors were developed. Drift of the laser and of the detector was negligible. Incorrectly refractive index matching was dealt with by developing an automated matching process. When scratches on the water bath and phantom container are present, these pose a post processing challenge to eliminate the resulting artifacts from the reconstructed images Secondary laser spots due to multiple reflections need to be further investigated. The time delay in the control of the galvanometer and detector was dealt with using black strips that serve as markers of the projection position. Still some residual ringing artifacts are present. Several small volumetric test phantoms were constructed to obtain an overall picture of the accuracy.

  16. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  17. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  18. Mode Hopping in Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Heumier, Timothy Alan

    Semiconductor lasers have found widespread use in fiberoptic communications, merchandising (bar-code scanners), entertainment (videodisc and compact disc players), and in scientific inquiry (spectroscopy, laser cooling). Some uses require a minimum degree of stability of wavelength which is not met by these lasers: Under some conditions, semiconductor lasers can discontinuously switch wavelengths in a back-and-forth manner. This is called mode hopping. We show that mode hopping is directly correlated to noise in the total intensity, and that this noise is easily detected by a photodiode. We also show that there are combinations of laser case temperature and injection current which lead to mode hopping. Conversely, there are other combinations for which the laser is stable. These results are shown to have implications for controlling mode hopping.

  19. Data Integration Acquired from Micro-Uav and Terrestrial Laser Scanner for the 3d Mapping of Jesuit Ruins of São Miguel das Missões

    NASA Astrophysics Data System (ADS)

    Reiss, M. L. L.; da Rocha, R. S.; Ferraz, R. S.; Cruz, V. C.; Morador, L. Q.; Yamawaki, M. K.; Rodrigues, E. L. S.; Cole, J. O.; Mezzomo, W.

    2016-06-01

    The Jesuit Missions the Guaranis were one of the great examples of cultural, social, and scientific of the eighteenth century, which had its decline from successive wars that followed the exchange of territories domain occupied by Portugal and Spain with the Madrid Treaty of January 13, 1750. One of the great examples of this development is materialized in the ruins of 30 churches and villages that remain in a territory that now comprises part of Brazil, Argentina and Paraguay. These Churches, São Miguel das Missões is among the Brazilian ruins, the best preserved. The ruins of São Miguel das Missões were declared a UNESCO World Cultural Heritage in 1983 and the Institute of National Historical Heritage (IPHAN) is the Brazilian Federal agency that manages and maintains this heritage. In order to produce a geographic database to assist the IPHAN in the management of the Ruins of São Miguel das Missões it was proposed a three-dimensional mapping of these ruins never performed in this location before. The proposal is integrated data acquired from multiple sensors: two micro-UAV, an Asctec Falcon 8 (rotary wing) and a Sensefly e-Bee (fixed wing); photos from terrestrial cameras; two terrestrial LIDAR sensors, one Faro Focus 3D S-120 and Optec 3D-HD ILRIS. With this abundance of sensors has been possible to perform comparisons and integration of the acquired data, and produce a 3D reconstruction of the church with high completeness and accuracy (better than 25 mm), as can be seen in the presentation of this work.

  20. Panoramic 3D Reconstruction by Fusing Color Intensity and Laser Range Data

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Lu, Jian

    Technology for capturing panoramic (360 degrees) three-dimensional information in a real environment have many applications in fields: virtual and complex reality, security, robot navigation, and so forth. In this study, we examine an acquisition device constructed of a regular CCD camera and a 2D laser range scanner, along with a technique for panoramic 3D reconstruction using a data fusion algorithm based on an energy minimization framework. The acquisition device can capture two types of data of a panoramic scene without occlusion between two sensors: a dense spatio-temporal volume from a camera and distance information from a laser scanner. We resample the dense spatio-temporal volume for generating a dense multi-perspective panorama that has equal spatial resolution to that of the original images acquired using a regular camera, and also estimate a dense panoramic depth-map corresponding to the generated reference panorama by extracting trajectories from the dense spatio-temporal volume with a selecting camera. Moreover, for determining distance information robustly, we propose a data fusion algorithm that is embedded into an energy minimization framework that incorporates active depth measurements using a 2D laser range scanner and passive geometry reconstruction from an image sequence obtained using the CCD camera. Thereby, measurement precision and robustness can be improved beyond those available by conventional methods using either passive geometry reconstruction (stereo vision) or a laser range scanner. Experimental results using both synthetic and actual images show that our approach can produce high-quality panoramas and perform accurate 3D reconstruction in a panoramic environment.

  1. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  2. Metrology system for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck

    2004-01-01

    The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.

  3. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  4. Geo-Mechanical Characterization of Carbonate Rock Masses by Means of Laser Scanner Technique

    NASA Astrophysics Data System (ADS)

    Palma, Biagio; Parise, Mario; Ruocco, Anna

    2017-12-01

    Knowledge of the geometrical and structural setting of rock masses is crucial to evaluate the stability and to design the most suitable stabilization works. In this work we use the Terrestrial Laser Scanning (TLS) at the site of the Grave of the Castellana Caves, a famous show cave in southern Italy. The Grave is the natural access to the cave system, produced by collapse of the vault, due to upward progression of instabilities in the carbonate rock masses. It is about 55-m high, bell-shaped, with maximum width of 120 m. Aim of the work is the characterization of carbonate rock masses from the structural and geo-mechanical standpoints through the use of innovative survey techniques. TLS survey provides a product consisting of millions of geo-referenced points, to be managed in space, to become a suitable database for the morphological and geological-structural analysis. Studying by means of TLS a rock face, partly inaccessible or located in very complex environments, allows to investigate slopes in their overall areal extent, thus offering advantages both as regards safety of the workers and time needed for the survey. In addition to TLS, the traditional approach was also followed by performing scanlines surveys along the rims of the Grave, following the ISRM recommendations for characterization of discontinuity in rock masses. A quantitative comparison among the data obtained by TLS technique and those deriving from the classical geo-mechanical survey is eventually presented, to discuss potentiality of drawbacks of the different techniques used for surveying the rock masses.

  5. A building extraction approach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm

    NASA Astrophysics Data System (ADS)

    Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas

    2016-10-01

    In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied ;as is; to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.

  6. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    NASA Astrophysics Data System (ADS)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  7. Experimental characterization of the perceptron laser rangefinder

    NASA Technical Reports Server (NTRS)

    Kweon, I. S.; Hoffman, Regis; Krotkov, Eric

    1991-01-01

    In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.

  8. Laser Scanning Reader For Automated Data Entry Operations

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1980-02-01

    The use of the Universal Product Code (UPC) in conjunction with the laser-scanner-equipped electronic checkout system has made it technologically possible for supermarket stores to operate more efficiently and accurately. At present, more than 90% of the packages in grocery stores have been marked by the manufacturer with laser-scannable UPC symbols and the installation of laser scanning systems is expected to expand into all major chain stores. Areas to be discussed are: system design features, laser-scanning pattern generation, signal-processing logical considerations, UPC characteristics and encodation.

  9. Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building

    PubMed Central

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2015-01-01

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques. PMID:25609042

  10. Combined use of terrestrial laser scanning and IR thermography applied to a historical building.

    PubMed

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2014-12-24

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.

  11. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Giambastiani, Beatrice M. S.; Sistilli, Flavia; Scarelli, Frederico; Gabbianelli, Giovanni

    2017-10-01

    Along the North Adriatic Sea coast (Italy), vulnerability to climate change is further aggravated by anthropogenic influences, such as strong subsidence rate due to deep groundwater and gas abstraction, tourism and industry impacts. In this context, conservation and restoration of coastal sand dunes become extremely important especially because of their importance in terms of 'natural' coastal defense. This paper proposes an innovative geomorphological approach based on Terrestrial Laser Scanning - TLS, which allows us to measure and monitor morphometric dune evolution with high precision and details. Several TLS surveys were performed along the Ravenna coast (Adriatic Sea, Italy) and the resulting Digital Elevation Models (DEMs) were analyzed in order to classify the foredune ridges in three geomorphological sub-zones. The topographic, areal and volumetric variations over time of geomorphological units were calculated by GIS tools in order to identify seasonal trends or particular pattern. Meteo-marine climate conditions were also analyzed and Principal Component Analysis (PCA) was performed to correlate changes in morphology with meteo-marine forcing factors, highlighting the ones that most influence dune evolution and dynamics.

  12. Accuracy and Repeatability of Trajectory Rod Measurement Using Laser Scanners.

    PubMed

    Liscio, Eugene; Guryn, Helen; Stoewner, Daniella

    2017-12-22

    Three-dimensional (3D) technologies contribute greatly to bullet trajectory analysis and shooting reconstruction. There are few papers which address the errors associated with utilizing laser scanning for bullet trajectory documentation. This study examined the accuracy and precision of laser scanning for documenting trajectory rods in drywall for angles between 25° and 90°. The inherent error range of 0.02°-2.10° was noted while the overall error for laser scanning ranged between 0.04° and 1.98°. The inter- and intraobserver errors for trajectory rod placement and virtual trajectory marking showed that the range of variation for rod placement was between 0.1°-1° in drywall and 0.05°-0.5° in plywood. Virtual trajectory marking accuracy tests showed that 75% of data values were below 0.91° and 0.61° on azimuth and vertical angles, respectively. In conclusion, many contributing factors affect bullet trajectory analysis, and the use of 3D technologies can aid in reduction of errors associated with documentation. © 2017 American Academy of Forensic Sciences.

  13. Multispectral scanner system for ERTS: Four-band scanner system. Volume 1: System description and performance

    NASA Technical Reports Server (NTRS)

    Norwood, V. T.; Fermelia, L. R.; Tadler, G. A.

    1972-01-01

    The four-band Multispectral Scanner System (MSS) is discussed. Included is a description of the MSS with major emphasis on the flight subsystem (scanner and multiplexer), the theory for the MSS calibration system processing techniques, system calibration data, and a summary of the performance of the two four-band MSS systems.

  14. Dental scanning in CAD/CAM technologies: laser beams

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Faur, Nicolae; Negru, Radu; Romînu, Mihai; Cozarov, Dalibor

    2008-02-01

    Scanning, also called digitizing, is the process of gathering the requisite data from an object. Many different technologies are used to collect three dimensional data. They range from mechanical and very slow, to radiation-based and highly-automated. Each technology has its advantages and disadvantages, and their applications and specifications overlap. The aims of this study are represented by establishing a viable method of digitally representing artifacts of dental casts, proposing a suitable scanner and post-processing software and obtaining 3D Models for the dental applications. The method is represented by the scanning procedure made by different scanners as the implicated materials. Scanners are the medium of data capture. 3D scanners aim to measure and record the relative distance between the object's surface and a known point in space. This geometric data is represented in the form of point cloud data. The contact and no contact scanners were presented. The results show that contact scanning procedures uses a touch probe to record the relative position of points on the objects' surface. This procedure is commonly used in Reverse engineering applications. Its merits are represented by efficiency for objects with low geometric surface detail. Disadvantages are represented by time consuming, this procedure being impractical for artifacts digitization. The non contact scanning procedure implies laser scanning (laser triangulation technology) and photogrammetry. As a conclusion it can be drawn that different types of dental structure needs different types of scanning procedures in order to obtain a competitive complex 3D virtual model that can be used in CAD/CAM technologies.

  15. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  16. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  17. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  18. Automatic registration of terrestrial point clouds based on panoramic reflectance images and efficient BaySAC

    NASA Astrophysics Data System (ADS)

    Kang, Zhizhong

    2013-10-01

    This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.

  19. Oceanographic scanner system design study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.

  20. CO2 laser therapy of rhinophyma

    NASA Astrophysics Data System (ADS)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.

    2000-06-01

    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  1. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  2. The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis)

    PubMed Central

    Balduzzi, Mathilde A.F.; Van der Zande, Dimitry; Stuckens, Jan; Verstraeten, Willem W.; Coppin, Pol

    2011-01-01

    Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the laser beam and the surface of the leaf of a Conference Pear tree (Pyrus Commmunis) is established. The results demonstrate that with only intensity, this relationship has a potential for determining the angle of incidence with the leaves surface with a precision of ±5° for an angle of incidence smaller than 60°, whereas it is more variable for an angle of incidence larger than 60°. It appears that TLS beam footprint, leaf curvatures and leaf wrinkles have an impact on the relationship between intensity and angle of incidence, though, this analysis shows that the intensity of scanned leaves has a potential to eliminate ghost points and to improve their meshing. PMID:22319374

  3. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  4. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  5. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (Principal Investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  6. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    NASA Astrophysics Data System (ADS)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  7. Laser projection positioning of spatial contour curves via a galvanometric scanner

    NASA Astrophysics Data System (ADS)

    Tu, Junchao; Zhang, Liyan

    2018-04-01

    The technology of laser projection positioning is widely applied in advanced manufacturing fields (e.g. composite plying, parts location and installation). In order to use it better, a laser projection positioning (LPP) system is designed and implemented. Firstly, the LPP system is built by a laser galvanometric scanning (LGS) system and a binocular vision system. Applying Single-hidden Layer Feed-forward Neural Network (SLFN), the system model is constructed next. Secondly, the LGS system and the binocular system, which are respectively independent, are integrated through a datadriven calibration method based on extreme learning machine (ELM) algorithm. Finally, a projection positioning method is proposed within the framework of the calibrated SLFN system model. A well-designed experiment is conducted to verify the viability and effectiveness of the proposed system. In addition, the accuracy of projection positioning are evaluated to show that the LPP system can achieves the good localization effect.

  8. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  10. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  11. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  12. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDI{sub vol} to account for differences between scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adam C.; Zankl, Maria; DeMarco, John J.

    2010-04-15

    Purpose: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDI{sub vol} measurements to account for differences in MDCT scanners that lead to organ dose differences. Methods: Monte Carlo simulationsmore » of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDI{sub vol} values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDI{sub vol} value for those acquisition conditions. Results: CTDI{sub vol} values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs

  13. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  14. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  15. The effect of short ground vegetation on terrestrial laser scans at a local scale

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  16. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  17. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  18. Scanner Art and Links to Physics

    ERIC Educational Resources Information Center

    Russell, David

    2005-01-01

    A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…

  19. Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory

    NASA Astrophysics Data System (ADS)

    Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.

    2017-09-01

    Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.

  20. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  1. Enabling vendor independent photoacoustic imaging systems with asynchronous laser source

    NASA Astrophysics Data System (ADS)

    Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.

    2018-02-01

    Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.

  2. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  3. Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring

    NASA Astrophysics Data System (ADS)

    Wujanz, Daniel; Avian, Michael; Krueger, Daniel; Neitzel, Frank

    2018-04-01

    Current research questions in the field of geomorphology focus on the impact of climate change on several processes subsequently causing natural hazards. Geodetic deformation measurements are a suitable tool to document such geomorphic mechanisms, e.g. by capturing a region of interest with terrestrial laser scanners which results in a so-called 3-D point cloud. The main problem in deformation monitoring is the transformation of 3-D point clouds captured at different points in time (epochs) into a stable reference coordinate system. In this contribution, a surface-based registration methodology is applied, termed the iterative closest proximity algorithm (ICProx), that solely uses point cloud data as input, similar to the iterative closest point algorithm (ICP). The aim of this study is to automatically classify deformations that occurred at a rock glacier and an ice glacier, as well as in a rockfall area. For every case study, two epochs were processed, while the datasets notably differ in terms of geometric characteristics, distribution and magnitude of deformation. In summary, the ICProx algorithm's classification accuracy is 70 % on average in comparison to reference data.

  4. Rugged, Tunable Extended-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  5. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  6. Patient identification using a near-infrared laser scanner

    NASA Astrophysics Data System (ADS)

    Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris

    2017-03-01

    We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.

  7. Methods for CT automatic exposure control protocol translation between scanner platforms.

    PubMed

    McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M

    2014-03-01

    An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of

  8. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  9. MEMS scanner mirror based system for retina scanning and in eye projection

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  10. Container weld identification using portable laser scanners

    NASA Astrophysics Data System (ADS)

    Taddei, Pierluigi; Boström, Gunnar; Puig, David; Kravtchenko, Victor; Sequeira, Vítor

    2015-03-01

    Identification and integrity verification of sealed containers for security applications can be obtained by employing noninvasive portable optical systems. We present a portable laser range imaging system capable of identifying welds, a byproduct of a container's physical sealing, with micrometer accuracy. It is based on the assumption that each weld has a unique three-dimensional (3-D) structure which cannot be copied or forged. We process the 3-D surface to generate a normalized depth map which is invariant to mechanical alignment errors and that is used to build compact signatures representing the weld. A weld is identified by performing cross correlations of its signature against a set of known signatures. The system has been tested on realistic datasets, containing hundreds of welds, yielding no false positives or false negatives and thus showing the robustness of the system and the validity of the chosen signature.

  11. Comparison of Epson scanner quality for radiochromic film evaluation.

    PubMed

    Alnawaf, Hani; Yu, Peter K N; Butson, Martin

    2012-09-06

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20-fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation

  12. Open Pit Mine 3d Mapping by Tls and Digital Photogrammetry: 3d Model Update Thanks to a Slam Based Approach

    NASA Astrophysics Data System (ADS)

    Vassena, G.; Clerici, A.

    2018-05-01

    The state of the art of 3D surveying technologies, if correctly applied, allows to obtain 3D coloured models of large open pit mines using different technologies as terrestrial laser scanner (TLS), with images, combined with UAV based digital photogrammetry. GNSS and/or total station are also currently used to geo reference the model. The University of Brescia has been realised a project to map in 3D an open pit mine located in Botticino, a famous location of marble extraction close to Brescia in North Italy. Terrestrial Laser Scanner 3D point clouds combined with RGB images and digital photogrammetry from UAV have been used to map a large part of the cave. By rigorous and well know procedures a 3D point cloud and mesh model have been obtained using an easy and rigorous approach. After the description of the combined mapping process, the paper describes the innovative process proposed for the daily/weekly update of the model itself. To realize this task a SLAM technology approach is described, using an innovative approach based on an innovative instrument capable to run an automatic localization process and real time on the field change detection analysis.

  13. Quantifying Vegetation Structure with Lightweight, Rapid-Scanning Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Paynter, I.; Genest, D.; Saenz, E. J.; Strahler, A. H.; Li, Z.; Peri, F.; Schaaf, C.

    2016-12-01

    Light Detection and Ranging (lidar) is proving a competent technology for observing vegetation structure. Terrestrial laser scanners (TLS) are ground-based instruments which utilize hundreds of thousands to millions of lidar observations to provide detailed structural and reflective information of their surroundings. TLS has enjoyed initial success as a validation tool for satellite and airborne estimates of vegetation structure, and are producing independent estimates with increasing accuracy. Reconstruction techniques for TLS observations of vegetation have also improved rapidly, especially for trees. However, uncertainties and challenges still remain in TLS modelling of vegetation structure, especially in geometrically complex ecosystems such as tropical forests (where observation extent and density is hampered by occlusion) and highly temporally dynamic coastal ecosystems (such as saltmarshes and mangroves), where observations may be restricted to narrow microstates. Some of these uncertainties can be mitigated, and challenges met, through the use of lidar instruments optimized for favorable deployment logistics through low weight, rapid scanning, and improved durability. We have conducted studies of vegetation structure in temperate and tropical forests, saltmarshes and mangroves, utilizing a highly portable TLS with considerable deployment flexibility, the Compact Biomass Lidar (CBL). We show results from studies in the temperate Long Term Ecological Research site of Harvard Forest (MA, USA); the tropical forested long-term Carbono sites of La Selva Biological Station (Sarapiqui, Costa Rica); and the saltmarsh LTER of Plum Island (MA, USA). These results demonstrate the improvements to observations in these ecosystems which are facilitated by the specifications of the CBL (and similar TLS) which are optimized for favorable deployment logistics and flexibility. We show the benefits of increased numbers of scanning positions, and specialized deployment

  14. Accuracy improvement of laser line scanning for feature measurements on CMM

    NASA Astrophysics Data System (ADS)

    Bešić, Igor; Van Gestel, Nick; Kruth, Jean-Pierre; Bleys, Philip; Hodolič, Janko

    2011-11-01

    Because of its high speed and high detail output, laser line scanning is increasingly included in coordinate metrology applications where its performance can satisfy specified tolerances. Increasing its accuracy will open the possibility to use it in other areas where contact methods are still dominant. Multi-sensor systems allow to select discrete probing or scanning methods to measure part elements. Decision is often based on the principle that tight toleranced elements should be measured by contact methods, while other more loose toleranced elements can be laser scanned. This paper aims to introduce a method for improving the output of a CMM mounted laser line scanner for metrology applications. This improvement is achieved by filtering of the scanner's random error and by combination with widely spread and reliable but slow touch trigger probing. The filtered point cloud is used to estimate the form deviation of the inspected element while few tactile obtained points were used to effectively compensate for errors in the point cloud position.

  15. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    NASA Astrophysics Data System (ADS)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser

  16. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  17. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  18. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models

    PubMed Central

    Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-01-01

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods. PMID:28672795

  19. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models.

    PubMed

    Osada, Edward; Sośnica, Krzysztof; Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-06-24

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods.

  20. High-Speed Laser Scanner Maps a Surface in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph; Schuet, Stefan

    2006-01-01

    A scanning optoelectronic instrument generates the digital equivalent of a threedimensional (X,Y,Z) map of a surface that spans an area with resolution on the order of 0.005 in. ( 0.125mm). Originally intended for characterizing surface flaws (e.g., pits) on space-shuttle thermal-insulation tiles, the instrument could just as well be used for similar purposes in other settings in which there are requirements to inspect the surfaces of many objects. While many commercial instruments can perform this surface-inspection function, the present instrument offers a unique combination of capabilities not available in commercial instruments. This instrument utilizes a laser triangulation method that has been described previously in NASA Tech Briefs in connection with simpler related instruments used for different purposes. The instrument includes a sensor head comprising a monochrome electronic camera and two lasers. The camera is a high-resolution

  1. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  2. Comparison of Epson scanner quality for radiochromic film evaluation

    PubMed Central

    Alnawaf, Hani; Yu, Peter K.N.

    2012-01-01

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20‐fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation

  3. a Multi-Data Source and Multi-Sensor Approach for the 3d Reconstruction and Visualization of a Complex Archaelogical Site: the Case Study of Tolmo de Minateda

    NASA Astrophysics Data System (ADS)

    Torres-Martínez, J. A.; Seddaiu, M.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D.

    2015-02-01

    The complexity of archaeological sites hinders to get an integral modelling using the actual Geomatic techniques (i.e. aerial, closerange photogrammetry and terrestrial laser scanner) individually, so a multi-sensor approach is proposed as the best solution to provide a 3D reconstruction and visualization of these complex sites. Sensor registration represents a riveting milestone when automation is required and when aerial and terrestrial dataset must be integrated. To this end, several problems must be solved: coordinate system definition, geo-referencing, co-registration of point clouds, geometric and radiometric homogeneity, etc. Last but not least, safeguarding of tangible archaeological heritage and its associated intangible expressions entails a multi-source data approach in which heterogeneous material (historical documents, drawings, archaeological techniques, habit of living, etc.) should be collected and combined with the resulting hybrid 3D of "Tolmo de Minateda" located models. The proposed multi-data source and multi-sensor approach is applied to the study case of "Tolmo de Minateda" archaeological site. A total extension of 9 ha is reconstructed, with an adapted level of detail, by an ultralight aerial platform (paratrike), an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial photogrammetry. In addition, the own defensive nature of the site (i.e. with the presence of three different defensive walls) together with the considerable stratification of the archaeological site (i.e. with different archaeological surfaces and constructive typologies) require that tangible and intangible archaeological heritage expressions can be integrated with the hybrid 3D models obtained, to analyse, understand and exploit the archaeological site by different experts and heritage stakeholders.

  4. Terrestrial laser scanning for geometry extraction and change monitoring of rubble mound breakwaters

    NASA Astrophysics Data System (ADS)

    Puente, I.; Lindenbergh, R.; González-Jorge, H.; Arias, P.

    2014-05-01

    Rubble mound breakwaters are coastal defense structures that protect harbors and beaches from the impacts of both littoral drift and storm waves. They occasionally break, leading to catastrophic damage to surrounding human populations and resulting in huge economic and environmental losses. Ensuring their stability is considered to be of vital importance and the major reason for setting up breakwater monitoring systems. Terrestrial laser scanning has been recognized as a monitoring technique of existing infrastructures. Its capability for measuring large amounts of accurate points in a short period of time is also well proven. In this paper we first introduce a method for the automatic extraction of face geometry of concrete cubic blocks, as typically used in breakwaters. Point clouds are segmented based on their orientation and location. Then we compare corresponding cuboids of three co-registered point clouds to estimate their transformation parameters over time. The first method is demonstrated on scan data from the Baiona breakwater (Spain) while the change detection is demonstrated on repeated scan data of concrete bricks, where the changing scenario was simulated. The application of the presented methodology has verified its effectiveness for outlining the 3D breakwater units and analyzing their changes at the millimeter level. Breakwater management activities could benefit from this initial version of the method in order to improve their productivity.

  5. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  6. Development and Utility of a Four-Channel Scanner for Wildland Fire Research and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Brass, James A.; Higgins, Robert G.; Hildum, Edward; Peterson, David L. (Technical Monitor)

    1996-01-01

    The Airborne Infrared Disaster Assessment System (AIRDAS) is a four-channel scanner designed and built at NASA-Ames for the specific task of supporting research and applications on fire impacts on terrestrial and atmospheric processes and also of serving as a vital instrument in the assessment of natural and man-induced disasters. The system has been flown on numerous airframes including the Navajo, King-Air, C0130, and Lear Jet 310 and a 206. The system includes a configuration composed of a 386 PC computer workstation, a non-linear detector amplifier, a sixteen-bit digitizer, dichroic filters, and Exabyte 8500 5Gb Tape output, VHS tape output, a Rockwell GPS and a 2-axis gyro. The AIRDAS system collects digital data in four wavelength regions, which can be filtered: band 1 (0.61-0.68 microns), band 2 (1.57-1.7 microns), band 3 (3.6-5.5 microns), and band 4 (5.5-13.0 microns), an FOV of 108 degrees, an IFOV of 2.62 mrads, and a digitized swath width of 720 pixels. The inclusion of the non-linear detector amplifier allows for the accurate measurement of emitted temperature from fires and hot spots. Lab testing of the scanner has indicated temperature assessments of 800 C without detector saturation. This has advantages over previous systems which were designed for thermal measurement of earth background temperatures, and were ill-equipped for accurate determination of high intensity conditions. The scanner has been flown successfully on data collection missions since 1992 in the western US as well as Brazil. These and other research and applications responses will be presented along with an assessment of future directions with the system.a

  7. Development of a large-screen high-definition laser video projection system

    NASA Astrophysics Data System (ADS)

    Clynick, Tony J.

    1991-08-01

    A prototype laser video projector which uses electronic, optical, and mechanical means to project a television picture is described. With the primary goal of commercial viability, the price/performance ratio of the chosen means is critical. The fundamental requirement has been to achieve high brightness, high definition images of at least movie-theater size, at a cost comparable with other existing large-screen video projection technologies, while having the opportunity of developing and exploiting the unique properties of the laser projected image, such as its infinite depth-of-field. Two argon lasers are used in combination with a dye laser to achieve a range of colors which, despite not being identical to those of a CRT, prove to be subjectively acceptable. Acousto-optic modulation in combination with a rotary polygon scanner, digital video line stores, novel specialized electro-optics, and a galvanometric frame scanner form the basis of the projection technique achieving a 30 MHz video bandwidth, high- definition scan rates (1125/60 and 1250/50), high contrast ratio, and good optical efficiency. Auditorium projection of HDTV pictures wider than 20 meters are possible. Applications including 360 degree(s) projection and 3-D video provide further scope for exploitation of the HD laser video projector.

  8. SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Warmington, L; Watanabe, Y

    Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less

  9. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. White light scanner-based repeatability of 3-dimensional digitizing of silicon rubber abutment teeth impressions

    PubMed Central

    Jeon, Jin-Hun; Lee, Kyung-Tak; Kim, Hae-Young; Kim, Ji-Hwan

    2013-01-01

    PURPOSE The aim of this study was to evaluate the repeatability of the digitizing of silicon rubber impressions of abutment teeth by using a white light scanner and compare differences in repeatability between different abutment teeth types. MATERIALS AND METHODS Silicon rubber impressions of a canine, premolar, and molar tooth were each digitized 8 times using a white light scanner, and 3D surface models were created using the point clouds. The size of any discrepancy between each model and the corresponding reference tooth were measured, and the distribution of these values was analyzed by an inspection software (PowerInspect 2012, Delcamplc., Birmingham, UK). Absolute values of discrepancies were analyzed by the Kruskal-Wallis test and multiple comparisons (α=.05). RESULTS The discrepancy between the impressions for the canine, premolar, and molar teeth were 6.3 µm (95% confidence interval [CI], 5.4-7.2), 6.4 µm (95% CI, 5.3-7.6), and 8.9 µm (95% CI, 8.2-9.5), respectively. The discrepancy of the molar tooth impression was significantly higher than that of other tooth types. The largest variation (as mean [SD]) in discrepancies was seen in the premolar tooth impression scans: 26.7 µm (95% CI, 19.7-33.8); followed by canine and molar teeth impressions, 16.3 µm (95% CI, 15.3-17.3), and 14.0 µm (95% CI, 12.3-15.7), respectively. CONCLUSION The repeatability of the digitizing abutment teeth's silicon rubber impressions by using a white light scanner was improved compared to that with a laser scanner, showing only a low mean discrepancy between 6.3 µm and 8.9 µm, which was in an clinically acceptable range. Premolar impression with a long and narrow shape showed a significantly larger discrepancy than canine and molar impressions. Further work is needed to increase the digitizing performance of the white light scanner for deep and slender impressions. PMID:24353885

  11. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    PubMed Central

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling. PMID:22399958

  12. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art.

    PubMed

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, "Las Caldas" and "Peña de Candamo", have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling.

  13. Scanners for analytic print measurement: the devil in the details

    NASA Astrophysics Data System (ADS)

    Zeise, Eric K.; Williams, Don; Burns, Peter D.; Kress, William C.

    2007-01-01

    Inexpensive and easy-to-use linear and area-array scanners have frequently substituted as colorimeters and densitometers for low-frequency (i.e., large area) hard copy image measurement. Increasingly, scanners are also being used for high spatial frequency, image microstructure measurements, which were previously reserved for high performance microdensitometers. In this paper we address characteristics of flatbed reflection scanners in the evaluation of print uniformity, geometric distortion, geometric repeatability and the influence of scanner MTF and noise on analytic measurements. Suggestions are made for the specification and evaluation of scanners to be used in print image quality standards that are being developed.

  14. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR

    PubMed Central

    Krůček, Martin; Vrška, Tomáš; Král, Kamil

    2017-01-01

    Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167

  15. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  16. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  17. Biomedical applications of a real-time terahertz color scanner

    PubMed Central

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  18. The Digital Von Fahrenheid Pyramid

    NASA Astrophysics Data System (ADS)

    Bura, M.; Janowski, J.; Wężyk, P.; Zięba, K.

    2017-08-01

    3D Scanners Lab from Digital Humanities Laboratory at the University of Warsaw initiated the scientific project, the purpose of which was to call attention to systematically penetrated and devastated pyramid-shaped tomb from the XVIII/XIX century, of family von Fahrenheid in Rapa in Banie Mazurskie commune (NE Poland). By conducting a series of non-invasive studies, such as 3D inventory using terrestrial laser scanning (TLS), thermal imaging, georadar measurements (around and inside the tomb) and anthropological research of mummified remains as well - the complete dataset was collected. Through the integration of terrestrial (TLS) and airborne laser scanning (ALS) authors managed to analyse the surroundings of Fahrenheid pyriamid and influence of some objects (like trees) on the condition and visibility of the Pyramids in the landscape.

  19. Accuracy in contouring of small and low contrast lesions: Comparison between diagnostic quality computed tomography scanner and computed tomography simulation scanner-A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Yick Wing, E-mail: mpr@hksh.com; Wong, Wing Kei Rebecca; Yu, Siu Ki

    2012-01-01

    To evaluate the accuracy in detection of small and low-contrast regions using a high-definition diagnostic computed tomography (CT) scanner compared with a radiotherapy CT simulation scanner. A custom-made phantom with cylindrical holes of diameters ranging from 2-9 mm was filled with 9 different concentrations of contrast solution. The phantom was scanned using a 16-slice multidetector CT simulation scanner (LightSpeed RT16, General Electric Healthcare, Milwaukee, WI) and a 64-slice high-definition diagnostic CT scanner (Discovery CT750 HD, General Electric Healthcare). The low-contrast regions of interest (ROIs) were delineated automatically upon their full width at half maximum of the CT number profile inmore » Hounsfield units on a treatment planning workstation. Two conformal indexes, CI{sub in}, and CI{sub out}, were calculated to represent the percentage errors of underestimation and overestimation in the automated contours compared with their actual sizes. Summarizing the conformal indexes of different sizes and contrast concentration, the means of CI{sub in} and CI{sub out} for the CT simulation scanner were 33.7% and 60.9%, respectively, and 10.5% and 41.5% were found for the diagnostic CT scanner. The mean differences between the 2 scanners' CI{sub in} and CI{sub out} were shown to be significant with p < 0.001. A descending trend of the index values was observed as the ROI size increases for both scanners, which indicates an improved accuracy when the ROI size increases, whereas no observable trend was found in the contouring accuracy with respect to the contrast levels in this study. Images acquired by the diagnostic CT scanner allow higher accuracy on size estimation compared with the CT simulation scanner in this study. We recommend using a diagnostic CT scanner to scan patients with small lesions (<1 cm in diameter) for radiotherapy treatment planning, especially for those pending for stereotactic radiosurgery in which accurate delineation of

  20. A walk by the river: three-dimensional reconstruction of surface sedimentology and topography using wearable laser scanning

    NASA Astrophysics Data System (ADS)

    Williams, R.; Lamy, M. L.; Stott, E.; Maniatis, G.

    2017-12-01

    In the last two decades, quantification of fluvial topography has been transformed by a number of geomatics technologies that have enabled the acquisition of data with unprecedented spatial resolution. Hyperscale surveys with spatial extents of <1 km2 have been widely demonstrated, by means of Terrestrial Laser Scanning (TLS) and Structure-from-Motion (SfM) photogrammetry. Recent advances in the development and integration of GNSS, IMU, lightweight laser scanning and SLAM technologies are now resulting in the emergence of wearable, mobile laser scanning systems that have the potential to increase data acquisition and processing rates by 1-2 orders of magnitude compared to TLS/SfM, and thus challenge the recent dominance of these two geomatics technologies. In this study we describe the methods and results of a comparison between a wearable laser scanning survey, using a Leica Pegasus Backpack, and a multi-station static TLS survey, using a Riegl VZ-1000 scanner. The evaluation is undertaken on a 600 m long reach of the braided River Feshie, Scotland, using data acquired in June 2017. Comparison between the DEMs produced from static and mobile laser scanning, across non-vegetated areas, revealed a Mean Error (ME) of -0.002 m and a Standard Deviation Error (SDE) of 0.109 m. Comparison to 100 independent check point resulted in a similar ME and SDE for static (ME = 0.061m; SDE = 0.030 m) and mobile (ME = 0.044 m; SDE = 0.029 m) laser scanning. Empirical relationships between sub-metre topographic variability and median sediment grain size (10-100 mm), across 14 grid-by-number samples, were similar and demonstrate that surface roughness from wearable laser scanning can be used to derive reach-scale maps of median grain size. These results demonstrate that wearable laser scanning generates hyperscale topographic models that are comparable in quality to more time-consuming multi-station TLS setups. Wearable laser scanning is likely to be commonly adopted for fluvial

  1. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  2. MFP scanner motion characterization using self-printed target

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bauer, Peter; Wagner, Jerry K.; Allebach, Jan P.

    2015-01-01

    Multifunctional printers (MFP) are products that combine the functions of a printer, scanner, and copier. Our goal is to help customers to be able to easily diagnose scanner or print quality issues with their products by developing an automated diagnostic system embedded in the product. We specifically focus on the characterization of scanner motions, which may be defective due to irregular movements of the scan-head. The novel design of our test page and two-stage diagnostic algorithm are described in this paper. The most challenging issue is to evaluate the scanner performance properly when both printer and scanner units contribute to the motion errors. In the first stage called the uncorrected-print-error-stage, aperiodic and periodic motion behaviors are characterized in both the spatial and frequency domains. Since it is not clear how much of the error is contributed by each unit, the scanned input is statistically analyzed in the second stage called the corrected-print-error-stage. Finally, the described diagnostic algorithms output the estimated scan error and print error separately as RMS values of the displacement of the scan and print lines, respectively, from their nominal positions in the scanner or printer motion direction. We validate our test page design and approaches by ground truth obtained from a high-precision, chrome-on-glass reticle manufactured using semiconductor chip fabrication technologies.

  3. Input Scanners: A Growing Impact In A Diverse Marketplace

    NASA Astrophysics Data System (ADS)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  4. 33. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF CHILLER ROOM MOTOR CONTROL CENTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    NASA Astrophysics Data System (ADS)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous "Scantron." OMR scanners combine hardware and software—a scanner and OMR program—to read and grade student-filled forms.

  6. 18. SITE BUILDING 002 SCANNER BUILDING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SITE BUILDING 002 - SCANNER BUILDING - VIEW OF SITE SECURITY OFFICE ACCESS DOOR FROM EXTERIOR OF OFFICE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. Laser Doppler imager (LDI) scanner and intradermal injection for in vivo pharmacology in human skin microcirculation: responses to acetylcholine, endothelin-1 and their repeatability

    PubMed Central

    Saez, Anabelle M Opazo; Mosel, Frank; Nürnberger, Jens; Rushentsova, U; Gössl, Mario; Mitchell, Anna; Schäfers, Rafael F; Philipp, Thomas; Wenzel, René R

    2005-01-01

    Aims The purpose of this study was to evaluate the repeatability of forearm skin blood flow responses to intradermal injections of acetylcholine (ACh) and endothelin-1 (ET-1) using a double injection technique (DIT) and a laser Doppler imager (LDI) scanner in the human skin microcirculation. Methods We used a laser Doppler imager (Moor LDI V3.01) to continuously monitor the change in skin blood flow during intradermal administration of physiological saline (0.9% NaCl), acetylcholine (ACh 10−7, 10−8, 10−9 M) and endothelin-1 (ET-1 10−14, 10−16, 10−18 M) in 10 healthy male subjects. Subjects were examined on 3 different days for assessment of interday and interobserver repeatability. Injections of either drug were randomly placed on different sites of the forearm. Laser Doppler images were collected before and after injection at 2.5 min intervals for 30 min. Data were analysed after the completion of each experiment using Moor Software V.3.01. Results are expressed as changes from baseline in arbitrary perfusion units (PU). Results ACh caused a significant vasodilation (P< 0.0001 anova, mean ± SE: 766 ± 152 PU, ACh 10−9 M; 1868 ± 360 PU, ACh 10−8 M; 4188 ± 848 PU, ACh 10−7 M; mean of days 1 and 2, n = 10), and ET-1 induced a significant vasoconstrictive response (P< 0.0001 anova, −421 ± 83 PU, ET-1 10−18 M; −553 ± 66 PU, ET-1 10−16 M; −936 ± 90 PU, ET-1 10−14 M; mean of days 1 and 2, n = 10). There was no difference on the response to either drug on repeated days. Bland-Altman analyses showed a close agreement of responses between days with repeatability coefficients of 1625.4 PU for ACh, and 386.0 PU for ET-1 (95% CI: ACh, −1438 to 1747 PU, ET-1, −399 to 358 PU) and between observers with repeatability coefficients of 1057.2 PU for ACh and 255.8 PU for ET-1 (95% CI: ACh, −1024 to 1048 PU, ET-1, −252 to 249 PU). The variability between these responses was independent of average flux values for both ACh and ET-1. There was

  8. New scanner fiber optic delivery system for laser phototherapy in the treatment of neonatal jaundice

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad S. E.

    1995-05-01

    The authors have introduced laser phototherapy for the treatment of neonatal jaundice. Clinical trials have demonstrated its high efficacy compared to the conventionally used fluorescent phototherapy. In this paper a new modification to laser irradiation in phototherapy can be achieved by scanning the laser output beam in the selected wavelength of irradiation (488 nm) through a fiberoptic bundle which irradiate the skin of the baby. Scanning of the laser beam provides intermittent irradiation at high frequency, which can provide the same therapeutic efficacy with almost half the power of laser irradiation.

  9. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland

    NASA Astrophysics Data System (ADS)

    Goodwin, Nicholas R.; Armston, John D.; Muir, Jasmine; Stiller, Issac

    2017-04-01

    Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) technologies capture spatially detailed estimates of surface topography and when collected multi-temporally can be used to assess geomorphic change. The sensitivity and repeatability of ALS measurements to characterise geomorphic change in topographically complex environments such as gullies; however, remains an area lacking quantitative research. In this study, we captured coincident ALS and TLS datasets to assess their ability and synergies to detect geomorphic change for a gully located in Aratula, southeast Queensland, Australia. We initially used the higher spatial density and ranging accuracy of TLS to provide an assessment of the Digital Elevation Models (DEM) derived from ALS within a gully environment. Results indicated mean residual errors of 0.13 and 0.09 m along with standard deviation (SD) of residual errors of 0.20 and 0.16 m using pixel sizes of 0.5 and 1.0 m, respectively. The positive mean residual errors confirm that TLS data consistently detected deeper sections of the gully than ALS. We also compared the repeatability of ALS and TLS for characterising gully morphology. This indicated that the sensitivity to detect change using ALS is substantially lower than TLS, as expected, and that the ALS survey characteristics influence the ability to detect change. Notably, we found that using one ALS transect (mean density of 5 points / m2) as opposed to three transects increased the SD of residual error by approximately 30%. The supplied classification of ALS ground points was also demonstrated to misclassify gully features as non-ground, with minimum elevation filtering found to provide a more accurate DEM of the gully. The number and placement of terrestrial laser scans were also found to influence the derived DEMs. Furthermore, we applied change detection using two ALS data captures over a four year period and four TLS field surveys over an eight month period. This demonstrated that

  12. Evaluation and comparison of dimensional accuracy of newly introduced elastomeric impression material using 3D laser scanners: an in vitro study.

    PubMed

    Pandita, Amrita; Jain, Teerthesh; Yadav, Naveen S; Feroz, S M A; Pradeep; Diwedi, Akankasha

    2013-03-01

    Aim of the present study was to comparatively evaluate dimensional accuracy of newely introduced elastomeric impression material after repeated pours at different time intervals. In the present study a total of 20 (10 + 10) impressions of master model were made from vinyl polyether silicone and vinyl polysiloxane impression material. Each impression was repeatedly poured at 1, 24 hours and 14 days. Therefore, a total of 60 casts were obtained. Casts obtained were scanned with three-dimensional (3D) laser scanner and measurements were done. Vinyl polyether silicone produced overall undersized dies, with greatest change being 0.14% only after 14 days. Vinyl polysiloxane produced smaller dies after 1 and 24 hours and larger dies after 14 days, differing from master model by only 0.07% for the smallest die and to 0.02% for the largest die. All the deviations measured from the master model with both the impression materials were within a clinically acceptable range. In a typical fixed prosthodontic treatment accuracy of prosthesis is critical as it determines the success, failure and the prognosis of treatment including abutments. This is mainly dependent upon fit of prosthesis which in turn is dependent on dimensional accuracy of dies, poured from elastomeric impressions.

  13. Reconstruction artifacts in VRX CT scanner images

    NASA Astrophysics Data System (ADS)

    Rendon, David A.; DiBianca, Frank A.; Keyes, Gary S.

    2008-03-01

    Variable Resolution X-ray (VRX) CT scanners allow imaging of different sized anatomy at the same level of detail using the same device. This is achieved by tilting the x-ray detectors so that the projected size of the detecting elements is varied to produce reconstructions of smaller fields of view with higher spatial resolution. As with regular CT scanners, the images obtained with VRX scanners are affected by different kinds of artifacts of various origins. This work studies some of these artifacts and the impact that the VRX effect has on them. For this, computational models of single-arm single-slice VRX scanners are used to produce images with artifacts commonly found in routine use. These images and artifacts are produced using our VRX CT scanner simulator, which allows us to isolate the system parameters that have a greater effect on the artifacts. A study of the behavior of the artifacts at varying VRX opening angles is presented for scanners implemented using two different detectors. The results show that, although varying the VRX angle will have an effect on the severity of each of the artifacts studied, for some of these artifacts the effect of other factors (such as the distribution of the detector cells and the position of the phantom in the reconstruction grid) is overwhelmingly more significant. This is shown to be the case for streak artifacts produced by thin metallic objects. For some artifacts related to beam hardening, their severity was found to decrease along with the VRX angle. These observations allow us to infer that in regular use the effect of the VRX angle artifacts similar to the ones studied here will not be noticeable as it will be overshadowed by parameters that cannot be easily controlled outside of a computational model.

  14. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  15. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  17. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  18. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  19. Laser-Scanner Survey of Structural Disorders: AN Instrument to Inspect the History of Parma Cathedral's Central Nave

    NASA Astrophysics Data System (ADS)

    Bruno, N.; Coïsson, E.; Cotti, M.

    2017-05-01

    This paper presents the use of laser scanner derived data for the study of the structural disorders in the central nave of the Parma Cathedral. An accurate three-dimensional model of the entire nave was realized to investigate deformations, in order to reconstruct the original conformation and the subsequent evolutions, also in comparison with previous surveys. Specifically, for the analysis presented in the paper, seven scans were performed, one for each bay: the results allowed to compare the deformations on the seven vaults, on the transverse and diagonal arches, giving first hints on the possible differences in the behaviour between the different elements. The measures on the levels of floor and pillars bases were analysed in a historical monitoring approach, in order to retrace the evolution of the differential settlements in time, since the construction of the building. Moreover, a structural analysis has been carried out on one transverse arch with distinct element analysis, with two different approaches. In one case, the structure was inserted exactly as surveyed, and then subjected to the actions. In the second case, the original geometry, before the deformation, was retraced through a parametric approach and the structural analysis basically started at the beginning of the building's life, thus trying to model not only the present structural situation, but also the path which led to the current deformation. The results were particularly meaningful as they showed that in the first case, disregarding the footsteps of history, the stress pattern inside the masonry was very different from the one obtained in the second case, which is more likely to represent the present conditions.

  20. Regulation of X-Ray Security Scanners in Michigan.

    PubMed

    Parry, Donald E

    2016-02-01

    In January of 2013 the Transportation Security Administration (TSA) ordered the removal of x-ray security scanners from airports by June of 2013. Since that time several of these scanners have been purchased at a reduced cost by various state and county governments for use in screening individuals entering or leaving their facilities. To address this issue the Radiation Safety Section of the State of Michigan drafted a set of registration conditions for facilities to follow when using these security scanners. Inspection procedures and measurement protocols were developed to estimate the dose to screened individuals. Inspections were performed on nine of the 16 registered backscatter scanners in the state and the one transmission scanner. The average estimated effective dose to screened individuals was ∼11 nSv for a two view scan from a backscatter system. The effective dose was 0.446 μSv, 0.330 μSv, and 0.150 μSv for a transmission system operated in the high, medium, and low dose modes, respectively. The limit suggested in the new registration condition is 0.25 μSv for a general use system and 10 μSv for a limited use system.

  1. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    NASA Astrophysics Data System (ADS)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  2. Toward extending terrestrial laser scanning applications in forestry: a case study of broad- and needle-leaf tree classification

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Jiang, Miao

    2017-01-01

    Tree species information is essential for forest research and management purposes, which in turn require approaches for accurate and precise classification of tree species. One such remote sensing technology, terrestrial laser scanning (TLS), has proved to be capable of characterizing detailed tree structures, such as tree stem geometry. Can TLS further differentiate between broad- and needle-leaves? If the answer is positive, TLS data can be used for classification of taxonomic tree groups by directly examining their differences in leaf morphology. An analysis was proposed to assess TLS-represented broad- and needle-leaf structures, followed by a Bayes classifier to perform the classification. Tests indicated that the proposed method can basically implement the task, with an overall accuracy of 77.78%. This study indicates a way of implementing the classification of the two major broad- and needle-leaf taxonomies measured by TLS in accordance to their literal definitions, and manifests the potential of extending TLS applications in forestry.

  3. A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner.

    PubMed

    Li, Ping; Wang, Weiwei; Song, Zhijian; An, Yong; Zhang, Chenxi

    2014-07-01

    Brain retraction causes great distortion that limits the accuracy of an image-guided neurosurgery system that uses preoperative images. Therefore, brain retraction correction is an important intraoperative clinical application. We used a linear elastic biomechanical model, which deforms based on the eXtended Finite Element Method (XFEM) within a framework for brain retraction correction. In particular, a laser range scanner was introduced to obtain a surface point cloud of the exposed surgical field including retractors inserted into the brain. A brain retraction surface tracking algorithm converted these point clouds into boundary conditions applied to XFEM modeling that drive brain deformation. To test the framework, we performed a brain phantom experiment involving the retraction of tissue. Pairs of the modified Hausdorff distance between Canny edges extracted from model-updated images, pre-retraction, and post-retraction CT images were compared to evaluate the morphological alignment of our framework. Furthermore, the measured displacements of beads embedded in the brain phantom and the predicted ones were compared to evaluate numerical performance. The modified Hausdorff distance of 19 pairs of images decreased from 1.10 to 0.76 mm. The forecast error of 23 stainless steel beads in the phantom was between 0 and 1.73 mm (mean 1.19 mm). The correction accuracy varied between 52.8 and 100 % (mean 81.4 %). The results demonstrate that the brain retraction compensation can be incorporated intraoperatively into the model-updating process in image-guided neurosurgery systems.

  4. Comparing and combining terrestrial laser scanning with ground-and UAV-based imaging for national-level assessment of soil erosion

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; James, Mike R.; Quinton, John; Anderson, Karen; DeBell, Leon; Evans, Martin; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Tim; Wetherelt, Andy; Brazier, Richard

    2014-05-01

    3D topographic or surface models are increasingly being utilised for a wide range of applications and are established tools in geomorphological research. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods of collecting topographic measurements via remote sensing for detailed studies of dynamic processes such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, processed using structure-from-motion (SfM) 3D reconstruction software. The methods will be applied in regions of different land use, including arable and horticultural, upland and semi natural habitats, and grassland, to quantify visible erosion pathways at the site scale. Volumetric estimates of soil loss will be quantified using the digital surface models (DSMs) provided by each technique and a modelled pre-erosion surface. Visible erosion and severity will be independently established through each technique, with their results compared and combined effectiveness assessed. A fixed delta-wing UAV (QuestUAV, http://www.questuav.com/) captures photos from a range of altitudes and angles over the study area, with automated SfM-based processing enabling rapid orthophoto production to support ground-based data acquisition. At sites with suitable scale erosion features, UAV data will also provide a DSM for volume loss measurement. Terrestrial laser scanning will provide detailed, accurate, high density measurements of the ground surface over long (100s m) distances. Ground-based photography is anticipated to be most useful for characterising small and difficult to view features. By using a consumer-grade digital camera and an SfM-based approach (using Agisoft Photoscan version 1.0.0, http://www.agisoft.ru/products/photoscan/), less expertise and fewer control

  5. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  6. Geoid undulation computations at laser tracking stations

    NASA Technical Reports Server (NTRS)

    Despotakis, Vasilios K.

    1987-01-01

    Geoid undulation computations were performed at 29 laser stations distributed around the world using a combination of terrestrial gravity data within a cap of radius 2 deg and a potential coefficient set up to 180 deg. The traditional methods of Stokes' and Meissl's modification together with the Molodenskii method and the modified Sjoberg method were applied. Performing numerical tests based on global error assumptions regarding the terrestrial data and the geopotential set it was concluded that the modified Sjoberg method is the most accurate and promising technique for geoid undulation computations. The numerical computations for the geoid undulations using all the four methods resulted in agreement with the ellipsoidal minus orthometric value of the undulations on the order of 60 cm or better for most of the laser stations in the eastern United States, Australia, Japan, Bermuda, and Europe. A systematic discrepancy of about 2 meters for most of the western United States stations was detected and verified by using two relatively independent data sets. For oceanic laser stations in the western Atlantic and Pacific oceans that have no terrestrial data available, the adjusted GEOS-3 and SEASAT altimeter data were used for the computation of the geoid undulation in a collocation method.

  7. Coupling efficiency of laser beam to multimode fiber for free space optical communication

    NASA Astrophysics Data System (ADS)

    Arisa, Suguru; Takayama, Yoshihisa; Endo, Hiroyuki; Shimizu, Ryosuke; Fujiwara, Mikio; Sasaki, Masahide

    2017-11-01

    Recently, the free space optical (FSO) communications have been widely studied as an alternative for large capacity communications and its possible implementation in satellite and terrestrial laser links. In satellite communications, clouds can strongly attenuate the laser signal that would lead to high bit-error rates or temporal unavailability of the link. To overcome the cloud coverage effects, often site diversity technique is implemented. When using multiple ground stations though, simplified optical system is required to allow the usage of more flexible approaches. In terrestrial laser communications, several methods for optical system simplification by using a multimode fiber (MMF) have been proposed.

  8. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  9. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. Design of voice coil motor dynamic focusing unit for a laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  11. Design of voice coil motor dynamic focusing unit for a laser scanner.

    PubMed

    Lee, Moon G; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  12. Design of voice coil motor dynamic focusing unit for a laser scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motorsmore » and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.« less

  13. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure.

    PubMed

    Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-07-28

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.

  14. A flexible and wearable terahertz scanner

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  15. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  17. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  18. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  19. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratorymore » version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.« less

  20. Quantifying the eroded volume of mercury-contaminated sediment using terrestrial laser scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–13

    USGS Publications Warehouse

    Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra

    2016-07-28

    High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.

  1. Two-dimensional scanner apparatus. [flaw detector in small flat plates

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.; Bankston, B. F. (Inventor)

    1984-01-01

    An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.

  2. Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.

    2015-03-01

    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.

  3. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. 34. SITE BUILDING 002 SCANNER BUILDING ROOM 105 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SITE BUILDING 002 - SCANNER BUILDING - ROOM 105 - CHILLER ROOM, SHOWING SINGLE COMPRESSOR, LIQUID CHILLERS AND "CHILLED WATER RETURN", COOLING TOWER 'TOWER WATER RETURN" AND 'TOWER WATER SUPPLY" LINES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Method to evaluate the noise of 3D intra-oral scanner.

    PubMed

    Desoutter, Alban; Yusuf Solieman, Osama; Subsol, Gérard; Tassery, Hervé; Cuisinier, Frédéric; Fages, Michel

    2017-01-01

    In dentistry, 3D intra-oral scanners are gaining increasing popularity essentially for the production of dental prostheses. However, there is no normalized procedure to evaluate their basic performance and enable comparisons among intra-oral scanners. The noise value highlights the trueness of a 3D intra-oral scanner and its capacity to plan prosthesis with efficient clinical precision. The aim of the present study is to develop a reproducible methodology for determining the noise of an intra-oral scanner. To this aim, and as a reference, an ultra-flat and ultra-smooth alumina wafer is used as a blank test. The roughness is calculated using an AFM (atomic force microscope) and interferometric microscope measurements to validate this ultra-flat characteristic. Then, two intra-oral scanners (Carestream CS3500 and Trios 3Shape) are used. The wafer is imaged by the two intra-oral scanners with three different angles and two different directions, 10 times for each parameter, given a total of 50 3D-meshes per intra-oral scanner. RMS (root mean square), representing the noise, is evaluated and compared for each angle/direction and each intra-oral scanner, for the whole mesh, and then in a central ROI (region of interest). In this study, we obtained RMS values ranging between 5.29 and 12.58 micrometers. No statistically significant differences were found between the mean RMS of the two intra-oral scanners, but significant differences in angulation and orientations were found between different 3D intra-oral scanners. This study shows that the evaluation of RMS can be an indicator of the value of the noise, which can be easily assessed by applying the present methodology.

  9. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  10. Accuracy of single-abutment digital cast obtained using intraoral and cast scanners.

    PubMed

    Lee, Jae-Jun; Jeong, Ii-Do; Park, Jin-Young; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-02-01

    Scanners are frequently used in the fabrication of dental prostheses. However, the accuracy of these scanners is variable, and little information is available. The purpose of this in vitro study was to compare the accuracy of cast scanners with that of intraoral scanners by using different image impression techniques. A poly(methyl methacrylate) master model was fabricated to replicate a maxillary first molar single-abutment tooth model. The master model was scanned with an accurate engineering scanner to obtain a true value (n=1) and with 2 intraoral scanners (CEREC Bluecam and CEREC Omnicam; n=6 each). The cast scanner scanned the master model and duplicated the dental stone cast from the master model (n=6). The trueness and precision of the data were measured using a 3-dimensional analysis program. The Kruskal-Wallis test was used to compare the different sets of scanning data, followed by a post hoc Mann-Whitney U test with a significance level modified by Bonferroni correction (α/6=.0083). The type 1 error level (α) was set at .05. The trueness value (root mean square: mean ±standard deviation) was 17.5 ±1.8 μm for the Bluecam, 13.8 ±1.4 μm for the Omnicam, 17.4 ±1.7 μm for cast scanner 1, and 12.3 ±0.1 μm for cast scanner 2. The differences between the Bluecam and the cast scanner 1 and between the Omnicam and the cast scanner 2 were not statistically significant (P>.0083), but a statistically significant difference was found between all the other pairs (P<.0083). The precision of the scanners was 12.7 ±2.6 μm for the Bluecam, 12.5 ±3.7 μm for the Omnicam, 9.2 ±1.2 μm for cast scanner 1, and 6.9 ±2.6 μm for cast scanner 2. The differences between Bluecam and Omnicam and between Omnicam and cast scanner 1 were not statistically significant (P>.0083), but there was a statistically significant difference between all the other pairs (P<.0083). An Omnicam in video image impression had better trueness than a cast scanner but with a similar

  11. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  12. Scanner qualification with IntenCD based reticle error correction

    NASA Astrophysics Data System (ADS)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  13. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  14. Low-grazing angle laser scans of foreshore topography, swash and inner surf-zone wave heights, and mean water level: validation and storm response

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.; Forte, M.; Slocum, R.

    2010-12-01

    Accurately predicting beach evolution during storms requires models that correctly parameterize wave runup and inner surf-zone processes, the principle drivers of sediment exchange between the beach and surf-zone. Previous studies that aimed at measuring wave runup and swash zone water levels have been restricted to analyzing water-elevation time series of (1) the shoreward-most swash excursion using video imaging or near-bed resistance wires, or (2) the free water surface at a particular location on the foreshore using pressure sensors. These data are often compared with wave forcing parameters in deeper water as well as with beach topography observed at finite intervals throughout the time series to identify links between foreshore evolution, wave spectra, and water level variations. These approaches have lead to numerous parameterizations and empirical equations for wave runup but have difficulty providing adequate data to quantify and understand short-term spatial and temporal variations in foreshore evolution. As a result, modeling shoreline response and changes in sub-aerial beach volume during storms remains a substantial challenge. Here, we demonstrate a novel technique in which a terrestrial laser scanner is used to continuously measure beach and foreshore topography as well as water elevation (and wave height) in the swash and inner surf-zone during storms. The terrestrial laser scanner is mounted 2-m above the dune crest at the Field Research Facility in Duck, NC in line with cross-shore wave gauges located at 2-m, 3-m, 5-m, 6-m, and 8-m of water depth. The laser is automated to collect hourly, two-dimensional, 20-minute time series of data along a narrow swath in addition to an hourly three-dimensional laser scan of beach and dune topography +/- 250m alongshore from the laser. Low grazing-angle laser scans are found to reflect off of the surface of the water, providing spatially (e.g. dx <= 0.1 m) and temporally (e.g. dt = 3Hz) dense elevation data of

  15. Terrestrial scanning or digital images in inventory of monumental objects? - case study

    NASA Astrophysics Data System (ADS)

    Markiewicz, J. S.; Zawieska, D.

    2014-06-01

    Cultural heritage is the evidence of the past; monumental objects create the important part of the cultural heritage. Selection of a method to be applied depends on many factors, which include: the objectives of inventory, the object's volume, sumptuousness of architectural design, accessibility to the object, required terms and accuracy of works. The paper presents research and experimental works, which have been performed in the course of development of architectural documentation of elements of the external facades and interiors of the Wilanów Palace Museum in Warszawa. Point clouds, acquired from terrestrial laser scanning (Z+F 5003h) and digital images taken with Nikon D3X and Hasselblad H4D cameras were used. Advantages and disadvantages of utilisation of these technologies of measurements have been analysed with consideration of the influence of the structure and reflectance of investigated monumental surfaces on the quality of generation of photogrammetric products. The geometric quality of surfaces obtained from terrestrial laser scanning data and from point clouds resulting from digital images, have been compared.

  16. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Scanning properties of a resonant fiber-optic piezoelectric scanner

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yang, Zhe; Fu, Ling

    2011-12-01

    We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.

  18. Color (RGB) imaging laser radar

    NASA Astrophysics Data System (ADS)

    Ferri De Collibus, M.; Bartolini, L.; Fornetti, G.; Francucci, M.; Guarneri, M.; Nuvoli, M.; Paglia, E.; Ricci, R.

    2008-03-01

    We present a new color (RGB) imaging 3D laser scanner prototype recently developed in ENEA, Italy). The sensor is based on AM range finding technique and uses three distinct beams (650nm, 532nm and 450nm respectively) in monostatic configuration. During a scan the laser beams are simultaneously swept over the target, yielding range and three separated channels (R, G and B) of reflectance information for each sampled point. This information, organized in range and reflectance images, is then elaborated to produce very high definition color pictures and faithful, natively colored 3D models. Notable characteristics of the system are the absence of shadows in the acquired reflectance images - due to the system's monostatic setup and intrinsic self-illumination capability - and high noise rejection, achieved by using a narrow field of view and interferential filters. The system is also very accurate in range determination (accuracy better than 10 -4) at distances up to several meters. These unprecedented features make the system particularly suited to applications in the domain of cultural heritage preservation, where it could be used by conservators for examining in detail the status of degradation of frescoed walls, monuments and paintings, even at several meters of distance and in hardly accessible locations. After providing some theoretical background, we describe the general architecture and operation modes of the color 3D laser scanner, by reporting and discussing first experimental results and comparing high-definition color images produced by the instrument with photographs of the same subjects taken with a Nikon D70 digital camera.

  19. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  20. Laser entertainment and light shows in education

    NASA Astrophysics Data System (ADS)

    Sabaratnam, Andrew T.; Symons, Charles

    2002-05-01

    Laser shows and beam effects have been a source of entertainment since its first public performance May 9, 1969, at Mills College in Oakland, California. Since 1997, the Photonics Center, NgeeAnn Polytechnic, Singapore, has been using laser shows as a teaching tool. Students are able to exhibit their creative skills and learn at the same time how lasers are used in the entertainment industry. Students will acquire a number of skills including handling three- phase power supply, operation of cooling system, and laser alignment. Students also acquire an appreciation of the arts, learning about shapes and contours as they develop graphics for the shows. After holography, laser show animation provides a combination of the arts and technology. This paper aims to briefly describe how a krypton-argon laser, galvanometer scanners, a polychromatic acousto-optic modulator and related electronics are put together to develop a laser projector. The paper also describes how students are trained to make their own laser animation and beam effects with music, and at the same time have an appreciation of the operation of a Class IV laser and the handling of optical components.

  1. Records Reaching Recording Data Technologies

    NASA Astrophysics Data System (ADS)

    Gresik, G. W. L.; Siebe, S.; Drewello, R.

    2013-07-01

    The goal of RECORDS (Reaching Recording Data Technologies) is the digital capturing of buildings and cultural heritage objects in hard-to-reach areas and the combination of data. It is achieved by using a modified crane from film industry, which is able to carry different measuring systems. The low-vibration measurement should be guaranteed by a gyroscopic controlled advice that has been , developed for the project. The data were achieved by using digital photography, UV-fluorescence photography, infrared reflectography, infrared thermography and shearography. Also a terrestrial 3D laser scanner and a light stripe topography scanner have been used The combination of the recorded data should ensure a complementary analysis of monuments and buildings.

  2. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. Individual Rocks Segmentation in Terrestrial Laser Scanning Point Cloud Using Iterative Dbscan Algorithm

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jóźków, G.; Borkowski, A.

    2018-05-01

    The fluvial transport is an important aspect of hydrological and geomorphologic studies. The knowledge about the movement parameters of different-size fractions is essential in many applications, such as the exploration of the watercourse changes, the calculation of the river bed parameters or the investigation of the frequency and the nature of the weather events. Traditional techniques used for the fluvial transport investigations do not provide any information about the long-term horizontal movement of the rocks. This information can be gained by means of terrestrial laser scanning (TLS). However, this is a complex issue consisting of several stages of data processing. In this study the methodology for individual rocks segmentation from TLS point cloud has been proposed, which is the first step for the semi-automatic algorithm for movement detection of individual rocks. The proposed algorithm is executed in two steps. Firstly, the point cloud is classified as rocks or background using only geometrical information. Secondly, the DBSCAN algorithm is executed iteratively on points classified as rocks until only one stone is detected in each segment. The number of rocks in each segment is determined using principal component analysis (PCA) and simple derivative method for peak detection. As a result, several segments that correspond to individual rocks are formed. Numerical tests were executed on two test samples. The results of the semi-automatic segmentation were compared to results acquired by manual segmentation. The proposed methodology enabled to successfully segment 76 % and 72 % of rocks in the test sample 1 and test sample 2, respectively.

  4. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  5. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  6. Terrestrial laser scanning and a degenerated cylinder model to determine gross morphological change of cadavers under conditions of natural decomposition.

    PubMed

    Zhang, Xiao; Glennie, Craig L; Bucheli, Sibyl R; Lindgren, Natalie K; Lynne, Aaron M

    2014-08-01

    Decomposition can be a highly variable process with stages that are difficult to quantify. Using high accuracy terrestrial laser scanning a repeated three-dimensional (3D) documentation of volumetric changes of a human body during early decomposition is recorded. To determine temporal volumetric variations as well as 3D distribution of the changed locations in the body over time, this paper introduces the use of multiple degenerated cylinder models to provide a reasonable approximation of body parts against which 3D change can be measured and visualized. An iterative closest point algorithm is used for 3D registration, and a method for determining volumetric change is presented. Comparison of the laser scanning estimates of volumetric change shows good agreement with repeated in-situ measurements of abdomen and limb circumference that were taken diurnally. The 3D visualizations of volumetric changes demonstrate that bloat is a process with a beginning, middle, and end rather than a state of presence or absence. Additionally, the 3D visualizations show conclusively that cadaver bloat is not isolated to the abdominal cavity, but also occurs in the limbs. Detailed quantification of the bloat stage of decay has the potential to alter how the beginning and end of bloat are determined by researchers and can provide further insight into the effects of the ecosystem on decomposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  8. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. A LabVIEW® based generic CT scanner control software platform.

    PubMed

    Dierick, M; Van Loo, D; Masschaele, B; Boone, M; Van Hoorebeke, L

    2010-01-01

    UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW® in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort.

  10. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    PubMed Central

    Buchmann, Stephen L.

    2011-01-01

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale. PMID:26467835

  11. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    NASA Astrophysics Data System (ADS)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  12. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  13. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  14. Forest structure analysis combining laser scanning with digital airborne photogrammetry

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Onda, Yuichi; Kato, Hiroaki

    2017-04-01

    The interest of Light Detection and Ranging (LiDAR) for vegetation structure analysis has been demonstrated in several research context. Indeed, airborne or ground Lidar surveys can provide detailed three-dimensional data of the forest structure from understorey forest to the canopy. To characterize at different timescale the vegetation components in dense cedar forests we can combine several sources point clouds from Lidar survey and photogrammetry data. For our study, Terrestrial Laser Scanning (TLS-Leica ScanStation C10 processed with Cyclone software) have been lead in three forest areas (≈ 200m2 each zone) mainly composed of japanese cedar (Japonica cryptomeria), in the region of Fukushima (Japan). The study areas are characterized by various vegetation densities. For the 3 areas, Terrestrial laser scanning has been performed from several location points and several heights. Various floors shootings (ground, 4m, 6m and 18m high) were able with the use of a several meters high tower implanted to study the canopy evolution following the Fukushima Daiishi nuclear power plant accident. The combination of all scanners provides a very dense 3D point cloud of ground and canopy structure (average 300 000 000 points). For the Tochigi forest area, a first test of a low-cost Unmanned Aerial Vehicle (UAV) photogrammetry has been lead and calibrated by ground GPS measurements to determine the coordinates of points. TLS combined to UAV photogrammetry make it possible to obtain information on vertical and horizontal structure of the Tochigi forest. This combination of technologies will allow the forest structure mapping, morphometry analysis and the assessment of biomass volume evolution from multi-temporal point clouds. In our research, we used a low-cost UAV 3 Advanced (200 m2 cover, 1300 pictures...). Data processing were performed using PotoScan Pro software to obtain a very dense point clouds to combine to TLS data set. This low-cost UAV photogrammetry data has been

  15. Comparison of Single and Multi-Scale Method for Leaf and Wood Points Classification from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie

    2018-04-01

    The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.

  16. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching for Archaeological Information Extraction

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Billen, R.

    2017-08-01

    Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.

  17. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    NASA Astrophysics Data System (ADS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  18. Laser cleaning of ITER's diagnostic mirrors

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  19. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  20. Mobile terrestrial light detection and ranging (T-LiDAR) survey of areas on Dauphin Island, Alabama, in the aftermath of Hurricane Isaac, 2012

    USGS Publications Warehouse

    Kimbrow, Dustin R.

    2014-01-01

    Topographic survey data of areas on Dauphin Island on the Alabama coast were collected using a truck-mounted mobile terrestrial light detection and ranging system. This system is composed of a high frequency laser scanner in conjunction with an inertial measurement unit and a position and orientation computer to produce highly accurate topographic datasets. A global positioning system base station was set up on a nearby benchmark and logged vertical and horizontal position information during the survey for post-processing. Survey control points were also collected throughout the study area to determine residual errors. Data were collected 5 days after Hurricane Isaac made landfall in early September 2012 to document sediment deposits prior to clean-up efforts. Three data files in ASCII text format with the extension .xyz are included in this report, and each file is named according to both the acquisition date and the relative geographic location on Dauphin Island (for example, 20120903_Central.xyz). Metadata are also included for each of the files in both Extensible Markup Language with the extension .xml and ASCII text formats. These topographic data can be used to analyze the effects of storm surge on barrier island environments and also serve as a baseline dataset for future change detection analyses.