Sample records for tertiary igneous complexes

  1. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition

  2. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that many of the mineral deposits associated with Late Cretaceous-early tertiary volcanic and plutonic rocks represent geologically and spatially related, vertically zoned hydrothermal systems now exposed at several erosional levels.Polymetallic gold deposits of the Kuskokwim mineral belt are probably related to 77 to 52 Ma plutonism and volcanism associated with a period of rapid, north-directed subduction of the Kula plate. The geologic interpretation suggests that igneous complexes of the Kuskokwim mineral belt formed in an intracontinental back-arc setting during a period of extensional, wrench fault tectonics.The Kuskokwim mineral belt has many geologic and metallogenic features similar to other precious metal-bearing systems associated with arc-related igneous rocks such as the Late Cretaceous-early Tertiary Rocky Mountain alkalic province, the Jurassic Mount Milligan district of central British Columbia, the Andean orogen of South America, and the Okhotsk-Chukotka belt of northeast Asia.

  3. Coping with naturally high levels of soil salinity and boron in the westside of central California

    USDA-ARS?s Scientific Manuscript database

    In the Westside of central California, over 200,000 ha exhibit naturally high levels of salinity and boron (B). The Coast Ranges of the west central California evolved from complex folding and faulting of sedimentary and igneous rocks of Mesozoic and Tertiary age. Cretaceous and Tertiary marine sedi...

  4. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  5. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of themore » same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.« less

  6. An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano Range between Silver Zone Pass and White Horse Pass, Elko County, Nevada; a history of superposed contractional and extensional deformation

    USGS Publications Warehouse

    Ketner, Keith Brindley; Day, Warren C.; Elrick, Maya; Vaag, Myra K.; Zimmerman, Robert A.; Snee, Lawrence W.; Saltus, Richard W.; Repetski, John E.; Wardlaw, Bruce R.; Taylor, Michael E.; Harris, Anita G.

    1998-01-01

    Seven kinds of fault-bounded tracts are described. One of the tracts provides a good example of Mesozoic contractional folding and faulting; six exemplify various aspects of Miocene extensional faulting. Massive landslide deposits resulting from Tertiary faulting are described. Mesozoic intrusive rocks and extensive exposures of Miocene volcanic rocks are described and dated. The age ranges of stratigraphic units were based on numerous conodont collections, and ages of igneous rocks were determined by argon/argon and fission-track methods. The geologic complexity of the Goshute-Toano Range provides opportunities for many additional productive structural studies.

  7. New Mapping in the Sand Springs Range of Western Nevada Clarifies and Constrains Regional Deformation Sequences of the Luning-Fencemaker Thrust Belt

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Jarvis, J.; Satterfield, J. I.

    2016-12-01

    The Sand Springs Range in western Nevada exposes Mesozoic through Cenozoic structures of the eastern Sierra Nevada, Luning-Fencemaker Thrust Belt (LFTB), Basin and Range province, and Walker Lane. A recent undergraduate geologic mapping project in the northern Sand Springs Range (nSSR) set out to map igneous intrusions in detail, specifically smaller intrusions which had not been a focus in previous work. This was accomplished using different techniques including mapping at a smaller scale (1:8000 vs. 1:24000), locating contacts and faults using handheld GPS, and focusing on relationships between metamorphic tectonites and igneous units. This revealed key cross-cutting relations between structures and diverse Triassic through Tertiary igneous rocks as well as distinctions between the nSSR and the surrounding LFTB assemblages. During our mapping we identified four metamorphic tectonite map units, Cretaceous granitoid and diorite plutons and sills, Tertiary rhyolite sills and dikes, and interbedded Tertiary basalt and ash flow tuff. The cross-cutting relations of these units overturn previously published sequences of events and constrain the timing of a deformation sequence which differs from the surrounding LFTB assemblages. We found that the nSSR contains three phases of deformation: a pre-LFTB syn-metamorphic event which achieved amphibolite facies that is not described elsewhere in the LFTB (D1), followed by two non-metamorphic folding and thrusting phases characteristic of the LFTB (D2 and D3). Our mapping provided four key timing constraints. First, D1 axial-planar cleavage (S1) deformed Triassic intrusions. Second, Cretaceous granitoid and diorite units cross-cut S1 foliation, D1 folds, and low-angle faults. Third, Cretaceous and Tertiary sills that locally terminate at a low-angle fault actually post-dated faulting. Fourth, cross-cutting relations showed a basaltic lava previously mapped as Jurassic is actually Tertiary. The large Sand Springs Pluton was the only intrusion mapped in detail during previous studies; but our mapping has demonstrated the importance of both small and large intrusions in understanding the overall structural history of a complex area. This project was supported by research grants from Angelo State University and the Southwest Section AAPG.

  8. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  9. Mineral resource potential map of the lower San Francisco Wilderness study area and contiguous roadless area, Greenlee County, Arizona and Catron and Grant Counties, New Mexico

    USGS Publications Warehouse

    Ratte, James C.; Hassemer, Jerry R.; Martin, Ronny A.; Lane, Michael

    1982-01-01

    The Lower San Francisco Wilderness Study Area consists of a narrow strip 1-2 mi (2-3 km) wide between the rims of the San Francisco River canyon. The wilderness study area has a moderately high potential for geothermal resources, a low to moderate potential for base metal or precious metal resources in middle to upper Tertiary volcanic rocks, essentially no oil, gas, or coal potential, and a largely unassessable potential for metal deposits related to Laramide igneous intrusions in pre-Tertiary or lower Tertiary rocks that underlie the area. The contiguous roadless area, which borders the New Mexico half of the wilderness study area, mainly on the north side of the San Francisco River, has a low to moderate potential for molybdenum or copper deposits related to intrusive igneous rocks in the core of a volcano of dacitic composition at Goat Basin.

  10. Bushveld Igneous Complex, South Africa

    NASA Image and Video Library

    2013-02-08

    The Bushveld Igneous Complex BIC is a large layered igneous intrusion within the earth crust, exposed at the edge of the Transvaal Basin in South Africa. Numerous mines, tailings piles, and leach ponds are shown in blue.

  11. Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province

    USGS Publications Warehouse

    Finch, Warren I.

    1991-01-01

    The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986).  The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.  

  12. Summary of the geology and resources of uranium in the San Juan Basin and adjacent region, New Mexico, Arizona, Utah, and Colorado

    USGS Publications Warehouse

    Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.

    1978-01-01

    The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic

  13. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that they are genetically related. Our chemical results allow interpretation of the entire igneous complex as a differentiated impact melt. However, they are also consistent with the granophyre alone being the impact melt and the nofite and quartz gabbro beneath it representing an impact-triggered magmatic body. This interpretation is preferred, as it is consistent with a number of field observations. A re-evaluation and extension of structural field studies and of geochemical data, as well as a systematic study of the contact relationships of the various igneous phases of the igneous complex, are needed to establish a Sudbury impact model consistent with all data and observations

  14. Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain

    USGS Publications Warehouse

    Davis, M.E.

    1988-01-01

    Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining units. Aquifers of the Coastal Plain aquifer system are composed of fine to coarse sand, gravel, and limestone; confining beds are composed of clay, shale, chalk, marl, and metamorphic and igneous rocks.

  15. Preliminary geologic map of the Bowen Mountain quadrangle, Grand and Jackson Counties, Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.; Brandt, Theodore R.

    2011-01-01

    The map shows the geology of an alpine region in the southern Never Summer Mountains, including parts of the Never Summer Wilderness Area, the Bowen Gulch Protection Area, and the Arapaho National Forest. The area includes Proterozoic crystalline rocks in fault contact with folded and overturned Paleozoic and Mesozoic sedimentary rocks and Upper Cretaceous(?) and Paleocene Middle Park Formation. The folding and faulting appears to reflect a singular contractional deformation (post-Middle Park, so probably younger than early Eocene) that produced en echelon structural uplift of the Proterozoic basement of the Front Range. The geologic map indicates there is no through-going \\"Never Summer thrust\\" fault in this area. The middle Tertiary structural complex was intruded in late Oligocene time by basalt, quartz latite, and rhyolite porphyry plugs that also produced minor volcanic deposits; these igneous rocks are collectively referred to informally as the Braddock Peak intrusive-volcanic complex whose type area is located in the Mount Richthofen quadrangle immediately north (Cole and others, 2008; Cole and Braddock, 2009). Miocene boulder gravel deposits are preserved along high-altitude ridges that probably represent former gravel channels that developed during uplift and erosion in middle Tertiary time.

  16. Distribution and character of upper mesozoic subduction complexes along the west coast of North America

    USGS Publications Warehouse

    Jones, D.L.; Blake, M.C.; Bailey, E.H.; McLaughlin, R.J.

    1978-01-01

    Structurally complex sequences of sedimentary, volcanic, and intrusive igneous rocks characterize a nearly continuous narrow band along the Pacific coast of North America from Baja California, Mexico to southern Alaska. They occur in two modes: (1) as complexly folded but coherent sequences of graywacke and argillite that locally exhibit blueschist-grade metamorphism, and (2) as melanges containing large blocks of graywacke, chert, volcanic and plutonic rocks, high-grade schist, and limestone in a highly sheared pelitic, cherty, or sandstone matrix. Fossils from the coherent graywacke sequences range in age from late Jurassic to Eocene; fossils from limestone blocks in the melanges range in age from mid-Paleozoic to middle Cretaceous. Fossils from the matrix surrounding the blocks, however, are of Jurassic, Cretaceous, and rarely, Tertiary age, indicating that fossils from the blocks cannot be used to date the time of formation of the melanges. Both the deformation of the graywacke, with accompanying blueschist metamorphism, as well as the formation of the melanges, are believed to be the result of late Mesozoic and early Tertiary subduction. The origin of the melanges, particularly the emplacement of exotic tectonic blocks, is not understood. ?? 1978.

  17. Lithologic mapping of mafic intrusions in East Greenland using Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Naslund, H. Richard; Birnie, R. W.; Parr, J. T.

    1989-01-01

    The East Greenland Tertiary Igneous Province contains a variety of intrusive and extrusive rock types. The Skaergaard complex is the most well known of the intrusive centers. Landsat thematic mapping (TM) was used in conjunction with field spectrometer data to map these mafic intrusions. These intrusions are of interest as possible precious metal ore deposits. They are spectrally distinct from the surrounding Precambrian gneisses. However, subpixel contamination by snow, oxide surface coatings, lichen cover and severe topography limit the discrimination of lithologic units within the gabbro. Imagery of the Skaergaard and surrounding vicinity, and image processing and enhancement techniques are presented. Student theses and other publications resulting from this work are also listed.

  18. Sudbury Igneous Complex: Impact melt or igneous rock? Implications for lunar magmatism

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.

    1992-01-01

    The recent suggestion that the Sudbury Igneous Complex (SIC) is a fractionated impact melt may have profound implications for understanding the lunar crust and the magmatic history of the Moon. A cornerstone of much current thought on the Moon is that the development of the lunar crust can be traced through the lineage of 'pristine' igneous rocks. However, if rocks closely resembling those from layered igneous intrusions can be produced by differentiation of a large impact melt sheet, then much of what is thought to be known about the Moon may be called into question. This paper presents a brief evaluation of the SIC as a differentiated impact melt vs. endogenous igneous magma and possible implications for the magmatic history of the lunar crust.

  19. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence

    USGS Publications Warehouse

    Farmer, G.L.; Ayuso, R.; Plafker, G.

    1993-01-01

    Nd, Sr, and Pb isotopic data were obtained for fourteen fine- to coarse-grained samples of accreted flysch of the Late Cretaceous and early Tertiary Valdez and Orca Groups in southern Alaska to determine the flysch provenance. Argillites and greywackes from the Orca Group, as well as compositionally similar but higher metamorphic grade rocks from the Valdez Group, show a restricted range of correlated ??{lunate}Nd ( -0.6 to -3.8) and 87Sr 86Sr (0.7060-0.7080) at the time of sediment deposition ( ??? 50 Ma). Pb isotopic compositions also vary over a narrow range ( 206Pb 204Pb = 19.138-19.395, 207Pb 204Pb = 15.593-15.703, 208Pb 204Pb = 38.677-39.209), and in the Orca Group the samples generally become more radiogenic with decreasing ??{lunate}Nd and increasing 87Sr 86Sr. All samples have similar trace element compositions characterized by moderate light rare earth element enrichments, and low ratios of high field strength elements to large ion lithophile elements. Based on petrographic, geochemical, and isotopic data the sedimentary rocks are interpreted to have been derived largely from a Phanerozoic continental margin arc complex characterized by igneous rocks with ??{lunate}Nd values between 0 and -5. The latter conclusion is supported by the ??{lunate}Nd values of a tonalite clast and a rhyodacite clast in the Orca Group (??{lunate}Nd = -4.9 and -0.9, respectively). However, trondjemitic clasts in the Orca Group have significantly lower ??{lunate}Nd ( ??? -10) and require a derivation of a portion of the flysch from Precambrian crustal sources. The Nd, Sr, and Pb isotopic compositions of both the Valdez and Orca Groups overlap the values determined for intrusive igneous rocks exposed within the northern portion of the Late Cretaceous to early Tertiary Coast Mountains Plutonic Complex in western British Columbia and equivalent rocks in southeastern Alaska. The isotopic data support previous conclusions based on geologic studies which suggest that the flysch was shed from this portion of the batholith, and from overlying continental margin arc-related volcanic rocks, following its rapid uplift in the Late Cretaceous and early Tertiary. The Precambrian crustal material present in the flysch may have been derived from Late Proterozoic or older metasedimentary and metaigneous rocks now exposed along the western margin of the Coast Mountains Plutonic Complex. ?? 1993.

  20. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  1. 49 CFR 195.6 - Unusually Sensitive Areas (USAs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and metamorphic and igneous (intrusive and extrusive) rocks that are significantly faulted, fractured... well as species that may use terrestrial habitats during all or some portion of their life cycle, but.... These systems are common in the Tertiary age rocks that are exposed throughout the Gulf and Atlantic...

  2. 49 CFR 195.6 - Unusually Sensitive Areas (USAs).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and metamorphic and igneous (intrusive and extrusive) rocks that are significantly faulted, fractured... well as species that may use terrestrial habitats during all or some portion of their life cycle, but.... These systems are common in the Tertiary age rocks that are exposed throughout the Gulf and Atlantic...

  3. 49 CFR 195.6 - Unusually Sensitive Areas (USAs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and metamorphic and igneous (intrusive and extrusive) rocks that are significantly faulted, fractured... well as species that may use terrestrial habitats during all or some portion of their life cycle, but.... These systems are common in the Tertiary age rocks that are exposed throughout the Gulf and Atlantic...

  4. 49 CFR 195.6 - Unusually Sensitive Areas (USAs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and metamorphic and igneous (intrusive and extrusive) rocks that are significantly faulted, fractured... well as species that may use terrestrial habitats during all or some portion of their life cycle, but.... These systems are common in the Tertiary age rocks that are exposed throughout the Gulf and Atlantic...

  5. 49 CFR 195.6 - Unusually Sensitive Areas (USAs).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and metamorphic and igneous (intrusive and extrusive) rocks that are significantly faulted, fractured... well as species that may use terrestrial habitats during all or some portion of their life cycle, but.... These systems are common in the Tertiary age rocks that are exposed throughout the Gulf and Atlantic...

  6. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  7. Geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    1987-01-01

    Summary -- The Chelan quadrangle hosts a wide variety of rocks and deposits and display a long geologic history ranging from possible Precambrian to Recent. Two major structures, the Leavenworth and Entiat faults divide cross the quadrangle from southeast to northwest and bound the Chiwaukum 'graben', a structural low preserving Tertiary sedimentary rocks between blocks of older, metamorphic and igneous rocks. Pre-Tertiary metamorphic rocks in the quadrangle are subdivided into five major tectonostratigraphic terranes: (1) the Ingalls terrane, equivalent to the Jurassic Ingalls Tectonic Complex of probable mantle and deep oceanic rocks origin, (2) the Nason terrane, composed of the Chiwaukum Schist and related gneiss, (3) the Swakane terrane, made up entirely of the Swakane Biotite Gneiss, a metamorphosed, possibly Precambrian, sedimentary and/or volcanic rock, (4) the Mad River terrane composed mostly of the rocks of the Napeequa River area (Napeequa Schist), a unit of oceanic protolith now considered part of the Chelan Mountains terrane (the Mad River terrane has been abandoned, 2001), and (5) the Chelan Mountains terrane, dominated by the Chelan Complex of Hopson and Mattinson (1971) which is composed of migmatite and gneissic to tonalite of deep-seated igneous and metamorphic origin.During an episode of Late Cretaceous regional metamorphism, all the terranes were intruded by deepseated tonalite to granodiorite plutons, including the Mount Stuart batholith, Ten Peak and Dirty Face plutons, and the Entiat pluton and massive granitoid rocks of the Chelan Complex. The Duncan Hill pluton intruded rocks of the Chelan Mountains terrane in the Middle Eocene. At about the same time fluvial arkosic sediment of the Chumstick Formation was deposited in a depression. The outpouring of basalt lavas to the southeast of the quadrangle during the Miocene built up the Columbia River Basalt Group. These now slightly warped lavas lapped onto the uplifted older rocks. Deformation, uplift, and erosion recorded in the rocks and deposits of the quadrangle continued into post-Miocene time. Quaternary deposits reflect advances of glaciers down the major valleys, a complicated history of catastrophic glacial floods down the Columbia River, the formation of lakes in the Columbia and Wenatchee river valleys by landslides and flood backwaters, and hillslope erosion by large and small landslides and debris flows.

  8. Tilted middle Tertiary ash-flow calderas and subjacent granitic plutons, southern Stillwater Range, Nevada: cross sections of an Oligocene igneous center

    USGS Publications Warehouse

    John, D.A.

    1995-01-01

    Steeply tilted late Oligocene caldera systems in the Stillwater caldera complex record a number of unusual features including extreme thickness of caldera-related deposits, lack of evidence for structural doming of the calderas and preservation of vertical compositional zoning in the plutonic rocks. The Stillwater caldera complex comprises three partly overlapping ash-flow calderas and subjacent plutonic rocks that were steeply tilted during early Miocene extension. The Job Canyon caldera, the oldest (ca. 29-28 Ma) caldera, consists of two structural blocks. The 25 to 23 Ma Poco Canyon and Elevenmile Canyon calderas and underlying Freeman Creek pluton overlap in time and space with each other. Caldera collapse occurred mostly along subvertical ring-fracture faults that penetrated to depths of >5 km and were repeatedly active during eruption of ash-flow tuffs. The calderas collapsed as large piston-like blocks, and there is no evidence for chaotic collapse. Preserved parts of caldera floors are relatively flat surfaces several kilometers across. -from Author

  9. Preliminary reconnaissance survey for thorium, uranium, and rare-earth oxides, Bear Lodge Mountains, Crook County, Wyoming

    USGS Publications Warehouse

    Wilmarth, V.R.; Johnson, D.H.

    1953-01-01

    An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.

  10. No Evidence for Connectivity between the Bushveld Igneous Complex and the Molopo Farms Complex from Forward Modeling of Receiver Functions

    NASA Astrophysics Data System (ADS)

    Skryzalin, P. A.; Ramirez, C.; Durrheim, R. J.; Raveloson, A.; Nyblade, A.; Feineman, M. D.

    2016-12-01

    The Bushveld Igneous Complex contains one of the most studied and economically important layered mafic intrusions in the world. The Rustenburg Layered Suite outcrops in northern South Africa over an area of 65,000 km2, and has a volume of up to 1,000,000 km3. Both the Bushveld Igneous Complex and the Molopo Farms Complex in Botswana intruded the crust at 2.05 Ga. Despite being extensively exploited by the mining industry, many questions still exist regarding the structure of the Bushveld Igneous Complex, specifically the total size and connectivity of the different outcrops. In this study, we used receiver function analysis, a technique for determining the seismic velocity structure of the crust and upper mantle, to search for evidence of the Bushveld at station LBTB, which lies in Botswana, between the Far Western Limb of the Bushveld and the Molopo Farms Complex. The goal of our study was to determine whether a fast, high-density mafic body can be seen in the crust beneath this region using receiver functions. Observation of a high density layer would argue in favor of connectivity of the Bushveld between The Far Western Limb and the Molopo Farms Complex. We forward modeled stacks of receiver functions as well as sub-stacks that were split into azimuthal groups which share similar characteristics. We found that there was no evidence for a high velocity zone in the crust, and that the Moho in this region is located at a depth of 38 ± 3 km, about 8-9 km shallower than Moho depths determined beneath the Bushveld Complex. These two lines of evidence give no reason to assume connectivity between the Bushveld Igneous Complex and the Molopo Farms Complex, and rather suggest two separate intrusive suites.

  11. Ring complexes and related rocks in Africa

    NASA Astrophysics Data System (ADS)

    Vail, J. R.

    Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.

  12. Intrusive rocks and plutonic belts of southeastern Alaska, U.S.A.

    USGS Publications Warehouse

    Brew, David A.; Morrell, Robert P.; Roddick, J.A.

    1983-01-01

    About 30 percent of the 175,000-km2 area of southeastern Alaska is underlain by intrusive igneous rocks. Compilation of available information on the distribution, composition, and ages of these rocks indicates the presence of six major and six minor plutonic belts. From west to east, the major belts are: the Fairweather-Baranof belt of early to mid-Tertiary granodiorite; the Muir-Chichagof belt of mid-Cretaceous tonalite and granodiorite; the Admiralty-Revillagigedo belt of porphyritic granodiorite, quartz diorite, and diorite of probable Cretaceous age; the Klukwan-Duke belt of concentrically zoned or Alaskan-type ultramafic-mafic plutons of mid-Cretaceous age within the Admiralty-Revillagigedo belt; the Coast Plutonic Complex sill belt of tonalite of unknown, but perhaps mid-Cretaceous, age; and the Coast Plutonic Complex belt I of early to mid-Tertiary granodiorite and quartz monzonite. The minor belts are distributed as follows: the Glacier Bay belt of Cretaceous and(or) Tertiary granodiorite, tonalite, and quartz diorite lies within the Fair-weather-Baranof belt; layered gabbro complexes of inferred mid-Tertiary age lie within and are probably related to the Fairweather-Baranof belt; the Chilkat-Chichagof belt of Jurassic granodiorite and tonalite lies within the Muir-Chichagof belt; the Sitkoh Bay alkaline, the Kendrick Bay pyroxenite to quartz monzonite, and the Annette and Cape Fox trondhjemite plutons, all interpreted to be of Ordovician(?) age, together form the crude southern southeastern Alaska belt within the Muir-Chichagof belt; the Kuiu-Etolin mid-Tertiary belt of volcanic and plutonic rocks extends from the Muir-Chichagof belt eastward into the Admiralty-Revillagigedo belt; and the Behm Canal belt of mid- to late Tertiary granite lies within and next to Coast Plutonic Complex belt II. In addition, scattered mafic-ultramafic bodies occur within the Fairweather-Baranof, Muir-Chichagof, and Coast Plutonic Complex belts I and II. Palinspastic reconstruction of 200 km of right-lateral movement on the Chatham Strait fault does not significantly change the pattern of the major belts but does bring parts of the minor mid-Tertiary and Ordovician(?) belts closer together. The major belts are related to the stratigraphic-tectonic terranes of Berg, Jones, and Coney (1978) as follows: the Fairweather-Baranof belt is largely in the Chugach, Wrangell (Wrangellia), and Alexander terranes; the Muir-Chichagof belt is in the Alexander and Wrangell terranes; the Admiralty-Revillagigedo belt is in the Gravina and Taku terranes; the Klukwan-Duke belt is in the Gravina, Taku, and Alexander terranes; the Coast Plutonic Complex sill belt is probably between the Taku and Tracy Arm terranes; and the Coast Plutonic Complex belts I and II are in the Tracy Arm and Stikine terranes. Significant metallic-mineral deposits are spatially related to certain of these belts, and some deposits may be genetically related. Gold, copper, and molybdenum occurrences may be related to granodiorites of the Fairweather-Baranof belt. Magmatic copper-nickel deposits occur in the layered gabbro within that belt. The Juneau gold belt, which contains gold, silver, copper, lead, and zinc occurrences, parallels and lies close to the Coast Plutonic Complex sill belt; iron deposits occur in the Klukwan-Duke belt; and porphyry molybdenum deposits occur in the Behm Canal belt. The Muir-Chichagof belt of mid-Cretaceous age and the Admiralty-Revillagigedo belt of probable Cretaceous age are currently interpreted as possible magmatic arcs associated with subduction events. In general, the other belts of intrusive rocks are spatially related to structural discontinuities, but genetic relations, if any, are not yet known. The Coast Plutonic Complex sill belt is probably related to a post-Triassic, pre-early Tertiary suture zone that nearly corresponds to the boundary between the Tracy Arm and Taku terranes. The boundary between the Admiralty-Revillagigedo and Muir-Chichagof belts coincides nearly with the Seymour Canal-Clarence Strait lineament and also is probably a major post-Triassic suture.

  13. Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes.

    PubMed

    Lin, Shu-Chuan; van Keken, Peter E

    2005-07-14

    The hypothesis that a single mushroom-like mantle plume head can generate a large igneous province within a few million years has been widely accepted. The Siberian Traps at the Permian-Triassic boundary and the Deccan Traps at the Cretaceous-Tertiary boundary were probably erupted within one million years. These large eruptions have been linked to mass extinctions. But recent geochronological data reveal more than one pulse of major eruptions with diverse magma flux within several flood basalts extending over tens of million years. This observation indicates that the processes leading to large igneous provinces are more complicated than the purely thermal, single-stage plume model suggests. Here we present numerical experiments to demonstrate that the entrainment of a dense eclogite-derived material at the base of the mantle by thermal plumes can develop secondary instabilities due to the interaction between thermal and compositional buoyancy forces. The characteristic timescales of the development of the secondary instabilities and the variation of the plume strength are compatible with the observations. Such a process may contribute to multiple episodes of large igneous provinces.

  14. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry

    NASA Astrophysics Data System (ADS)

    Echeverría, Lina M.

    1980-08-01

    An exceptional occurrence of ultramafic lavas within the volcanic member of the Mesozoic (or younger) Gorgona Igneous Complex represents the first known komatiites of post-Precambrian age. Gorgona komatiites are virtually unaltered and display typical spinifex textures, with 7 10 cm long plates of olivine (Fo 88 to 91) surrounded by acicular aluminous augite, subordinate plagioclase (An 56 to 78), basaltic glass, and two spinel phases. The MgO contents of the komatiites range from 15 to 22 wt.%. Sr and Nd isotopic compositions are indicative of depletion of incompatible elements in the mantle source region, as is the case for “normal” mid-ocean ridge basalts. The komatiites are low in total REE abundances and extremely depleted in LREE. They represent primary melts generated by high degree of partial melting of the mantle. Eruption temperatures are estimated at 1,450° to 1,500° C.

  15. NACSN, note 67--Application for revision of Articles 36 and 37, Lithodemic units of the North American stratigraphic code

    USGS Publications Warehouse

    Easton, Robert M.; Edwards, Lucy E.; Orndorff, Randall C.; Duguet, Manuel; Ferrusquia-Villafranca, Ismael

    2015-01-01

    Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).

  16. A Radioelement Analysis of the Northern Black Hills, South Dakota, U.S.A

    NASA Astrophysics Data System (ADS)

    Young, Dylan Wade

    The uranium, thorium, and potassium contents from 736 samples, within a 15-km radius of the Homestake Gold Mine and Sanford Underground Research Facility in the Northern Black Hills indicate the geoneutrino background may be higher than average for the continental crust. The radioactive element contents of igneous, metamorphic, and sedimentary rocks were determined by gamma ray spectrometry. Many rocks show hydrothermal and metamorphic alteration within the last ten Ma of the Tertiary period. Young alkali rich igneous rocks, such as rhyolite, phonolite and other volcanic rocks, have lower than average Th:U ratios. The radioelement content of 215 igneous rocks were determined. The radioelement contents of 143 metamorphic rocks were determined. This study also shows that metamorphic rocks were found to have low variable U:Th content when compared to content in igneous rocks. Sedimentary rocks, in general, have low U, Th, and K content. The radioelement content of 236 sedimentary rocks were determined. Rocks present within the Homestake Gold Mine, are highly altered by hydrothermal and metamorphic activity, enriching U, and in some areas, Th content. The Homestake Gold Mine lies almost entirely within metamorphic rocks. Igneous rocks occur in the mine as veins and dikes. The dominant igneous rock present is rhyolite. Metamorphic rocks present inside the HGM, were divided by formation; Ellison Fm, Poorman Fm, Yates Unit [lower Poorman Fm], Homestake Fm, and Flagrock Fm. The finding of high radioelement content in the rocks suggests that the antineutrinos background at the HGM will need to be considered and calibrated for, in future experiments conducted at the Sanford Underground Research Facility. A geoneutrino luminosity of 1.26x105 (mg-1s -1) was calculated from the samples analyzed within the Homestake Gold Mine. A total geoneutrino luminosity of 4.44x105 (mg -1s=1) was calculated from the sum of all analyses conducted in the Northern Black Hills.

  17. HELLS HOLE ROADLESS AREA, ARIZONA AND NEW MEXICO.

    USGS Publications Warehouse

    Ratte, James C.; Briggs, John P.

    1984-01-01

    The Hells Hole Roadless Area encompasses about 50 sq mi along the Arizona-New Mexico State line. The area was studied and the southeastern part was determined to have a probable mineral-resource potential for the discovery of base- or precious-metal deposits related to igneous intrusions of middle to late Tertiary age. There also is a probable resource potential for porphyry copper mineralization of Laramide age beneath the Tertiary volcanic rocks that cover the area. There is little promise for the occurrence of energy resources in the area. Additional geochemical and petrological studies of the rocks of the Hells Hole volcanic center and modeling of geophysical anomalies are necessary to adequately appraise the mineral-resource potential of the area.

  18. Geochemistry and mineralogy of the Dotson Zone HREE deposit in the Bokan Mountain peralkaline igneous complex, southeastern Alaska, USA

    USGS Publications Warehouse

    Taylor, Cliff D.; Lowers, Heather; Adams, David; Robinson, R. James

    2017-01-01

    The Bokan Mountain igneous complex (BMIC) is a typical example of a peralkaline intrusive system that has evolved to the point of developing late stage HFSE- and REE-rich silicic pegmatites and dikes. The Dotson Zone comprises a series of felsic dikes that extend from the southeast margin of the composite pluton and may represent an important resource of critical HREEs. Petrographically, the primary igneous mineral assemblage is altered by late-igneous and hydrothermal fluids resulting in redistribution and enrichment of REEs. An area of flexure in the southeastern end of the Dotson Zone was the primary locus of enrichment as shown by the pervasive alteration and consistently high REE+Y values. We favor a model in which the dikes were emplaced concurrently with the marginal intrusions, and then altered during emplacement of the inner, main intrusion in a relatively rapid series of overlapping intrusive and late magmatic fluid-high temperature hydrothermal events as the complex cooled. A much later sodic intrusive event focused on the BMIC may have resulted in additional silica-Na-Zr-rich alteration in proximity to the pluton.

  19. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or direct derivation from, a plutonic root of the PIC and host sedimentary rocks of the Om Formation. It is likely that Au was also derived from one or both of these two sources. Concentrations of Au in unaltered igneous and sedimentary rocks from Porgera (≤10 ppb Au) do not indicate that either lithology represents a significantly enriched protore, although Au and platinum-group element (PGE) abundances in the igneous rocks suggest a mild primary magmatic enrichment of Au relative to the PGE (average [ Au/( Pt + Pd)] mantlenormalized = 14.0 ± 6.5 [ n = 8]). Evidence that the Porgera magmas were rich in volatiles permits speculation that Au may have been concentrated in a magmatic fluid phase, but alternative possibilities such as derivation of Au by hydrothermal leaching of solidified igneous materials or sedimentary rocks cannot be excluded at this time.

  20. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.

  1. Field Demonstration of Propane Biosparging for In Situ Remediation of NNitrosodimethylamine (NDMA) in Groundwater. Cost and Performance Report

    DTIC Science & Technology

    2015-12-30

    eventually thin out completely, exposing the underlying crystalline basement rocks of pre-Tertiary-age igneous and metamorphic rocks that make up the...deposits unconformably overlie Jurassic-aged metamorphic basement rocks that dip to the west. These sediments form a wedge, which thickens from east...biosparge wells (BW-6, BW-7, PMW-1). It should be noted that PMW-1 was used as both a biosparge well and a PMW throughout the demonstration

  2. Geologic and aeromagnetic maps of the Fossil Ridge area and vicinity, Gunnison County, Colorado

    USGS Publications Warehouse

    DeWitt, Ed; Zech, R.S.; Chase, C.G.; Zartman, R.E.; Kucks, R.P.; Bartelson, Bruce; Rosenlund, G.C.; Earley, Drummond

    2002-01-01

    This data set includes a GIS geologic map database of an Early Proterozoic metavolcanic and metasedimentary terrane extensively intruded by Early and Middle Proterozoic granitic plutons. Laramide to Tertiary deformation and intrusion of felsic plutons have created numerous small mineral deposits that are described in the tables and are shown on the figures in the accompanying text pamphlet. Also included in the pamphlet are numerous chemical analyses of igneous and meta-igneous bodies of all ages in tables and in summary geochemical diagrams. The text pamphlet also contains a detailed description of map units and discussions of the aeromagnetic survey, igneous and metmorphic rocks, and mineral deposits. The printed map sheet and browse graphic pdf file include the aeromagnetic map of the study area, as well as figures and photographs. Purpose: This GIS geologic map database is provided to facilitate the presentation and analysis of earth-science data for this region of Colorado. This digital map database may be displayed at any scale or projection. However, the geologic data in this coverage are not intended for use at a scale other than 1:30,000. Supplemental useful data accompanying the database are extensive geochemical and mineral deposits data, as well as an aeromagnetic map.

  3. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are recorded by monazite growth at 447 ?? 4, 411 ?? 3, and 398 ?? 3 Ma. ?? 2006 Geological Society of America.

  4. Zircon U-Pb ages and petrogenesis of a tonalite-trondhjemite-granodiorite (TTG) complex in the northern Sanandaj-Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Zanjefili-Beiranvand, Mina; Asahara, Yoshihiro

    2015-02-01

    The Ghalaylan Igneous Complex is located in the northern part of the Sanandaj-Sirjan zone (SSZ) in northwest Iran. At the surface, the complex is ellipsoidal or ring-shaped. The igneous rocks, which are medium- to fine-grained, were intruded into a Jurassic metamorphic complex and are cut by younger dikes. Zircon U-Pb ages indicate that the crystallization of the main body occurred from 157.9 ± 1.6 to 155.6 ± 5.6 Ma. The igneous complex includes granodiorite, tonalite, and quartz monzonite, as well as subvolcanic to volcanic rocks such as dacite and rhyolite. The rocks have high concentrations of Al2O3 (15-19 wt.%), SiO2 (65-70 wt.%), and Sr (700-1100 ppm), high (La/Yb)N ratios (15-40), and very low concentrations of MgO (< 0.83 wt.%), Ni (< 7 ppm), and Cr (usually < 50 ppm). There is a lack of negative Eu anomalies. These geochemical features show that the rocks are similar to high-silica adakites and Archaean tonalite-trondhjemite-granodiorite (TTG) rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.70430 to 0.70476 and from 0.51240 to 0.51261, respectively, values that are similar to those of primitive mantle and the bulk Earth. The chemical compositions of the igneous rocks of the complex, and their isotope ratios, differ from those of neighboring granitic bodies in the northern SSZ. Based on our results, we suggest a new geodynamic model for the development of this complex, as follows. During the generation of the Songhor-Ghorveh island arc in the Neotethys Ocean, an extensional basin, such as a back-arc, developed between the island arc and the Sanandaj-Sirjan zone (SSZ). As a consequence, basaltic magma was injected from the asthenosphere without the development of a mature oceanic crust. During arc-continent collision in the Late Jurassic, hot basaltic rocks were present beneath the SSZ at depths of 30-50 km, and the partial melting of these rocks led to the development of TTG-type magmas, forming the source of the Ghalaylan Igneous Complex.

  5. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  6. Geologic map of the east half of the Lime Hills 1:250,000-scale quadrangle, Alaska

    USGS Publications Warehouse

    Gamble, Bruce M.; Reed, Bruce L.; Richter, Donald H.; Lanphere, Marvin A.

    2013-01-01

    This map is compiled from geologic mapping conducted between 1985 and 1992 by the U.S. Geological Survey as part of the Alaska Mineral Resource Assessment Program. That mapping built upon previous USGS work (1963–1988) unraveling the magmatic history of the Alaska–Aleutian Range batholith. Quaternary unit contacts depicted on this map are derived largely from aerial-photograph interpretation. K-Ar ages made prior to this study have been recalculated using 1977 decay constants. The east half of the Lime Hills 1:250,000-scale quadrangle includes part of the Alaska–Aleutian Range batholith and several sequences of sedimentary rocks or mixed sedimentary and volcanic rocks. The Alaska–Aleutian Range batholith contains rocks that represent three major igneous episodes, (1) Early and Middle Jurassic, (2) Late Cretaceous and early Tertiary, and (3) middle Tertiary; only rocks from the latter two episodes are found in this map area. The map area is one of very steep and rugged terrain; elevations range from a little under 1,000 ft (305 m) to 9,828 ft (2,996 m). Foot traverses are generally restricted to lowermost elevations. Areas suitable for helicopter landings can be scarce at higher elevations. Most of the area was mapped from the air, supplemented by direct examination of rocks where possible. This restricted access greatly complicates understanding some of the more complex geologic units. For example, we know there are plutons whose compositions vary from gabbro to granodiorite, but we have little insight as to how these phases are distributed and what their relations might be to each other. It is also possible that some of what we have described as compositionally complex plutons might actually be several distinct intrusions.

  7. Apparent episodicity of magmatic activity based on radiometric age determination: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Wilson, Frederic H.; Shew, Nora B.

    1982-01-01

    Results of recent potassium-argon age studies in the Chignik region, Alaska, (Wilson, 1980; Wilson and others, 1982) have suggested a distinct episodicity in igneous activity during Tertiary time. To date work on the Aleutian magmatic arc indicates that plutonic activity took place along the present outer Pacific margin and in the northern Alaska-Aleutian Range batholith (Reed and Lanphere, 1973; Kienle and Turner, 1976; DeLong and others, 1978) in latest Cretaceous and earliest Tertiary time (70-58 m.y.) and was followed by a hiatus lasting until late Eocene ( 45 m.y~) time. Late Eocene to earliest Miocene ( 45-20 m.y.) magmatic activity was followed by a middle Miocene hiatus (10 m.y.). Since that time, magmatic activity in the Aleutian arc has been continuous.

  8. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  9. Gold in placer deposits

    USGS Publications Warehouse

    Yeend, Warren; Shawe, Daniel R.; Wier, Kenneth L.

    1989-01-01

    Man most likely first obtained gold from placer deposits, more than 6,000 years ago. Placers account for more than two-thirds of the total world gold supply, and roughly half of that mined in the States of California, Alaska, Montana, and Idaho.Placer deposits result from weathering and release of gold from lode deposits, transportation of the gold, and concentration of the gold dominantly in stream gravels. Unless preserved by burial, a placer subsequently may be eroded, and either dispersed or reconcentrated.California has produced more than 40 million troy ounces of gold from placers, both modern and fossil (Tertiary). The source of the great bulk of the gold is numerous quartz veins and mineralized zones of the Mother Lode and related systems in the western Sierra Nevada region. The gold-bearing lodes were emplaced in Carboniferous and Jurassic metamorphic rocks intruded by small bodies of Jurassic and Cretaceous igneous rocks. Mineralization occurred probably in Late Cretaceous time. Significant amounts of placer gold also were mined along the Salmon and Trinity Rivers in northern California. Source of the gold is lode deposits in Paleozoic and Mesozoic metamorphic rocks that were intruded by Mesozoic igneous rocks.Alaska has produced roughly 21 million ounces of gold from placer deposits. Most (about 13 million ounces) has come from the interior region, including 7,600,000 ounces from the Fairbanks district and 1,300,000 ounces from the Iditarod district. Lode sources are believed to be mostly quartz veins in Precambrian or Paleozoic metamorphic rocks intruded by small igneous bodies near Fairbanks, and shear zones in Tertiary(?) quartz monzonite stocks at Iditarod. The Seward Peninsula has produced more than 6 million ounces of placer gold, including about 4,000,000 ounces from the Nome district. Most of the gold was derived from raised beach deposits. Source of the gold probably is Tertiary-mineralized faults and joints in metamorphic rocks of late Precambrian age.The Helena-Last Chance district, Montana, produced nearly 1 million ounces of gold from placers that were derived from lode deposits in the contact zones of the Cretaceous Boulder batholith granitic rocks intruded into upper Precambrian, Paleozoic, and Mesozoic sedimentary rocks. The Virginia City-Alder Gulch district, Montana, produced more than 2,600,000 ounces of gold, nearly all from placer deposits derived from quartz veins of uncertain age in Archean gneisses and schists. The Boise basin district, Idaho, produced about 2,300,000 ounces of gold, mostly derived from quartz veins in quartz monzonite of the Cretaceous Idaho batholith.

  10. A Lithospheric Origin for the Elk Creek Carbonatite Complex, SE Nebraska?

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2015-12-01

    The Elk Creek carbonatite complex in southeastern Nebraska is part of a widespread Cambrian-Ordovician alkali igneous event that affected much of North America during and after the break-up of the Rodinian supercontinent. We conducted whole rock and mineral Nd, Sr, Pb and Hf isotopic analyses of drill cores obtained from this complex in order to assess the source regions of the parental carbonatite magma. Low precision laser ablation U-Pb age determinations from individual zircon grains separated from carbonate-rich "syenites" range from 480 +/- 20 Ma to 540+/- 14 Ma. Whole rock Nd, Sr and Pb isotopic compositions all plot on Cambrian (~550 Ma) isochrons, implying that the carbonatites crystallized from melts with homogeneous radiogenic isotopic compositions. Initial ɛNd and ɛHf are well defined at ~+2 and ~0, respectively, while initial 87Sr/86Sr values are more variable and range from 0.7028 to 0.7058. The contemporaneously emplaced State Line kimberlites in the Front Range of north central Colorado share the same Nd and Sr isotopic compositions imply that sources of these rocks were similar and geographically widespread. Overall, the isotopic compositions are those expected from "Group 1" alkaline igneous rocks, usually interpreted as derivates from the sublithospheric mantle. Cretaceous-Tertiary alkaline rocks in North America generally belong to "Group 1" and may have originated in this fashion (Genet et al., 2014, Earth Planet. Sci. Lett.). An alternative possibility is that the Cambrian-Ordovician carbonatites and kimberlites were derived from underlying, carbonated portions of the lithospheric mantle that formed after the original stabilization of the latter in the Paleoproterozoic. Nd and Hf depleted mantle model ages for the Elk Creek and State Line alkaline rocks range from ~0.8 Ga to ~1.1 Ga and allow the possibility that both sets of intrusive rocks represent melting of mantle metasomatized either during or after the assembly of Rodinia. Widespread thinning and heating of the metasomatized mantle during the subsequent breakup of Rodinia could have led to the widespread kimberlite and carbonatite magmatism observed in North America during the Cambrian.

  11. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  12. South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system

    USGS Publications Warehouse

    Bishop, Michele G.

    2000-01-01

    Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.

  13. MULTIPLE EPISODES OF IGNEOUS ACTIVITY, MINERALIZATION, AND ALTERATION IN THE WESTERN TUSHAR MOUNTAINS, UTAH.

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Campbell, David L.; Naeser, Charles W.; Pitkin, James A.; Duval, Joseph S.

    1984-01-01

    The report outlines the complex history of igneous activity and associated alteration and mineralization in the western Tushar Mountains, Utah and pointss out implciations for minerals exploration. The area has been subjected to recurrent episodes of igneous intrusion, hydrothermal alteration, and mineralization, and the mineral-resource potential of the different mineralized areas is directly related to local geologic history. The mineral commodities to be expected vary from one hydrothermal system to another, and from one depth to another within any given system. Uranium and molybdenum seem likely to have the greatest economic potential, although significant concentrations of gold may also exist.

  14. Magmatic Complexes of the Vetlovaya Marginal Sea Paleobasin (Kamchatka): Composition and Geodynamic Setting

    NASA Astrophysics Data System (ADS)

    Tsukanov, N. V.; Saveliev, D. P.; Kovalenko, D. V.

    2018-01-01

    This study presents new geochemical and isotope data on igneous rocks of the Vetlovaya marginal sea paleobasin (part of the Late Mesozoic-Cenozoic margin of the northwestern Pacific). The results show that the rock complexes of this marginal sea basin comprise igneous rocks with geochemical compositions similar to those of normal oceanic tholeiites, enriched transitional tholeiites, and ocean island and back-arc basin basalts. Island-arc tholeiitic basalts are present only rarely. The specific geochemical signatures of these rocks are interpreted as being related to mantle heterogeneity and the geodynamic conditions in the basin.

  15. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  16. Geoelectric structure of northern Cambay rift basin from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Danda, Nagarjuna; Rao, C. K.; Kumar, Amit

    2017-10-01

    Broadband and long-period magnetotelluric data were acquired over the northern part of the Cambay rift zone along an east-west profile 200 km in length. The decomposed TE- and TM-mode data were inverted using a 2-D nonlinear conjugate gradient algorithm to obtain the lithospheric structure of the region. A highly conductive ( 1000 S) layer was identified within the Cambay rift zone and interpreted as thick Quaternary and Tertiary sediments. The crustal conductors found in the profile were due to fluid emplacement in the western part, and the presence of fluids and/or interconnected sulfides caused by metamorphic phases in the eastern part. The demarcation of the Cambay rift zone is clearly delineated with a steeply dipping fault on the western margin, whereas the eastern margin of the rift zone gently dips along the NE-SW axis, representing a half-graben structure. A highly resistive body identified outside the rift zone is interpreted as an igneous granitic intrusive complex. Moderately conductive (30-100 Ω-m) zones indicate underplating and the presence of partial melt due to plume-lithosphere interactions.[Figure not available: see fulltext.

  17. U–Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa

    PubMed Central

    Mungall, James E.; Kamo, Sandra L.; McQuade, Stewart

    2016-01-01

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U–Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U–Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself. PMID:27841347

  18. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa.

    PubMed

    Mungall, James E; Kamo, Sandra L; McQuade, Stewart

    2016-11-14

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U-Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U-Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself.

  19. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.

  20. Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    USGS Publications Warehouse

    Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.

    1968-01-01

    The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone, siltstone, and conglomerate, of late Paleozoic and Mesozoic age. Above these rocks is as much as 2,300 feet of marine shale of late Mesozoic age. Perhaps about 5,000 feet of clastic sedimentary rocks, dominantly sandstone and in part shale, of late Mesozoic and early Cenozoic age, overlay the older rocks of the district prior to late Cenozoic erosion...Outside the Slick Rock district the Mancos Shale is overlain by dominantly terrestrial sandstone, mudstone, and coaly beds of the Mesaverde Group of Late Cretaceous age, and younger units such as the Wasatch and Green River Formations of Tertiary age, which once may have extended across the district. These units, totaling possibly 5,000 feet in thickness, were removed by erosion following middle Tertiary uplift of the Colorado Plateau.Igneous rocks of Tertiary age crop out in only one small area in the district, but they are intruded extensively in the Mancos Shale east of the district, and, as shown by deep oil test wells, appear to be intruded widely in the Paradox Member of the Hermosa Formation in the southern part of the district and southeast of the district. Andesite porphyry occurs in a dike on Glade Mountain, microgranogabbro and microgranodiorite occur in thin sills east of the district, and rocks of similar composition form thick sills in the subsurface. All are similar chemically to igneous rocks in the San Juan Mountains southeast of the district and probably were the result of a specific igneous episode. They were intruded most likely during the Miocene.Surficial deposits of Quaternary age include glacial till, terrace gravels, alluvial fans, landslide debris, loess, other soil, alluvium, colluvium, and talus. On Glade Mountain, glacial till of probable early Pleistocene age merges westward with terrace gravels that are correlative with terrace gravels which lie on an old weathered surface of Mancos Shale farther west on the rim of the Dolores River Canyon.

  1. Pre-Elsonian mafic magmatism in the Nain Igneous Complex, Labrador: the bridges layered intrusion

    USGS Publications Warehouse

    Ashwal, L.D.; Wiebe, R.A.; Wooden, J.L.; Whitehouse, M.J.; Snyder, Diane

    1992-01-01

    Decades of work on the pristine, unmetamorphosed, and well exposed anorthositic, mafic and granitic rocks of the Nain igneous complex, Labrador, have led to the conclusion that all plutonic rocks in that area were emplaced in a short time intercal at about 1300 ?? 10 Ma). We report here new isotopic data for mafic intrusive rocks that appear to have crystallized several hundred Ma earlier than the bulk of the plutonic activity in the Nain complex. The Bridges layered intrusion (BLI) is a small (15-20 km2) lens of layered mafic rocks about 1.5 km thick, surrounded and intruded by anorthositic, leuconoritic and leucotroctolitic plutons in the middle of the coastal section of the Nain igneous complex. BLI shows very well developed magmatic structures, including channel scours, slump structures, and ubiquitous modally graded layering. Most rocks, however, show granular textures indicative of recrystallization, presumably caused by emplacement of younger anorthositic rocks. BLI contains cumulate rocks with slightly more primitive mineral compositions (An60-83, Fo66-71) than those of other mafic intrusions in the Nain igneous complex, including Kiglapait. SmNd isotopic data for 7 BLI whole-rocks ranging in composition between olivine melagabbro and olivine leucogabbro yield an age of 1667 ?? 75 Ma, which we interpret as the time of primary crystallization. The internal isotopic systematics of the BLI have been reset, probably by intrusion of adjacent anorthositic plutons. A SmNd mineral isochron (plag, whole-rock, mafics) for a BLI olivine melagabbro gives an age of 1283 ?? 22 Ma, equivalent within error of a mineral array (plag, whole-rock, opx, cpx) for an adjacent, igneous-textured, leuconorite vein (1266 ?? 152 Ma). The initial Nd ratio for BLI corresponds to ??{lunate}Nd = -3.18 ?? 0.44. Other whole-rock samples, however, some with vein-like alteration (Chlorite, serpentine, amphiboles), show ??{lunate}Nd values as low as -9.1, suggesting variable contamination by direct assimilation of early Archean crustal rocks and/or by fluids that have interacted with such crust. Adjacent anorthositic rocks also show variable ??{lunate}Nd some as low as -14.7, implying larger degrees if crustal assimilation, perhaps by parental magmas during lower crustal ponding prior to emplacement. These contamination effects preclude straightforward determination of the isotopic character of mantle sources for both BLI and the anorthositic rocks. ?? 1992.

  2. Detrital zircon and igneous protolith ages of high-grade metamorphic rocks in the Highland and Wanni Complexes, Sri Lanka: Their geochronological correlation with southern India and East Antarctica

    NASA Astrophysics Data System (ADS)

    Kitano, Ippei; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Fitzsimons, Ian C. W.

    2018-05-01

    The high-grade metamorphic rocks of Sri Lanka place valuable constraints on the assembly of central parts of the Gondwana supercontinent. They are subdivided into the Wanni Complex (WC), Highland Complex (HC) and Vijayan Complex (VC), but their correlation with neighbouring Gondwana terranes is hindered by a poor understanding of the contact between the HC and WC. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb dating of remnant zircon cores from 45 high-grade metamorphic rocks in Sri Lanka reveals two domains with different age characteristics that correlate with the HC and WC and which help constrain the location of the boundary between them. The HC is dominated by detrital zircon ages of ca. 3500-1500 Ma from garnet-biotite gneiss, garnet-cordierite-biotite gneiss, some samples of garnet-orthopyroxene-biotite gneiss and siliceous gneiss (interpreted as paragneisses) and igneous protolith ages of ca. 2000-1800 Ma from garnet-hornblende-biotite gneiss, other samples of garnet-orthopyroxene-biotite gneiss, garnet-two-pyroxene granulite, two-pyroxene granulite and charnockite (interpreted as orthogneisses). In contrast, the WC is dominated by detrital zircon ages of ca. 1100-700 Ma from paragneisses and igneous protolith ages of ca. 1100-800 Ma from orthogneisses. This clearly suggests the HC and WC have different origins, but some of our results and previous data indicate their spatial distribution does not correspond exactly to the unit boundary proposed in earlier studies using Nd model ages. Detrital zircon and igneous protolith ages in the HC suggest that sedimentary protoliths were eroded from local 2000-1800 Ma igneous rocks and an older Paleoproterozoic to Archean craton. In contrast, the WC sedimentary protoliths were mainly eroded from local late Mesoproterozoic to Neoproterozoic igneous rocks with very minor components from an older 2500-1500 Ma craton, and in the case of the WC precursor sediments there was possibly additional detritus derived from early to middle Neoproterozoic metamorphic rocks. The relic zircon core ages in the HC are comparable with those of the Trivandrum Block and Nagercoil Block of southern India. In contrast, those ages in the WC match the Achankovil Shear Zone and Southern Madurai Block of southern India. These comparisons are also supported by Th/U ratios of detrital zircon cores from paragneisses (Th/U ratios of >0.10 for the former and not only >0.10 but also ≤0.10 for the latter). Comparisons with the Lützow-Holm Complex of East Antarctica indicate that the geochronological characteristics of the HC and WC broadly match those of the Skallen Group, and the Ongul and Okuiwa Groups, respectively.

  3. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Jiu-Long; Li, Xian-Hua; Tang, Guo-Qiang; Gao, Bing-Yu; Bao, Zhi-An; Ling, Xiao-Xiao; Wu, Li-Guang; Lu, Kai; Zhu, Yu-Sheng; Liao, Xin

    2018-01-01

    Early Neoproterozoic tectonics of the Yangtze block remains poorly understood because very limited igneous records are available from the time interval of ∼1000-870 Ma. In this paper, our new SIMS U-Pb dating results demonstrate that the Liushudian mafic intrusion and Pinghe alkaline complex in the northwest Yangtze block were emplaced at 888 ± 6 Ma and 891 ± 7 Ma, respectively, representing the products of a ∼890 Ma igneous event. Gabbros from the Liushudian intrusion have rather depleted zircon ɛHf(t) (mean = 10.4) and normal mantle-like zircon δ18O (mean = 5.97‰). Their parental magma was thus probably derived from asthenospheric mantle. Geochemically, these mafic rocks have an affinity to continental flood tholeiitic basalts rather than ocean island basalts, as previously thought. In contrast, an ijolite sample from the Pinghe complex has less depleted zircon ɛHf(t) (mean = 5.7) and anomalously high zircon and apatite δ18O (mean = 13.76‰ and 13.80‰, respectively). Such a characteristic δ18O signal, among the highest yet known for igneous zircons, could be either inherited from a magma source in metasomatized lithospheric mantle or acquired by assimilation of high-δ18O supracrustal materials (e.g., limestone, chert) during magma evolution. An intra-plate extensional environment is suggested for the ∼890 Ma igneous event in the northwest Yangtze block, although it is as yet unclear whether this igneous event is related to a mantle plume or not. It could be concluded that magmatism on the western periphery of the Yangtze block was not shut down between ∼1000 and ∼870 Ma, and the ∼890 Ma intra-plate igneous event may mark either the onset of Neoproterozoic continental rifting or the ending of Late Mesoproterozoic to Early Neoproterozoic lithospheric extension.

  4. Geologic applications of thermal-inertia mapping from satellite. [Powder River, Wyoming; Cubeza Prieta, Arizona, and Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.

    1981-01-01

    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.

  5. Lead-alpha age determinations of granitic rocks from Alaska

    USGS Publications Warehouse

    Matzko, John J.; Jaffe, H.W.; Waring, C.L.

    1957-01-01

    Lead-alpha activity age determinations were made on zircon from seven granitic rocks of central and southeastern Alaska. The results of the age determinations indicate two periods of igneous intrusion, one about 95 million years ago, during the Cretaceous period, and another about 53 million years ago, during the early part of the Tertiary. The individual ages determined on zircon from 2 rocks from southeastern Alaska and 1 from east-central Alaska gave results of 90, 100, and 96 million years; those determined on 4 rocks from central Alaska gave results of 47, 56, 58, and 51 million years.

  6. The idea of magma mixing: History of a struggle for acceptance

    USGS Publications Warehouse

    Wilcox, R.E.

    1999-01-01

    In 1851, chemist Robert Bunsen suggested that the mixing of two magmas, one mafic and the other felsic, in various proportions might account for the wide range of chemical compositions of igneous rocks. Based on flaws in several of its secondary provisions, the whole hypothesis was rejected by a succession of influential critics and remained in disrepute for a hundred years. Meanwhile, studies of composite dikes and sills indicated that, indeed, mafic and felsic magmas had coexisted at close quarters and had been emplaced in quick succession. This interpretation was also used by some investigators to explain the intimate association of mafic and felsic rock types in the commonly occurring igneous complexes. Others believed that the mafic components of these complexes were derived from geologically older mafic formations. By the early 1900s it had become apparent that mafic magmas crystallized at higher temperatures than felsic magmas. This knowledge was not immediately applied to the problem of magma mixing, however, due in part to the popularity of the newly validated process of fractional crystallization and to the implication that the diversity of igneous rocks could be accounted for by that process alone. Not until the 1950s was the attention of the geological community drawn to the fact that disparate magmas mix in a special manner: they mingle, the mafic magma being quenched to a fracturable solid upon contact with the cooler felsic magma. This explanation set in motion a series of studies of other igneous complexes, confirming the concept and adding other identifying features of the process.

  7. Origin of the South Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Foulger, Gillian R.

    2018-04-01

    The South Atlantic Igneous Province comprises the Paraná Basalts, Rio Grande Rise, Tristan archipelago and surrounding guyot province, Walvis Ridge, Etendeka basalts and, in some models, the alkaline igneous lineament in the Lucapa corridor, Angola. Although these volcanics are often considered to have a single generic origin, complexities that suggest otherwise are observed. The Paraná Basalts erupted 5 Ma before sea-floor spreading started in the neighborhood, and far more voluminous volcanic margins were emplaced later. A continental microcontinent likely forms much of the Rio Grande Rise, and variable styles of volcanism built the Walvis Ridge and the Tristan da Cunha archipelago and guyot province. Such complexities, coupled with the northward-propagating mid-ocean ridge crossing a major transverse transtensional intracontinental structure, suggest that fragmentation of Pangaea was complex at this latitude and that the volcanism may have occurred in response to distributed extension. The alternative model, a deep mantle plume, is less able to account for many observations and no model variant can account for all the primary features that include eruption of the Paraná Basalts in a subsiding basin, continental breakup by rift propagation that originated far to the south, the absence of a time-progressive volcanic chain between the Paraná Basalts and the Rio Grande Rise, derivation of the lavas from different sources, and the lack of evidence for a plume conduit in seismic-tomography- and magnetotelluric images. The region shares many common features with the North Atlantic Igneous Province which also features persistent, widespread volcanism where a propagating mid-ocean ridge crossed a transverse structural discontinuity in the disintegrating supercontinent.

  8. Geologic Map of the Gold Creek Gold District, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.

    2007-01-01

    The Gold Creek, Nev. area displays important stratigraphic and structural relationships between Paleozoic and early Tertiary sedimentary strata in an area dominated by large intrusive bodies of Mesozoic age and extensive volcanic fields of middle to late Tertiary age. An autochthonous sequence includes the Cambrian and Proterozoic(?) Prospect Mountain Quartzite and the overlying Cambrian and Ordovician Tennessee Mountain Formation. This autochthon is overlain by three allochthonous plates each composed of a distinctive sequence of strata and having a distinctive internal structure. The structurally lowest plate is composed of the Havallah sequence, locally of Mississippian and Pennsylvanian age, which is folded on north-south trending axes. The next higher plate is composed of somewhat younger Pennsylvanian and Permian strata cut by east-west trending low-angle faults. The highest plate is composed of early Tertiary non-marine sedimentary and igneous rocks folded on varied but mainly north-south trending axes. The question of whether the allochthonous plates were emplaced by contractional or extensional forces is indeterminate from the local evidence. Mineral deposits include gold placers of moderate size and small pockets of base metals, none of which is currently being exploited.

  9. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  10. Characterization of Arctic Highly Magnetic Domains - the Geophysical Expression of Inferred Large Igneous Province(s)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G.; Miller, E. L.; Jackson, R.

    2012-12-01

    The magnetic anomalies of the high arctic are dominated by a large domain (1000 x 1700 km; the High Arctic Magnetic High, HAMH) consisting of numerous high-amplitude magnetic high ridges with a complex set of orientations and by other smaller, but still fundamentally highly magnetic, domains. The magnetic potential anomaly field (also known as pseudogravity) of the HAMH shows a single large intensity high and underscores the crustal-scale thickness of this geophysical feature (which also forms a prominent anomaly on satellite magnetic maps). The seafloor morphology of this region includes the complex linear trends of the Alpha and Mendeleev ridges, but the magnetic expression of this domain extends beyond the complex bathymetry to include areas where Canada Basin sediments have covered the complex basement topography. The calculated magnetic effect of the bathymetric ridges matches some of the observed magnetic anomalies, but not others. We have analyzed and modeled the distinctive HAMH and other smaller magnetic high domains to generate estimates of their volume and to characterize the directionality of their component features. Complimentary processing and modeling of high arctic gravity anomalies allows characterization of the density component of these geophysical features. Spatially, the HAMH encompasses the Alpha and Mendeleev "ridges," that are considered to represent a major mafic igneous province. The term "Alpha-Mendeleev Large Igneous Province" is given to a domain mapped by tracing magnetic anomalies in a recent map published by AAPG (Grantz and others, 2009). On this map the province is described as "alkali basalt with ages between 120 and 90 Ma". New seismic and bathymetric data, collected as part of on-going research efforts for definition of extended continental shelf, are revealing new details about the Alpha ridge. One interesting development is the possible identification of a supervolcano that may represent a major locus of igneous activity. In the broader Arctic region, the term High Arctic Large Igneous Province (HALIP) refers to (now) scattered parts of a major plume-type basaltic eruption, many of which also show as magnetic highs on the current data compilation. Rocks that contribute to this province have been mapped in Arctic Canada, Greenland, Svalbard, Franz Josef Land and the DeLong Islands. Most HALIP volcanic rocks do not have reliable reported radiometric ages but seem to indicate two pulses of magmatism of around 130-120 Ma and 90-80 Ma. There are many fundamental open questions regarding the evolution of the Arctic, particularly for the opening and development of the Amerasian side. The mafic igneous rocks and their roots that make up large igneous provinces are a good target for regional magnetic interpretation. Our goal is to use a data-driven approach to characterize the geometries and volumes these features as the expression of major mafic (basaltic) elements to aid in tectonic reconstruction and understanding.

  11. Geology and mineral deposits of the Hekimhan-Hasancelebi iron district, Turkey

    USGS Publications Warehouse

    Jacobson, Herbert S.; Kendiro'glu, Zeki; ,; Celil, Bogaz; ,; Onder, Osman; Gurel, Nafis

    1972-01-01

    An area of 210 sq km was investigated in the Hekimhan-Hasancelebi district. of central Turkey as part of the Maden Tetkik ve Arama Institusu(MTA)-U. S. Geological Survey(USGS) mineral exploration and training project to explore for iron deposits and to provide on-.the-job training for MTA geologists. The rocks of the area are Cretaceous and Tertiary sedimentary and volcanic rocks intruded by syenite and a serpentinized mafic and ultramafic complex and overlain unconformably by late .Tertiary basalt. The base of the section is a thick mafic volcanic-sedimentary sequence with diverse rocks that include conglomerate, sandstone, shale, tuff, limestone, and basalt. The upper part of the sequence is metasomatized near syenite contacts. The sequence is conformably overlain by trachyte and unconformably overlain by massive limestone. Overlying the limestone is a Tertiary sedimentary sequence which is dominantly conglomerate and sandstone with local limestone and volcanic rocks. This series is in turn overlain by olivine basalt. Mineral deposits are associated with the two types of intrusive rocks. Hematite-magnetite in the Karakuz mine area and in the Bahcedami-Hasancelebi area is related to the syenite, and siderite in the Deveci mine area is possibly related to the mafic-ultramafic rocks. Significant iron resources are found, only in the Karakuz and Deveci areas. In the Karakuz area disseminations, veins, and replacements consisting of hematite and magnetite are present. Most of the material is low grade. In the Deveci mine area a large deposit of siderite apparently is a replacement of carbonate beds adjacent to serpentinized igneous rock. The upper part of the siderite deposit is weathered and enriched to a mixture of iron and manganese oxides of direct shipping ore grade. Additional investigation of both the Karakuz and .Deveci mine areas is recommended including: 1. A detailed gravity and magnetic survey of part of the Karakuz area. 2. Diamond drilling at both the Karakuz and Deveci areas.

  12. Riftogenic magmatism of western part of the Early Mesozoic Mongolian-Transbaikalian igneous province: Results of geochronological studies

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kozlovsky, A. M.; Salnikova, E. B.; Travin, A. V.; Kudryashova, E. A.

    2017-08-01

    Geochronological studies of rocks from a bimodal high-alkali volcanic-plutonic complex collected in the area of Kharkhorin zone of the Early Mesozoic Mongolian-Transbaikalian igneous province (MTIP) are made. The age of alkali granites from Olziit sum is 211 ± 1 Ma (U-Pb ID-TIMS on zircon) to 209 ± 2 and 217 ± 4 Ma (40Ar/39Ar on alkali amphibole); the age of alkali granite-porphyries from the area of Sant sum is 206 ± 1 Ma (U-Pb ID-TIMS on zircon). These rock series formed syncronously to the analogous magmatism episode in the Northern Gobi and Western Transbaikalian rift zones of the MTIP. The similarity of the age and composition of igneous associations of the MTIP suggests a common mechanism of its formation related to the effect of a mantle plume on the continental lithosphere at the base of the entire igneous zone having a zonal structure.

  13. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia-Alexander-Peninsular composite terrane prior to transport to its present location (e.g., Colpron and Nelson, Geological Society, London, Special Publication 318, 2009). Xenocrysts from the ~1865 Ma igneous rocks, and possibly also ~310 Ma gabbros, are contained in relatively low-temperature mush and partially melted gabbro that we interpret to have been derived from the margin of the subvolcanic magma accumulation and storage region defined by seismicity at 4-10 km bsl. The Redoubt crystal mush contains evidence for assimilation of ~1865 Ma igneous rocks that have no equivalent exposed in Alaska. The discovery of Paleoproterozoic grains as the dominant zircon component in crystal mush raises the question of the origin of other crystals in Redoubt magmas.

  14. Geometric consequences of ductile fabric development from brittle shear faults in mafic melt sheets: Evidence from the Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2012-02-01

    Compared to felsic igneous rocks the genetic relationship between brittle and ductile fabric development and its influence on the geometry of deformed mafic melt sheets has received little attention in structural analyses. We explore these relationships using the Sudbury Igneous Complex (SIC) as an example. The SIC is the relic of a layered impact melt sheet that was transformed into a fold basin, the Sudbury Basin, during Paleoproterozoic deformation at the southern margin of the Archean Superior Province. We studied brittle and ductile strain fabrics on the outcrop and map scales in the southern Sudbury Basin, notably in the Norite and Quartz Gabbro layers of the SIC. Here, deformation is heterogeneous and occurred under variable rheological conditions, evident by the development of brittle shear fractures, brittle-ductile shear zones and pervasive ductile strain. The mineral fabrics formed under low- to middle greenschist-facies metamorphism, whereby brittle deformation caused hydrolytic weakening and ductile fabric development. Principal strain axes inferred from all structural elements are collinear and point to a single deformation regime that led to thinning of SIC layers during progressive deformation. Ductile fabric development profoundly influenced the orientation of SIC material planes, such as lithological contacts and magmatic mineral fabrics. More specifically, these planar structural elements are steep where the SIC underwent large magnitudes of thinning, i.e., in the south limb of the Sudbury Basin. Here, the actual tilt component of material planes is likely smaller than its maximum total rotation (60°) inferred from inclined igneous layering in the Norite. Our field-based study shows that ductile fabric development from brittle faults can have a profound influence on the rotational components of primary material planes in deformed igneous melt sheets.

  15. Mixed La-Li heterobimetallic complexes for tertiary nitroaldol resolution.

    PubMed

    Tosaki, Shin-ya; Hara, Keiichi; Gnanadesikan, Vijay; Morimoto, Hiroyuki; Harada, Shinji; Sugita, Mari; Yamagiwa, Noriyuki; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2006-09-13

    A kinetic resolution of tertiary nitroaldols derived from simple ketones is described. Mixed BINOL/biphenol La-Li heterobimetallic complexes gave the best selectivity in retro-nitroaldol reactions of racemic tertiary nitroaldols. By using a mixture of La-Li3-(1a)3 complex (LLB 2a) and La-Li3-(1b)3 (LLB* 2b) complex in a ratio of 2/1, chiral tertiary nitroaldols were obtained in 80-97% ee and 30-47% recovery yield.

  16. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA

    USGS Publications Warehouse

    Lipman, P.W.

    1988-01-01

    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  17. Geological analysis of aeromagnetic data from southwestern Alaska: implications for exploration in the area of the Pebble porphyry Cu-Au-Mo deposit

    USGS Publications Warehouse

    Anderson, Eric D.; Hitzman, Murray W.; Monecke, Thomas; Bedrosian, Paul A.; Shah, Anjana K.; Kelley, Karen D.

    2013-01-01

    Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern Alaska.

  18. The Colorado front range: anatomy of a Laramide uplift

    USGS Publications Warehouse

    Kellogg, Karl; Bryant, Bruce; Reed, John C.

    2004-01-01

    Along a transect across the Front Range from Denver to the Blue River valley near Dillon, the trip explores the geologic framework and Laramide (Late Cretaceous to early Eocene) uplift history of this basement-cored mountain range. Specific items for discussion at various stops are (1) the sedimentary and structural record along the upturned eastern margin of the range, which contains several discontinuous, east-directed reverse faults; (2) the western structural margin of the range, which contains a minimum of 9 km of thrust overhang and is significantly different in structural style from the eastern margin; (3) mid- to late-Tertiary modifications to the western margin of the range from extensional faulting along the northern Rio Grande rift trend; (4) the thermal and uplift history of the range as revealed by apatite fission track analysis; (5) the Proterozoic basement of the range, including the significance of northeast-trending shear zones; and (6) the geologic setting of the Colorado mineral belt, formed during Laramide and mid-Tertiary igneous activity.

  19. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  20. Sudbury Breccia (Canada): a product of the 1850 Ma Sudbury Event and host to footwall Cu Ni PGE deposits

    NASA Astrophysics Data System (ADS)

    Rousell, Don H.; Fedorowich, John S.; Dressler, Burkhard O.

    2003-02-01

    The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni-Cu-PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex-footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood-Stobie) offset dikes.

  1. The East Falcon Basin: Its Caribbean roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.; Boesi, T.

    1996-08-01

    The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less

  2. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  3. The architecture of the porphyry-metal system as a prospecting stratagem in the Southern Rocky Mountains

    USGS Publications Warehouse

    Neuerburg, George J.

    1978-01-01

    A model of the porphyry-metal system characteristic of the consanguineous Cretaceous and Tertiary igneous rocks and associated ores of the southern Rocky Mountains is constructed from the bits and pieces exposed in the Colorado mineral belt and the San Juan volcanic field. Hydrothermally altered rocks in a part of the areas of mineralized rock associated with the Platoro caldera are matched against the model, to locate and to characterize latent mineral deposits for optimal prospecting and exploration. The latent deposits are two stockwork molybdenite deposits (porphyry-molybdenum) and one or two copper-gold-silver chimney deposits.

  4. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.C.; Bai, G.P.; Hamilton, P.J.

    1995-07-03

    Dawsonite, NaAlCO{sub 3}(OH){sub 2}, is widespread as a cement, replacement, and cavity filling in Permo-Triassic sedimentary rocks of the Bowen-Gunnedah-Sydney basin system eastern Australia. The origin of dawsonite in these rocks was studied by petrographic and stable isotope analysis. Dawsonite {delta}{sup 13}C (PDB) values range from {minus}4.0 to +4.1{per_thousand} and are remarkably consistent throughout the Bowen-Gunnedah-Sydney basin system. These values indicate either a marine carbonate or magmatic source for carbon in the dawsonite. A magmatic carbon source is considered more likely on the basis that (1) evidence of and the cause for widespread marine carbonate dissolution in the sedimentary successionsmore » are not apparent, (2) dawsonite is widespread in both marine and nonmarine facies, (3) the region has been the site of major igneous activity, (4) other dawsonite deposits of similar carbon isotopic composition are linked to igneous activity, and (5) magmatic CO{sub 2} accumulations are known in parts of the Bowen-Gunnedah-Sydney basin system. The timing of igneous activity in the Bowen Basin constrains the timing of dawsonite formation in the Bowen-Gunnedah-Sydney basin system to the Tertiary, consistent with textural relationships, which indicate that dawsonite formed late during the burial history of the Permo-triassic sequences. The distribution and interpreted origin of dawsonite implies magmatic CO{sub 2} seepage in the Bowen-Gunnedah-Sydney basin system on a continental scale.« less

  5. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  6. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was intruded by the 110-130 Ma massive granitoids, suggesting late Early Cretaceous accretionary event. From late Early Cretaceous to Late Cretaceous, the spatial extent of magmatisms was reduced from west to east, revealing roll-back of subducted slab. This research was financially supported by the NSFC (41330206).

  7. Organic geochemistry, lithology, and paleontology of Tertiary and Mesozoic rocks from wells on the Alaska Peninsula

    USGS Publications Warehouse

    McLean, Hugh James

    1977-01-01

    Core chips and drill cuttings from eight of the nine wells drilled along the Bering Sea lowlands of the Alaska Peninsula were subjected to lithologic and paleontologic analyses. Results suggest that at least locally, sedimentary rocks of Tertiary age contain oil and gas source and reservoir rocks capable of generating and accumulating liquid and gas hydrocarbons. Paleogene strata rich in organic carbon are immature. However, strata in offshore basins to the north and south may have been subjected to a more productive thermal environment. Total organic carbon content of fine grained Neogene strata appears to be significantly lower than in Paleogene rocks, possibly reflecting nonmarine or brackish water environments of deposition. Neogene sandstone beds locally yield high values of porosity and permeability to depths of about 8,000 feet (2,439 m). Below this depth, reservoir potential rapidly declines. The General Petroleum, Great Basins No. 1 well drilled along the shore of Bristol Bay reached granitic rocks. Other wells drilled closer to the axis of the present volcanic arc indicate that both Tertiary and Mesozoic sedimentary rocks have been intruded by dikes and sills of andesite and basalt. Although the Alaska Peninsula has been the locus of igneous activity throughout much of Mesozoic and Tertiary time, thermal maturity indicators such as vitrinite reflectance and coal rank suggest, that on a regional scale, sedimentary rocks have not been subjected to abnormally high geothermal gradients.

  8. Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway

    NASA Astrophysics Data System (ADS)

    Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.

    2016-12-01

    More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.

  9. Geology of the southern Elkhorn Mountains, Jefferson and Broadwater Counties, Montana

    USGS Publications Warehouse

    Klepper, M.R.; Weeks, R.A.; Ruppel, E.T.

    1957-01-01

    The geology of an area of about 270 square miles in the southern Elkhorn Mountains, west of Townsend in west-central Montana, is described. The mountains in the southern part of the area comprise northward-trending alternating ridges and valleys underlain principally by folded sedimentary rocks. They merge northward into the higher and more rugged main mass of the mountains, which is underlain principally by upper Cretaceous volcanic rocks. The mountaintops are 1,000 to 4,500 feet above the major valleys. The sedimentary rocks range in age from Precambrian to Tertiary and the igneous rocks from late Cretaceous to probably middle Tertiary. The oldest rocks are varicolored mudstone, shale, and sandstone of the Belt series of late Precambrian age. They are overlain with slight unconformity by a moderately thick but incomplete section of Paleozoic rocks. The basal Paleozoic formation is the Flathead quartzite of Middle Cambrian age, which is overlain by alternating units of shale and carbonate rock : the Wolsey shale, the Meagher limestone, the Park shale, the Pilgrim dolomite, and the Red Lion formation, all of Cambrian age. A slight erosional unconformity between the Red Lion formation and the Maywood formation of late Devonian age marks a long interval of crustal stability in the area. The Maywood is overlain by the Jefferson dolomite and the Three Forks shale of Late Devonian and Mississippian age, and these in turn are conformably overlain by the Lodgepole and Mission Canyon limestones, a thick carbonate sequence of Mississippian age. A slight erosional unconformity separates the Mission Canyon limestone from the Amsden formation, which probably includes beds of both Mississippian and Pennsylvanian age. The Amsden is composed of a heterogeneous assemblage of arenaceous, argillaceous, dolomitic, and calcareous rocks and grades upward into the Quadrant formation of Pennsylvanian age, an alternation of quartzitic sandstone and dolomite. At the top of the Paleozoic section is the Phosphoria formation of Permian age, a thin unit of chert and quartzitic sandstone that contains a few thin phosphate beds. The basal Mesozoic unit is the Swift formation of late Jurassic age, a thin calcareous marine sandstone that overlies the Phosphoria with slight erosional unconformity. It is overlain by nonmarine shale and sandstone of the Morrison formation of late Jurassic age and the Kootenai formation of Early Cretaceous age. The Kootenai is overlain, possibly with slight erosional unconformity, by the Colorado formation an assemblage of marine dark shale and siliceous mudstone and nonmarine quartz-chert sandstone. The Colorado formation as here used includes beds of both Early and Late Cretaceous age. The Colorado in places grades upwards into a sequence of feldspathic sandstone and tuff beds here named the Slim Sam formation. Elsewhere within the area, the Slim Sam formation is absent, probably in part owing to erosion and in part nondeposition. Where present, the Slim Sam grades upward into a thick sequence of andesitic and quartz latitic volcanic rocks, comprising tuffs, lapilli tuffs, breccias, welded tuffs and flows, that are here named the Elkhorn Mountains volclinics and are probably entirely of Cretaceous age. Where the Slim Sam formation is absent, the Elkhorn Mountains volcanics rest with angular unconformity on beds as old as the Morrison. The pre-Tertiary layered rocks, aggregating more than 15,000 feet in thickness, were folded and intruded by igneous rocks of several types, and the area was uplifted and eroded to a terrain of mature relief, similar to that of the present. During the Oligocene epoch, volcanic sediments with interbreds of nonvolcanic gravel accumulated. These beds were in turn moderately eroded, and gravel of Miocene ( ?) age was deposited in channels within them. Subsequently, probably during the Pliocene epoch, the Tertiary beds were weakly deformed locally, and a pediment was cut across the Tertiary and older rocks in the southern part of the area. Fan gravel, in part of Recent origin and in part older, blankets parts of the pediment. Glacial deposits of at least two stages of Pleistocene glaciation are present in the higher mountains in the northern part of the area. The intrusive igneous rocks, except for a few felsite dikes of uncertain age, are divisible into two groups, primarily on the basis of structural relations and secondarily on the basis of composition and fabric. The older group of dioritic and andesitic rocks were intruded in part, if not wholly, prior to the main folding and are similar in chemical and mineralogical composition to the Elkhorn Mountains volcanics. They were probably emplaced throughout the period of volcanism that commenced in late Niobrara time and continued until late Cretaceous time. The younger group consists chiefly of quartzbearing phanerites but includes rocks ranging from gabbro to alaskitic granite and aplite. These rocks were emplaced after the main episode of folding and faulting. The Boulder batholith, composed dominantly of quartz monzonite, is the principal body of this younger group. The older igneous rocks metamorphosed the invaded rocks only slightly. In contrast, the younger intrusive bodies, and especially the batholith, altered and recrystallized the country rock in moderately broad belts, changing them to various types of hornfels, calcsilicate rock, marble, and vitreous quartzite. Concomitantly magnetite, garnet, axinite, and other high-temperature replacement minerals formed locally as products of additive metamorphism. The pre-Tertiary layered rocks of the southern Elkhorn Mountains are folded into northward-trending folds and are cut by many faults. The sedimentary rocks tend to be more tightly folded than the Elkhorn Mountains volcanics, although both were involved in the major folding. The principal folds of the area from east to west are : a major dome, a complex syncline with several second-order folds, and a remnant of a northward-plunging anticline, the major part of which was engulfed by the batholith. The folded rocks are cut by many faults of small to moderate displacement and by two faults of large displacement. Most of the faults were probably formed by the same forces that produced the folds. The origin of the two major faults, however, is uncertain, and may be related to igneous activity. The batholith crosscuts the folded structure and is in turn cut by small faults. Some parts of the area were elevated along steep normal faults in late Tertiary time. The southern part of the Elkhorn Mountains has been mountainous at least since early Oligocene time, and probably began to take form during the Cretaceous. As a consequence of long continued erosion, the modern topography reflects the structure and lithologic character of the underlying rocks except in a few areas blanketed by poorly consolidated Tertiary rocks and in the higher mountains where glaciation has been prominent. Silver, lead, zinc, and gold have been produced, either singly or, more typically, as a combination of metals from a number of types of ore deposits. Replacement deposits in carbonate rocks are the most common type, but veins, contact metamorphic deposits, and pipelike bodies of breccia cemented by ore and gangue minerals also are present. The Elkhorn mining district has the largest number of mines and the greatest variety of types of deposits. In the Tizer Basin several narrow goldbearing veins cut andesitic volcanic rocks, and in the southern part of the area sporadic small veins and replacement deposits occur in carbonate rocks. The mines and prospects of the area are described, and some suggestions for future prospecting are outlined. The application of geochemical prospecting techniques may prove of value, judging from the results of reconnaissance soil sampling in the vicinity of the Elkhorn mine.

  10. Feeder systems of acidic lava flows from the Paraná-Etendeka Igneous Province in southern Brazil and their implications for eruption style

    NASA Astrophysics Data System (ADS)

    de Lima, Evandro Fernandes; Waichel, Breno Leitão; Rossetti, Lucas De Magalhães May; Sommer, Carlos Augusto; Simões, Matheus Silva

    2018-01-01

    In the Rio Grande do Sul State, southern Brazil, the volcanic sequence of the Paraná-Etendeka Igneous Province consists of pahoehoe and rubbly pahoehoe lava flows with basaltic and basaltic andesitic composition respectively, overlaid by acidic volcanic rocks. The acidic volcanic rocks of the Paraná-Etendeka Igneous Province exhibit textures and structures that can be related to effusive and/or explosive eruptions generating predominantly rheoignimbrites. The huge lava volume related to the emplacement of large igneous provinces implicates on efficient feeder systems that are more commonly observed in continental environments. In the Paraná-Etendeka Igneous Province, feeders of basaltic rocks are exposed in several dyke swarms (Ponta Grossa NW trending, Florianópolis/Skeleton Coast (NW Namibia) N-S trending, Serra do Mar NE trending and Henties Bay/Outjo NE trending). In contrast, the only feeder system proposed to the acidic rocks of the Paraná-Etendeka Igneous Province is the Messum complex in Namibia (Milner et al. 1995). In the study area, the opening of three quarries for the extraction of dimension stones has exposed impressive structures/textures that show the effusive emplacement and the ductile to fragile-ductile magma transition along the acidic feeder dykes. Besides that, magma mixing/mingling processes between two acidic magmas are observed along the dykes. Here we describe new occurrences of acidic feeder dykes, correlate the dykes with acidic flows and discuss their importance to understand the emplacement of the Palmas type acid units in southern Brazil.

  11. Breakup magmatism style on the North Atlantic Igneous Province: insight from Mid-Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Planke, Sverre; Theissen-Krah, Sonja; Zastrozhnov, Dmitrii; Breivik, Asbjørn Johan; Gernigon, Laurent; Myklebust, Reidun

    2014-05-01

    The distribution of breakup-related igneous rocks on rifted margins provide important constraints on the magmatic processes during continental extension and lithosphere separation which lead to a better understanding of the melt supply from the upper mantle and the relationship between tectonic setting and volcanism. The results can lead to a better understanding of the processes forming volcanic margins and thermal evolution of associated prospective basins. We present a revised mapping of the breakup-related igneous rocks in the NE Atlantic area, which are mainly based on the Mid-Norwegian (case example) margin. We divided the breakup related igneous rocks into (1) extrusive complexes, (2) shallow intrusive complexes (sills/dykes) and (3) deep intrusive complexes (Lower Crustal Body: LCB). The extrusive complex has been mapped using the seismic volcanostratigraphic method. Several distinct volcanic seismic facies units have been identified. The top basalt reflection is easily identified because of the high impedance contrast between the sedimentary and volcanic rocks resulting in a major reflector. The basal sequence boundary is frequently difficult to identify but it lies usually over the intruded sedimentary basin. Then the base is usually picked above the shallow sill intrusions identified on seismic profile. The mapping of the top and the base of the basaltic sequences allows us to determine the basalt thickness and estimate the volume of the magma production on the Mid- Norwegian margin. The thicker part of the basalt corresponds to the seaward dipping reflector (SDR). The magma feeder system, mainly formed by dyke and sill intrusions, represents the shallow intrusive complex. Deeper interconnected high-velocity sills are also mappable in the margin. Interconnected sill complexes can define continuous magma network >10 km in vertical ascent. The large-scale sill complexes, in addition to dyke swarm intrusions, represent a mode of vertical long-range magma transport through the upper crust. The deep intrusive complex represents the Lower Crustal Body (LCB) which is observed along the margin and characterized by high P-wave velocity bodies (Vp> 7km/s). On the Vøring margin a strong amplitude dome-shaped reflection (the so-called T-Reflection) has been identified and interpreted as the top LCB. In the sedimentary part of the margin, sill intrusions are the major feeder system and seem to be connected with LCB. In the volcanic part of the margin, dykes represent the main feeder system and lie above the thicker part of the LCB.

  12. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  13. Distinguishing between tertiary and secondary facilities: a case study of cardiac diagnostic-related groups (DRGs).

    PubMed

    Rouse, Paul; Arulambalam, Ajit; Correa, Ralph; Ullman, Cornelia

    2010-05-14

    To develop a classification of tertiary cardiac DRGs in order to investigate differences in tertiary/secondary product mix across New Zealand district health boards (DHBs). 67 DRGs from 85,442 cardiac cases were analysed using cost weights and patient comorbidity complexity levels, which were used as a proxy for complexity. The research found high variability of severity within some DRGs. 5 DHBs are the main providers of 27 DRGs which are high cost and identified as tertiary by several ADHB clinicians; the same 5 DHBs have on average higher severity by DRG than the other DHBs. NZ tertiary hospitals have a product mix of DRGs with higher complexity than secondary hospitals. Funding based on case weights needs to recognise the additional resource requirements for this higher complexity.

  14. Forward Modeling of Receiver Functions to Determine Crustal Structure of the Eastern Limb in TheBushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Loza, E.; Ramirez, C.; Nyblade, A.; Durrheim, R. J.; Raveloson, A.

    2016-12-01

    The Bushveld Igneous Complex contains the largest layered mafic intrusion on Earth, about the size of England, and has been exploited for metals such as platinum since the 1950s. Several igneous bodies within and around the complex have been dated from 2.06 Ga, possibly representing a single massive magmatic event. The Rustenburg Layered Suite of the Bushveld Igneous Complex intruded into the Transvaal sedimentary sequence, with associated volcanic rocks of the Rooiberg Group forming the roof and part of the floor. The purpose of this study is to determine whether the Rustenburg Layered Suite is a continuous bowl-shaped formation or if it is made up of two separate dipping sheets that crop out in the western and eastern limbs. If the intrusion is connected at depth, then the Moho (crust-mantle boundary) would most likely be depressed due to the weight of the 7-8km of mafic material injected into the crust. Seismic stations were installed in the eastern and northern Bushveld in 2015 to collect teleseismic data. The use of receiver functions derived from seismic data collected since 2015 has helped determine the subsurface crustal structure of the Bushveld. Receiver functions have been used to trace the contact between the high-density mafic lower zone and the low-density Transvaal sediments. The new data gathered show the Moho boundary at about 47 km, and a 5.0 Gaussian width shows a backswing consistent with a mafic-sedimentary boundary at 8km.

  15. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    NASA Astrophysics Data System (ADS)

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke

    2016-11-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as xenocrysts from basement entrained in the magma through limited crustal reworking. The younger ages (807-667 Ma) might represent subsequent thermal events. The results of this study suggest that the ca. 850 Ma layered igneous complex in Akarui Point was derived from a magma chamber constructed through arc-related magmatism which included components from ca. 1.0 Ga felsic continental crustal basement. The geochemical characteristics and the timing of protolith emplacement from this complex are broadly identical to those of similar orthogneisses from Kasumi Rock and Tama Point in the LHC and the Kadugannawa Complex in Sri Lanka, which record Early Neoproterozoic (ca. 1.0 Ga) arc magmatism. Although the magmatic event in Akarui Point is slightly younger, the thermal event probably continued from ca. 1.0 Ga to ca. 850 Ma or even to ca. 670 Ma. We therefore correlate the Akarui Point igneous complex with those in the LHC and Kadugannawa Complex formed under similar Early Neoproterozoic arc magmatic events during the convergent margin processes prior to the assembly of the Gondwana supercontinent.

  16. Mapping Phyllic and Argillic-Altered Rocks in Southeastern Afghanistan using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    USGS Publications Warehouse

    Mars, John L.; Rowan, Lawrence C.

    2007-01-01

    Introduction: ASTER data and logical operators were successfully used to map phyllic and argillic-altered rocks in the southeastern part of Afghanistan. Hyperion data were used to correct ASTER band 5 and ASTER data were georegistered to orthorectified Landsat TM data. Logical operator algorithms produced argillic and phyllic byte ASTER images that were converted to vector data and overlain on ASTER and Landsat TM images. Alteration and fault patterns indicated that two areas, the Argandab igneous complex, and the Katawaz basin may contain potential polymetallic vein and porphyry copper deposits. ASTER alteration mapping in the Chagai Hills indicates less extensive phyllic and argillic-altered rocks than mapped in the Argandab igneous complex and the Katawaz basin and patterns of alteration are inconclusive to predict potential deposit types.

  17. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Wheat, C. G.

    2010-12-01

    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  18. Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    de Castro, David L.; Oliveira, Diógenes C.; Hollanda, Maria Helena B. M.

    2018-07-01

    Two widespread magmatic events are recorded in the Parnaíba basin (NE Brazil) during the Jurassic/Cretaceous opening of the Central and South Atlantic Oceans. The Early Jurassic ( 200 Ma) lava flows of the Mosquito Formation occur essentially in the western and southern basin segments, representing one of the largest expressions of the Central Atlantic Magmatic Province in the South American Plate. In contrast, sill complexes and dike swarms of the Early Cretaceous (129-124 Ma) Sardinha Formation occur in the eastern part of the basin and are chrono-correlated to the large Paraná-Etendeka igneous province and to the Rio Ceará-Mirim Dike Swarm. We gathered geophysical, well logging, outcrop analogs and geochemical data to recognize geometrical shapes and areal distribution patterns of igneous-related constructions. Seismic and well data reveal hundreds of km wide multilayered sill complexes and dikes, which are widespread across vast regions of the basin without evident structural control from either the Precambrian basement grain or the basin internal architecture. Anomaly enhancement techniques and self-organizing maps (SOM) procedure were applied on airborne magnetic data, unraveling near-surface magmatic features in four distinct magnetic domains. Using SOM analysis, the basaltic rocks were divided into six groups based on magnetic susceptibility and major elements composition. These results suggest common origin for both magmatic episodes, probably a combination of effects of edge-driven convection and large-scale mantle warming under the westward moving West Gondwana during the Central and South Atlantic opening, which caused a shifted emplacement to the east of the igneous rocks in the Parnaíba basin.

  19. Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil)

    NASA Astrophysics Data System (ADS)

    de Castro, David L.; Oliveira, Diógenes C.; Hollanda, Maria Helena B. M.

    2018-02-01

    Two widespread magmatic events are recorded in the Parnaíba basin (NE Brazil) during the Jurassic/Cretaceous opening of the Central and South Atlantic Oceans. The Early Jurassic ( 200 Ma) lava flows of the Mosquito Formation occur essentially in the western and southern basin segments, representing one of the largest expressions of the Central Atlantic Magmatic Province in the South American Plate. In contrast, sill complexes and dike swarms of the Early Cretaceous (129-124 Ma) Sardinha Formation occur in the eastern part of the basin and are chrono-correlated to the large Paraná-Etendeka igneous province and to the Rio Ceará-Mirim Dike Swarm. We gathered geophysical, well logging, outcrop analogs and geochemical data to recognize geometrical shapes and areal distribution patterns of igneous-related constructions. Seismic and well data reveal hundreds of km wide multilayered sill complexes and dikes, which are widespread across vast regions of the basin without evident structural control from either the Precambrian basement grain or the basin internal architecture. Anomaly enhancement techniques and self-organizing maps (SOM) procedure were applied on airborne magnetic data, unraveling near-surface magmatic features in four distinct magnetic domains. Using SOM analysis, the basaltic rocks were divided into six groups based on magnetic susceptibility and major elements composition. These results suggest common origin for both magmatic episodes, probably a combination of effects of edge-driven convection and large-scale mantle warming under the westward moving West Gondwana during the Central and South Atlantic opening, which caused a shifted emplacement to the east of the igneous rocks in the Parnaíba basin.

  20. Regional hydrogeology of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah, with a section on vegetation

    USGS Publications Warehouse

    Cooley, M.E.; Harshbarger, J.W.; Akers, J.P.; Hardt, W.F.; Hicks, O.N.

    1969-01-01

    The Navajo and Hopi Indian Reservations have an area of about 25,000 square miles and are in the south-central part of the Colorado Plateaus physiographic province. The reservations are underlain by sedimentary rocks that range in age from Cambrian to Tertiary, but Permian and younger rocks are exposed in about 95 percent of the area. Igneous and metamorphic basement rocks of Precambrian age underlie the sedimentary rocks at depths ranging from 1,000 to 10,000 feet. Much of the area is mantled by thin alluvial, eolian, and terrace deposits, which mainly are 10 to 50 feet thick.The Navajo country was a part of the eastern shelf area of the Cordilleran geosyncline during Paleozoic and Early Triassic time and part of the southwestern shelf area of the Rocky Mountain geosyncline in Cretaceous time. The shelf areas were inundated frequently by seas that extended from the central parts of the geosynclines. As a result, complex intertonguing and rapid facies changes are prevalent in the sedimentary rocks and form some of the principal controls on the ground-water hydrology. Regional uplift beginning in Late Cretaceous time , destroyed. the Rocky Mountain geosyncline and formed the structural basius that influenced sedimentation and erosion throughout Cenozoic time.

  1. Geochemical characteristics of charnockite and high grade gneisses from Southern Peninsular Shield and their significance in crustal evolution

    NASA Technical Reports Server (NTRS)

    Sugavanam, E. B.; Vidyadharan, K. T.

    1988-01-01

    Presented here are the results of detailed investigations encompassing externsive structural mapping in the charnockite-high grade gneiss terrain of North Arcot district and the type area in Pallavaram in Tamil Nadu supported by petrography, mineral chemistry, major, minor and REE distribution patterns in various lithounits. This has helped in understanding the evolutionary history of the southern peninsular shield. A possible tectonic model is also suggested. The results of these studies are compared with similar rock types from parts of Andhra Pradesh, Kerala, Sri Lanka, Lapland and Nigeria which has brought about a well defined correlation in geochemical characteristics. The area investigated has an interbanded sequence of thick pile of charnockite and a supracrustal succession of shelf type sediments, layered igneous complex, basic and ultrabasic rocks involved in a complex structural, tectonic, igneous and metamorphic events.

  2. Magnetic susceptibilities measured on rocks of the upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Alstatt, A.A.; Saltus, R.W.; Bruhn, R.L.; Haeussler, Peter J.

    2002-01-01

    We have measured magnetic susceptibility in the field on most of the geologic rock formations exposed in the upper Cook Inlet near Anchorage and Kenai, Alaska. Measured susceptibilities range from less than our detection limit of 0.01 x 10-3 (SI) to greater than 100 x 10-3 (SI). As expected, mafic igneous rocks have the highest susceptibilities and some sedimentary rocks the lowest. Rocks of the Tertiary Sterling Formation yielded some moderate to high susceptibility values. Although we do not have detailed information on the magnetic mineralogy of the rocks measured here, the higher susceptibilities are sufficient to explain the magnitudes of some short-wavelength aeromagnetic anomalies observed on recent surveys of the upper Cook Inlet.

  3. Lunar breccias, petrology, and earth planetary structure

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1978-01-01

    Topics covered include: (1) petrologic studies of poikiloblastic textured rocks; (2) petrology of aluminous mare basalts in breccia 14063; (3) petrology of Apollo 15 breccia 15459; (4) high-alumina mare basalts; (5) some petrological aspects of imbrium stratigraphy; (6) petrology of lunar rocks and implication to lunar evolution; (7) the crystallization trends of spinels in Tertiary basalts from Rhum and Muck and their petrogenetic significance; (8) the geology and evolution of the Cayman Trench; (9) The petrochemistry of igneous rocks from the Cayman Trench and the Captains Bay Pluton, Unalaska Island and their relation to tectonic processes at plate margins; and (10) the oxide and silicate mineral chemistry of a Kimberlite from the Premier Mine with implications for the evolution of kimberlitic magma.

  4. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province

    NASA Astrophysics Data System (ADS)

    Larsen, Rune B.; Grant, Thomas; Sørensen, Bjørn E.; Tegner, Christian; McEnroe, Suzanne; Pastore, Zeudia; Fichler, Christine; Nikolaisen, Even; Grannes, Kim R.; Church, Nathan; ter Maat, Geertje W.; Michels, Alexander

    2018-01-01

    The Seiland Igneous Province (SIP), Northern Norway, contains > 5000 km2 of mafic and ultramafic intrusions with minor alkaline, carbonatite and felsic rocks that were intruded into the lower continental crust at a depth of 25 to as much as 35 km. The SIP can be geochemically and temporally correlated to numerous dyke swarms throughout Scandinavia at 560-610 Ma, and is linked to magmatic provinces in W-Greenland and NE-America that are collectively known as the Central Iapetus Magmatic Province (CIMP). Revised mapping show that the SIP exposes 85-90% layered tholeiitic- alkaline- and syeno-gabbros, 8-10% peridotitic complexes, 2-5% carbonatite, syenite and diorite that formed within a narrow (< 10 Ma) time frame in the Ediacaran (560-570 Ma). Large peridotite complexes were emplaced into the still hot and unconsolidated gabbro (no dating available) and are regarded as the main-conduit systems. Gravimetric data implies an average thickness of igneous rocks of 4-5 km and also features six deep lithospheric roots of ultramafic rocks extending min 9 km into the crust. Together, the root structures represent the main volcanic conduits conveying thousands of km3 of mafic-ultramafic melts from the asthenosphere to the lithosphere. The ultramafic complexes were predominantly emplaced into the layered gabbros at four major igneous centres, respectively, Nordre Brumandsfjord, Melkvann, Kvalfjord and Reinfjord. All complexes are situated in a right-way-up position and are steep sided forming large plugs. A marginal hybrid zone forms at the contact with country-rock and transitions gradually from olivine-mela-gabbro over pyroxenites that grades in to an olivine-clinopyroxenite zone, which is followed by a wehrlite zone and, finally, the centre of the complexes comprises pure dunite. From pyroxenite to dunite, olivine changes from Fo72 to Fo85 and clinopyroxene from Di80 to Di92 i.e. the complexes observe a reverse fractional crystallisation sequence with time. Parental melt compositions modelled from early dykes indicate komatiitic to picritic melts with 16-22 wt% MgO, Cr of 1594 ppm and Ni of 611 ppm, which were emplaced at 1450-1500 °C. Melt compositions calculated from clinopyroxene compositions from Reinfjord are OIB-like with LREE enriched over HREE. The high abundance of carbonatites and lamproites demonstrates the volatile-rich nature of the mantle source region and is further corroborated by the unusually high abundance of magmatic sulphides (0.5-1%) and carbonated and hydrous assemblages (c. 1%) throughout the region. In Reinfjord, they are also closely associated with PGE-Cu-Ni reef deposits. Essentially, the ultramafic complexes in the SIP comprises deep-seated transient magma chambers that facilitated mixing and homogenisation of a rich diversity of fertile asthenospheric melts en route to the upper parts of the continental crust.

  5. Pore Distribution Characteristics of the Igneous Reservoirs in the Eastern Sag of the Liaohe Depression

    NASA Astrophysics Data System (ADS)

    Zongli, Liu; Zhuwen, Wang; Dapeng, Zhou; Shuqin, Zhao; Min, Xiang

    2017-05-01

    In the Es3 formation (third section of the Shahejie) of the Eastern sag section of the Liaohe Depression, basalt and trachyte are predominant in the igneous rock. The reservoir consists of complex reservoir space types. Based on the porosity bins of nuclear magnetic logging and the porosity distribution of electric imaging logging, the pores' sizes and distribution, as well as the mutual connectivity of the reservoir, were analyzed. Also, the characteristics of the different reservoirs were summarized. In regards to the oil reservoirs, large pores (PS>10) were found to account for the majority of the reservoir spaces, and the pore distribution was concentrated and well connected. However, for the poor oil reservoirs, the large and small pores were found to alternate, and the pore distribution was scattered and poorly connected. Within the dry layers, the smaller pores (PS<10) were predominant. The pore distributions were found to be influenced by lithology, facies, and tectonism. The reservoirs of the pyroclastic flow of the explosive facies had good connectivity, and the interlayer heterogeneity was relatively weak. This reservoir's pore distributions were found to be mainly dominated by the larger pores (PS10-PS13), which displayed a concentrated distribution mainly in one porosity bin. Therefore, it was taken as a favorable facie belt in the eastern sag of the Liaohe Depression. The examination of the pore distribution characteristics of the igneous rock was the key to the evaluation of the properties and effectiveness of the igneous reservoirs in this study, which potentially has great significance to the future exploration and development of igneous rock.

  6. Mind Over Magma: The Story of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Snyder, Don

    2004-01-01

    In the centuries that enquiring minds have studied and theorized about igneous rocks, much progress has been made, both in accumulating observations and in developing theories. Yet, writing a history of this progress is a daunting undertaking. The volume of the literature is vast and in multiple languages; the various lines of inquiry are diverse and complex; and the nomenclature is sometimes abstruse. On top of these challenges, many of its principal issues have yet to find a definitive consensus. With the exception of a few topical studies, historians of science have virtually avoided the subject. In Mind Over Magma: The Story of Igneous Petrology, Davis Young has taken on the challenge of writing a comprehensive survey of the study of igneous rocks, and the result has been a remarkable book of meticulous scholarship. Igneous petrology is a vast subject, and it is not obvious how best to organize its history. Young takes a topical approach, generally grouping together various studies by either the problem being investigated or the method of attack. These topics span the earliest times to the present, with an emphasis on recurring themes, such as the causes of magmatic diversity and the origins of the granitic rocks. The range of topics includes most of the subjects central to the field over its history. As much as is practical, topics are discussed in chronological order, and along the way, the reader is treated to biographical sketches of many of the key contributors. This organization proves effective in dealing with the multitude of concepts.

  7. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  8. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-10-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  9. The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin?

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Lucci, Federico; Stern, Robert J.; Hasannejad, Shima; Asahara, Yoshihiro

    2018-05-01

    The tectonic setting in which Jurassic igneous rocks of the Sanandaj-Sirjan Zone (SaSZ) of Iran formed is controversial. SaSZ igneous rocks are mainly intrusive granodiorite to gabbroic bodies, which intrude Early to Middle Jurassic metamorphic basement; Jurassic volcanic rocks are rare. Here, we report the age and petrology of volcanic rocks from the Panjeh basaltic-andesitic rocks complex in the northern SaSZ, southwest of Ghorveh city. The Panjeh magmatic complex consists of pillowed and massive basalts, andesites and microdioritic dykes and is associated with intrusive gabbros; the overall sequence and relations with surrounding sediments indicate that this is an unusually well preserved submarine volcanic complex. Igneous rocks belong to a metaluminous sub-alkaline, medium-K to high-K calc-alkaline mafic suite characterized by moderate Al2O3 (13.7-17.6 wt%) and variable Fe2O3 (6.0-12.6 wt%) and MgO (0.9-11.1 wt%) contents. Zircon U-Pb ages (145-149 Ma) define a Late Jurassic (Tithonian) age for magma crystallization and emplacement. Whole rock compositions are enriched in Th, U and light rare earth elements (LREEs) and are slightly depleted in Nb, Ta and Ti. The initial ratios of 87Sr/86Sr (0.7039-0.7076) and εNd(t) values (-1.8 to +4.3) lie along the mantle array in the field of ocean island basalts and subcontinental metasomatized mantle. Immobile trace element (Ti, V, Zr, Y, Nb, Yb, Th and Co) behavior suggests that the mantle source was enriched by fluids released from a subducting slab (i.e. deep-crustal recycling) with some contribution from continental crust for andesitic rocks. Based the chemical composition of Panjeh mafic and intermediate rocks in combination with data for other gabbroic to dioritic bodies in the Ghorveh area we offer two interpretations for these (and other Jurassic igneous rocks of the SaSZ) as reflecting melts from a) subduction-modified OIB-type source above a Neo-Tethys subduction zone or b) plume or rift tectonics involving upwelling metasomatized mantle (mostly reflecting the 550 Ma Cadomian crust-forming event).

  10. Petroleum geology and resources of southeastern Mexico, northern Guatemala, and Belize

    USGS Publications Warehouse

    Peterson, James A.

    1983-01-01

    Petroleum deposits in southeastern Mexico and Guatemala occur in two main basinal provinces, the Gulf Coast Tertiary basin area, which includes the Reforma and offshore Campeche Mesozoic fields, and the Peten basin of eastern Chiapas State (Mexico) and Guatemala. Gas production is mainly from Tertiary sandstone reservoirs of Miocene age. Major oil production, in order of importance, is from Cretaceous, Paleocene, and Jurassic carbonate reservoirs in the Reforma and offshore Campeche areas. Several small oil fields have been discovered in Cretaceous carbonate reservoirs in west-central Guatemala, and one major discovery has been reported in northwestern Guatemala. Small- to medium-sized oil accumulations also occur in Miocene sandstone reservoirs on salt structures in the Isthmus Saline basin of western Tabasco State, Mexico. Almost all important production is in salt structure traps or on domes and anticlines that may be related to deep-seated salt structures. Some minor oil production has occurred in Cretaceous carbonate reservoirs in a buried overthrust belt along the west flank of the Veracruz basin. The sedimentary cover of Paleozoic through Tertiary rocks ranges in thickness from about 6,000 m (20,000 ft) to as much as 12,000 m (40,000 ft) or more in most of the region. Paleozoic marine carbonate and clastic rocks 1,000 to 2,000 m (3,300 to 6,500 ft) thick overlie the metamorphic and igneous basement in part of the region; Triassic through Middle Jurassic red beds and evaporite deposits, including halite, apparently are present throughout the region, deposited in part in a Triassic graben system. Upper Jurassic (Oxfordian) through Cretaceous rocks make up the bulk of the Mesozoic regional carbonate bank complex, which dominates most of the area. Tertiary marine and continental clastic rocks, some of deep water origin, 3,000 to 10,000 m (10,000 to 35,000 ft) thick, are present in the coastal plain Tertiary basins. These beds grade eastward into a carbonate sequence that overlies the Mesozoic carbonate complex on the Yucatan platform. During the past 10 years, about 50 large oil fields were discovered in the Reforma and offshore Campeche areas. Oil is produced from intensely microfractured Cretaceous, Paleocene, and Upper Jurassic dolomite reservoirs on blockfaulted salt swells or domes. Most fields are located in the Mesozoic carbonate-bank margin and forebank talus (Tamabra) facies, which passes through the offshore Campeche and onshore Reforma areas. Oil source rocks are believed to be organic-rich shales and shaly carbonate rocks of latest Jurassic and possibly Early Cretaceous age. At least six of the Mesozoic discoveries are giant or supergiant fields. The largest is the Cantarell complex (about 8 billion to 10 billion barrels (BB)) in the offshore Campeche area and the Bermudez complex (about 8 BB) in the Reforma onshore area. Oil columns are unusually large (from 50 m to as much as 1,000 m, or 160 ft to 3,300 ft). Production rates are extremely high, averaging at least 3,000 to 5,000 barrels of oil per day (bo/d); some wells produce more than 20,000 bo/d, particularly in the offshore Campeche area, where 30,000- to 60,000-bo/d wells are reported. Tertiary basin fields produce primarily from Miocene sandstone reservoirs. About 50 of these are oil fields ranging from 1 million barrels (MMB) to 200 MMB in size, located on faulted salt structures in the Isthmus Saline basin. Another 30 are gas or gas-condensate fields of a few billion cubic feet to 3 trillion to 4 trillion cubic feet (Tcf) located on salt structures or probable salt structures in the Macuspana, Comalcalco, Isthmus Saline, and Veracruz basins. Source rocks for the gas are believed to be carbonaceous shales interbedded with the sandstone reservoir bodies. Identified reserves in the southeastern Mexico-Guatemala area, almost all in the Mesozoic fields, are about 53 BB of oil, 3 BB of natural gas liquids, and 65 Tcf of gas. The estimat

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, P.; Bishopp, D.

    Recent political changes have demonstrated that previously taboo countries are now becoming fair game for western explorationists. Numerous areas or basins that have not been the focus of high technology - Technologically Attenuated Basins (TABs) - offer a new challenge for the new venture groups of E and P companies. Most recently the USSR together with other Eastern European countries continue to be a source of technical interest and frustration. The People's Democratic Republic of Korea, North Korea, possibly the most isolated of the Communist block, contains several TABs where there has been minimal exploration. One such TAB is Westmore » Korea Bay, which covers an area of 25,000 km{sup 2} containing at least one major Tertiary basin. The tectonic evolution of the Tertiary basin is similar to the intracratonic Chinese basins with significant differences, notably the Songnim and Daebo orogenies (Middle Triassic to Upper Jurassic and Jurassic to middle Cretaceous) that resulted in extensive igneous activity, folding, and thrust faulting, followed by an extensional stress regime during the Mesozoic and Cainozoic. Very few wells have been drilled in West Korea Bay in the past decade (one per 2,500 km{sup 2}). Though commercially unsuccessful, the wells have proven the existence of oil, mature source rocks, and reservoirs (Jurassic, Cretaceous, and Oligo-Miocene). Structural plays such as rotated Jurassic and Cretaceous fault blocks predominate, but there is also potential for higher risk stratigraphic potential in the Jurassic and Tertiary, with expected field size distributions in the 20-180 MMBOR range.« less

  12. Implications of contact metamorphism of Mancos Shale for critical zone processes

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.

    2016-12-01

    Bedrock lithology imparts control on some critical zone processes, for example rates and extent of chemical weathering, solute release though mineral dissolution, and water flow. Bedrock can be very heterogeneous resulting in spatial variability of these processes throughout a catchment. In the East River watershed outside of Crested Butte, Colorado, bedrock is dominantly comprised of the Mancos Shale; a Cretaceous aged, organic carbon rich marine shale. However, in some areas the Mancos Shale appears contact metamorphosed by nearby igneous intrusions resulting in a potential gradient in lithologic change in part of the watershed where impacts of lithology on critical zone processes can be evaluated. Samples were collected in the East River valley along a transect from the contact between the Tertiary Gothic Mountain laccolith of the Mount Carbon igneous system and the underlying Manocs shale. Porosity of these samples was analyzed by small-angle and ultra small-angle neutron scattering. Results indicate contact metamorphism decreases porosity of the shale and changes the pore shape from slightly anisotropic pores aligned with bedding in the unmetamorphosed shale to isotropic pores with no bedding alignment in the metamorphosed shales. The porosity analysis combined with clay mineralogy, surface area, carbon content and oxidation state, and solute release rates determined from column experiments will be used to develop a full understanding of the impact of contact metamorphism on critical zone processes in the East River.

  13. Mantle source volumes and the origin of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western U.S.

    NASA Astrophysics Data System (ADS)

    Farmer, G. Lang; Bailley, Treasure; Elkins-Tanton, Linda T.

    2008-04-01

    Voluminous intermediate to silicic composition volcanic rocks were generated throughout the southern Rocky Mountains, western U.S., during the mid-Tertiary "ignimbrite flare-up", principally at the San Juan and Mogollon-Datil volcanic fields. At both volcanic centers, radiogenic isotope data have been interpreted as evidence that 50% or more of the volcanic rocks (by mass) were derived from mantle-derived, mafic parental magmas, but no consensus exists as to whether melting was largely of lithospheric or sub-lithospheric mantle. Recent xenolith studies, however, have revealed that thick (> 100 km), fertile, and hydrated continental lithosphere was present beneath at least portions of the southern Rocky Mountains during the mid-Tertiary. The presence of such thick mantle lithosphere, combined with an apparent lack of syn-magmatic extension, leaves conductive heating of lithospheric mantle as a plausible method of generating the mafic magmas that fueled the ignimbrite flare-up in this inland region. To further assess this possibility, we estimated the minimum volume of mantle needed to generate the mafic magmas parental to the preserved mid-Tertiary igneous rocks. Conservative estimates of the mantle source volumes that supplied the Mogollon-Datil and San Juan volcanic fields are ˜ 2 M km 3 and ˜ 7 M km 3, respectively. These volumes could have comprised only lithospheric mantle if at least the lower ˜ 20 km of the mantle lithosphere beneath the entire southern Rocky Mountains region underwent partial melting during the mid-Tertiary and if the resulting mafic magmas were drawn laterally for distances of up to ˜ 300 km into each center. Such widespread melting of lithospheric mantle requires that the lithospheric mantle have been uniformly fertile and primed for melting in the mid-Tertiary, a possibility if the lithospheric mantle had experienced widespread hydration and refrigeration during early Tertiary low angle subduction. Exposure of the mantle lithosphere to hot, upwelling sub-lithospheric mantle during mid-Tertiary slab roll back could have then triggered the mantle melting. While a plausible source for mid-Tertiary basaltic magmas in the southern Rocky Mountains, lithospheric mantle could not have been the sole source for mafic magmas generated to the south in that portion of the ignimbrite flare-up now preserved in the Sierra Madre Occidental of northern Mexico. The large mantle source volumes (> 45 M km 3) required to fuel the voluminous silicic ignimbrites deposited in this region (> 400 K km 3) are too large to have been accommodated within the lithospheric mantle alone, implying that melting in sub-lithospheric mantle must have played a significant role in generating this mid-Tertiary magmatic event.

  14. Influence of stretching and density contrasts on the chemical evolution of continental magmas: An example from the Ivrea-Verbano Zone

    USGS Publications Warehouse

    Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.

    1996-01-01

    The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.

  15. Hawai'i and Gale Crater: A Mars Analogue Study of Igneous, Sedimentary, Weathering, and Alteration Trends in Geochemistry

    NASA Technical Reports Server (NTRS)

    Berger, J. A.; Flemming, R. L.; Schmidt, M. E.; Gellert, R.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Sedimentary rocks in Gale Crater on Mars indicate a varied provenance with a range of alteration and weathering [1, 2]. Geochemical trends identified in basaltic and alkalic sedimentary rocks by the Alpha Particle X-ray Spectrometer (APXS) on the Mars rover Curiosity represent a complex interplay of igneous, sedimentary, weathering, and alteration processes. Assessing the relative importance of these processes is challenging with unknown compositions for parent sediment sources and with the constraints provided by Curiosity's instruments. We therefore look to Mars analogues on Earth where higher-resolution analyses and geologic context can constrain interpretations of Gale Crater geochemical observations. We selected Maunakea (AKA Mauna Kea) and Kohala volcanoes, Hawai'i, for an analogue study because they are capped by post-shield transitional basalts and alkalic lavas (hawaiites, mugearites) with compositions similar to Gale Crater [1, 3]. Our aim was to characterize Hawaiian geochemical trends associated with igneous processes, sediment transport, weathering, and alteration. Here, we present initial results and discuss implications for selected trends observed by APXS in Gale Crater.

  16. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  17. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  18. Measuring case-mix complexity of tertiary care hospitals using DRGs.

    PubMed

    Park, Hayoung; Shin, Youngsoo

    2004-02-01

    The objectives of the study were to develop a model that measures and evaluates case-mix complexity of tertiary care hospitals, and to examine the characteristics of such a model. Physician panels defined three classes of case complexity and assigned disease categories represented by Adjacent Diagnosis Related Groups (ADRGs) to one of three case complexity classes. Three types of scores, indicating proportions of inpatients in each case complexity class standardized by the proportions at the national level, were defined to measure the case-mix complexity of a hospital. Discharge information for about 10% of inpatient episodes at 85 hospitals with bed size larger than 400 and their input structure and research and education activity were used to evaluate the case-mix complexity model. Results show its power to predict hospitals with the expected functions of tertiary care hospitals, i.e. resource intensive care, expensive input structure, and high levels of research and education activities.

  19. Geometry and controls on the development of igneous sill-related forced folds: 2D seismic reflection case study from offshore Southern Australia

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Schofield, Nick; Magee, Craig; Golenkov, Bogdan

    2017-04-01

    Emplacement of magma in the shallow subsurface can result in the development of dome-shaped folds at the Earth's surface. These so-called 'forced folds' have been described in the field and in subsurface datasets, although the exact geometry of the folds and the nature of their relationship to underlying sills remains unclear and, in some cases, controversial. As a result, the utility of these features in tracking the subsurface movement of magma, and predicting the potential size and location of potentially hazardous volcanic eruptions, is uncertain. Here we use high-quality, 2D seismic reflection and borehole data from the Ceduna sub-basin, offshore southern Australia to describe the structure and infer the evolution of igneous sill-related forced folds in the Bight Basin Igneous Complex (BBIC). We mapped 33 igneous sills, which were emplaced 200-1500 m below the palaeo-seabed in an Upper Cretaceous, coal-bearing, predominantly coastal-plain succession. The intrusions, which are expressed as packages of high-amplitude reflections, are 32-250 m thick and 7-19 km in diameter. They are overlain by dome-shaped folds, which are up to 17 km wide and display up to 210 m of relief. The edges of these folds coincide with the margins of the underlying sills and the folds display the greatest relief where the underlying sills are thickest; the folds are therefore interpreted as forced folds that formed in response to emplacement of magma in the shallow subsurface. The folds are onlapped by Lutetian (middle Eocene) strata, indicating they formed and the intrusions were emplaced during the latest Ypresian (c. 48 Ma). We demonstrate that fold amplitude is typically less than sill thickness even for sills with very large diameter-to-depth ratios, suggesting that pure elastic bending (forced folding) of the overburden is not the only process accommodating magma emplacement, and that supra-sill compaction may be important even at relatively shallow depths. Based on the observation that the sills intruded a shallowly-buried succession, the discrepancy between fold amplitude and sill thickness may reflect loss of host rock volume by fluidisation and pore fluid expulsion from poorly-lithified, water-rich beds. This study indicates that host rock composition, emplacement depth and deformation mechanisms are important controls on the style of deformation that occurs during intrusive igneous activity, and that forced fold amplitude may not always reflect the thickness of an underlying igneous intrusion. In addition, the results of this study suggest that physical and numerical models need to model more complex host rock stratigraphies and rheologies if they wish to capture the full range of deformation mechanisms that occur during magma emplacement in the Earth's shallow subsurface.

  20. Tectono-Magmatic Cycles and Geodynamic Settings of Ore-Bearing System Formation in the Southern Cis-Argun Region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.; Kovalenko, D. V.

    2017-11-01

    The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu-Mo, Pb-Zn-Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo-U, Pb-Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn-W-Li-Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt-trachydacite series and rhyolite of the Turga Series, which fill the Strel'tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.

  1. Major- and Trace-Element Concentrations in Rock Samples Collected in 2006 from the Taylor Mountains 1:250,000-scale Quadrangle, Alaska

    USGS Publications Warehouse

    Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.

    2007-01-01

    Introduction The Kuskokwim mineral belt of Bundtzen and Miller (1997) forms an important metallogenic region in southwestern Alaska that has yielded more than 3.22 million ounces of gold and 400,000 ounces of silver. Precious-metal and related deposits in this region associated with Late Cretaceous to early Tertiary igneous complexes extend into the Taylor Mountains 1:250,000-scale quadrangle. The U.S. Geological Survey is in the process of conducting a mineral resource assessment of this region. This report presents analytical data collected during the third year of this multiyear study. A total of 138 rock geochemistry samples collected during the 2006 field season were analyzed using the ICP-AES/MS42, ICP-AES10, fire assay, and cold vapor atomic absorption methods described in more detail below. Analytical values are provided in percent (% or pct: 1 gram per 100 grams), parts per million (ppm: 1 gram per 1,000,000 grams), or parts per billion (ppb: 1 gram per 1,000,000,000 grams) as indicated in the column heading of the data table. Data are provided for download in Excel (*.xls), comma delimited (*.csv), dBase 4 (*.dbf) and as a point coverage in ArcInfo interchange (*.e00) formats available at http://pubs.usgs.gov/of/2007/1386/.

  2. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity occurred within this area. A sinuous band of gravel deposits trending into the Livermore embayment and lying well above the present drainage is believed to represent a late Tertiary course of the Cache La Poudre river.

  3. Observations on the geology and petroleum potential of the Cold Bay-False Pass area, Alaska Peninsula

    USGS Publications Warehouse

    McLean, Hugh James

    1979-01-01

    Upper Jurassic strata in the Black Hills area consist mainly of fossiliferous, tightly cemented, gently folded sandstone deposited in a shallow marine environment. Upper Cretaceous strata on Sanak Island are strongly deformed and show structural features of broken formations similar to those observed in the Franciscan assemblage of California. Rocks exposed on Sanak Island do not crop out on the peninsular mainland or on Unimak Island, and probably make up the acoustic and economic basement of nearby Sanak basin. Tertiary sedimentary rocks on the outermost part of the Alaska Peninsula consist of Oligocene, Miocene, and lower Pliocene volcaniclastic sandstone, siltstone, and conglomerate deposited in nonmarine and very shallow marine environments. Interbedded airfall and ash-flow tuff deposits indicate active volcanism during Oligocene time. Locally, Oligocene strata are intruded by quartz diorite plutons of probable Miocene age. Reservoir properties of Mesozoic and Tertiary rocks are generally poor due to alteration of chemically unstable volcanic rock fragments. Igneous intrusions have further reduced porosity and permeability by silicification of sandstone. Organic-rich source rocks for petroleum generation are not abundant in Neogene strata. Upper Jurassic rocks in the Black Hills area have total organic carbon contents of less than 0.5 percent. Deep sediment-filled basins on the Shumagin Shelf probably contain more source rocks than onshore correlatives, but reservoir quality is not likely to be better than in onshore outcrops. The absence of well-developed folds in most Tertiary rocks, both onshore and in nearby offshore basins, reduces the possibility of hydrocarbon entrapment in anticlines.

  4. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  5. Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, E.D.; Koch, P.S.; Summa, L.L.

    1996-08-01

    The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zonemore » of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.« less

  6. Response of zircon to melting and metamorphism in deep arc crust, Fiordland (New Zealand): implications for zircon inheritance in cordilleran granites

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shrema; Kemp, A. I. S.; Collins, W. J.

    2018-04-01

    The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20-25 km-thick, 125.3 ± 1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3 ± 1.2 Ma old, pre-MDC lattice dykes and 117.4 ± 3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9-14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only 2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740-640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1 ± 1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of "antecrysts", but it is clear that the WFO solidified before the MDC was emplaced, and these older "igneous" grains are inherited. The bimodal age range of inherited igneous grains, dominated by 125 Ma and 350-320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by 124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (< 750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.

  7. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.

  8. Rock- and Paleomagnetic Properties and Modeling of a Deep Crustal Volcanic System, the Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Pastore, Z.; Michels, A.; Church, N. S.; McEnroe, S. A.; Larsen, R. B.

    2017-12-01

    The Reinfjord Ultramafic Complex is part of the 5000 km2 Seiland Igneous Province (SIP) in Northern Norway. The SIP is argued to be the deep-seated conduit system of a Large Igneous Province and was emplaced at 25-35 km depth in less than 10 Ma (570-560 Ma). The Reinfjord Ultramafic Complex was emplaced during three major successive events at 22-28km depth at pressures of 6-8kb, with associated temperatures 1450-1500°C (Roberts, 2006). The rocks are divided into three formations: the central series (CS) consisting of mainly dunites, upper layered series (ULS) consisting of dunites and wehrlites, a lower layered series (LLS) containing most pyroxene-rich rocks and a marginal zone (MZ) which formed where the ultramafic melts intruded the gabbro-norite and metasedimentary gneisses. Deep exposures such as the Reinfjord Ultramafic Complex are rare, therefore this study gives a unique insight in the rock magnetic properties of a deep ultramafic system. Localised serpentinised zones provide an opportunity to observe the effect of this alteration process on the magnetic properties of deep-seated rocks. Here, we present the results from the rock magnetic properties, a paleomagnetic study and combined potential-fields modeling. The study of the rock magnetic properties provides insight in primary processes associated with the intrusion, and later serpentinization. The paleomagnetic data yields two distinct directions. One direction corresponds to a Laurentia pole at ≈ 532 Ma while the other, though younger, is not yet fully understood. Rock magnetic properties were measured on > 700 specimens and used to constrain the modelling of gravity, high-resolution helicopter, and ground magnetic data. The intrusion is modelled as a cylindrically shaped complex with a dunite core surrounded by wehrlite and gabbro. The ultramafic part of the complex dips to the NE and its maximum vertical extent is modelled to 1400m. Furthermore, modelling allows estimation of relative volumes of ultramafic and mafic rocks below the surface. By integrating different methods this study contributes to the understanding of the magnetization of deep ultramafic rocks in the lithosphere, and to the refinement of the geological interpretation of the Reinfjord ultramafic intrusion.

  9. A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules, The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.

  10. K-Ar geochronology of the Survey Pass, Ambler River and Eastern Baird Mountains quadrangles, southwestern Brooks Range, Alaska

    USGS Publications Warehouse

    Turner, Donald L.; Forbes, R.B.; Mayfield, C.F.

    1978-01-01

    We report 76 previously unpublished K-Ar mineral ages from 47 metamorphic and igneous rocks in the southwestern Brooks Range. The pattern of radiometric ages is complex, reflecting the complex geologic history of this area. Local and regional radiometric evidence suggests that the southern Brooks Range schist belt has, at least in part, undergone a late Precambrian metamorphism and that the parent sedimentary and igneous rocks for the metamorphic rocks dated as late Precambrian are at least this old (Precambrian Z). This schist terrane experienced a major thermal event in mid-Cretaceous time, causing widespread resetting of nearly all K-Ar mica ages. A series of apparent ages intermediate between late Precambrian and mid-Cretaceous are interpreted as indicating varying amounts of partial argon loss from older rocks during the Cretaceous event. The schist belt is characterized by dominant metasediments and subordinate metabasites and metafelsites. Blueschists occur within the schist belt from the Chandalar quadrangle westward to the Baird Mountains quadrangle, but geologic evidence does not support the existence of a fossil subduction zone.

  11. Geologic structures related to New Madrid earthquakes near Memphis, Tennessee, based on gravity and magnetic interpretations

    USGS Publications Warehouse

    Hildenbrand, T.G.; Stuart, W.D.; Talwani, P.

    2001-01-01

    New inversions of gravity and magnetic data in the region north of memphis. Tennessee, and south of latitude 36?? define boundaries of regional structures and igneous complexes in the upper crust. Microseismicity patterns near interpreted boundaries suggest that igneous complexes influence the locations of microseismicity. A weak seismicity cluster occurs near one intrusion (Covington pluton), at the intersection of the southwest margin of the Missouri batholith and the southeast margin of the Reelfoot rift. A narrow seismicity trend along the Reelfoot rift axis becomes diffuse near a second intrusion (Osceola intrusive complex) and changes direction to an area along the northwest flank of the intrusion. The axial seismicity trend also contains a tight cluster of earthquakes located just outside the Osceola intrusive complex. The mechanical explanation of the two seismicity patterns is uncertain, but the first cluster may be caused by stress concentration due to the high elastic stiffness and strength of the Covington intrusion. The spatially changing seismicity pattern near the Osceola complex may be caused by the preceding factors plus interaction with faulting along the rift axis. The axial seismicity strand itself is one of several connected and interacting active strands that may produce stress concentrations at strand ends and junctions. The microseismicity clusters at the peripheries of the two intrusions lead us to conclude that these stress concentrations or stressed volumes may be locations of future moderate to large earthquakes near Memphis. Published by Elsevier Science B.V.

  12. Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.

    USGS Publications Warehouse

    Lyttle, Peter T.; Aleinikoff, John N.; Burton, William C.; Crider, E. Allen; Drake, Avery A.; Froelich, Albert J.; Horton, J. Wright; Kasselas, Gregorios; Mixon, Robert B.; McCartan, Lucy; Nelson, Arthur E.; Newell, Wayne L.; Pavlides, Louis; Powars, David S.; Southworth, C. Scott; Weems, Robert E.

    2018-01-02

    The Washington West 30’ × 60’ quadrangle covers an area of approximately 4,884 square kilometers (1,343 square miles) in and west of the Washington, D.C., metropolitan area. The eastern part of the area is highly urbanized, and more rural areas to the west are rapidly being developed. The area lies entirely within the Chesapeake Bay drainage basin and mostly within the Potomac River watershed. It contains part of the Nation's main north-south transportation corridor east of the Blue Ridge Mountains, consisting of Interstate Highway 95, U.S. Highway 1, and railroads, as well as parts of the Capital Beltway and Interstate Highway 66. Extensive Federal land holdings in addition to those in Washington, D.C., include the Marine Corps Development and Education Command at Quantico, Fort Belvoir, Vint Hill Farms Station, the Naval Ordnance Station at Indian Head, the Chesapeake and Ohio Canal National Historic Park, Great Falls Park, and Manassas National Battlefield Park. The quadrangle contains most of Washington, D.C.; part or all of Arlington, Culpeper, Fairfax, Fauquier, Loudoun, Prince William, Rappahannock, and Stafford Counties in northern Virginia; and parts of Charles, Montgomery, and Prince Georges Counties in Maryland.The Washington West quadrangle spans four geologic provinces. From west to east these provinces are the Blue Ridge province, the early Mesozoic Culpeper basin, the Piedmont province, and the Coastal Plain province. There is some overlap in ages of rocks in the Blue Ridge and Piedmont provinces. The Blue Ridge province, which occupies the western part of the quadrangle, contains metamorphic and igneous rocks of Mesoproterozoic to Early Cambrian age. Mesoproterozoic (Grenville-age) rocks are mostly granitic gneisses, although older metaigneous rocks are found as xenoliths. Small areas of Neoproterozoic metasedimentary rocks nonconformably overlie Mesoproterozoic rocks. Neoproterozoic granitic rocks of the Robertson River Igneous Suite intruded the Mesoproterozoic rocks. The Mesoproterozoic rocks are nonconformably overlain by Neoproterozoic metasedimentary rocks of the Fauquier and Lynchburg Groups, which in turn are overlain by metabasalt of the Catoctin Formation. The Catoctin Formation is overlain by Lower Cambrian clastic metasedimentary rocks of the Chilhowee Group. The Piedmont province is exposed in the east-central part of the map area, between overlapping sedimentary units of the Culpeper basin on the west and those of the Coastal Plain province on the east. In this area, the Piedmont province contains Neoproterozoic and lower Paleozoic metamorphosed sedimentary, volcanic, and plutonic rocks. Allochthonous mélange complexes on the western side of the Piedmont are bordered on the east by metavolcanic and metasedimentary rocks of the Chopawamsic Formation, which has been interpreted as part of volcanic arc. The mélange complexes are unconformably overlain by metasedimentary rocks of the Popes Head Formation. The Silurian and Ordovician Quantico Formation is the youngest metasedimentary unit in this part of the Piedmont. Igneous rocks include the Garrisonville Mafic Complex, transported ultramafic and mafic inclusions in mélanges, monzogranite of the Dale City pluton, and Ordovician tonalitic and granitic plutons. Jurassic diabase dikes are the youngest intrusions. The fault boundary between rocks of the Blue Ridge and Piedmont provinces is concealed beneath the Culpeper basin in this area but is exposed farther south. Early Mesozoic rocks of the Culpeper basin unconformably overlie those of the Piedmont and Blue Ridge provinces in the central part of the quadrangle. The north-northeast-trending extensional basin contains Upper Triassic to Lower Jurassic nonmarine sedimentary rocks. Lower Jurassic sedimentary strata are interbedded with basalt flows, and both Upper Triassic and Lower Jurassic strata are intruded by diabase of Early Jurassic age. The Bull Run Mountain fault, a major Mesozoic normal fault characterized by down-to-the-east displacement, separates rocks of the Culpeper basin from those of the Blue Ridge province on the west. On the east, the contact between rocks of the Culpeper basin and those of the Piedmont province is an unconformity, which has been locally disrupted by normal faults. Sediments of the Coastal Plain province unconformably overlie rocks of the Piedmont province along the Fall Zone and occupy the eastern part of the quadrangle. Lower Cretaceous deposits of the Potomac Formation consist of fluvial-deltaic gravels, sands, silts, and clays. Discontinuous fluvial and estuarine terrace deposits of Pleistocene and middle- to late-Tertiary age flank the modern Potomac River valley unconformable capping these Cretaceous strata and the crystalline basement where the Cretaceous has been removed by erosion. East of the Potomac River, the Potomac Formation is onlapped and unconformably overlain by a westward thinning wedge of marine sedimentary deposits of Late Cretaceous and early- and late-Tertiary age. Basement rooted Coastal Plain faults of Tertiary to Quaternary age occur along the Fall Zone and this part of the inner Coastal Plain. These Coastal Plain faults have geomorphic expression that appear to influence river drainage patterns.The geologic map of the Washington West quadrangle is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects. This 1:100,000-scale map is mainly based on more detailed geologic mapping at a scale of 1:24,000.

  13. Reconnaissance geologic map of the Dixonville 7.5' quadrangle, Oregon

    USGS Publications Warehouse

    Jayko, Angela S.; Wells, Ray E.; Digital Database by Givler, R. W.; Fenton, J.S.; Sinor, M.

    2001-01-01

    The Dixonville 7.5 minute quadrangle is situated near the edge of two major geologic and tectonic provinces the northernmost Klamath Mountains and the southeastern part of the Oregon Coast Ranges (Figure 1). Rocks of the Klamath Mountains province that lie within the study area include ultramafic, mafic, intermediate and siliceous igneous types (Diller, 1898, Ramp, 1972, Ryberg, 1984). Similar rock associations that lie to the southwest yield Late Jurassic and earliest Cretaceous radiometric ages (Dott, 1965, Saleeby, et al., 1982, Hotz, 1971, Harper and Wright, 1984). These rocks, which are part of the Western Klamath terrane (Western Jurassic belt of (Irwin, 1964), are considered to have formed within an extensive volcanic arc and rifted arc complex (Harper and Wright, 1984) that lay along western North America during the Late Jurassic (Garcia, 1979, Garcia, 1982, Saleeby, et al., 1982, Ryberg, 1984). Imbricate thrust faulting and collapse of the arc during the Nevadan orogeny, which ranged in age between about 150 to 145 Ma in the Klamath region (Coleman, 1972, Saleeby, et al., 1982, Harper and Wright, 1984) was syntectonic with, or closely followed by deposition of the volcano-lithic clastic rocks of the Myrtle Group. The Myrtle Group consists of Upper Jurassic and Lower to middle Cretaceous turbidity and mass flow deposits considered to be either arc basin and/or post-orogenic flysh basins that were syntectonic with the waning phases of arc collapse (Imlay et al., 1959, Ryberg, 1984, Garcia, 1982, Roure.and Blanchet, 1983). The intermediate and mafic igneous rocks of the Rogue arc and the pre-Nevadan sedimentary cover (the Galice Formation, (Garcia, 1979) are intruded by siliceous and intermediate plutonic rocks principally of quartz diorite and granodiorite composition (Dott, 1965, Saleeby, et al., 1982, Garcia, 1982, Harper and Wright, 1984). The plutonic rocks are locally tectonized into amphibolite, gneiss, banded gneiss and augen gneiss. Similar metamorphic rocks have yielded metamorphic ages of 165 to 150 Ma (Coleman, 1972, Hotz, 1971, Saleeby, et al., 1982, Coleman and Lanphere, 1991). The Jurassic arc rocks and sedimentary cover occur as a tectonic outlier in this region (Figure 2) as they are bound to the northwest and southeast by melange, broken formation and semi-schists of the Dothan Formation and Dothan Formation(?) that are considered part of a late Mesozoic accretion complex (Ramp, 1972, Blake, et al., 1985). The plutonism that accompanied arc formation and tectonic collapse of the arc does not intrude the structurally underlying Dothan Formation, indicating major fault displacements since the Early Cretaceous. Semischistose and schistose rocks of the accretion complex have yielded metamorphic ages of around 125-140 Ma where they have been studied to the southwest (Coleman and Lanphere, 1971, Dott, 1965, Coleman, 1972). These rocks were unroofed and unconformably overlain by marine deposits by late early Eocene time (Baldwin, 1974). The early Tertiary history of this region is controversial. The most recent interpretation is that during the Paleocene and early Eocene the convergent margin was undergoing transtension or forearc extension as suggested by the voluminous extrusion of pillow basalt and related dike complexes (Wells, et al., 1984, Snavely, 1987). This episode was followed shortly by thrust and strike-slip faulting in the late early Eocene (Ryberg, 1984). During the Eocene, the Mesozoic convergent margin association of arc, clastic basin, and accretion complex was partly unroofed and faulted against early Cenozoic rocks of the Oregon Coast Ranges (Ramp, 1972, Baldwin, 1974, Champ, 1969, Ryberg, 1984). Faults that are typical of this period of deformation include high-angle reverse faults with a very strong component of strike-slip displacement characterized by a low-angle rake of striae. Thrust and oblique-slip faults are ubiquitous in early Tertiary rocks to the northwest (Ryberg, 1984, Niem and Niem, 1990). The late Mesozoic and early Cenozoic arc and forearc rocks are unconformably overlain to the east by the late Eocene and younger, mainly continental fluvial deposits and pyroclastic flows of the Cascade arc (Peck, et al., 1964, Baldwin, 1974, Walker and MacLeod, 1991). Minor fossiliferous shallow marine sandstone is locally present. The volcanic sequence consists of a homoclinal section of about 1 to 2 kilometers of andesitic to rhyolitic flows and ash flow tuff. The section is gently east-tilted and is slightly disrupted by NE trending faults with apparent normal separation.

  14. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  15. Breakup magmatism on the Vøring Margin, mid-Norway: New insight from interpretation of high-quality 2D and 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.

    2017-12-01

    The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).

  16. Apparent Brecciation Gradient, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic and geochemical analysis of the matrix igneous material in the attempt to better understand the dynamic processes that occur in subvolcanic environments and the mechanisms involved in breccia formation.

  17. Demonstration of Advanced Geophysics and Classification Methods on Munitions Response Sites - East Fork Valley Range Complex, Former Camp Hale

    DTIC Science & Technology

    2016-04-01

    with cores of igneous and metamorphic rocks flanked by steeply dipping sedimentary rocks . The valley floors range in elevation from about 9,310 to...Camp Hale, East Fork Valley Range Complex Munitions Response Site. This project is one in a series of projects funded by ESTCP to use advanced...Technology Certification Program ft Feet FUDS Formerly Used Defense Site GPS Global Positioning System ID Identification IMU Inertial Measurement Unit

  18. Reconnaissance geologic map of the Loreto and part of the San Janier quadrangles, Baja California Sur, Mexico

    USGS Publications Warehouse

    McLean, Hugh

    1988-01-01

    The Loreto area of Baja California Sur, Mexico, contains a diverse association of igneous, sedimentary, and metasedimentary rocks exposed in the foothills and arroyos between the Sierra La Giganta and Gulf of California. The Loreto area was selected for this study to examine the possible relation of the marine rocks to the opening of the Gulf of California, and to determine the stratigraphic and structural relations between basement rocks composed of granitic and prebatholithic rocks and overlying Tertiary (mainly Miocene) sedimentary and volcanic rocks, and by a sequence of Pliocene marine and nonmarine sedimentary rocks. The Pliocene marine rocks lie in a structural depression informally called here, the Loreto embayment. This geologic map and report stem from a cooperative agreement between the U.S. Geological Survey and the Consejo de Recursos Minerales of Mexico that was initiated in 1982.

  19. Igneous intrusion models for floor fracturing in lunar craters

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1991-01-01

    Lunar floor-fractured craters are primarily located near the maria and frequently contain ponded mare units and dark mantling deposits. Fracturing is confined to the crater interior, often producing a moat-like feature near the floor edge, and crater depth is commonly reduced by uplift of the crater floor. Although viscous relaxation of crater topography can produce such uplift, the close association of modification with surface volcanism supports a model linking floor fracture to crater-centered igneous intrusions. The consequences of two intrusion models for the lunar interior are quantitatively explored. The first model is based on terrestrial laccoliths and describes a shallow intrusion beneath the crater. The second model is based on cone sheet complexes where surface deformation results from a deeper magma chamber. Both models, their fit to observed crater modifications and possible implications for local volcanism are described.

  20. Effects of Strategy Instruction on the Learning, Use, and Vertical Transfer of Strategies.

    ERIC Educational Resources Information Center

    Finley, Fred N.; Smith, Edward L.

    1980-01-01

    Compares group differences in strategy learning, use, and transfer to a more complex task for two groups of elementary students (N=48). Asked to perform three tasks in classifying igneous rocks, the groups differed in whether they received advice on the use of a specific strategy for performing each task. (CS)

  1. Origin of the Sudbury Complex by meteoritic impact: Neodymium isotopic evidence

    USGS Publications Warehouse

    Faggart, B.E.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 ?? 21 ?? 106 years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  2. Identifying Facilitating Factors and Barriers to Improving Student Retention Rates in Tertiary Teaching Courses: A Systematic Review

    ERIC Educational Resources Information Center

    Bowles, Terence V.; Brindle, Kimberley A.

    2017-01-01

    Factors which impact student retention in tertiary level teaching courses are complex. This study examined facilitating factors and barriers to student retention for students studying education. Due to a limited number of studies, the search was extended to factors impacting students undertaking tertiary education. A systematic review was…

  3. Early Tertiary Anaconda metamorphic core complex, southwestern Montana

    USGS Publications Warehouse

    O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.

    2004-01-01

    A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.

  4. Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme

    2018-01-01

    In several Calcium-Aluminum-rich Inclusions (CAIs) from the CV3 chondrites Allende and Efremovka, representative of the most common igneous CAI types (type A, type B and Fractionated with Unknown Nuclear isotopic anomalies, FUN), the relationship between 16O-excesses and TiO2 content in pyroxene indicates that the latter commonly begins to crystallize with a near-terrestrial 16O-poor composition and becomes 16O-enriched during crystallization, reaching a near-solar composition. Mass balance calculations were performed to investigate the contribution of spinel to this 16O-enrichment. It is found that a back-reaction of early-crystallized 16O-rich spinel with a silicate partial melt having undergone a 16O-depletion is consistent with the O isotopic evolution of CAI minerals during magmatic crystallization. Dissolution of spinel explains the O isotopic composition (16O-excess and extent of mass fractionation) of pyroxene as well as that of primary anorthite/dmisteinbergite and possibly that of the last melilite crystallizing immediately before pyroxene. It requires that igneous CAIs behaved as closed-systems relative to oxygen from nebular gas during a significant fraction of their cooling history, contrary to the common assumption that CAI partial melts constantly equilibrated with gas. The mineralogical control on O isotopes in igneous CAIs is thus simply explained by a single 16O-depletion during magmatic crystallization. This 16O-depletion occurred in an early stage of the thermal history, after the crystallization of spinel, i.e. in the temperature range for melilite crystallization/partial melting and did not require multiple, complex or late isotope exchange. More experimental work is however required to deduce the protoplanetary disk conditions associated with this 16O-depletion.

  5. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite gneiss, granite gneiss and pegmatite, granodiorite, and quartz diorite and associated hornblendite are metamorphosed during this period. The second period of folding appears to have been the reflection at depth of faulting nearer the surface; it resulted in crushing as well as some folding of the already folded rocks into terrace and monoclinal folds that plunge gently east-northeast. The biotite-muscovite granite, which is the youngest major Precambrian rock unit, is both concordant (phacolithic) and crosscutting along the older fold system and has been fractured by the younger fold system.

  6. Structure of the Tucson Basin, Arizona from gravity and aeromagnetic data

    USGS Publications Warehouse

    Rystrom, Victoria Louise

    2003-01-01

    Interpretation of gravity and high-resolution aeromagnetic data reveal the three-dimensional geometry of the Tuscson Basin, Arizona and the lithology of its basement. Limited drill hole and seismic data indicate that the maximum depth to the crystalline basement is approximately 3600 meters and that the sedimentary sequences in the upper ~2000 m of the basin were deposited during the most recent extensional episode that commenced about 13 Ma. The negative density contrasts between these upper Neogene and Quaternary sedimentary sequences and the adjacent country rock produce a Bouguer residual gravity low, whose steep gradients clearly define the lateral extent of the upper ~2000m of the basin. The aeromagnetic maps show large positive anomalies associated with deeply buried, late Cretaceous-early Tertiary and mid-Tertiary igneous rocks at and below the surface of the basin. These magnetic anomalies provide insight into the older (>13 Ma) and deeper structures of the basin. Simultaneous 2.5-dimensional modeling of both gravity and magnetic anomalies constrained by geologic and seismic data delineates the thickness of the basin and the dips of the buried faults that bound the basin. This geologic-based forward modeling approach to using geophysical data is shown to result in more information about the geologic and tectonic history of the basin as well as more accurate depth to basement determinations than using generalized geophysical inversion techniques.

  7. Discovering Tertiary Education through Others' Eyes and Words: Exploring Submissions to New Zealand's Review of Its Tertiary Education Sector

    ERIC Educational Resources Information Center

    Shephard, Kerry

    2017-01-01

    A general inductive analysis was applied to 98 submissions made to a recent review of New Zealand's tertiary education system, primarily to enable those interested to engage with multiple viewpoints about this highly complex educational system. The analysis yielded three substantial themes that reoccur throughout the submissions and that may…

  8. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    USGS Publications Warehouse

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding structural features of IIB. Some are traceable for several hundred kilometers and probably have displacements measurable in kilometers, although only the Palestina fault, with right-lateral displacement of 27.7 km, is accurately documented. Correlations of rocks mapped in IIB with those of outlying areas including neighboring IIA are discussed.

  9. Age constraints on Jerritt Canyon and other Carlin-type gold deposits in the western United States-relationship to mid-Tertiary extension and magmatism

    USGS Publications Warehouse

    Hofstra, A.H.; Snee, L.W.; Rye, R.O.; Folger, H.W.; Phinisey, J.D.; Loranger, R.J.; Dahl, A.R.; Naeser, C.W.; Stein, H.J.; Lewchuk, M.

    1999-01-01

    Carlin-type gold deposits are difficult to date and a wide range of ages has been reported for individual deposits. Therefore, several methods were employed to constrain the age of the gold deposits in the Jerritt Canyon district. Dated igneous rocks with well-documented crosscutting relationships to ore provided the most reliable constraints. K/Ar and 40Ar/39Ar dates on igneous rocks are as follows: andesite dikes 324 Ma, sericitic alteration in andesite dikes 118 Ma, basalt dikes 40.8 Ma, quartz monzonite dikes 39.2 Ma, and calc-alkaline ignimbrites 43.1 to 40.1 Ma. Of these, only the andesite and basalt dikes are clearly altered and mineralized. The gold deposits are, therefore, younger than the 40.8 Ma basalt dikes. The sericitic alteration in the andesite dikes is unrelated to the gold deposits. A number of dating techniques did not work. K/Ar and 40Ar/39Ar dates on mica from mineralized Ordovician to Devonian sedimentary rocks gave misleading results. The youngest date of 149 Ma from the smallest <0.1-??m-size fraction shows that the temperature (120??-260??C) and duration (?) of hydrothermal activity was insufficient to reset preexisting fine-grained micas in the host rocks. The temperature and duration was also insufficient to anneal fission tracks in zircon from Ordovician quartzites as they yield Middle Proterozoic dates in both mineralized and barren samples. Apatites were too small for fission track dating. Hydrothermal sulfides have pronounced crustal osmium isotope signatures (187Os/188Os(initial) = 0.9-3.6) but did not yield a meaningful isochron due to very low Re and Os concentrations and large analytical uncertainties. Paleomagnetic dating techniques failed because the hydrothermal fluids sulfidized nearly all of the iron in the host rocks leaving no remnant magnetism. When published isotopic dates from other Carlin-type deposits in Nevada and Utah are subject to the rigorous evaluation developed for the Jerritt Canyon study, most deposits can be shown to have formed between 42 and 30 Ma. K/Ar and 40Ar/39Ar dates on the youngest preore igneous rocks range from 41 to 32 Ma, whereas the oldest postore igneous rocks range from 35 to 33 Ma. Hydrothermal adularia from the Twin Creeks deposit yields similar 40Ar/39Ar dates of 42 Ma. K/Ar dates on supergene alunite range from 4 to 30 Ma. K/Ar and 40Ar/39Ar dates on micas separated from sedimentary (395-43 Ma) and igneous (145-38 Ma) rocks are usually much older than the gold deposits and most are suspect because they are from incompletely reset preore micas or from mixtures of preore and ore-stage mica. Fission track dates on zircons are also generally older than the deposits (169-35 Ma) and are not completely reset by mineralization. Apatites are likley to be reset by the hydrothermal systems (and by younger thermal events) and yield dates (83-22 Ma) that are younger than those from zircon.

  10. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars

    DOE PAGES

    Cousin, Agnes; Sautter, Violaine; Payré, Valérie; ...

    2017-02-09

    Several recent studies have revealed that Mars is not a simple basalt-covered planet, but has a more complex geological history. In Gale crater on Mars, the Curiosity rover discovered 59 igneous rocks. This article focuses on their textures (acquired from the cameras such as MAHLI and MastCam) and their geochemical compositions that have been obtained using the ChemCam instrument. Light-toned crystals have been observed in most of the rocks. They correspond to feldspars ranging from andesines/oligoclases to anorthoclases and sanidines in the leucocratic vesiculated rocks. Darker crystals observed in all igneous rocks (except the leucocratic vesiculated ones) were analyzed bymore » LIBS and mainly identified as Fe-rich pigeonites and Fe-augites. Iron oxides have been observed in all groups whereas F-bearing minerals have been detected only in few of them. From their textural analysis and their whole-rock compositions, all these 59 igneous rocks have been classified in five different groups; from primitive rocks i.e. dark aphanitic basalts/basanites, trachybasalts, tephrites and fine/coarse-grained gabbros/norites to more evolved materials i.e. porphyritic trachyandesites, leucocratic trachytes and quartz-diorites. The basalts and gabbros are found all along the traverse of the rover, whereas the felsic rocks are located before the Kimberley formation, i.e. close to the Peace Vallis alluvial fan deposits. This suggests that these alkali rocks have been transported by fluvial activity and could come from the Northern rim of the crater, and may correspond to deeper strata buried under basaltic regolith (Sautter et al., 2015). Some of the basaltic igneous rocks are surprisingly enriched in iron, presenting low Mg# similar to the nakhlite parental melt that cannot be produced by direct melting of the Dreibus and Wanke (1986) martian primitive mantle. The basaltic rocks at Gale are thus different from Gusev basalts. They could originate from different mantle reservoirs, or they could have undergone a more extensive fractional crystallization. Lastly, Gale basaltic rocks could have been the parental magma of residual liquid extending into alkali field towards trachyte composition as magma fractionated under anhydrous condition on its way to the surface before sub adiabatic ascent.« less

  11. An 40Ar/39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver peninsulas: Implications for the dynamic setting of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zheng, Xiang-Shen; Lee, Jong I. K.; Choe, Won Hie; Evans, Noreen; Zhu, Ri-Xiang

    2009-12-01

    The genesis of basaltic to andesitic lavas, mafic dikes, and granitoid plutons composing the subaerial cover on the Barton and Weaver peninsulas, Antarctica, is related to arc formation and subduction processes. Precise dating of these polar rocks using conventional 40Ar/39Ar techniques is compromised by the high degree of alteration (with loss on ignition as high as 8%). In order to minimize the alteration effects we have followed a sample preparation process that includes repeated acid leaching, acetone washing, and hand picking, followed by an overnight bake at 250°C. After this procedure, groundmass samples can yield accurate age plateaus consisting of 70%-100% of the total 39Ark released using high-resolution heating schedules. The different rock types studied on the Barton and Weaver peninsulas yielded almost coeval ages, suggesting a giant igneous event in the Weaver and Barton peninsulas at 44.5 Ma. A compilation of newly published ages indicate that this event took place throughout the whole South Shetland Islands, suggesting a dynamic incident occurred at this stage during the arc evolution history. We related this igneous event to a mantle delamination mechanism during Eocene times. The delamination process began at ˜52 Ma, and the resultant upwelling of asthenosphere baffled the subduction of Phoenix plate, causing an abrupt decrease in convergence rate. Then multiple magmatic sources were triggered, resulting in a culminating igneous activity during 50-40 Ma with a peak at ˜45 Ma along the archipelago. The delamination also caused the extension regime indicated by the dike swarm, plugs and sills all over the archipelago, and the uplift of Smith metamorphic complex and Livingston Island. Delamination process may have finished at some time during 40-30 Ma, leaving a weak igneous activity at that stage and thereafter. The convergence rate then recovered gradually, as indicated by the magnetic anomaly identifications. This model is supported by seismic observation of deep velocity anomalies beneath the Antarctic Peninsula.

  12. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousin, Agnes; Sautter, Violaine; Payré, Valérie

    Several recent studies have revealed that Mars is not a simple basalt-covered planet, but has a more complex geological history. In Gale crater on Mars, the Curiosity rover discovered 59 igneous rocks. This article focuses on their textures (acquired from the cameras such as MAHLI and MastCam) and their geochemical compositions that have been obtained using the ChemCam instrument. Light-toned crystals have been observed in most of the rocks. They correspond to feldspars ranging from andesines/oligoclases to anorthoclases and sanidines in the leucocratic vesiculated rocks. Darker crystals observed in all igneous rocks (except the leucocratic vesiculated ones) were analyzed bymore » LIBS and mainly identified as Fe-rich pigeonites and Fe-augites. Iron oxides have been observed in all groups whereas F-bearing minerals have been detected only in few of them. From their textural analysis and their whole-rock compositions, all these 59 igneous rocks have been classified in five different groups; from primitive rocks i.e. dark aphanitic basalts/basanites, trachybasalts, tephrites and fine/coarse-grained gabbros/norites to more evolved materials i.e. porphyritic trachyandesites, leucocratic trachytes and quartz-diorites. The basalts and gabbros are found all along the traverse of the rover, whereas the felsic rocks are located before the Kimberley formation, i.e. close to the Peace Vallis alluvial fan deposits. This suggests that these alkali rocks have been transported by fluvial activity and could come from the Northern rim of the crater, and may correspond to deeper strata buried under basaltic regolith (Sautter et al., 2015). Some of the basaltic igneous rocks are surprisingly enriched in iron, presenting low Mg# similar to the nakhlite parental melt that cannot be produced by direct melting of the Dreibus and Wanke (1986) martian primitive mantle. The basaltic rocks at Gale are thus different from Gusev basalts. They could originate from different mantle reservoirs, or they could have undergone a more extensive fractional crystallization. Lastly, Gale basaltic rocks could have been the parental magma of residual liquid extending into alkali field towards trachyte composition as magma fractionated under anhydrous condition on its way to the surface before sub adiabatic ascent.« less

  13. Igneous rocks formed by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.

  14. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  15. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  16. Automated and fast building of three-dimensional RNA structures.

    PubMed

    Zhao, Yunjie; Huang, Yangyu; Gong, Zhou; Wang, Yanjie; Man, Jianfen; Xiao, Yi

    2012-01-01

    Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.

  17. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Santos, Jose F.; Stern, Robert J.; Griffin, William L.; Ghorbani, Ghasem; Sarebani, Nazila

    2017-09-01

    Magmatic ;flare-ups; are common in continental arcs. The best-studied examples of such flare-ups are from Cretaceous and younger continental arcs, but a more ancient example is preserved in Late Ediacaran-Cambrian or Cadomian arcs that formed along the northern margin of Gondwana. In this paper, we report new trace-element, isotopic and geochronological data on ∼550 Ma magmatic rocks from the Taknar complex, NE Iran, and use this information to better understand episodes of flare-up, crustal thickening and magmatic periodicity in the Cadomian arcs of Iran and Anatolia. Igneous rocks in the Taknar complex include gabbros, diorites, and granitoids, which grade upward into a sequence of metamorphosed volcano-sedimentary rocks with interlayered rhyolites. Granodioritic dikes crosscut the Taknar gabbros and diorites. Gabbros are the oldest units and have zircon U-Pb ages of ca 556 Ma. Granites are younger and have U-Pb zircon ages of ca 552-547 Ma. Rhyolites are coeval with the granites, with U-Pb zircon ages of ∼551 Ma. Granodioritic dikes show two U-Pb zircon ages; ca 531 and 548 Ma. Geochemically, the Taknar igneous rocks have calc-alkaline signatures typical of continental arcs. Whole-rock Nd and zircon O-Hf isotopic data show that from Taknar igneous rocks were generated via mixing of juvenile magmas with older continental crust components at an active continental margin. Compiled geochronological and geochemical data from Iran and Anatolia allow identification of a Cadomian flare-up along northern Gondwana. The compiled U-Pb results from both magmatic and detrital zircons indicate the flare-up started ∼572 Ma and ended ∼528 Ma. The Cadomian flare-up was linked to strong crustal extension above a S-dipping subduction zone beneath northern Gondwana. The Iran-Anatolian Cadomian arc represents a site of crustal differentiation and stratification and involved older (Archean?) continental lower-middle crust, which has yet to be identified in situ, to form the continental nuclei of Anatolia and Iran. The Cadomian crust of Anatolia and Iran formed a single block ;Cimmeria; that rifted away from northern Gondwana and was accreted to southern Eurasia in late Paleozoic time.

  18. Geochemical characteristics of igneous rocks associated with epithermal mineral deposits—A review

    USGS Publications Warehouse

    du Bray, Edward A.

    2017-01-01

    Newly synthesized data indicate that the geochemistry of igneous rocks associated with epithermal mineral deposits varies extensively and continuously from subalkaline basaltic to rhyolitic compositions. Trace element and isotopic data for these rocks are consistent with subduction-related magmatism and suggest that the primary source magmas were generated by partial melting of the mantle-wedge above subducting oceanic slabs. Broad geochemical and petrographic diversity of individual igneous rock units associated with epithermal deposits indicate that the associated magmas evolved by open-system processes. Following migration to shallow crustal reservoirs, these magmas evolved by assimilation, recharge, and partial homogenization; these processes contribute to arc magmatism worldwide.Although epithermal deposits with the largest Au and Ag production are associated with felsic to intermediate composition igneous rocks, demonstrable relationships between magmas having any particular composition and epithermal deposit genesis are completely absent because the composition of igneous rock units associated with epithermal deposits ranges from basalt to rhyolite. Consequently, igneous rock compositions do not constitute effective exploration criteria with respect to identification of terranes prospective for epithermal deposit formation. However, the close spatial and temporal association of igneous rocks and epithermal deposits does suggest a mutual genetic relationship. Igneous systems likely contribute heat and some of the fluids and metals involved in epithermal deposit formation. Accordingly, deposit formation requires optimization of source metal contents, appropriate fluid compositions and characteristics, structural features conducive to hydrothermal fluid flow and confinement, and receptive host rocks, but not magmas with special compositional characteristics.

  19. Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Iron Hill, Colorado

    USGS Publications Warehouse

    Watson, K.; Rowan, L.C.; Bowers, T.L.; Anton-Pacheco, C.; Gumiel, P.; Miller, S.H.

    1996-01-01

    Airborne thermal-infrared multispectral scanner (TIMS) data of the Iron Hill carbonatite-alkalic igneous rock complex in south-central Colorado are analyzed using a new spectral emissivity ratio algorithm and confirmed by field examination using existing 1:24 000-scale geologic maps and petrographic studies. Color composite images show that the alkalic rocks could be clearly identified and that differences existed among alkalic rocks in several parts of the complex. An unsupervised classification algorithm defines four alkalic rock classes within the complex: biotitic pyroxenite, uncompahgrite, augitic pyroxenite, and fenite + nepheline syenite. Felsic rock classes defined in the surrounding country rock are an extensive class consisting of tuff, granite, and felsite, a less extensive class of granite and felsite, and quartzite. The general composition of the classes can be determined from comparisons of the TIMS spectra with laboratory spectra. Carbonatite rocks are not classified, and we attribute that to the fact that dolomite, the predominant carbonate mineral in the complex, has a spectral feature that falls between TIMS channels 5 and 6. Mineralogical variability in the fenitized granite contributed to the nonuniform pattern of the fenite-nepheline syenite class. The biotitic pyroxenite, which resulted from alteration of the pyroxenite, is spatially associated and appears to be related to narrow carbonatite dikes and sills. Results from a linear unmixing algorithm suggest that the detected spatial extent of the two mixed felsic rock classes was sensitive to the amount of vegetation cover. These results illustrate that spectral thermal infrared data can be processed to yield compositional information that can be a cost-effective tool to target mineral exploration, particularly in igneous terranes.

  20. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.

    PubMed

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel

    2017-09-12

    Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG align , the probability of aligning tertiary contact partners, and ΔG tert , the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔG HJH ) or from changes in the electrostatic environment (ΔG +/- ) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔG tert ). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔG tert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.

  1. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  2. A tertiary care-primary care partnership model for medically complex and fragile children and youth with special health care needs.

    PubMed

    Gordon, John B; Colby, Holly H; Bartelt, Tera; Jablonski, Debra; Krauthoefer, Mary L; Havens, Peter

    2007-10-01

    To evaluate the impact of a tertiary care center special needs program that partners with families and primary care physicians to ensure seamless inpatient and outpatient care and assist in providing medical homes. Up to 3 years of preenrollment and postenrollment data were compared for patients in the special needs program from July 1, 2002, through June 30, 2005. A tertiary care center pediatric hospital and medical school serving urban and rural patients. A total of 227 of 230 medically complex and fragile children and youth with special needs who had a wide range of chronic disorders and were enrolled in the special needs program. Care coordination provided by a special needs program pediatric nurse case manager with or without a special needs program physician. Preenrollment and postenrollment tertiary care center resource utilization, charges, and payments. A statistically significant decrease was found in the number of hospitalizations, number of hospital days, and tertiary care center charges and payments, and an increase was found in the use of outpatient services. Aggregate data revealed a decrease in hospital days from 7926 to 3831, an increase in clinic visits from 3150 to 5420, and a decrease in tertiary care center payments of $10.7 million. The special needs program budget for fiscal year 2005 had a deficit of $400,000. This tertiary care-primary care partnership model improved health care and reduced costs with relatively modest institutional support.

  3. The impact of tertiary wastewater treatment on copper and zinc complexation.

    PubMed

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  4. The Toa Baja Drilling Project and current studies in Puerto Rican geology: Introduction and summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larue, D.K.

    1991-03-01

    This volume concerns information learned by drilling the Toa Baja well on the north coast of Puerto Rico, and current studies of Puerto Rican geology and tectonics. The Toa Baja Drillsite is located in the North Coast basin of Puerto Rico about 10 km west of San Juan. The hole was spudded on August 23, 1989, and plugged and abandoned on November 7, 1989 at a total depth of 2,704m. Two lithologies were encountered during drilling: an upper series consisting of Oligocene-Miocene shallow-water limestone and sandstone facies, and a lower series consisting of Eocene deep-water volcaniclastic strata, including some lavamore » flows or shallow intrusions, pelagic marls, and altered igneous rocks or coarse-grained sandstones. Principal findings made during drilling include: (1) the important unconformity separating the upper and lower series at about 579 m; (2) 8 faults defined clearly by dipmeter log; (3) changes in rock type probably associated with reflection events in seismic reflection profiles crossing the drillsite; (4) confirmation of overall low geothermal gradients and heat flow, but presence of a thermal anomaly near 2683 m; (5) documentation of high paleogeothermal gradients using petrographic, isotopic, X-Ray diffraction and electron microprobe studies; (6) presence of fractures indicating a current extensional tectonic setting. Current studies in the Puerto Rico region include: (1) paleomagnetic evidence for late Miocene counterclockwise rotation; (2) geochemical evolution of Cretaceous and Eocene igneous rocks; (3) evidence of transtension in the northeast Caribbean plate boundary zone; (4) results of studies of ancient fault zones on Puerto Rico; and (5) stratigraphic studies of the Tertiary of Puerto Rico.« less

  5. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  6. The atypical Caribbean-Colombia oceanic plateau and its role in the deformation of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Ferrari, L.; Lopez-Martinez, M.; Petrone, C. M.; Serrano, L.

    2013-05-01

    The Late Cretaceous to Early Tertiary tectono-magmatic evolution of the Northern Andes has been strongly influenced by the dextral oblique interaction of the Caribbean-Colombian oceanic plateau (CCOP) with northwestern South America. This complex interaction has resulted in several pulses of transpressional deformation and crustal accretion to the South America plate but also in a widespread deformation in the plateau itself. In this peculiar type of orogeny one of the factors controlling the deformation is the crustal structure and thus the rheological profiles of the two lithospheric sections that interact. The genesis of the CCOP has been traditionally associated to the melting of the Galapagos plume head when it impacted the Farallon plate, which is supposed to have built an unsubductable and thick crustal section. This interpretation was based on the apparent clustering of ages at ~91-89 Ma for several obducted fragments of the CCOP in northwestern South America and in the Caribbean islands. However, seismic profiles show that magmatism added a very variable amount but no more than 10 km of igneous material to the original crust of the Farallon plate, making the CCOP much more irregular than other oceanic plateaus. Recent studies of key areas of the obducted part of the CCOP contradict the notion that the plateau formed by melting of a plume head at ~ 90 Ma. Particularly, new geochronologic data and petrologic modeling from the small Gorgona Island document a magmatic activity spanning the whole Late Cretaceous (98.7±7.7 to 64.4±5 Ma) and a progressive increase in the degree of melting and melt extraction with time. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, are also recognized in other areas of the CCOP, documenting a long period of igneous activity with peaks at 74-76, 80-82, and 88-90 Ma in decreasing order of importance. Even older, Early Cretaceous ages, have been reported for fragments in Costa Rica and Curaçao. A prolonged period of igneous activity over several tens of Ma is not consistent with a short, voluminous outburst of magmatism from a plume head at ~91-89 Ma and the geographic distribution of ages does not point to a definite pattern of migration as it would be expected if magmatism would be the result of the passage of the Farallon plate over a stationary, or slowly moving, hotspot. However, the age span of this magmatism is broadly concurrent with the existence of the Caribbean slab window, formed by the intersection of the proto- Caribbean spreading ridge with the Great Caribbean Arc. During this time span the Farallon oceanic lithosphere advanced eastward ~1500 km, overriding the astenosphere feeding the proto-Caribbean spreading ridge. This hotter mantle flowed westward into, and mixed with, the opening mantle wedge, promoting increasing melting with time. This mechanism may explain the irregularly thickened oceanic crust of the CCOP and its internal deformation but also the evidence of partial subduction of some of its parts.

  7. Geochronology, geochemistry, and tectonic environment of porphyry mineralization in the central Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Cox, Dennis P.

    1983-01-01

    Porphyry type sulfide systems on the central Alaska Peninsula occupy a transition zone between the Aleutian island magmatic arc and the continental magmatic arc of southern Alaska. Mineralization occurs associated with early and late Tertiary magmatic centers emplaced through a thick section of Mesozoic continental margin clastic sedimentary rocks. The systems are of the molybdenum-rich as opposed to gold-rich type and have anomalous tungsten, bismuth, and tin, attributes of continental-margin deposits, yet gravity data suggest that at least part of the study area is underlain by oceanic or transitional crust. Potassium-argon age determinations indicate a variable time span of up to 2 million years between emplacement and mineralization in a sulfide system with mineralization usually followed by postmineral intrusive events. Finally, mineralization in the study area occurred at many times during the time span of igneous activity and should be an expected stage in the history of a subduction related magmatic center.

  8. Orogenesis, high-T thermal events, and gold vein formation within metamorphic rocks of the Alaskan Cordillera

    USGS Publications Warehouse

    Goldfarb, R.J.; Snee, L.W.; Pickthorn, W.J.

    1993-01-01

    Mesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Ore-forming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had ??18O values of 7 ???-12??? and ??D values between -15??? and -35???. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500??C before onset of significant gold-forming hydrothermal activity. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism. -from Authors

  9. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle 'wedge' regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO 2 and H 2O in the fluid phase released by the subducting plates are the most important. Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a 'pivotal' region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction 'inversion' events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related 'exotic' (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the hanging-wall of the Late Cretaceous-Eocene Adria-Europe subduction system in the Alps); i) voluminous production of subduction-related magmas coeval with extensional tectonic régimes (e.g., during Oligo-Miocene Sardinian Trough formation). To summarize, these salient central-western Mediterranean features, characterizing a late-stage of the classic 'Wilson Cycle' offer a 'template' for interpreting magmatic compositions in analogous settings elsewhere.

  10. Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke

    2017-07-01

    The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.

  11. At the Cratonic Crossroads: A geochronologic and geochemical perspective on the Little Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Gifford, J. N.; Mueller, P. A.; Foster, D. A.; Mogk, D. W.

    2012-12-01

    The Medicine Hat Block (MHB) is a poorly constrained structural element in the Paleoproterozoic amalgamation of Laurentia. It lies between the Wyoming and Hearne cratons along the northern margin of the Great Falls Tectonic Zone. The block was caught between the Hearne and Wyoming cratons during the Paleoproterozoic closure of an ocean and subsequent continental collision. The majority of the MHB is concealed by younger material, and it is recognized primarily by its seismic signature and its influence on the geochemistry of younger igneous rocks. The MHB appears to be composed of Archean (2.6-3.1 Ga) and Proterozoic (1.75 Ga) continental crust based on limited data from drill holes and xenoliths. The Little Rocky Mountains (LRM) are the only potential exposure of Precambrian basement rocks in the northeastern GFTZ, and represent unique surface exposure of the MHB. The LRM is cored by a dome-shaped Tertiary syenite intrusion, with Precambrian metamorphic units exposed along the margins of the dome. Limited previous geochronology from the LRM includes K/Ar ages of 1.7-1.75 Ga and a Rb/Sr age of c. 2.55 Ga from a quartzofeldspathic paragneisses. These data leave the affinity of the LRM uncertain, either representing reworked Archean crust and/or Paleoproterozoic material generated during the subduction of oceanic lithosphere and formation of the GFTZ. New U/Pb ages of zircons from the Precambrian meta-igneous rocks in the LRM range from 2.2 - 3.3 Ga, with prominent peaks between 2.6 - 2.8 Ga. Outliers clustering around 1.7 - 1.8 Ga are rare and likely reflect Paleoproterozoic reworking of older material. These ages are consistent with a MHB affinity for the LRM. Pb-isotope data define a 3.1 Ga model age, which suggests some influence of older Wyoming Craton or MHB crust. The dominance of 2.6-2.8 Ga U/Pb ages suggests that the Paleoproterozoic igneous arc was constructed on pre-existing MHB crust. Models for reconciling the high angle junction between the GFTZ and Trans-Hudson orogen require the age and geochemical control provided by LRM samples. The data also provide insight into later geologic events potentially influenced by MHB crust reworked in the GFTZ, such as development of the Cenozoic Montana Alkali Province.

  12. Igneous Complexes of the Orochenka Caldera of the East Sikhote-Alin Belt: U-Pb (SHRIMP) Age, Trace and Rare Earth Element Composition, and Au-Ag Mineralization

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.

    2018-04-01

    New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.

  13. Strides in Preservation of Malawi's Natural Stone

    NASA Astrophysics Data System (ADS)

    Kamanga, Tamara; Chisenga, Chikondi; Katonda, Vincent

    2017-04-01

    The geology of Malawi is broadly grouped into four main lithological units that is the Basement Complex, the Karoo Super group, Tertiary to Quaternary sedimentary deposits and the Chilwa Alkaline province. The basement complex rocks cover much of the country and range in age from late Precambrian to early Paleozoic. They have been affected by three major phases of deformation and metamorphism that is the Irumide, Ubendian and The Pan-African. These rocks comprise gneisses, granulites and schists with associated mafic, ultramafic, syenites and granite rocks. The Karoo System sedimentary rocks range in age from Permian to lower Jurassic and are mainly restricted to two areas in the extreme North and extreme Alkaline Province - late Jurassic to Cretaceous in age, preceded by upper Karoo Dolerite dyke swarms and basaltic lavas, have been intruded into the Basement Complex gneisses of southern Malawi. Malawi is endowed with different types of natural stone deposits most of which remain unexploited and explored. Over twenty quarry operators supply quarry stone for road and building construction in Malawi. Hundreds of artisanal workers continue to supply aggregate stones within and on the outskirts of urban areas. Ornamental stones and granitic dimension stones are also quarried, but in insignificant volumes. In Northern Malawi, there are several granite deposits including the Nyika, which is the largest single outcrop occupying approximately 260.5 km2 , Mtwalo Amazonite an opaque to translucent bluish -green variety of microcline feldspar that occurs in alkali granites and pegmatite, the Ilomba granite (sodalite) occurring in small areas within biotite; apatite, plagioclase and calcite. In the Center, there are the Dzalanyama granites, and the Sani granites. In the South, there are the Mangochi granites. Dolerite and gabbroic rocks spread across the country, treading as black granites. Malawi is also endowed with many deposits of marble. A variety of other igneous, metamorphic and sedimentary rocks are also used as dimension stones. Discovery and preservation of more natural stone deposits through research is essential in the country .Natural stone preservation has not only the potential to generate significant direct and indirect economic benefits for Malawi but also to preserve its heritage .

  14. Application of air hammer drilling technology in igneous rocks of Junggar basin

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  15. Primary Igneous Anhydrite: Progress Since the 1982 El Chichón Eruption (Mexico)

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.

    2006-05-01

    Anhydrite (CaSO4) was confirmed as a stable primary igneous mineral, capable of precipitating from a silicate melt, through petrographic observations of fresh trachyandesitic pumices erupted in the spring of 1982 from El Chichón, a little known, isolated tuff and lava-dome complex in eastern Mexico. The 1982 eruption was also notable for the associated release of an estimated 5-9 megatons of SO2 to the stratosphere and troposphere, as measured by the Total Ozone Mapping Spectrometer. Subsequent years saw confirmation of primary igneous anhydrite in laboratory phase-equilibrium experiments, and anhydrite was also observed in the products of several subsequent explosive eruptions, most importantly dacitic pumices from the massive 15 June 1991 eruption of Mount Pinatubo, in the Philippines. That eruption involved ~5X the mass of magma and ~3X the mass of SO2 release compared to El Chichón's eruption. For both the Pinatubo and El Chichón eruptions, it has been concluded that the sulfur released to the atmosphere was too great in mass to have been dissolved in the erupted melt volume just prior to eruption. In both cases workers advocated the existence of a separate gas phase prior to eruption, where much of the subsequently released sulfur was present. Thus, primary igneous anhydrite has been linked with another important phenomenon: excess sulfur release during volcanic eruptions. This presentation will review other developments concerning primary igneous anhydrite since 1982. These include: (1) other examples of primary anhydrite from volcanic samples (Nevado del Ruiz, Colombia; Lascar, Chile; Sutter Buttes, USA; Eagle Mountain, USA; Shiveluch, Russia; (2) examples of primary anhydrite from plutonic samples (Julcani, Peru; Santa Rita, USA; Cajon Pass Scientific Drillhole, USA); (3) laboratory experiments that have expanded our understanding of the T-P-fO2 conditions of anhydrite stability, melt/vapor partition coefficients for sulfur as a function of these conditions, and the solubility of anhydrite in NaCl-H2O solutions at high P and T; and (4) ion-microprobe studies of sulfur isotopic compositions for anhydrite crystals in both El Chichón and Pinatubo pumices, which have revealed individually homogeneous crystals, but large inter-crystalline isotopic variations among neighboring grains.

  16. Late Precambrian (740 Ma) charnockite, enderbite, and granite from Jebel Moya, Sudan: A link between the Mozambique Belt and the Arabian-Nubian Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.J.; Dawoud, A.S.

    1991-09-01

    New Rb-Sr and whole rock and U-Pb zircon data are reported for deep-seated igneous rocks from Jebel Moya in east-central Sudan. This exposure is important because it may link the high-grade metamorphic and deep-seated igneous rocks of the Mozambique Belt with the greenschist-facies and ophiolitic assemblages of the Arabian-Nubian Shield, both of Pan-African (ca. 900-550 Ma) age. The rocks of Jebel Moya consist of pink granite, green charnockite, and dark enderbite. A twelve-point Rb-Sr whole rock isochron for all three lithologies yields an age of 730 {plus minus} 31 Ma and an initial {sup 87}Sr/{sup 86}Sr of 0.7031 {plus minus}more » 1. Nearly concordant zircon ages for granite, charnockite, and enderbite are 744 {plus minus} 2,742 {plus minus} 2, and 739 {plus minus} 2 Ma, respectively. Initial {epsilon}-Nd for these rocks are indistinguishable at 3.0 {plus minus} 0.4. The data suggest that the charnockite, enderbite, and granite are all part of a deep-seated igneous complex. The initial isotopic compositions of Sr and Nd indicate that Jebel Moya melts were derived from a mantle source that experienced significantly less time-integrated depletion of LRE and LIL elements than the source of Arabian-Nubian Shield melts. The ages for Jebel Moya deep-seated igneous rocks are in accord with data from elsewhere in the Mozambique Belt indicating that peak metamorphism occurred about 700-750 Ma. The northward extension of the Mozambique Belt to the Arabian-Nubian Shield defines a single east Pan-African orogen. The principal difference between the northern and southern sectors of this orogen may be the greater degree of thickening and subsequent erosion experienced in the south during the late Precambrian, perhaps a result of continental collision between East (Australia-India) and West Gondwanaland (S. America-Africa) about 750 Ma.« less

  17. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Li, Jian-Wei; Hofstra, Albert H.; Koenig, Alan E.; Lowers, Heather A.; Adams, David

    2017-09-01

    Magnetite is a common mineral in igneous rocks and has been used as an important petrogenetic indicator as its compositions and textures reflect changing physiochemical parameters such as temperature, oxygen fugacity and melt compositions. In upper crustal settings, igneous rocks are often altered by hydrothermal fluids such that the original textures and compositions of igneous magnetite may be partly or completely obliterated, posing interpretive problems in petrological and geochemical studies. In this paper, we present textural and compositional data of magnetite from variably albitized granitoid rocks in the Handan-Xingtai district, North China Craton to characterize the hydrothermal reequilibration of igneous magnetite. Four types of magnetite have been identified in the samples studied: pristine igneous magnetite (type 1), reequilibrated porous magnetite (type 2), reequilibrated nonporous magnetite (type 3), and hydrothermal magnetite (type 4). Pristine igneous magnetite contains abundant well-developed ilmenite exsolution lamellae that are largely replaced by titanite during subsequent hydrothermal alteration. The titanite has a larger molar volume than its precursor ilmenite and thus causes micro-fractures in the host magnetite grains, facilitating dissolution and reprecipitation of magnetite. During sodic alteration, the igneous magnetite is extensively replaced by type 2 and type 3 magnetite via fluid-induced dissolution and reprecipitation. Porous type 2 magnetite is the initial replacement product of igneous magnetite and is subsequently replaced by the nonoporous type 3 variety as its surface area is reduced and compositional equilibrium with the altering fluid is achieved. Hydrothermal type 4 magnetite is generally euhedral and lacks exsolution lamellae and porosity, and is interpreted to precipitate directly from the ore-forming fluids. Hydrothermal reequilibration of igneous magnetite has led to progressive chemical purification, during which trace elements such as Ti, Al, Mg, Zn, and Cr contents decrease dramatically (up to 2-3 orders of magnitude different), coupled with significant increase in iron concentrations from less than 64 wt.% to higher than 70 wt.%. Results presented here show that magnetite is much more susceptible to textural and compositional reequilibration than previously thought. The reequilibrated magnetite has geochemical patterns that may be distinctively different from its precursor, making existing discrimination plots questionable when applied to genetic interpretation. Based on textural characterization and high-resolution in situ compositional analyses, we propose that the Fe versus V/Ti diagram can be more confidently used to discriminate between pristine igneous magnetite, reequilibrated magnetite, and hydrothermal magnetite.

  18. Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  19. Kilbuck terrane: oldest known rocks in Alaska

    USGS Publications Warehouse

    Box, S.E.; Moll-Stalcup, E. J.; Wooden, J.L.; Bradshaw, J.Y.

    1990-01-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2070 ?? 16 and 2040 ?? 74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite (??Nd[T] = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton (??Nd[T] = -5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded. -from Authors

  20. Lessons Learned from Delayed Versus Immediate Microsurgical Reconstruction of Complex Maxillectomy and Midfacial Defects: Experience in a Tertiary Center in Mexico.

    PubMed

    Santamaria, Eric; de la Concha, Erika

    2016-10-01

    Microsurgical reconstruction of complex midfacial and maxillectomy defects is among the most challenging procedures in plastic surgery, and it often requires composite flaps to improve functional and aesthetic results. Various factors have been identified as having influence in the outcome of microsurgical reconstruction. In this article, the authors present their experience with immediate and delayed reconstruction of complex maxillectomy defects in a tertiary center in Mexico. The authors present a total of 37 patients with microsurgical reconstruction of a complex maxillectomy defect; 13 patients had immediate and 24 had delayed reconstructions. The authors recommend doing immediate reconstruction when feasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.; Prestvik, T.; Li, Y.

    2009-12-01

    The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of ‘normal’ silicate rocks results in peritectic assemblages, or whether they could be identified as such if they exist.

  2. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  3. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  4. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  5. Late Cretaceous and early Tertiary plutonism and deformation in the Skagit Gneiss Complex, north Cascade Range, Washington and British Columbia

    USGS Publications Warehouse

    Haugerud, R.A.; Van Der Heyden, P.; Tabor, R.W.; Stacey, J.S.; Zartman, R.E.

    1991-01-01

    The Skagit Gneiss Complex forms a more-or-less continuous terrane within the North Cascade Range. The complex comprises abundant plutons intruded at mid-crustal depths into a variety of metamorphosed supracrustal rocks of both oceanic and volcanic-arc origin. U-Pb zircon ages from gneissis plutons within and near the Skagit Gneiss Complex indicate magmatic crystallziations between 75 and 60 Ma. Deformation, recrystallization, and migmatization in part postdate intrusion of the 75-60 Ma plutons. This latest Cretaceous and earliest Tertiary plutonism and migmatization may reflect thermal relaxation following early Late Cretaceous orogeny. The complex was ductilely extended northwest-southeast shortly after intrusion of granite dikes at ~45 Ma, but before emplacement of the earliest (~34 Ma) plutons of the Cascade arc. -from Authors

  6. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. In contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.

  7. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE PAGES

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...

    2016-11-05

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less

  8. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less

  9. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States

    USGS Publications Warehouse

    Nadoll, Patrick; Mauk, Jeffrey L.; LeVeille, Richard A.; Koenig, Alan E.

    2015-01-01

    A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu–Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits, hydrothermal magnetite from different vein types can be distinguished by varying Ti, V, Mn, and Zn contents. Titanium and V concentrations are highly variable among hydrothermal and igneous magnetites, but Ti concentrations above 3,560 ppm could only be detected in igneous magnetite, and V concentrations are on average lower in hydrothermal magnetite. The highest Ti concentrations are present in igneous magnetite from gabbro and monzonite. The lowest Ti concentrations were recorded in igneous magnetite from granodiorite and granodiorite breccia and largely overlap with Ti concentrations found in hydrothermal porphyry magnetite. Magnesium and Mn concentrations vary between magnetite from different skarn deposits but are generally greater than in hydrothermal magnetite from the porphyry deposits. High Mg, and low Ti and V concentrations characterize hydrothermal magnetite from magnesian skarn deposits and follow a trend that indicates that magnetite from skarn (calcic and magnesian) commonly has low Ti and V concentrations.

  10. Learning to teach mathematical modelling in secondary and tertiary education

    NASA Astrophysics Data System (ADS)

    Ferri, Rita Borromeo

    2017-07-01

    Since 2003 mathematical modelling in Germany is not only a topic for scientific disciplines in university mathematics courses, but also in school starting with primary school. This paper shows what mathematical modelling means in school and how it can be taught as a basis for complex modeling problems in tertiary education.

  11. High-K granites of the Rum Jungle Complex, N-Australia: Insights into the Late Archean crustal evolution of the North Australian Craton

    NASA Astrophysics Data System (ADS)

    Drüppel, K.; McCready, A. J.; Stumpfl, E. F.

    2009-08-01

    The Late Archean (c. 2.54-2.52 Ga) high-K granitoids of the Rum Jungle Complex, Northern Australia, display the igneous mineral assemblage of K-feldspar, quartz, plagioclase, biotite, and magnetite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. The granites underwent a variably severe greenschist facies alteration and associated deformation during the Barramundi Orogeny (1.88-1.85 Ga). The K-rich granitoids have variable compositions, mainly comprising syenogranite and quartz-monzonite. They can be subdivided into two major groups, (1) felsic granites and (2) intermediate to felsic granites, quartz-monzonites, and diorite. The felsic group (69-76 wt.% SiO 2) shares many features with typical Late Archean potassic granites. They are K- and LILE-rich and show marked depletion in Sr and Eu and the high field strength elements (HFSE), particularly Nb and Ti, relative to LILE and LREE. Compared to the average upper crust they have anomalously high Th (up to 123 ppm) and U (up to 40 ppm). The intermediate to felsic group (56-69 wt.% SiO 2) differs from the felsic group in having weakly lower Th and U but higher Mg#, Ti, Ba, Sr, Ni, Cr and REE, with a less pronounced negative Eu anomaly. This group displays well-defined trends in Harker diagrams, involving a negative correlation of Si with Sr, Ca, Na, and P whereas K, Rb, and Ba increase in the same direction, suggesting fractional crystallization of feldspar was more prominent than in the felsic suite. The mineralogical and geochemical characteristics of the felsic group are consistent with granite formation by intracrustal melting of plagioclase-rich igneous protoliths, probably of tonaltic to granodioritic composition, at moderate crustal levels. The intermediate to felsic granites, on the other hand, appear to be the products of mantle-crust interaction, possibly by melting of or mixing with more mafic igneous rocks. As evidenced by the presence of older inherited zircons crustal recycling of a pre-greenstone crust of the North Australian Craton of > 3.5 Ga played an important role in the formation of the Late Archean granites of the Rum Jungle Complex.

  12. Igneous stratigraphy and rock-types from a deep transect of the gabbroic lower crust of the Atlantis Bank core complex (SW Indian Ridge): preliminary results from IODP Expedition 360

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; France, L.; Ghosh, B.; Liu, C. Z.; Morishita, T.; Natland, J. H.; Dick, H. J.; MacLeod, C. J.; Expedition 360 Scientists, I.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling programme ('SloMo' project) aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. As an initial phase of the SloMo project, IODP Exp. 360 intended to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. During this expedition, 89 cores of gabbroic rocks were recovered at Hole U1473A, drilled to 789.7 m below seafloor. This hole was subsequently deepened to 809.4 mbsf during transit Expedition 362T, which recovered additional 7 cores. The gabbroic section recovered at Hole U1473A consists of several types of gabbro, diabase, and felsic veins. The main lithology is dominated by olivine gabbro (76.5% in abundance), followed by gabbro containing 1-2% oxide (9.5%), gabbro with >2% oxide (7.4%), gabbro sensu stricto (5.1%), felsic veins (1.5%) and diabase (<0.5%). The different lithologies appear randomly distributed throughout the section, although oxide abundance seems to decrease slightly downhole, except for the lowermost intervals where oxide gabbros are more abundant. Based on changes in rock types, grain size, texture, and the occurrence of felsic material, we identified eight lithologic units, which locally define separate geochemical trends. Each unit is characterized by meter-scale heterogeneity which classically characterizes gabbros formed at slow spreading ridges. Reaction textures in olivine gabbros, crosscutting relationships between oxide gabbros and host rocks, the presence of intrusive to sutured contacts, igneous layering and the widespread occurrence of felsic veins and segregations indicate that the evolution of this section was controlled by complicated interactions of magmatic processes, e.g., fractional crystallization, melt-rock reaction, late-stage melt migration, which were active in a crystal mush formed by multiple injections of magma. This contribution describes the main features of these rocks and discusses the complexity of the igneous processes producing this 800 m-long transect of oceanic crust that was formed in a robust magmatic segment of an ultraslow spreading ridge.

  13. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-01-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  14. Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension

    NASA Astrophysics Data System (ADS)

    Magee, Craig; McDermott, Kenneth G.; Stevenson, Carl T. E.; Jackson, Christopher A.-L.

    2014-05-01

    Continental rifting is commonly accommodated by the nucleation of normal faults, slip on pre-existing fault surfaces and/or magmatic intrusion. Because crystallised igneous intrusions are pervasive in many rift basins and are commonly more competent (i.e. higher shear strengths and Young's moduli) than the host rock, it is theoretically plausible that they locally intersect and modify the mechanical properties of pre-existing normal faults. We illustrate the influence that crystallised igneous intrusions may have on fault reactivation using a conceptual model and observations from field and subsurface datasets. Our results show that igneous rocks may initially resist failure, and promote the preferential reactivation of favourably-oriented, pre-existing faults that are not spatially-associated with solidified intrusions. Fault segments situated along strike from laterally restricted fault-intrusion intersections may similarly be reactivated. This spatial and temporal control on strain distribution may generate: (1) supra-intrusion folds in the hanging wall; (2) new dip-slip faults adjacent to the igneous body; or (3) sub-vertical, oblique-slip faults oriented parallel to the extension direction. Importantly, stress accumulation within igneous intrusions may eventually initiate failure and further localise strain. The results of our study have important implications for the structural of sedimentary basins and the subsurface migration of hydrocarbons and mineral-bearing fluids.

  15. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  16. Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites

    USGS Publications Warehouse

    Flohr, M.J.K.; Ross, M.

    1990-01-01

    Syenites from the Magnet Cove alkaline igneous complex form a diverse mineralogical and geochemical suite. Compositional zoning in primary and late-stage minerals indicates complex, multi-stage crystallization and replacement histories. Residual magmatic fluids, rich in F, Cl, CO2 and H2O, reacted with primary minerals to form complex intergrowths of minerals such as rinkite, fluorite, V-bearing magnetite, F-bearing garnet and aegirine. Abundant sodalite and natrolite formed in pegmatitic segregations within nepheline syenite where Cl- and Na-rich fluids were trapped. During autometasomatism compatible elements such as Mn, Ti, V and Zr were redistributed on a local scale and concentrated in late-stage minerals. Early crystallization of apatite and perovskite controlled the compatible behavior of P and Ti, respectively. The formation of melanite garnet also affected the behaviour of Ti, as well as Zr, Hf and the heavy rare-earth elements. Pseudoleucite syenite and garnet-nepheline syenite differentiated along separate trends, but the two groups are related to the same parental magma by early fractionation of leucite, the presumed precursor of intergrowths of K-feldspar and nepheline. The Diamond Jo nepheline syenite group defines a different differentiation trend. Sphene-nepheline syenite, alkali syenite and several miscellaneous nepheline syenites do not consistently plot with the other syenite groups or each other on element and oxide variation diagrams, indicating that they were derived from still other parental syenite magmas. Mineral assemblages indicate that relatively high f{hook};O2, at or above the fayalite-magnetite-quartz buffer, prevailed throughout the crystallization history of the syenites. ?? 1990.

  17. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less

  18. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    PubMed

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gravimetric and magnetic fabric study of the Sintra Igneous complex: laccolith-plug emplacement in the Western Iberian passive margin

    NASA Astrophysics Data System (ADS)

    Terrinha, Pedro; Pueyo, Emilio L.; Aranguren, Aitor; Kullberg, José Carlos; Kullberg, Maria Carla; Casas-Sainz, Antonio; Azevedo, Maria do Rosário

    2017-12-01

    The geometry and emplacement of the 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive margin is presented, based on structural data, gravimetric modeling, and magnetic fabrics. A granite laccolith ( 76 km2, < 1 km thick, according to gravimetric modeling) surrounds a suite of gabbro-diorite-syenite plugs ( 20 km2, 4 km deep) and is encircled by cone sheets and radial dykes. Anisotropy of Magnetic Susceptibility was interpreted from 54 sites showing fabrics of para- and ferro-magnetic origin. Most fabrics can be interpreted to have a magmatic origin, according to the scarcity of solid-state deformation in most part of the massif. Magnetic foliations are shallowly dipping in the granite laccolith and contain a sub-horizontal ENE-WSW lineation. The gabbro-syenite body displays concentric magnetic foliations having variable dips and steeply-plunging lineations. The SIC can be interpreted to be intruded along an NNW-SSE, 200 km-long fault, perpendicular to the magnetic lineation within the laccolith, and was preceded by the intrusion of basic sills and plugs. The SIC intruded the Mesozoic series of the Lusitanian Basin during the post-rift, passive margin stage, and its geometry was only slightly modified during the Paleogene inversion that resulted in thrusting of the northern border of the intrusion over the country rocks.

  20. Publications - RI 97-14A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Complex; Mystic Terrane; Ordovician; Ores; Paleocurrent; Paleoenvironment; Paleontology; Paleozoic; Peat ; Tertiary; Triassic; Turbidites; Veleska Lake Volcanic Complex; Volcanic; Yukon-Tanana Terrane Top of Page

  1. A Review of Land and Stream Classifications in Support of Developing a National Ordinary High Water Mark (OHWM) Classification

    DTIC Science & Technology

    2014-08-01

    northern Minnesota, Wisconsin, and Michigan. This region is dominated by igneous and metamorphic rock , with some sedimentary units and a generally...faulted igneous and metamorphic rocks and folded sediments in the Appalachians and flat-lying sedimentary rocks in the Plateau and Catskills. Streams...mixture of igneous, metamorphic , and sedimentary rocks . High relief and coarse materials are typical. Riffle and pool development is largely

  2. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Thermal histories of Mercury and the Moon. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    To determine a planet's thermal history, a wide range of data is necessary. These data include remote sensing results, photogeologic evidence, magnetic field and remanent magnetization data, composition and ages of samples, and physical parameters of the planet and its orbit. Few of these data form unambiguous constraints for thermal models of Mercury. Igneous Chronology as the time history of the differentiation and igneous activity, is defined. Igneous Chronology is used here in the sense of the apparent igneous or relative chronology of geologic events, such as plains formation (through whatever mechanism) relative to the crater production and tectonic history (lineament and scarp formation).

  3. Under the sea: microbial life in volcanic oceanic crust.

    PubMed

    Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B

    2011-09-06

    Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.

  4. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    İmer, Ali; Richards, Jeremy P.; Creaser, Robert A.

    2013-06-01

    The Çöpler epithermal Au deposit and related subeconomic porphyry Cu-Au deposit is hosted by the middle Eocene Çöpler-Kabataş magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic-Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75 ± 0.26 Ma and 44.19 ± 0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13 ± 0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44 ± 0.28 Ma) and biotite (43.84 ± 0.26 Ma), and Re-Os ages from two molybdenite samples (44.6 ± 0.2 and 43.9 ± 0.2 Ma) suggesting a short-lived (<1 my) magmatic and hydrothermal history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler-Kabataş intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden-Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).

  5. Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.

    1978-01-01

    This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  6. A spatial database of bedding attitudes to accompany Geologic Map of Boulder-Fort Collins-Greeley Area, Colorado

    USGS Publications Warehouse

    Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.

  7. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-12-31

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  8. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-01-01

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  9. Major- and trace-element concentrations in rock samples collected in 2004 from the Taylor Mountains 1:250,000-scale quadrangle, Alaska

    USGS Publications Warehouse

    Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.; Karl, Sue M.; Baichtal, James F.; Blodgett, Robert B.

    2006-01-01

    The Kuskokwim mineral belt of Bundtzen and Miller (1997) forms an important metallogenic region in southwestern Alaska that has yielded more than 3.22 million ounces of gold and 400,000 ounces of silver. Precious-metal and related deposits in this region associated with Late Cretaceous to early Tertiary igneous complexes extend into the Taylor Mountains 1:250,000-scale quadrangle. The U.S. Geological Survey is conducting geologic mapping and a mineral resource assessment of this area that will provide a better understanding of the geologic framework, regional geochemistry, and may provide targets for mineral exploration and development. During the 2004 field season 137 rock samples were collected for a variety of purposes. The 4 digital files accompanying this report reflect the type of analysis performed and its intended purpose and are available for download as an Excel workbook, comma delimited format (*.csv), dBase 4 files (*.dbf) or as point coverages in ArcInfo interchange format (*.e00). Data values are provided in percent, pct (1gram per 100grams), or parts per million, ppm (1gram per 1,000,000grams) per the column heading in the table. All samples were analyzed for a suite of 42 trace-elements (icp42.*) to provide data for use in geochemical exploration as well as some baseline data. Selected samples were analyzed by additional methods; 104 targeted geochemical exploration samples were analyzed for gold, arsenic, and mercury (auashg.*); 21 of these samples were also analyzed to obtain concentrations of 10 loosely bound metals (icp10.*); 33 rock samples were analyzed for major element oxides to support the regional mapping program (reg.*), of which 28 sedimentary rock samples were also analyzed for total carbon, and carbonate carbon.

  10. Hydrogeochemical processes and isotopes analysis. Study case: "La Línea Tunnel", Colombia

    NASA Astrophysics Data System (ADS)

    Piña, Adriana; Donado, Leonardo; Cramer, Thomas

    2017-04-01

    Hydrogeochemical and stable isotopes analyses have been widely used to identify recharge and discharge zones, flowpaths, type, origin and age of water, chemical processes between minerals and groundwater as well as effects caused by anthropogenic or natural pollution. In this paper we analyze the interactions between groundwater and surface water using as laboratory the tunnels located at the La Línea Massif in the Cordillera Central of the Colombian Andes. The massif is formed by two igneous-metamorphic fractured complexes (Cajamarca and Quebradagrande group) plus andesithic porphyry rocks from the tertiary period. There, eight main fault zones related to surface creeks were identified and main inflows inside the tunnels were reported. 60 water samples were collected in surface and inside the tunnel in fault zones in two different years, 2010 and 2015. To classify water samples, a multivariate statistical analysis combining Factor Analysis (FA) with Hierarchical Cluster Analysis (HCA) was performed. Then, analyses of the major chemical elements and water isotopes (18O, 2H and 3H) were used to define the origin of dissolved components and to analyse the evolution in time. Most samples were classified as bicarbonate calcite water or bicarbonate magnesium water type. Isotopic analyses show a characteristic behavior for east and west watershed and each geologic group. According to the FA and HCA, obtained factors and clusters are first related to the location of the samples (surface or tunnel samples) followed by the geology. Surface samples behave according to the Colombian meteoric line as inflows related to permeable faults while less permeable faults show hydrothermal processes. Finally, water evolution in time shows a decrease of pH, conductivity and Mg2+ related to silicate weathering or precipitation/dissolution processes that affect the spacing in fractures and consequently, the hydraulic properties.

  11. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less

  12. School as the Entry Point: Assessing Adherence to the Basic Tenets of the Wraparound Approach

    ERIC Educational Resources Information Center

    Epstein, Michael H.; Nordness, Philip D.; Gallagher, Ken; Nelson, J. Ron; Lewis, Linda; Schrepf, Sheryl

    2005-01-01

    In an effort to address the problem behaviors of children and youth, professionals have advocated for the implementation of three-tiered prevention programs: primary, secondary, and tertiary. The wraparound approach has been advanced as an appropriate tertiary program that can be used to address the complex behaviors and needs of students and…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, J.-P.; Stehle, T.; Zhang, R.

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less

  14. Re-examining the doming uplift model of Emeishan Large Igneous Province (SW China): evidence from high-resolution conodont biostratigraphy and sedimentology

    NASA Astrophysics Data System (ADS)

    Yadong, S.; Wignall, P. B.; Ali, J. R.; Widdowson, M.; Bond, D. P.; Lai, X.

    2010-12-01

    The Middle Permian Emeishan large igneous province of SW China is regard by many as providing the quintessential example of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. The key line of evidence for this has been the purported deep erosion profile of the Maokou Formation platform carbonates that lie directly beneath the central and inner parts of the volcanic pile. We have tested this interpretation by carrying out conodont age dating and facies analysis on the uppermost beds of the Maokou Formation across these central regions, together with the limestones that are intercalated within the basal lava flows. The investigated sections (from Yunnan, Sichuan, Guizhou and Guangxi provinces) span locations from directly below the centre of the igneous province, to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone (~263 Ma) of the Middle Capitanian Stage, and subsequently greatly increased in extent and volume in the J. xuanhanensis Zone (~262 Ma) (Sun et al., 2010). Most importantly, at most locations within the terrain, and many locations beyond its margins, there appears to have been platform subsidence (not uplift) with deep-water facies (radiolarian cherts, submarine fans) developing immediately prior to the initial volcanism (J. altudaensis Zone). Accordingly, pre-eruption uplift must have been muted because over large areas of the terrain the basal flows rest conformably on a variety of Maokou sedimentary facies. By contrast, the clearest evidence for an emergence surface occurs around the flanks of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions, and coincides with the regional eustatic fall (Sun et al., 2010). Furthermore, pillow lavas, hydromagmatic deposits and interflow limestone/reef packages are commonly seen around the terrain indicating a strong marine influence at the early stages of volcanism, which is itself further evidence against kilometre-scale up-doming (Wignall et al., 2009, Ali et al., 2010, Sun et al., 2010). We argue that the mantle plume which generated the Emeishan large igneous province 260-odd million years ago, resulted in a complex interaction between plume and overlying lithosphere, and was characterized by localized minor uplift and subsidence. References: Ali et al., 2010. Emeishan Large igneous Province (SW China) and the mantle plume up-doming hypothesis. J. Geol. Soc. Lond. 167, 953-959. Sun et al., 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos doi: 10.1016/j.lithos.2010.05.012. Wignall et al., 2009. Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. Science 324, 1179-1182.

  15. P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: isotopic and metamorphic evidence for the identification of Gander basement, central New England

    USGS Publications Warehouse

    Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.

    2012-01-01

    We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into Gander, metamorphosing and partially melting the Massabesic Gneiss Complex to the observed P-T-t conditions, with the complex forming an uplifted sheet that was back-thrusted over the Avalonian wedge.

  16. BLUE RANGE WILDERNESS, ARIZONA AND NEW MEXICO.

    USGS Publications Warehouse

    Ratte, James C.; Raabe, R.G.

    1984-01-01

    A mineral survey of the area was completed and it was determined that a probable resource potential for molybdenum, copper, and silver is present in volcanic rocks of middle Tertiary age in the southern and southwestern parts of the area. There is also a likelihood for the occurrence of base-metal resources (including porphyry copper deposits) of Laramide age beneath the middle Tertiary volcanic rocks that cover the area, but data are insufficient to assess the resource potential. Improved techniques for interpreting geophysical data collected over complex volcanic terranes should be applied in an effort to identify Laramide intrusives beneath the middle Tertiary rocks. Additional geologic studies of the major faults and volcanic centers might enhance mineral-deposit target definition in the middle Tertiary rocks.

  17. Barberton greenstone belt volcanism: Succession, style and petrogenesis

    NASA Technical Reports Server (NTRS)

    Byerly, G. R.; Lowe, D. R.

    1986-01-01

    The Barberton Mountain Land is an early Archean greenstone belt along the eastern margin of the Kaapvaal Craton of southern Africa. Detailed mapping in the southern portion of the belt leads to the conclusion that a substantial thickness is due to original deposition of volcanics and sediments. In the area mapped, a minimum thickness of 12km of predominantly mafic and ultramafic volcanics comprise the Komati, Hooggenoeg, and Kromberg Formations of the Onverwacht Group, and at least one km of predominantly pyroclastic and epiclastic sediments derived from dacitic volcanics comprise the Fig Tree Group. The Barberton greenstone belt formed primarily by ultramafic to mafic volcanism on a shallow marine platform which underwent little or no concurrent extension. Vents for this igneous activity were probably of the non-constructional fissure type. Dacitic volcanism occurred throughout the sequence in minor amounts. Large, constructional vent complexes were formed, and explosive eruptions widely dispersed pyroclastic debris. Only in the final stages of evolution of the belt did significant thrust-faulting occur, generally after, though perhaps overlapping with, the final stage of dacitic igneous activity. A discussion follows.

  18. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  19. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  20. The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume?

    NASA Astrophysics Data System (ADS)

    Korolev, N. M.; Kopylova, M.; Bussweiler, Y.; Pearson, D. G.; Gurney, J.; Davidson, J.

    2018-04-01

    The mantle beneath the Cullinan kimberlite (formerly known as "Premier") is a unique occurrence of diamondiferous cratonic mantle where diamonds were generated contemporaneously and shortly following a mantle upwelling that led to the formation of a Large Igneous Province that produced the world's largest igneous intrusion - the 2056 Ma Bushveld Igneous Complex (BIC). We studied 332 diamond inclusions from 202 Cullinan diamonds to investigate mantle thermal effects imposed by the formation of the BIC. The overwhelming majority of diamonds come from three parageneses: (1) lithospheric eclogitic (69%), (2) lithospheric peridotitic (21%), and (3) sublithospheric mafic (9%). The lithospheric eclogitic paragenesis is represented by clinopyroxene, garnet, coesite and kyanite. Main minerals of the lithospheric peridotitic paragenesis are forsterite, enstatite, Cr-pyrope, Cr-augite and spinel; the sublithospheric mafic association includes majorite, CaSiO3 phases and omphacite. Diamond formation conditions were calculated using an Al-in-olivine thermometer, a garnet-clinopyroxene thermometer, as well as majorite and Raman barometers. The Cullinan diamonds may be unique on the global stage in recording a cold geotherm of 40 mW/m2 in cratonic lithosphere that was in contact with underlying convecting mantle at temperatures of 1450-1550 °C. The studied Cullinan diamonds contain a high proportion of inclusions equilibrated at temperatures exceeding the ambient 1327 °C adiabat, i.e. 54% of eclogitic diamonds and 41% of peridotitic diamonds. By contrast, ≤ 1% of peridotitic diamond inclusions globally yield equally high temperatures. We propose that the Cullinan diamond inclusions recorded transient, slow-dissipating thermal perturbations associated with the plume-related formation of the 2 Ga Bushveld igneous province. The presence of inclusions in diamond from the mantle transition zone at 300-650 km supports this view. Cullinan xenoliths indicative of the thermal state of the cratonic lithosphere at 1.2 Ga are equilibrated at the relatively low temperatures, not exceeding adiabatic. The ability of diamonds to record super-adiabatic temperatures may relate to their entrainment from the deeper, hotter parts of the upper mantle un-sampled by the kimberlite in the form of xenoliths or their equilibration in a younger lithosphere after a decay of the thermal disturbance.

  1. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.

  2. Geotourism of Batu Dinding Kilo Tiga, Amurang District, South Minahasa Regency, North Sulawesi - Indonesia

    NASA Astrophysics Data System (ADS)

    Elvien Kristian, V. A.; Ridho, Ahmad; Diaz Alffi, Febriany

    2018-03-01

    Start your abstract Batu Dinding Kilo Tiga or famously called Batu Dinding is one of tourist destinations in Kilo Tiga village, Amurang district, South Minahasa regency, North Sulawesi. In terms of Geology, Batu Dinding is a rock cliff with columnar structure and constituted in the form of andesitic thrakit rocks which is one of intermediate igneous rocks of volcanic aged Late Tertiary until Early Quarter, precisely during the Pleistocene. The structure and appearance of Batu Dinding was like a ladder, make Batu Dinding in demand as a destination for wall climbing or cliff hanger. The area around the Batu Dinding, there are Pamurapa River that at a time when it was high tide, can be used for rafting. Unfortunately, the accommodation and accessibility of the Amurang Batu Dinding are poor, causing Batu Dinding rarely to visit. The aim of the paper is to introduce as well as media publications of Batu Dinding tourism in order to increase local income and in addition it can be as a geological site for learning purposes.

  3. Map showing drill-hole depths, lithologic intercepts, and partial isopachs of basin fill in the Winnemucca 1 degree by 2 degrees Quadrangle, Nevada

    USGS Publications Warehouse

    Moring, B.C.

    1990-01-01

    Wells logs used for this map of the Winnemucca quadrangle are from the following sources: (1) logs of more than 1,000 water wells reported to the State of Nevada Division of Water Resources, which are on file with them in Reno and at the with U.S. Geological Survey in Carson City, (2) 44 petroleum wells collected by the Nevada Bureau of Mines (Lintz, 1957; Schilling and Garside, 1968; Garside and Schilling, 1977, Garside and others, 1977; 1988), and (3) Two geothermal wells reported in Zoback (1979) and Flynn and others (1982). Data from isostatic residual and Bouguer gravity maps by Wagini (1985) contributed to the interpretation of basin configuration. Gravity models of Dixie Valley (Schaefer, 1982, and Speed, 1976) and Grass Valley (Grannell and Noble, 1977) and seismic profiles of Grass and Pine Valleys (Potter and others, 1987) helped refine basis interpretations in those areas. The geologic base map of Paleozoic and Mesozoic igneous and sedimentary rocks, Tertiary volcanic and sedimentary rocks, and Cenozoic structures was simplified from Stewart and Carlson (1976b).

  4. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    Between September 26 and November 9, 1978, Aero Service Division Western Geophysical Company of America conducted a high sensitivity airborne gamma-ray spectrometer and magnetometer survey over the 2/sup 0/ x 1/sup 0/ NTMS quadrangle of Durango, Colorado. The survey area is bounded by the 106/sup 0/W and 108/sup 0/W meridians and the 37/sup 0/N and 38/sup 0/N parallels. The area contains rocks of the Colorado Plateau suite in the southwestern part. The remainder of the area, with the exception of the eastern margin, is underlain by intrusive and extrusive igneous rocks and volcano-clastic sediments of Tertiary age. The eastern marginmore » of the map is formed by the Quaternary alluvium of the San Juan Valley. The major river in the area is the Rio Grande, which drains the San Juan mountains to the east of the continental divide. The southwestern part of the San Juan mountains is drained by the San Juan river, a tributary of the Colorado River.« less

  5. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  6. Subsurface modeling of geothermal manifestation in Mt. Endut based on vertical electrical sounding (VES) method

    NASA Astrophysics Data System (ADS)

    Permadi, A. N.; Akbar, A. M.; Wildan, D.; Sobirin, R.; Supriyanto

    2017-07-01

    The Endut geothermal prospect area is located in Lebak district, Banten province, about 40 km in the southern Rangkasbitung city. This area has been surveyed by PSDG (Pusat Sumber Daya Geologi) since 2006. In this survey, data acquisition has been performed by using the resistivity methods with Schlumberger configuration from southwest to northeast. Local hot spring Cikawah (CKW) manifestation dominated by quaternary volcanic rocks of Mount Endut product that intruded tertiary sedimentary bedrock. Horizontal fault and normal trend rejuvenation of the northeast - southwest was expected control hot spring manifestation in Cikawah. Geothermal manifestations such as hot water Cikawah has the highest temperature (88 °C), the hot water discharge 5 L/sec, neutral pH, chloride type, in partial equlibrium, and there are in the between of the balance of Cl-Li-B. Resistivity data shows conductive layer at a depth of approximately 500 meters below Cikawah hot spring, which is suspected to be associated with the argillic alteration intrusive rocks. The high resistivity anomaly is suspected to be associated with thick igneous intrusive rocks.

  7. Subsurface Structure of the Bushveld Igneous Complex, South Africa: An Application of Geophysics

    NASA Astrophysics Data System (ADS)

    Vallejo, G.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Falzone, C.; Guandique, J.; Emry, E.; Webb, S. J.; Nyblade, A.

    2014-12-01

    South Africa is host to the largest single known platinum group metal supply in the world. The Bushveld Igneous Complex, spanning 300x400 kilometers, hosts hundreds of years' worth of platinum, chromite, vanadium, and other ore. Its wealth of these metals is tied directly to the large layered igneous intrusion that formed roughly 2061 million years ago. The extraction of platinum is vital to the industrial world - as these metals are widely used in the automotive industry, dental restorations, computer technology, in addition to many other applications. In collaboration with the Africa Array geophysics field school and the Penn State Summer Research Opportunities Program (SROP), we surveyed the Modikwa mine located along the border of the provinces of Mpumalanga and Limpopo in South Africa. The following techniques were applied to survey the area of interest: seismic refraction and reflection, gravity, magnetics, electrical resistivity, and electromagnetics. The data collected were used to determine the depth to bedrock and to identify potential mining hazards from dykes and faults in the bedrock. Several areas were studied and with the combination of the above-mentioned methods several possible hazards were identified. One broad, major dyke that was located in a prior aeromagnetic survey and several previously undetected, parallel, minor dykes were identified in the region. The overburden thickness was determined to be ̴4-5 meters in some regions, and as thin as several centimeters in others. This section of rock and soil lies above an area where platinum will likely be mined in the future. The removal of overburden can be accomplished by using power shovels or scrapers; while remaining material can be contained with the use of galvanized steel culverts. Additionally, a number of joints were located that may have allowed water to accumulate underground. The models created from the data permit us to estimate which hazards could be present in different parts of the land surveyed. These results are important information that will help determine how deep to mine while also avoiding hazards that could result in serious injuries to personnel or cause costly damages to equipment.

  8. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure.

    PubMed

    Reinert, Zachary E; Horne, W Seth

    2014-11-28

    A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.

  9. Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.; Iuzzolina, H.

    2005-12-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in association with a volcanic eruption through the repository. Mathematical relations were built between the resulting conduit areas and the fraction of the repository area occupied by waste packages. This relation was used in conjunction with a joint distribution incorporating variability in eruptive conduit diameters and in the number of eruptive conduits that could intersect the repository.

  10. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells

    NASA Astrophysics Data System (ADS)

    El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.

    2018-05-01

    Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.

  11. LA-ICP-MS zircon U-Pb and muscovite K-Ar ages of basement rocks from the south arm of Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jaya, Asri; Nishikawa, Osamu; Hayasaka, Yasutaka

    2017-11-01

    The zircon U-Pb and muscovite K-Ar age from the Bantimala, Barru and Biru basement complexes in the South Arm of Sulawesi, Indonesia provide new information regarding the timing of magmatism, metamorphism and sedimentation in this region and have implications for the origin and evolution of the study area. The study area is at the juncture between the southeast margin of Sundaland and Bird's Head-Australia. The age of both the zircon U-Pb of detrital materials in the Bantimala Complex and the muscovite K-Ar of amphibolite in the Biru Complex fall in the Late Early Cretaceous (between 109 and 115 Ma), which is a similar age range to previous data for both the sedimentary and metamorphic rocks. The youngest detrital zircon in the schist samples from the Barru Complex fall into the Triassic in age (between 243 and 247 Ma). These age data indicate that the protolith of all three basement complexes were involved in the subduction system and metamorphosed in the late Early Cretaceous, but there are several differences in their deposition environment under and out of the influence of the late Early Cretaceous magmatism in the Bantimala and Barru Complexes, respectively. Felsic igneous activities are confirmed in the Late Cretaceous and the Eocene by the zircon U-Pb age of igneous rocks intruding or included as detrital fragments in three basement complexes. These dates are similar to those reported from the Meratus Complex of South Kalimantan. The detrital zircon age distributions of the basement rocks in the South Arm of Sulawesi display predominant Mesozoic (Cretaceous and Triassic) and Paleozoic populations with a small population of Proterozoic ages supporting the hypothesis that the West Sulawesi block originated from the region of the circum Bird's Head-Australian, namely the Inner Banda block. The absence of Jurassic zircon age population in the South Arm of Sulawesi suggests the division of the South Arm of Sulawesi from the Inner Banda block in early stage of rifting. Western Sulawesi is composed of several blocks separated from Inner Banda block with different histories, which is supported by the varieties of zircon population distribution in the basement rocks in the Western Sulawesi and also difference of general orientations of structural features between the Bantimala and Barru Complexes.

  12. Ordovician volcanic and plutonic complexes of the Sakmara allochthon in the southern Urals

    NASA Astrophysics Data System (ADS)

    Ryazantsev, A. V.; Tolmacheva, T. Yu.

    2016-11-01

    The Ordovician terrigenous, volcanic-sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro-tonalite-trondhjemite complex and the basalt-andesite-rhyolite sequence with massive sulfide mineralization make up a volcanic-plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.

  13. P-T Path and Nd-isotopes of Garnet Pyroxenite Xenoliths From Salt Lake Crater, Oahu

    NASA Astrophysics Data System (ADS)

    Ichitsubo, N.; Takahashi, E.; Clague, D. A.

    2001-12-01

    Abundant garnet pyroxenite and spinel lherzolite xenoliths are found in Salt Lake Crater (SLC) in Oahu, Hawaii [Jackson and Wright, 1970]. The SLC pyroxenite suite xenoliths (olivine-poor type) have complex exsolution textures that were probably formed during a slow cooling. In this study, we used digital image software to obtain modal data of exsolved phases in the host pyroxene using backscattered electron images (BEIs). The abundances of the exsolved phases were multiplied by the phase compositions determined by electron probe micro-analyzer (EPMA) to reconstruct pyroxene compositions prior to exsolution. In order to evaluate the error in this calculation, we recalculated the reconstructed pyroxene compositions using the different pyroxene pairs. Reconstructed clinopyroxenes in each sample have almost no variations (MgO, CaO +/-1wt %, FeO +/-0.5wt % and the other oxides ~+/-0.1wt %). Reconstructed orthopyroxenes are more variable in MgO, CaO (+/-2wt %) and FeO (+/-1wt %) than reconstructed clinopyroxenes, but the other oxides have only limited variations ( ~+/-0.5wt %). These compositions were used to calculate igneous stage (magmatic) P-T conditions based on the geothermometers and geobarometers of Wells [1977] and Brey and Kohler [1990] Following assumptions are made: (1) the reconstructed pyroxene compositions are the final record in the primary igneous stage, and (2) cores of the largest garnet grains in each sample record the primary igneous stage composition.. The recalculation using the different pairs of reconstructed pyroxenes show the uncertainty to be +/- 30° C and 0.1 GPa. These appear to be small compared to the large intrinsic errors of geothermometer and geobarometers (+/-20° -35° C and +/- 0.3-0.5 GPa). Estimated P-T conditions for garnet pyroxenites are 1.5-2.2 GPa, 1000° -1100° C in the final reequilibration stage and 2.2-2.6 GPa (at maximum), 1150° -1300° C (at minimum) in the igneous stage. The all samples show ca. 200° C cooling and 0.5 GPa decompression. This implies that the garnet pyroxenites cooled ca. 200° C to develop the observed complex exsolution and may have risen from about 70-80 km to 50-65 km depth. Glass pockets and fine minerals (olivine, pyroxene, spinel) occur in the SLC garnet pyroxenite xenoliths. Amphibole and phlogopite, which may have crystallized by metasomatism, are common accessory minerals in them. In order to study the nature of metasomatism as revealed by the glass pockets and fine aggregate of spinel and pyroxene, Nd-isotope study on the SLC xenoliths is under way.

  14. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  15. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite

    NASA Technical Reports Server (NTRS)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton

    1988-01-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  16. Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.

    1972-01-01

    Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.

  17. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Holm, Robert J.; Spandler, Carl; Richards, Simon W.

    2013-09-01

    Understanding the evolution of the mid-Cenozoic Melanesian arc is critical for our knowledge of the regional tectonic development of the Australian-Pacific plate margin, yet there have been no recent studies to constrain the nature and timing of magmatic activity in this arc segment. In particular, there are currently no robust absolute age constraints at the plate margin related to either the initiation or cessation of subduction and arc magmatism. We present the first combined U-Pb zircon geochronology and geochemical investigation into the evolution of the Melanesian arc utilizing a comprehensive sample suite from the Simuku Igneous Complex of West New Britain, Papua New Guinea. Development of the embryonic island arc from at least 40 Ma and progressive arc growth was punctuated by distant collision of the Ontong Java Plateau and subduction cessation from 26 Ma. This change in subduction dynamics is represented in the Melanesian arc magmatic record by emplacement of the Simuku Porphyry Complex between 24 and 20 Ma. Petrological and geochemical affinities highlight genetic differences between 'normal' arc volcanics and adakite-like signatures of Cu-Mo mineralized porphyritic intrusives. The contemporaneous emplacement of both 'normal' arc volcanics and adakite-like porphyry intrusives may provide avenues for future research into the origin of diverse styles of arc volcanism. Not only is this one of few studies into the geology of the Melanesian arc, it is also among the first to address the distant tectono-magmatic effects of major arc/forearc collision events and subduction cessation on magmatic arcs, and also offers insight into the tectonic context of porphyry formation in island arc settings.

  18. Basalt-trachybasalt samples in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger; Anderson, Ryan; Dyar, Darby; Fisk, Martin; Thompson, Lucy; Gasda, Patrick; Filiberto, Justin; Schwenzer, Susanne P.; Blaney, Diana; Hutchinson, Ian

    2017-11-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at 55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47-51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  19. Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh

    2017-11-01

    Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.

  20. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway

    PubMed Central

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Pavlichin, Dmitri S.; Mabuchi, Hideo; Herschlag, Daniel

    2016-01-01

    The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations. PMID:27493222

  1. Group 6 metal pentacarbonyl complexes of air-stable primary, secondary, and tertiary ferrocenylethylphosphines.

    PubMed

    Rabiee Kenaree, Amir; Sauvé, Ethan R; Ragogna, Paul J; Gilroy, Joe B

    2016-02-21

    The synthesis and characterization of a series of Group 6 metal pentacarbonyl complexes of air stable primary, secondary, and tertiary phosphines containing ferrocenylethyl substituents are reported [M(CO)5L: M = Cr, Mo, W; L = PH2(CH2CH2Fc), PH(CH2CH2Fc)2, P(CH2CH2Fc)3]. The structure and composition of the complexes were confirmed by multinuclear NMR spectroscopy, IR and UV-Vis absorption spectroscopy, mass spectrometry, X-ray crystallography, and elemental analysis. The solid-state structural data reported revealed trends in M-C and M-P bond lengths that mirrored those of the atomic radii of the Group 6 metals involved. UV-Vis absorption spectroscopy and cyclic voltammetry highlighted characteristics consistent with electronically isolated ferrocene units including wavelengths of maximum absorption between 435 and 441 nm and reversible one-electron (per ferrocene unit) oxidation waves between 10 and -5 mV relative to the ferrocene/ferrocenium redox couple. IR spectroscopy confirmed that the σ donating ability of the phosphines increased as ferrocenylethyl substituents were introduced and that the tertiary phosphine ligand described is a stronger σ donor than PPh3 and a weaker σ donor than PEt3, respectively.

  2. Formation of Hadean granites by melting of igneous crust

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Berry, A. J.

    2017-06-01

    The oldest known samples of Earth, with ages of up to 4.4 Gyr, are detrital zircon grains in meta-sedimentary rocks of the Jack Hills in Australia. These zircons offer insights into the magmas from which they crystallized, and, by implication, igneous activity and tectonics in the first 500 million years of Earth’s history, the Hadean eon. However, the compositions of these magmas and the relative contributions of igneous and sedimentary components to their sources have not yet been resolved. Here we compare the trace element concentrations of the Jack Hills zircons to those of zircons from the locality where igneous (I-) and sedimentary (S-) type granites were first distinguished. We show that the Hadean zircons crystallized predominantly from I-type magmas formed by melting of a reduced, garnet-bearing igneous crust. Further, we propose that both the phosphorus content of zircon and the ratio of phosphorus to rare earth elements can be used to distinguish between detrital zircon grains from I- and S-type sources. These elemental discriminants provide a new geochemical tool to assess the relative contributions of primeval magmatism and melting of recycled sediments to the continents over geological time.

  3. Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses

    NASA Astrophysics Data System (ADS)

    Rosatelli, G.; Wall, F.; Stoppa, F.; Brilli, M.

    2010-11-01

    Petrography-controlled laser ablation inductively coupled plasma mass spectrometry (LAICPMS) analyses of carbonate in fresh shallow level sub-volcanic Polino monticellite calcio-carbonatite tuffisite have been performed to assess the geochemical differences between fresh igneous, epigenetic carbonates and sedimentary accidental fragments. Igneous calcite has consistently high LREE/HREE ratios (La/Yb N , 15-130) due to high LREE (ΣLREE, 425-1,269 ppm). Secondary calcite cements are characterized by progressively lower and more variable trace element contents, with lower LREE/HREE ratios. A distinguishing geochemical feature is progressively increasing negative Ce anomalies observed through coarse secondary calcite that can be related to the surface environment processes. The limestone accidental fragments in the tuffisite have trace element contents almost two orders of magnitude lower than igneous carbonate and low LREE (ΣLREE < 9.5 ppm) with low LREE/HREE fractionation (La/Yb N ratios < 18). The stable isotope composition of different carbonate types is consistent with their formation in different environments. The tuffisitization processes during diatreme formation under high CO2-OH fugacity conditions may account for the differences noted in the igneous carbonates.

  4. The Study of Aeromagnetic Surveys in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, P. T.; Tong, L. T.; Lin, W.; Chang, S. F.

    2016-12-01

    The airborne magnetic survey is a cost-effective method for regional geological investigation. Most of developed countries use aeromagnetic data as important fundamental information for resources development. The first aeromagnetic survey was conducted in the offshore areas of west and southern Taiwan in 1968 by U.S. Naval Oceanographic Office to help Taiwan finding oil. Later, in 2007, a helicopter-borne magnetic survey was proceed in east Taiwan for underground granite bodies. In order to improve better understanding of deep geological structures associated with the Holocene volcanism in Taiwan, we applied helicopter-borne magnetic technique in northern Taiwan include Tatun Volcano Group (TVG) and Kueishan island in 2013 and 2014 to obtain the distribution information of potential magma chamber as well as hydrothermal pathways along regional geological structures. The most important findings of the high-resolution aeromagnetic dataset since 1960's to 2014 acquired include: (1) the distribution of subsurface igneous rocks and the Curie point depth in Tatun Volcano Group, Keelung Volcano Group, and Kueishantao Volcano; (2) the widely distributed NE high-magnetic belts in northern Taiwan may be associated with NE fractures created by long-term subsidence in this area; (3) the high-magnetic belts in south of Lanyang River which is very different from the magnetic characteristics of the Central Range may imply paleo oceanic plate; (4) the NE high-magnetic belts in Penghu area formed by magma intrusion along NE fractures and the dense and high-magnetic anomalies may be associated with the Miocene basaltic lava overlying on the pre-Tertiary igneous dykes and are widely spread in northern Penghu area. The new aeromagnetic survey techniques help us to investigate the areas with steep terrain or covered by dense vegetation which was difficult to obtain reasonable geological understanding, and also provide an opportunity for us to apply the geothermal energy prospecting.

  5. Magmatic ore deposits in layered intrusions - Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits

    USGS Publications Warehouse

    Zientek, Michael L.

    2012-01-01

    Layered, ultramafic to mafic intrusions are uncommon in the geologic record, but host magmatic ore deposits containing most of the world's economic concentrations of platinum-group elements (PGE) (figs. 1 and 2). These deposits are mined primarily for their platinum, palladium, and rhodium contents (table 1). Magmatic ore deposits are derived from accumulations of crystals of metallic oxides, or immiscible sulfide, or oxide liquids that formed during the cooling and crystallization of magma, typically with mafic to ultramafic compositions. "PGE reefs" are stratabound PGE-enriched lode mineralization in mafic to ultramafic layered intrusions. The term "reef" is derived from Australian and South African literature for this style of mineralization and used to refer to (1) the rock layer that is mineralized and has distinctive texture or mineralogy (Naldrett, 2004), or (2) the PGE-enriched sulfide mineralization that occurs within the rock layer. For example, Viljoen (1999) broadly defined the Merensky Reef as "a mineralized zone within or closely associated with an unconformity surface in the ultramafic cumulate at the base of the Merensky Cyclic Unit." In this report, we will use the term PGE reef to refer to the PGE-enriched mineralization, not the host rock layer. Within a layered igneous intrusion, reef-type mineralization is laterally persistent along strike, extending for the length of the intrusion, typically tens to hundreds of kilometers. However, the mineralized interval is thin, generally centimeters to meters thick, relative to the stratigraphic thickness of layers in an intrusion that vary from hundreds to thousands of meters. PGE-enriched sulfide mineralization is also found near the contacts or margins of layered mafic to ultramafic intrusions (Iljina and Lee, 2005). This contact-type mineralization consists of disseminated to massive concentrations of iron-copper-nickel-PGE-enriched sulfide mineral concentrations in zones that can be tens to hundreds of meters thick. The modes and textures of the igneous rocks hosting the mineralization vary irregularly on the scale of centimeters to meters; autoliths and xenoliths are common. Mineralization occurs in the igneous intrusion and in the surrounding country rocks. Mineralization can be preferentially localized along contact with country rocks that are enriched in sulfur-, iron-, or CO2-bearing lithologies. Reef-type and contact-type deposits, in particular those in the Bushveld Complex, South Africa, are the world's primary source of platinum and rhodium (tables 2 and 3; fig. 2). Reef-type PGE deposits are mined only in the Bushveld Complex (Merensky Reef and UG2), the Stillwater Complex (J-M Reef), and the Great Dyke (Main Sulphide Layer). PGE-enriched contact-type deposits are only mined in the Bushveld Complex. The other deposits in tables 2 and 3 are undeveloped; some are still under exploration.

  6. Geodynamics Of Mid-Tertiary Extensional Phase In Southwest Texas And Relationship With The Rio Bravo Fault

    NASA Astrophysics Data System (ADS)

    Le Pichon, X. T.; Husson, L.; Henry, P.

    2004-12-01

    Three independent sets of data lead us to conclude that gravity collapse alone cannot account for the Cenozoic evolution of the Texas margin of the GOM and that there has been since Paleocene a significant reactivation of the extension there.1) We have examined an extensive set of thermal data from wells including 2000 Reservoir temperatures offshore Texas and Louisiana. Solving for 1-D thermal and stratigraphic evolution of 166 representative wells we obtain the basal heat flow that defines the existence of a well defined anomaly centred on the Corsair Fault. The basal heat flow increases over less than 100 km from 35 mW/m2 northwest of the Corsair Fault to 55 mW/m2 on the fault. This increase is best explained by a crustal extensional episode during Upper Cenozoic as demonstrated by a simple modelization. The thermal structure results in very high temperatures at depth. The deepest wellls at 6000 m depth give a temperature larger than 200C. Below the Corsair rift, the extrapolated temperature is more than 300C at 10 000 m (6 s twt), 375C at 12.5 km (7 s twt) and close to 500C at 18.5 km (9 s twt). 2) Velocity/depth data from refraction (Ebeniro et al., 1988), from Moho inversion based on gravity and from 11s TWT seismic reflection depth sections show that the deep decollement layer is indeed very deep and very hot and that there is little if any igneous crust below the Corsair Rift. The velocity structure lead us to conclude that the major decollement that is generally identified with the Middle-Cretaceous Unconformity (MCU) and that lies at a depth of 7 s twt increasing to 9 s below the Corsair Rift plunges from 12-13 km northwest of the Corsair Fault to 18-19 km below the Corsair Rift. There the Moho is localized at 21-22km. The 3 km thick material between these two depths could potentially include the Cretaceous, Jurassic and Triassic as well as the whole igneous crust. In any case at this depth the present extrapolated temperature is about 500°C. The brittle-ductile transition at the present time is then expected to be situated within the sedimentary section and the brittle - ductile transition is probably situated between 6 and 8 s twt. The material, whatever its composition, below the main décollement in the area of the Corsair Rift must be metarmorphized and ductile.3) Field data led to the identification a major left-lateral shear zone most active during the late Eocene-Oligocene that we have called the Rio Bravo Fault zone. The fault zone had been previously described in the literature as the N120° Texas lineament assumed to have been inherited from the Jurassic opening of the Gulf of Mexico and located at the boundary between Texas and Mexico, approximately coinciding with the Rio Bravo (or Rio Grande).We demonstrate that this zone of shear was active during Oligocene from about 31°N to about 25°N. We conclude that an approximately 1000 km long left-lateral shear zone was active during mid-Tertiary with a total offset of 40-60 km. Its activity affected the Tertiary depocenters in Texas and within the Burgos Basin. It could account for the Paleocene to Oligocene extension in Southwest Texas.

  7. Geology and ore deposits of the Casto quadrangle, Idaho

    USGS Publications Warehouse

    Ross, Clyde P.

    1934-01-01

    The study of the Casto quadrangle was undertaken as the first item in a project to obtain more thorough knowledge of the general geology of southcentral Idaho on which to base study of the ore deposits of t he region. The quadrangle conta ins fragmentary exposures of Algonkian and Paleozoic sedimentary rocks, extensive deposits of old volcanic strata, presumably Permian, not heretofore recognized in this part of Idaho, and a thick succession of Oligocene(?) lava and pyroclastic rocks. The Idaho batholith and its satellites extend into the quadrangle, and in addition there a re large masses of Tertiary granitic rock, not previously distinguished in Idaho, and many Tertiary dikes, some of which are genetically associated with contact-metamorphic deposits. The area contains injection gneiss of complex origin, largely related to the Idaho batholith but in part resulting from injection by ~he Tertiary granitic rocks under relatively light load. Orogenic movement took place in Algonkian, Paleozoic, and Tertiary time. There is a summit peneplain or par tial peneplain of Tertiary, perhaps Pliocene age, and the erosional history since its elevation has been complex. The ore deposits include lodes and placers. The lodes are related to both the Idaho batholith and the Tert iary intrusive rocks and have yielded gold and copper ore of a total value of about 1,000,000. Placers, largely formed in an interglacial inter val, have yielded about an equal amount. There has been some prospecting but almost no production since 1916.

  8. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8-11 Hz. The OBS survey used a 14-gun, 6,300 cu. in. array towed at 20 m depth, and the Q-marine survey used a 48-gun, 10,170 cu. in. array, with shot-by-shot signature recording. They provided excellent arrivals to ranges beyond 120 km, with penetration through the basalts and well into the upper mantle. iSIMM investigators are R.S. White, N.J. Kusznir, P.A.F. Christie, A.M. Roberts, N. Hurst, Z.C. Lunnon, C.J. Parkin, A.W. Roberts, L.K. Smith, R. Spitzer , V. Tymms, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco

  9. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  10. Impact origin of the Sudbury structure: Evolution of a theory

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    1992-01-01

    This paper reviews the origin, development, and present status of the widely accepted theory, proposed by Robert S. Dietz in 1962, that the Sudbury structure was formed by meteoritic or asteroidal impact. The impact theory for the origin of the Sudbury structure seems supported by a nearly conclusive body of evidence. However, even assuming an impact origin to be correct, at least three major questions require further study: (1) the original size and shape of the crater, before tectonic deformation and erosion; (2) the source of the melt now forming the Sudbury Igneous Complex; and (3) the degree, if any, to which the Ni-Cu-platinum group elements are meteoritic. The history of the impact theory illustrates several under-appreciated aspects of scientific research: (1) the importance of cross-fertilization between space research and terrestrial geology; (2) the role of the outsider in stimulating thinking by insiders; (3) the value of small science, at least in the initial stages of an investigation, Dietz's first field work having been at his own expense; and (4) the value of analogies (here, between the Sudbury Igneous Complex and the maria), which although incorrect in major aspects, may trigger research on totally new lines. Finally, the Sudbury story illustrates the totally unpredictable and, by implication, unplannable nature of basic research, in that insight to the origin of the world's then-greatest Ni deposit came from the study of tektites and the Moon.

  11. Oxygen isotope trajectories of crystallizing melts: Insights from modeling and the plutonic record

    NASA Astrophysics Data System (ADS)

    Bucholz, Claire E.; Jagoutz, Oliver; VanTongeren, Jill A.; Setera, Jacob; Wang, Zhengrong

    2017-06-01

    Elevated oxygen isotope values in igneous rocks are often used to fingerprint supracrustal alteration or assimilation of material that once resided near the surface of the earth. The δ18O value of a melt, however, can also increase through closed-system fractional crystallization. In order to quantify the change in melt δ18O due to crystallization, we develop a detailed closed-system fractional crystallization mass balance model and apply it to six experimentally- and naturally-determined liquid lines of descent (LLDs), which cover nearly complete crystallization intervals (melt fractions of 1 to <0.1). The studied LLDs vary from anhydrous tholeiitic basalts to hydrous high-K and calc-alkaline basalts and are characterized by distinct melt temperature-SiO2 trajectories, as well as, crystallizing phase relationships. Our model results demonstrate that melt fraction-temperature-SiO2 relationships of crystallizing melts, which are strongly a function of magmatic water content, will control the specific δ18O path of a crystallizing melt. Hydrous melts, typical of subduction zones, undergo larger increases in δ18O during early stages of crystallization due to their lower magmatic temperatures, greater initial increases in SiO2 content, and high temperature stability of low δ18O phases, such as oxides, amphibole, and anorthitic plagioclase (versus albite). Conversely, relatively dry, tholeiitic melts only experience significant increases in δ18O at degrees of crystallization greater than 80%. Total calculated increases in melt δ18O of 1.0-1.5‰ can be attributed to crystallization from ∼50 to 70 wt.% SiO2 for modeled closed-system crystallizing melt compositions. As an example application, we compare our closed system model results to oxygen isotope mineral data from two natural plutonic sequences, a relatively dry, tholeiitic sequence from the Upper and Upper Main Zones (UUMZ) of the Bushveld Complex (South Africa) and a high-K, hydrous sequence from the arc-related Dariv Igneous Complex (Mongolia). These two sequences were chosen as their major and trace element compositions appear to have been predominantly controlled by closed-system fractional crystallization and their LLDs have been modeled in detail. We calculated equilibrium melt δ18O values using the measured mineral δ18O values and calculated mineral-melt fractionation factors. Increases of 2-3‰ and 1-1.5‰ in the equilibrium melts are observed for the Dariv Igneous Complex and the UUMZ of the Bushveld Complex, respectively. Closed-system fractional crystallization model results reproduce the 1‰ increase observed in the equilibrium melt δ18O for the Bushveld UUMZ, whereas for the Dariv Igneous Complex assimilation of high δ18O material is necessary to account for the increase in melt δ18O values. Assimilation of evolved supracrustal material is also confirmed with Sr and Nd isotope analyses of clinopyroxene from the sequence. Beginning with a range of mantle-derived basalt δ18O values of 5.7‰ ("pristine" mantle) to ∼7.0‰ (heavily subduction-influenced mantle), our model results demonstrated that high-silica melts (i.e. granites) with δ18O of up to 8.5‰ can be produced through fractional crystallization alone. Lastly, we model the zircon-melt δ18O fractionations of different LLDs, emphasizing their dependence on the specific SiO2-T relationships of a given crystallizing melt. Wet, relatively cool granitic melts will have larger zircon-melt fractionations, potentially by ∼1.5‰, compared to hot, dry granites. Therefore, it is critical to constrain zircon-melt fractionations specific to a system of interest when using zircon δ18O values to calculate melt δ18O.

  12. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2016-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  13. The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas

    USGS Publications Warehouse

    Kinney, Douglas M.

    1949-01-01

    The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.

  14. Kilbuck terrane: Oldest known rocks in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Box, S.E.; Moll-Stalcup, E.J.; Wooden, J.L.

    1990-12-01

    The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2,070 {plus minus}16 and 2,040 {plus minus}74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite ({epsilon}{sub Nd}(T) = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton ({epsilon}{sub Nd}(T) = {minus}5.7) containsmore » a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. However, Phanerozoic plutons cutting several continental terranes in Alaska (southern Brooks Range and Ruby, Seward, and Yukon-Tanana terranes) have Nd isotope compositions indicative of Early Proterozoic (or older) crustal components that could be correlative with rocks of the Kilbuck terrane. Rocks with similar igneous ages in cratonal North America are rare, and those few that are known have Nd isotope compositions distinct from those of the Kilbuck terrane. Conversely, provinces with Nd model ages of 2.0-2.1 Ga are characterized by extensive 1.8 Ga or younger plutonism, which is unknown in the Kilbuck terrane. At present the case for a North American parentage of the Kilbuck terrane is not compelling. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded.« less

  15. Mineralogy, Provenance, and Diagenesis of a Potassic Basaltic Sandstone on Mars: CheMin X-Ray Diffraction of the Windjana Sample (Kimberley Area, Gale Crater)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; hide

    2016-01-01

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, approximately Or(sub 95)); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (approximately 25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K2O, approximately 1.8 times that of Windjana, implying a sediment component with greater than 40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g.,mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.

  16. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or 95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented bymore » its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. Finally, the presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.« less

  17. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    PubMed Central

    Bish, David L.; Vaniman, David T.; Chipera, Steve J.; Blake, David F.; Ming, Doug W.; Morris, Richard V.; Bristow, Thomas F.; Morrison, Shaunna M.; Baker, Michael B.; Rampe, Elizabeth B.; Downs, Robert T.; Filiberto, Justin; Glazner, Allen F.; Gellert, Ralf; Thompson, Lucy M.; Schmidt, Mariek E.; Le Deit, Laetitia; Wiens, Roger C.; McAdam, Amy C.; Achilles, Cherie N.; Edgett, Kenneth S.; Farmer, Jack D.; Fendrich, Kim V.; Grotzinger, John P.; Gupta, Sanjeev; Morookian, John Michael; Newcombe, Megan E.; Rice, Melissa S.; Spray, John G.; Stolper, Edward M.; Sumner, Dawn Y.; Vasavada, Ashwin R.; Yen, Albert S.

    2016-01-01

    Abstract The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X‐ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X‐ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented by its magnetite and ferrihydrite. From ChemCam Laser‐Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K‐rich targets have 5.6% K2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na2O, and is likely to be basaltic. The K‐rich sediment component is consistent with APXS and ChemCam observations of K‐rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. The presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar‐age terranes on Earth. PMID:27134806

  18. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater)

    DOE PAGES

    Treiman, Allan H.; Bish, David L.; Vaniman, David T.; ...

    2015-12-27

    The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or 95); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations—like ferrihydrite. The Windjana sample shows little alteration and was likely cemented bymore » its magnetite and ferrihydrite. From ChemCam Laser-Induced Breakdown Spectrometer (LIBS) chemical analyses, Windjana is representative of the Dillinger and Mount Remarkable members of the Kimberley formation. LIBS data suggest that the Kimberley sediments include at least three chemical components. The most K-rich targets have 5.6% K 2O, ~1.8 times that of Windjana, implying a sediment component with >40% sanidine, e.g., a trachyte. A second component is rich in mafic minerals, with little feldspar (like a shergottite). A third component is richer in plagioclase and in Na 2O, and is likely to be basaltic. The K-rich sediment component is consistent with APXS and ChemCam observations of K-rich rocks elsewhere in Gale Crater. The source of this sediment component was likely volcanic. Finally, the presence of sediment from many igneous sources, in concert with Curiosity's identifications of other igneous materials (e.g., mugearite), implies that the northern rim of Gale Crater exposes a diverse igneous complex, at least as diverse as that found in similar-age terranes on Earth.« less

  19. Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa

    NASA Astrophysics Data System (ADS)

    Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri

    2017-03-01

    Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.

  20. Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California.

    USGS Publications Warehouse

    Evarts, R.C.; Schiffman, P.

    1983-01-01

    Metamorphic zonation overprinted on the volcanic member and overlying volcanogenic sediments of the ophiolite complex increases downward in grade and is characterized by the sequential appearance with depth of zeolites, ferric pumpellyite and pistacitic epidote. Metamorphic assemblages of the plutonic member of the complex are characterized by the presence of calcic amphibole. The overprinting represents the effects of hydrothermal metamorphism resulting from the massive interaction between hot igneous rocks and convecting sea-water in a submarine environment. A thermal gradient of 100oC/km is postulated to account for the zonal recrystallization effects in the volcanic member. The diversity and sporadic distribution of mineral assemblages in the amphibole zone are considered due to the limited availability of H2O in the deeper part of the complex. Details of the zonation and representative microprobe analyses are tabulated.-M.S.

  1. Geologic map of the Topock 7.5’ quadrangle, Arizona and California

    USGS Publications Warehouse

    Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.

    2013-01-01

    The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) the younger fluvial boulder conglomerate of Bat Cave Wash, (4) the fluvial Chemehuevi Formation and related valley-margin deposits, and (5) fluvial Holocene deposits under the river and the valley floor. These fluvial records of Colorado River deposition are interspersed with piedmont alluvial fan deposits of several ages.

  2. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less

  3. Basalt-trachybasalt samples in Gale Crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger Craig

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg#more » = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.« less

  4. Basalt-trachybasalt samples in Gale Crater, Mars

    DOE PAGES

    Edwards, Peter H.; Bridges, John C.; Wiens, Roger Craig; ...

    2017-09-14

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg#more » = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.« less

  5. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  6. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W. (Editor); Papike, James J. (Editor)

    1996-01-01

    This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas.

  7. Elevation and igneous crater modification on Venus: Implications for magmatic volatile content

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.

    1993-01-01

    Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.

  8. Combined 40Ar/39Ar and Fission-Track study of the Freetown Layered Igneous Complex, Freetown, Sierra Leone, West Africa: Implications for the Initial Break-up of Pangea to form the Central Atlantic Ocean and Insight into the Post-rift Evolution of the Sie

    NASA Astrophysics Data System (ADS)

    Barrie, Ibrahim; Wijbrans, Jan; Andriessen, Paul; Beunk, Frank; Strasser-King, Victor; Fode, Daniel

    2010-05-01

    Sierra Leone lies within the south-western part of the West African Craton and comprises two major Archaean structural divisions: a low-grade granite-greenstone terrane characterised by N-S striking structures and a NW-SE striking highly metamorphosed belt of strained rocks that form the coastal margin of the craton. Intruded into the belt is the Freetown Layered Igneous Complex (FLIC), a tholeiitic magamtic body emplaced prior to or during the break-up of Pangea to form the Central Atlantic Ocean and, forming today the high ground of the coastal outline of Sierra Leone which is one of the most distinctive features on the West African coast. The break-up of Pangaea to form the Central Atlantic and its passive margins began in the Early Jurassic. Geo-tectonically, the break-up was particularly characterised by the formation of the Central Atlantic Magmatic Province (CAMP), covering once-contiguous parts of North America, Europe, Africa and South America. The FLIC forming part of the heart of CAMP is the largest single layered igneous intrusive yet known on either side of the Central Atlantic, measuring on surface, 65 x 14 x 7 km. Geophysical investigations indicate that the intrusion extends offshore to a depth of about 20 km. Geologically the Complex is a rhythmically layered elongated ultramafic-mafic lopolith divisible into 4 major zones each comprising repeated sequences of troctolitic, gabbroic and anorthositic rocks. An idealised unit of layering is from base upwards: dunite, troctolite, olivine-gabbro, leuco-gabbro, gabbro-norite and anorthosite cumulates. 40Ar-39Ar age spectra and 40Ar/36Ar versus 39Ar/36Ar isochron plots obtained by stepwise-heating experiments on plagioclases, biotites and amphiboles from troctolites, olivine-gabbros, gabbro-norites and anorthosites of the four zones yield plateau and isochron ages that seem to depict the cooling history of the Complex after emplacement. The biotites and some of the plagioclases and amphiboles give very good plateaus that range from 196.3 ± 3 Ma to 232.1 ± 9 Ma with the best-fit isochron plots showing a range from 193.3± 10 Ma to 234.1 ± 11 Ma. Because these dates represent cooling ages, we interpret them as representing a minimum intrusion-age of the Complex implying that its true emplacement age might be somewhat older than 230 Ma. Given that most established CAMP ages revolve around 200 Ma or younger, we hypothesise that FLIC represents a hitherto unknown pre-CAMP magmatic event that might have thermally triggered the initial break-up of Pangaea to form the Central Atlantic. This view is consistent with field-observations that the Complex is cross-cut by predominantly coast-parallel mafic dykes attributed to the CAMP dyke-swarm. To ascertain the hypothesis, we are currently carrying out U-Pb zircon dating to establish, precisely, the true emplacement age of the Complex. The Fission-track ages vary from 91.7 ± 7 Ma to 114.6 ± 9 Ma. This age range shows that after emplacement and crystallisation, the FLIC underwent an extremely slow cooling for a long period of time. This in turn implies that after the break-up of Pangea to form, in part, the Sierra Leone margin, a late and slow uplift (Erosion/denudation) that took place during the Cretaceous was a very important geological process that characterised the post-rift evolution of the margin. References: Barrie, I.J., P.A.M. Andriessen, F.F. Beunk, J.R. Wijbrans, V.E.H. Strasser-King, D.V.A.Fode. (2006). Tectonothermal Evolution of the Sierra Leone Passive Continental Margin, West Africa: Constraints from Thermochronology. Geochemica et Cosmochemica Acta 70 (18): A36- A36 Suppl. S Aug-Sep 2006. Marzoli, A., P.R. Renne, E.M. Piccirillo, M. Ernesto, G. Bellieni, A De Min. (1999). Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science284: 616-618. McHone, J.G. (2000). Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophysics, 316: 287-296. Umeji, A.C. (1983). Geochemistry and Mineralogy of the Freetown Layered Basic Igneous Complex of Sierra Leone. Chemical Geology, 39: 17-38. Wells, M.K. (1962). Structure and Petrology of the Freetown Layered Basic Complex of Sierra Leone. Overseas Geol. Mineral. Res. Bull. Suppl., 4, 115 pp. Williams, H.R. (1986). The Archaean Kaila Group of Western Sierra Leone: Geology and Relations with adjacent Granite-Greenstone Terrane. Precambrian Research, 38: 201-213.

  9. Lunar Cordierite-Spinel Troctolite: Igneous History, and Volatiles

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.; Gross, J.

    2012-03-01

    Apollo sample 15295,101 contains a cordierite spinel troctolite (Marvin et al., 1989). The cordierite is volatile-free, at least by EMP — more precise analyses are in progress. The troctolite may be a partial melt of a spinel-rich igneous cumulate.

  10. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ahmad, Irshad; Khan, Shuhab; Lapen, Thomas; Burke, Kevin; Jehan, Noor

    2013-01-01

    New isotopic ages on zircons from rocks of the Peshawar Plain Alkaline Igneous Province (PPAIP) reveal for the first time the occurrence of ignimbritic Cenozoic (Oligocene) volcanism in the Himalaya at 26.7 ± 0.8 Ma. Other new ages confirm that PPAIP rift-related igneous activity was Permian and lasted from ˜290 Ma to ˜250 Ma. Although PPAIP rocks are petrologically and geochemically typical of rifts and have been suggested to be linked to rifting on the Pangea continental margin at the initiation of the Neotethys Ocean, there are no documented rift-related structures mapped in Permian rocks of the Peshawar Plain. We suggest that Permian rift-related structures have been dismembered and/or reactivated during shortening associated with India-Asia collision. Shortening in the area between the Main Mantle Thrust (MMT) and the Main Boundary Thrust (MBT) may be indicative of the subsurface northern extension of the Salt Range evaporites. Late Cenozoic sedimentary rocks of the Peshawar Plain deposited during and after Himalayan thrusting occupy a piggy-back basin on top of the thrust belt. Those sedimentary rocks have buried surviving evidence of Permian rift-related structures. Igneous rocks of the PPAIP have been both metamorphosed and deformed during the Himalayan collision and Cenozoic igneous activity, apart from the newly recognized Gohati volcanism, has involved only the intrusion of small cross-cutting granitic bodies concentrated in areas such as Malakand that are close to the MMT. Measurements on Chingalai Gneiss zircons have confirmed the occurrence of 816 ± 70 Ma aged rocks in the Precambrian basement of the Peshawar Plain that are comparable in age to rocks in the Malani igneous province of the Rajasthan platform ˜1000 km to the south.

  11. [Governance of tertiary referral hospitals in the Democratic Republic of the Congo: a critical interpretive synthesis of the literature].

    PubMed

    Karemere, H; Kahindo, J B; Ribesse, N; Macq, J

    2013-01-01

    Because hospitals are complex enterprises requiring adaptive systems, it is appropriate to apply the theory and terminology of governance or even better adaptive governance to the interpretation of their management. This study focused on understanding hospital governance in Logo, Bunia, and Katana, three hospitals in two regions of the eastern DRC, which has been characterized by intermittent armed conflict since 1996. In such a context of war and continuous insecurity, how can governance be interpreted for hospitals required to adapt to a constantly changing environment to be able to continue to provide health care? A critical interpretive synthesis of the literature, identified by searching for keywords related to governance. The concepts of governance, adaptive governance, performance, leadership, and complex adaptive system concepts are defined. The interpretation of the concepts helps us to better understand (1) the hospital as a complex adaptive system, (2) the governance of tertiary referral hospitals, (3) analysis of hospital performance, and (4) leadership for good governance of these hospitals. The interpretation of these concepts raises several questions about their application to the eastern DRC. Conclusion. This critical interpretive synthesis opens the door to a new way of exploring tertiary hospitals and their governance in the eastern DRC.

  12. Geology of the National Capital Region: field trip guidebook

    USGS Publications Warehouse

    Burton, William; Southworth, Scott

    2004-01-01

    The 2004 Joint Northeast-Southeast Section Meeting of the Geological Society of America is the fourth such meeting and the third to be held in or near Washington, D.C. This guidebook and the field trips presented herein are intended to provide meeting participants, as well as other interested readers, a means to understand and enjoy the rich geological and historical legacy of the National Capital Region. The field trips cover all of the major physiographic and geologic provinces of the central Appalachians in the Mid-Atlantic region. Trip 1 outlines the tectonic history of northern Virginia along an east-to-west transect from the Coastal Plain province to the Blue Ridge province, whereas the other field trips each focus on a specific province. From west to east, these excursions investigate the paleoclimate controls on the stratigraphy of the Paleozoic rocks of the Allegheny Plateau and Valley and Ridge province in West Virginia, Pennsylvania, and Maryland (Trip 3); Eocene volcanic rocks that intrude Paleozoic rocks in the westernmost Valley and Ridge province in Virginia and West Virginia (Trip 4); age, petrology, and structure of Mesoproterozoic gneisses and granitoids located in the Blue Ridge province within and near Shenandoah National Park, Virginia (Trip 2); the use of argon data to unravel the complex structural and thermal history of the metamorphic rocks of the eastern Piedmont province in Maryland and Virginia (Trip 5); the use of cosmogenic isotopes to understand the timing of bedrock incision and formation of terraces along the Potomac River in the eastern Piedmont province near Great Falls, Virginia and Maryland (Trip 6); the nature of the boundary between rocks of the Goochland and Chopawamsic terranes in the eastern Piedmont of Virginia (Trip 7); the role of bluffs and fluvial terraces of the Coastal Plain in the Civil War Battle of Fredericksburg, Virginia (Trip 8); and the Tertiary lithology and paleontology of Coastal Plain strata around the Chesapeake Bay of Virginia and Maryland (Trip 9). Some of the field trips present new geochronological research that uses isotopic techniques to unravel Earth history and processes, including U-Pb dating to determine the timing of metamorphism and igneous activity associated with the Mesoproterozoic Grenville orogeny (Trip 2); argon (4DAr/39Ar) analysis to understand the complex Paleozoic history of deformation and metamorphism in the Piedmont (Trip 5); and cosmogenic beryllium-10 data to derive exposure ages of landforms and deposits of the Potomac River valley (Trip 6). Several trips shed insight on significant or enigmatic geologic features of the region. Trip 3 presents evidence for global paleoclimate controls on the Paleozoic stratigraphy of the Appalachian basin, including evidence for Late Devonian glacial deposits. Trip 4 investigates unusual Eocene igneous rocks in the Eastern United States, and Trip 2 visits several local ductile high-strain zones, offering geologists opportunities to consider the importance of such structures relative to the poorly understood Rockfish Valley fault zone in the Blue Ridge province. In the Piedmont province, Trip 7 focuses on a controversial terrane boundary, whereas Trip 5 crosses several lithologic belts with distinct thermotectonic histories that suggest terrane boundaries. Trip 6 sheds new light on the erosional history of a major river gorge cut into crystalline rocks in the Fall Zone.Four trips are recommended for Earth science teachers and are cosponsored by the National Association of Geologic Teachers (NAGT). These trips focus on the tectonic history of northern Virginia (Trip 1), terraces of the Potomac River at Great Falls and cosmogenic isotope analysis to date the terraces and the incision history (Trip 6), and Tertiary lithology and paleontology of the Chesapeake Bay region (Trip 9). Trip 8 takes advantage of the rich Civil War history of this region to look at the role that geology played in the strategies and outcome of the Battle of Fredericksburg. This guidebook is the result of much hard work by many individuals. The editors wish to thank the field trip leaders and authors, the technical reviewers, and Nancy Stamm of ths USGS Geologic Names Committee. We also owe a very special thanks to Linda Gundersen, Chief Scientist, Geologic Discipline, USGS, who provided funding for the guidebook.

  13. Ages of igneous and hydrothermal events in the Round Mountain and Manhattan gold districts, Nye County, Nevada.

    USGS Publications Warehouse

    Shawe, D.R.; Marvin, R.F.; Andriessen, P.A.M.; Mehnert, H.H.; Merritt, V.M.

    1986-01-01

    Isotopic age determinations of rocks and minerals separated from them are applied to refining and correlating the geological history of igneous and mineralizing events in a part of the Basin and Range province. -G.J.N.

  14. Rock burst governance of working face under igneous rock

    NASA Astrophysics Data System (ADS)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  15. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an

  16. Shoshonites and Associated Calc-Alkaline Rocks from the Eastern Sayan, Central Asian Orogenic Belt: Geochemistry and Tectonic Setting

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, A. E.; Romanov, M. I.; Kadilnikov, P. I.; Matushkin, N. Y.; Romanova, I.

    2017-12-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens in the world, which formation started in the Neoproterozoic giving rise to numerous assemblages of island arcs, ophiolites, continental fragments and sedimentary basins. The Eastern Sayan, located at the southwestern margin of the Siberian craton, is the key area in understanding the initiation of orogenic processes in the CAOB. Widely distributed mafic igneous rocks (dolerites, gabbro etc.) in the Eastern Sayan were previously considered as part of the Nersa igneous complex of the Neoproterozoic age, whereas tectonic setting of these rocks remained highly debatable. New geochemical and mineralogical data from igneous mafic rocks within the Eastern Sayan show presence of rocks with shoshonitic and high- and low-K calc-alkaline affinities and allowed us to refine the tectonic context of their formation in the southwestern margin of the Siberian craton.All studied intrusive and volcanic rocks in the Eastern Sayan showing OIB-like geochemical signatures. The high-K rocks contain orthoclase, olivine, diopside, augite, anorthite, various amphiboles, including edenite, cataphorite, Mg-cataphorite, anthophyllite-gedrite, Mg-Fe hornblende, biotites of the siderophyllite-eastonite-annite series, as well as zircon, baddeleyite, apatite, magnetite, ilmenite and Cr-spinel. The high-K rock type is characterised by high K2O contents (up to 9.2 wt. %), K2O/Na2O ratios over 90, lowered TiO2 and MgO and moderate FeO contents and negative P and Sr anomalies. In contrast, low-K rocks, characterised by moderate and increased TiO2 and MgO contents, contain augite, pigeonite, olivine, andesine and accessory minerals, such as rutile, titanite, ilmenite and apatite. Both rock types vary considerably in Nb and Ta concentrations, from OIB-like to E-MORB. Such geochemical signatures of calc-alkaline and shoshonitic igneous rocks are indicative of an active continental margin setting. Presence of the active continental margin setting in the southwestern margin of the Siberian craton during the late Neoproterozoic-early Cambrian time is in agreement with the U-Pb age of 511 Ma of high-K dolerites (Gladkochub et al., 2006) and the development of the coeval island arc assemblages in the northern part of the CAOB.

  17. Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Milani, Lorenzo; Bolhar, Robert; Frei, Dirk; Harlov, Daniel E.; Samuel, Vinod O.

    2017-12-01

    In-situ trace element analyses of fluorapatite, calcite, dolomite, olivine, and phlogopite have been undertaken on representative phoscorite and carbonatite rocks of the Palaeoproterozoic Phalaborwa Complex. Textural and compositional characterization reveals uniformity of fluorapatite and calcite among most of the intrusions, and seems to favor a common genetic origin for the phoscorite-carbonatite association. Representing major repositories for rare earth elements (REE), fluorapatite and calcite exhibit tightly correlated light REE (LREE) abundances, suggesting that partitioning of LREE into these rock forming minerals was principally controlled by simple igneous differentiation. However, light rare earth element distribution in apatite and calcite cannot be adequately explained by equilibrium and fractional crystallization and instead favors a complex crystallization history involving mixing of compositionally distinct magma batches, in agreement with previously reported mineral isotope variability that requires open-system behaviour.

  18. Facies, Stratigraphic and Depositional Model of the Sediments in the Abrolhos Archipelago (Bahia, BRAZIL)

    NASA Astrophysics Data System (ADS)

    Matte, R. R.; Zambonato, E. E.

    2012-04-01

    Located in the Mucuri Basin on the continental shelf of southern Bahia state, northeast Brazil, about 70 km from the city of Caravelas,the Abrolhos archipelago is made up of five islands; Santa Barbara, Redonda, Siriba, Guarita and Sueste. The exhumed sediments in the Abrolhos archipelago are a rare record of the turbidite systems which fill the Brazilian Atlantic Basin, and are probably an unprecedented example of a plataform turbidite system (Dr. Mutti, personal communication). Despite the limited area, the outcrops display a wide facies variation produced by different depositional processes, and also allow for the observation of the layer geometries. Associated with such sedimentary rocks, the Abrolhos Volcanic Complex belongs stratigraphically to the Abrolhos Formation. These igneous rocks were dated by the Ar / Ar method, with ages ranging from 60 to 40 My, placing such Volcanic Complex between the Paleocene and Eocene. The sedimentary section is best exposed in the Santa Barbara and Redonda islands and altogether it is 70 m thick. The measured vertical sections show a good stratigraphic correlation between the rocks of the western portion of the first island and those of Redonda Island. However, there is no correlation between the eastern and western portions of Santa Barbara Island, since they are very likely interrupted by the igneous intrusion and possibly by faulting. The sedimentary stack consists of deposits with alternated regressive and transgressive episodes interpreted as high frequency sequences. The coarse facies, sandstones and conglomerates, with abrupt or erosive bases record regressive phases. On the other hand, finer sandstones and siltstones facies, which are partly bioturbated, correspond to phases of a little sediment supply. In the central and eastern portions of Santa Barbara Island, there is a trend of progradational stacking, while both in the western portion of Santa Barbara and in Redonda islands an agradational trend is observed. The predominance of layers with tabular geometry, characteristic of turbidite lobes, the presence of hummocky stratification, trace fossils typical of shallow water (Ophiomorphs and Thalassinoides), all associated with the occurrence of the carbonaceous material as well as plant fragments suggest a deltaic/ plataform depositional context. Textural features and sedimentary structures observed in the conglomerates and sandstones show the action of gravitational flows of high and low density. The fine interlaminated sandstones and siltstones later deformed as slumps or slides, and conglomerates with oriented clasts indicate, respectively, mass movements and action of debris flow. Conglomeratic lags levels record a bypass phenomenon. There are no biostratigraphic data in these studied outcrops. However, petrographic analyses revealed the presence of fragments of igneous rocks (basalts and diabases) in both sandstones and conglomerates, suggesting a relative contemporaneity between igneous activity and sediment deposition. Futhermore, petrographic analyses also found poor permo-porous conditions in the reservoirs due to the presence of fragments of volcanic rocks and the abundance of intraclasts / pseudomatrix.

  19. The Formation of Igneous CAIs and Chondrules by Impacts?

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Love, Stanley G.

    2001-01-01

    Numerous challenges exist with forming the igneous spheres found within chondrites via collision events in the early solar nebula. We explore these challenges and discuss potential methods to overcome them. Collision models should be received cautiously. Additional information is contained in the original extended abstract.

  20. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  1. A review of scientific literature examining the mining history, geology, mineralogy, and amphibole asbestos health effects of the Rainy Creek igneous complex, Libby, Montana, USA.

    PubMed

    Bandli, Bryan R; Gunter, Mickey E

    2006-11-01

    This article reviews the past 90 yr of scientific research directed on multiple aspects of the unique geology and environmental health issues surrounding the vermiculite deposit found at Libby, MT. Hydrothermal alteration and extensive weathering of the ultramafic units resulted in the formation of a rich deposit of vermiculite that was mined for 67 yr and used in numerous consumer products in its expanded form. Later intrusions of alkaline units caused hydrothermal alteration of the pyroxenes, resulting in formation of amphiboles. Some of these amphiboles occur in the asbestiform habit and have been associated with pulmonary disease in former miners and mill workers. Identification of these amphibole asbestos minerals has received little attention in the past, but recent work shows that the majority of the amphibole mineral species present may not be any of the amphibole species currently regulated by government agencies. Epidemiological studies on former miners have, nevertheless, shown that the amphibole asbestos from the Rainy Creek igneous complex is harmful; also, a recent study by the Agency for Toxic Substances and Disease Registry shows that residents of Libby who had not been employed in the vermiculite mining or milling operations also appear to have developed asbestos-related pulmonary diseases at a higher rate than the general public elsewhere. Since November 1999, the U.S. Environmental Protection Agency has been involved in the cleanup of asbestos-contaminated sites in and around Libby associated with the mining and processing of vermiculite.

  2. Platinum group elements in stream sediments of mining zones: The Hex River (Bushveld Igneous Complex, South Africa)

    NASA Astrophysics Data System (ADS)

    Almécija, Clara; Cobelo-García, Antonio; Wepener, Victor; Prego, Ricardo

    2017-05-01

    Assessment of the environmental impact of platinum group elements (PGE) and other trace elements from mining activities is essential to prevent potential environmental risks. This study evaluates the concentrations of PGE in stream sediments of the Hex River, which drains the mining area of the Bushveld Igneous Complex (South Africa), at four sampling points. Major, minor and trace elements (Fe, Ca, Al, Mg, Mn, V, Cr, Zn, Cu, As, Co, Ni, Cd, and Pb) were analyzed by FAAS and ETAAS in suspended particulate matter and different sediment fractions (<63, 63-500 and 500-2000 μm), and Pt, Pd, Rh, and Ir were measured by ICP-MS after removal of interfering elements (cation exchange resin 50W-DOWEX-X8). Procedures were blank-corrected and accuracy checked using reference materials. Nickel, Cr, Pt, Pd, Rh and Ir show concentrations 3-, 13- 18-, 28-, 48- and 44- fold the typical upper continental crust levels, respectively, although lower than concentrations reported for the parent rocks. The highest concentrations were observed closer to the mining area, decreasing with distance and in the <63 μm fraction, probably derived from atmospheric deposition and surface runoff of PGE-rich particles released from mining activities. Thus, mining activities are causing some disturbance of the surface PGE geochemical cycle, increasing the presence of PGE in the fine fraction of river sediments. We propose that indicators such as airborne particulate matter, and soil and river sediment quality, should be added to the protocols for evaluating the sustainability of mining activities.

  3. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells.

    PubMed

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-09

    We report the preparation of Cu 2 S, In 2 S 3 , CuInS 2 and Cu(In,Ga)S 2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN 1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  4. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    NASA Astrophysics Data System (ADS)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  5. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  6. Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk: Evidence from Precursors of Chondrules and Igneous Ca,Al-Rich Inclusions

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Nagashima, K.; Libourel, G.; Miller, K. E.

    2017-02-01

    Here we review the mineralogy, petrography, O-isotope compositions, and trace element abundances of precursors of chondrules and igneous CAIs which provide important constraints on the mechanisms of transient heating events in the protoplanetary disk.

  7. Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.

    2006-01-01

    Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.

  8. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE and may not only cause or modify Ce anomalies and Th-U fractionation, but also mobilization of and fractionation between Zr, Hf, Th and redox-insensitive REY during weathering, pedogenesis, diagenesis and incongruent dissolution of particles in seawater and freshwater. Siderophores may significantly affect the use of HFSE as geochemical tools. Concave downward light REY patterns may be used as a biosignature for water-rock interaction in the presence of siderophores. Enhanced and preferential mobilization of U relative to Th in the presence of siderophores may produce Th-U signals comparable to those indicative of weathering under oxidized conditions, which might constrain the use of U concentrations and Th/U ratios as a paleoredox-proxy. The enhanced mobilization of Zr and especially Hf from igneous rocks in the presence of DFOB might have implications for the use of the latter as a tracer for the impact of continental weathering on seawater chemistry. Because siderophore complexes affect the particle-reactivity of Hf and Zr, they may prevent effective removal of terrigenous Hf and Zr during aggregation/coagulation of riverine particles in estuaries. Siderophore-promoted solubilization and stabilization might hence be an additional way to transport continental Hf and Zr to the oceans. Furthermore, siderophore-enhanced mobilization may also have implications for the remediation techniques employed to immobilize HFSE such as U, Th and REY, at nuclear waste and reprocessing sites and at REY ore processing plants, where soils are commonly contaminated with these (sometimes radioactive) heavy metals.

  9. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  10. Tandem Carbocupration/Oxygenation of Terminal Alkynes

    PubMed Central

    Zhang, Donghui; Ready, Joseph M.

    2008-01-01

    A direct and general synthesis of α-branched aldehydes and their enol derivatives is described. Carbocupration of terminal alkynes and subsequent oxygenation with lithium tert-butyl peroxide generates a metallo-enolate. Trapping with various electrophiles provides α-branched aldehydes or stereo-defined trisubstituted enol esters or silyl ethers. The tandem carbocupration/oxygenation tolerates alkyl and silyl ethers, esters and tertiary amines. The reaction is effective with organocopper complexes derived from primary, secondary and tertiary Grignard reagents and from n-butyllithium. PMID:16321021

  11. Financial impact of tertiary care in an academic medical center.

    PubMed

    Huber, T S; Carlton, L M; O'Hern, D G; Hardt, N S; Keith Ozaki, C; Flynn, T C; Seeger, J M

    2000-06-01

    To analyze the financial impact of three complex vascular surgical procedures to both an academic hospital and a department of surgery and to examine the potential impact of decreased reimbursements. The cost of providing tertiary care has been implicated as one potential cause of the financial difficulties affecting academic medical centers. Patients undergoing revascularization for chronic mesenteric ischemia, elective thoracoabdominal aortic aneurysm repair, and treatment of infected aortic grafts at the University of Florida were compared with those undergoing elective infrarenal aortic reconstruction and carotid endarterectomy. Hospital costs and profit summaries were obtained from the Clinical Resource Management Office. Departmental costs and profit summary were estimated based on the procedural relative value units (RVUs), the average clinical cost per RVU ($33.12), surgeon charges, and the collection rate for the vascular surgery division (30.2%) obtained from the Faculty Group Practice. Surgeon work effort was analyzed using the procedural work RVUs and the estimated total care time. The analyses were performed for all payors and the subset of Medicare patients, and the potential impact of a 15% reduction in hospital and physician reimbursement was analyzed. Net hospital income was positive for all but one of the tertiary care procedures, but net losses were sustained by the hospital for the mesenteric ischemia and infected aortic graft groups among the Medicare patients. In contrast, the estimated reimbursement to the department of surgery for all payors was insufficient to offset the clinical cost of providing the RVUs for all procedures, and the estimated losses were greater for the Medicare patients alone. The surgeon work effort was dramatically higher for the tertiary care procedures, whereas the reimbursement per work effort was lower. A 15% reduction in reimbursement would result in an estimated net loss to the hospital for each of the tertiary care procedures and would exacerbate the estimated losses to the department. Caring for complex surgical problems is currently profitable to an academic hospital but is associated with marginal losses for a department of surgery. Economic forces resulting from further decreases in hospital and physician reimbursement may limit access to academic medical centers and surgeons for patients with complex surgical problems and may compromise the overall academic mission.

  12. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    PubMed

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  13. Thorium and rare earth minerals in the Powderhorn district, Gunnison County, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.; Wallace, Stewart R.

    1954-01-01

    Thorium has been found since 1949 in at least 33 deposits in an area 6 miles wide and 20 miles long in the Powderhorn district, Gunnison County, Colo. The district is composed largely of pre-Jurassic metamorphic and igneous rocks, which are chiefly if not entirely pre-Cambrian in age. The metamorphic and igneous rocks are overlain by sandstone of the Morrison formation of Jurassic age, and by volcanic rocks of the Alboroto group and Hinsdale formation of Miocene and Pliocene (?) age, respectively. The thorium deposits occur in or near alkalic igneous rocks in which such elements as titanium, rare earths, barium, strontium, and niobium occur in greater-than-average amounts. The greatest mass of the alkalic igneous rocks the Iron Hill composite stoc,- occupies an area of 12 square miles in the southeastern part of the district. The age of the thorium deposits, like that of the alkalic igneous rocks, is not known other than pre-Jurassic. The thorium veins and mineralized shear zones range from a few inches to 18 feet in thickness and from a few feet to 3,500 feet in length. The veins are composed of calcite,.dolomite, siderite, ankerite, quartz, barite, pyrite, sphalerite, galena, goethite,. apatite, alkali feldspar, and many other minerals. The thorium occurs at least partly in thorite or hydrothorite. Sparse xenotime has been tentatively identified in one deposit. Several minerals containing rare earths of the cerium group as major constituents are found in carbonate veins near Iron Hill. Bastnaesite has been identified by X-ray methods, and cerite and synchisite are probably present also.The fluorapatite in some veins and in parts of the carbonate rock mass that occupies 2 square miles in the central part of the Iron Hill complex contains rare earths of the cerium group, generally in amounts of a fraction of a percent of the rock. The radioactivity of the deposits appears to be due almost entirely to thorium and its daughter products The ThO2 content of selected highgrade samples from the Little Johnnie vein is as much as 4 percent. The ThO2 content of the veins is generally less than 1 percent, however, and is only 0.05 to 0.1 percent in many of the veins studied. The little Johnnie vein, which was mapped in detail, can be traced discontinuously for a distance of more than 3,500 feet. The thoriumbearing material occurs as irregular veinlets and thin films introduced into the fault zone. The mineralized shear zone ranges from less than 6 inches to 5 feet in thickness. Near its west end the vein is broken by many faults in a zone that marks the edge of a roughly circular fault block, 11/2.miles in diameter, that has dropped 1,000 feet or more since the deposition of Miocene volcanic-rocks that now floor the Milkranch basin.

  14. IS ISLAND PARK A HOT DRY ROCK SYSTEM?

    USGS Publications Warehouse

    Hoover, D.B.; Pierce, Herbert A.; Long, C.L.

    1985-01-01

    The Island Park-Yellowstone National Park region comprises a complex caldera system which has formed over the last 2 m. y. The caldera system has been estimated to contain 50% of the total thermal energy remaining in all young igneous systems in the United States. As the result of a reexamination of the data and recent electrical work in the area, the authors now postulate that much of the area where the first- and second-stage calderas developed is underlain by a solidified but still hot pluton. They postulate that the pluton represents a significant hot-dry-rock resource for the United States.

  15. Peering Through a Martian Veil: ALHA84001 Sm-Nd Age Revisited

    NASA Technical Reports Server (NTRS)

    Nyquist, Laurence E.; Shih, Chi-Yu

    2013-01-01

    The ancient Martian orthopyroxenite ALH84001experienced a complex history of impact and aqueous alteration events. Here we summarize Sm-147-Nd-143 and Sm-146-Nd-142 analyses performed at JSC. Further, using REE data, we model the REE abundance pattern of the basaltic magma parental to ALH84001 cumulus orthopyroxene. We find the Sm-146-Nd-142 isotopic data to be consistent with isotopic evolution in material having the modeled Sm/Nd ratio from a time very close to the planet's formation to igneous crystallization of ALH84001 as inferred from the Sm-Nd studies.

  16. Sudbury project (University of Muenster-Ontario Geological Survey): Isotope systematics support the impact origin

    NASA Technical Reports Server (NTRS)

    Deutsch, A.; Buhl, D.; Brockmeyer, P.; Lakomy, R.; Flucks, M.

    1992-01-01

    Within the framework of the Sudbury project a considerable number of Sr-Nd isotope analyses were carried out on petrographically well-defined samples of different breccia units. Together with isotope data from the literature these data are reviewed under the aspect of a self-consistent impact model. The crucial point of this model is that the Sudbury Igneous Complex (SIC) is interpreted as a differentiated impact melt sheet without any need for an endogenic 'magmatic' component such as 'impact-triggered' magmatism or 'partial' impact melting of the crust and mixing with a mantle-derived magma.

  17. Rare earths and other trace elements in Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.

    1972-01-01

    REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.

  18. Significance of elevated K/Rb ratios in lower crustal rocks

    NASA Technical Reports Server (NTRS)

    Frost, B. Ronald; Frost, Carol D.

    1988-01-01

    The granulite uncertainty principle, which states that it is difficult or impossible to determine with certainty the maximum geopressure and geotemperature that a granulite has experienced, is addressed. Also, geochemical fingerprinting cannot always be used reliably in the nebulous region that is transitional between metamorphic and igneous environments. Ion exchange thermometers are typically useful to approximately 800 C in slowly cooled plutonic rocks unless one uses a reintegration technique on unmixed minerals, or unless a metastable mineral assemblage can be observed. It is argued that in most granulites, fossil temperatures are typically obliterated by reequilibration and/or deformation during slow cooling. Granulite metamorphism may be further complicated by the common association with igneous activity. The previously-used geochemical indicators such as high K/Rb ratios and LIL depletion may not be strictly the result of granulite facies metamorphic depletion, but also may result from igneous processes, which depend on bulk and mineral compositions and on the mineralogy of the protolith. Detailed geologic mapping will be the ultimate arbitrator of whether a given geochemical signature is the result of igneous or metamorphic processes.

  19. Multiscale Architecture of a Subduction Complex and Insight into Large-scale Material Movement in Subduction Systems

    NASA Astrophysics Data System (ADS)

    Wakabayashi, J.

    2014-12-01

    The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at different times.

  20. Provenance of Marine Sediment in the Gulf of Alaska, IODP Expedition 341: Links Between Sediment Derivation, Glacial Systems, and Exhumation of the Coastal Mountain Belts

    NASA Astrophysics Data System (ADS)

    Allen, W. K.; Dunn, C. A.; Enkelmann, E.; Ridgway, K.; Colliver, L.

    2015-12-01

    Provenance analysis of Neogene sand and diamict beds from marine boreholes drilled by the IODP Expedition 341 provides a marine sedimentary record of the interactions between tectonics, climate and sediment deposition along a glaciated convergent margin. The 341 boreholes represent a cross-margin transect that sampled the continental shelf, slope, and deep sea Surveyor Fan of the Gulf of Alaska. Our dataset currently consists of ~ 650 detrital zircons selected for double dating method utilizing both detrital zircon fission track (FT) and U-Pb analysis from sand and diamict beds, as well as zircon U-Pb geochronology and apatite FT from igneous and gneissic clasts. Detrital zircon U-Pb geochronology of sand records dominant peak ages of 53, 62, 70, and 98 Ma with minor populations of 117, 154, and 170 Ma. Most of these ages can be correlated to primary igneous sources in the Coast Plutonic Complex, the Chugach Metamorphic Complex, the plutonic rocks of Wrangellia, and the Sanak-Baranoff plutonic belt. All samples analyzed to date, covering a 10 Myr range, share nearly identical detrital zircon populations suggesting similar primary sediment sources and reworking of sediment in thrust belts and accretionary prisms along this convergent margin. Plutonic and gneissic clasts collected from the boreholes on the shelf have already been double dated. These clasts have general U-Pb zircon crystallization ages of 52-54 Ma and apatite fission track cooling ages of 10-12 Ma. These results, along with previous published studies, indicate that these clasts were derived from the Chugach Metamorphic Complex and were eroded and transported by the Bagley Ice Field and Bering Glacier. Future results using this approach should allow us to pinpoint which parts of the exhumed onshore ranges and which glacial systems provided sediment to marine environments in the Gulf of Alaska.

  1. Iron Isotope Systematics of the Bushveld Complex, South Africa: Initial Results

    NASA Astrophysics Data System (ADS)

    Stausberg, N.; Lesher, C. E.; Hoffmann-Barfod, G.; Glessner, J. J.; Tegner, C.

    2014-12-01

    Iron isotopes show systematic changes in igneous rocks that have been ascribed to fractional crystallization, partial melting, as well as, diffusion effects. Layered mafic intrusions, such as the Paleoproterozoic Bushveld Igneous Complex, are ideally suited to investigate stable isotope fractionation arising principally by fractional crystallization. The upper 2.1km of the Bushveld Complex (Upper and Upper Main Zone, UUMZ) crystallized from a basaltic magma produced by a major recharge event, building up a sequence of tholeiitic, Fe-rich, gabbroic cumulate rocks that display systematic variations in mineralogy and mineral compositions consistent with fractional crystallization. Within this sequence, magnetite joins the liquidus assemblage at ˜260m, followed by olivine at 460m and apatite at 1000m. Here, we present iron isotope measurements of bulk cumulate rocks from the Bierkraal drill core of UUMZ of the western limb. Iron was chemically separated from its matrix and analyzed for δ56Fe (relative to IRMM- 014) with a Nu plasma MC-ICPMS at the University of California, Davis, using (pseudo-) high resolution and sample-standard bracketing. The δ56Fe values for Bushveld cumulates span a range from 0.04‰ to 0.36‰, and systematically correlate with the relative abundance of pyroxene + olivine, magnetite and plagioclase. Notably, the highest δ56Fe values are found in plagioclase-rich cumulates that formed prior to magnetite crystallization. δ56Fe is also high in magnetite-rich cumulates at the onset of magnetite crystallization, while subsequent cumulates exhibit lower and variable δ56Fe principally reflecting fractionation of and modal variations in magnetite, pyroxene and fayalitic olivine. The overall relationships for δ56Fe are consistent with positive mineral - liquid Fe isotope fractionation factors for magnetite and plagioclase, and negative to near zero values for pyroxene and olivine. These initial results are being integrated into a forward model of the Bushveld liquid line of descent and will be compared to complementary work on the Skaergaard intrusion.

  2. Thermobarometric studies on the Levack Gneisses: Footwall rocks to the Sudbury Igneous Complex

    NASA Technical Reports Server (NTRS)

    James, R. S.; Peredery, W.; Sweeny, J. M.

    1992-01-01

    Granulite and amphibolite facies gneisses and migmatites of the Levack Gneiss Complex occupy a zone up to 8 km wide around the northern part of the Sudbury Igneous Complex (SIC). Orthopyroxene- and garnet-bearing tonalitic and semipelitic assemblages of granulite facies grade occur within 3 km of the SIC together with lenses of mafic and pyroxenitic rock compositions normally represented by an amphibole +/- cpx-rich assemblage; amphibolite facies assemblages dominate elsewhere in this terrain. These 2.711-Ga gneisses were introduced by (1) the Cartier Granite Batholith during late Archaean to early Proterozoic time and (2) the SIC, at 1.85 Ga, which produced a contact aureole 1-1.5 km wide in which pyroxene hornfelses are common within 200-300 m of the contact. A suite of 12 samples including both the opx-gt and amphibole-rich rock compositions have been studied. Garnets in the semipelitic gneisses are variably replaced by a plg-bio assemblage. Thermobarometric calculations using a variety of barometers and thermometers reported in the literature suggest that the granulite facies assemblages formed at depths in the 21-28 km range (6-8 kbar). Textures and mineral chemistry in the garnet-bearing semipelitic rocks indicate that this terrain underwent a second metamorphic event during uplift to depth in the 5-11 km range (2-3 kbar) and at temperatures as low as 500-550 C. This latter event is distinct from thermal recrystallization caused by the emplacement of the SIC; it probably represents metamorphism attributable to intrusion of the Cartier Granite Batholith. These data allow two interpretations for the crustal uplift of the Levack Gneisses: (1) The gneisses were tectonically uplifted prior to the Sudbury Event (due to intrusion of the Cartier Batholith); or (2) the gneisses were raised to epizonal levels as a result of meteorite impact at 1.85 Ga.

  3. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  4. Towards a comprehensive classification of igneous rocks and magmas

    NASA Astrophysics Data System (ADS)

    Middlemost, Eric A. K.

    1991-08-01

    The IUGS Subcommission on the Systematics of Igneous Rocks has recently published an excellent book on the classification of these rocks. This event has shifted the vexed question of classification towards the top of the agenda in igneous petrology. Over the years the Subcommission has used many different criteria to establish the positions of the boundaries between the various common igneous rocks. It now has to adopt a holistic approach and develop a comprehensive, coherent classification that is purged of all the minor anomalies that arise between the various classifications that it has approved. It is appreciated that the Subcommission's classification was never intended to have any genetic implications; however, it is suggested that an ideal classification should he presented in such a way that it is able to group rocks into an order that directs attention to petrogenetic relationships between individual rocks and larger groups of rocks. Unfortunately, many of the Subcommission's definitions are Earth chauvinistic; for example, igneous rocks are defined as being those rocks that solidified from a molten state either within or on the surface of the Earth. Nowhere in the book is it acknowledged that during the past 20 years, while the Subcommission has been framing its many recommendations, a whole new science of planetary petrology has subsumed classical petrology. In any new edition of the book, the Subcommission should acknowledge that rocks are essentially the solid materials of which planets, natural satellites and other broadly similar cosmic bodies are made. The Subcommission should also explicitly recognise that igneous rocks can be divided into either a main sequence of essentially common rocks or a number of supplementary clans of special rocks that evolved outside the main sequence. It is hoped that in the near future the Subcommission will rescind its recommendation that the TAS classification should be regarded as an adjunct to its more traditional QAPF modal classification. The QAPF and TAS classifications are regarded as being of equal validity, with the TAS classification being of more practical value in the classification of the common volcanic rocks and the various magmas conjured up in petrogenetic discussions. A new, comprehensive, hierarchical classification of igneous rocks is introduced, and the petrographic character and systematic position of the various rocks and clans that make up this classification are reviewed.

  5. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    PubMed

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multiple Sulfur Isotopes In The Molopo Farms Complex May Shed Light On Mechanisms Of Mineralization In The Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Magalhaes, N.; Feineman, M. D.; Bybee, G. M.; Penniston-Dorland, S.; Farquhar, J.; Draper, C.; Escobar, E.; Gates, M.; Renusch, J.

    2016-12-01

    The 2.056 Ga Bushveld Igneous Complex (BIC) is host to the world's largest layered mafic-ultramafic intrusion, the Rustenburg Layered Suite (RLS), which has >80% of the world's known platinum group elements (PGEs) reserves. The BIC results from large-volume melt extraction from the mantle and may provide insight into the formation and compositional evolution of continental crust. Despite its scientific and economic importance, the total magma volume is poorly known. This is in part because the relationship between the BIC and nearby intrusive bodies of similar age remains uncertain. In this study, we present major element, trace element, and multiple sulfur isotope data for a suite of samples spanning the stratigraphy of the Molopo Farms Complex (MFC), a layered mafic intrusion located 200 km west of the Far Western Limb of the RLS. Similar to the RLS, the MFC contains an ultramafic lower zone, a mafic main zone, and an incompatible element enriched granophyric unit near the contact with the roof rocks. However, it has no Critical Zone, and an insignificant concentration of PGEs. Since the PGEs in the RLS are primarily hosted in sulfides, it has been inferred that the mineralization is closely linked to the source and behavior of sulfur. The RLS displays mass independent fractionation of sulfur (S-MIF; denoted by Δ33S), which suggests incorporation of surface-derived materials into the magma prior to or during emplacement. Multiple sulfur isotopes of MFC samples also show non-zero mean Δ33S (0.04±0.02‰, 1sd), although it is lower than the mean for the RLS (0.11±0.02‰, 1sd). Similarities in trace element ratios between the MFC mafic zone and RLS marginal zone suggest the same parental magma contributed to both intrusions. Taken together, these results suggest that both the RLS and the MFC started with similar magmatic compositions, and while both assimilated sulfur with an Archean surface-derived component, the RLS received more of this component in proportion to its volume. The lack of PGE mineralization in the MFC may reflect the lesser addition of Archean sedimentary sulfur.

  7. From Carbonatite to Ikaite: How high-T carbonates are transformed into low-T carbonate minerals in SW Greenland

    NASA Astrophysics Data System (ADS)

    Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.

    2015-12-01

    The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the sodium carbonate solution issuing in Ikka Fjord.

  8. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that Trans-Pecos Texas may be an important locale for the study of subvolcanic phreatomagmatic processes and associated phenomena. Eocene intrusions in the study area underwent complex interactions with wet sediment at shallow levels beneath the surface in strata as old as Maastrichtian, which must have remained unlithified and rich in pore water for ~ 20-25??Ma. ?? 2009 Elsevier B.V. All rights reserved.

  9. Environmental Impact Assessment of Dumpsite: Case Study from southwestern Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alfaifi, H. J.; Alhumidan, S. M.; Kahal, A. Y.; Abdel Rahman, K.; Al-Qadasi, B.

    2017-12-01

    The dumpsite is underlain by highly fractured Precambrian basement complex of metamorphosed igneous and sedimentary rocks. Minor Tertiary, Quaternary basalts and Quaternary alluvial deposits overlie the basement rocks. Structurally, the area is affected by intersected series of north-to northwest trending faults. Hydrogeological setting of the study area is characterized by shallow groundwater aquifers in the fractured and weathered basement rocks. Moreover, the area exposes heavy rains especially during summer seasons, which may accelerate the transferring of contaminated water to the neighbouring valleys and low land. At present, the residential and Khamis Mushait new industrial zone are situated close to the dumpsite. The main objective of this study is to assess the leachate intrusion and groundwater contamination in the urban area of Khamis Mushait. Geophysical and geochemical techniques have been successfully applied in the assessment of environmental impact of dumpsites globally. Near-surface geophysical investigations such as Seismic refraction tomography, Schlumberger vertical electrical soundings (VES) and ground magnetic survey have been conducted to detect the controlling structures and lithological variation of the dumpsite. In addition, four water samples from hand dug wells and two surface water samples were collected from and around dumpsite. These water samples were analysed geochemically to inspect the presence of heavy metals, salts (sulphates, nitrates and chlorides), radioactive elements and physically to assess pH, TDS, DO, salinity, total hardness, turbidity, electrical conductivity and temperature. Results of VES illustrate low resistivity zones (≤ 30 Ohm-m) due to conductive leachate from dumpsite while seismic models and ground magnetic intensity map delineated fractures beneath the weathered basement layer which may provide pathways for the contaminants. The physico-chemical analysis of the collected groundwater samples revealed that there are considerable impacts of dumpsite leachate in the shallow groundwater. pH values of the representative samples indicate its unsuitability for human consumption. Leachate flow direction is oriented NNW-SSE and follows the similar flow pattern as deduced from hydrogeological investigation.

  10. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  11. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  12. Paleomagnetism of the Permian-Triassic intrusions from the Tunguska syncline and the Angara-Taseeva depression, Siberian Traps Large Igneous Province: Evidence of contrasting styles of magmatism

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Veselovskiy, R. V.; Ivanov, A. V.

    2018-01-01

    Based on the detailed paleomagnetic investigation, we distinguished different styles of intrusive magmatic activity in two regions of the Siberian Traps Large Igneous Province (LIP). The emplacement of intrusions in the Angara-Taseeva depression (the southern periphery of the Siberian Traps LIP) occurred as brief but intense bursts of magmatic activity that led to the emplacement of large and extensive sills. We argue that this pulsating style of intrusive magmatic activity is common for the margins of the Siberian Traps LIP. We also estimated the duration of the main magmatic events as < 104-105 years for the large sills and their area of manifestation (> 200-250 km in diameter and dozens of thousands km2 in square). On the contrary, in the central part of the Siberian Traps LIP (the Tunguska syncline) the intrusive magmatism was more or less continuous without intense peaks of magmatic activity. Furthermore, we obtained the first reliable magnetostratigraphic data from the volcanic section of the Tunguska syncline. Finally, we analyzed the available paleomagnetic and geochronological data from the Siberian platform and suggested the correlation scheme of the studied intrusive complexes with the volcanic sequences of the Siberian Traps LIP.

  13. Sill induced hydrothermal venting: A summary of our current understanding

    NASA Astrophysics Data System (ADS)

    Jerram, Dougal; Svenesn, Henrik; Planke, Sverre; Millett, John; Reynolds, Pete

    2017-04-01

    Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the sub-volcanic basins represent a specific style of piercement structure, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread in Large Igneous Provinces for example on both the Norwegian and the Greenland margins of the North Atlantic Igneous Province (NAIP). In this overview we assess the distribution, types and occurrence of hydrothermal vent structures associated with LIPs. There is particular focus on those within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent structures, can be realised along the entirety of volcanic rifted margins and LIPs. This will help greatly in our understanding of the evolving palaeo-environments, and climate contributions during the evolution of these short lived massive volcanic events.

  14. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    ERIC Educational Resources Information Center

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  15. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  16. Positive Holes Flowing through Stressed Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akihiro

    Igneous rocks generally involve positive hole pairs (PHPs), a kind of lattice defects also known as peroxy links: O3X-OO-YO3 with X, Y = Si4+, Al3+ etc. When a portion of such a rock block is stressed or heated, PHPs are deformed and positive holes (p-holes) are activated. They are defect electrons corresponding to the O- electronic state in the O2- sublattice and can spread away into unstressed portion. Currents and positive surface electrifications detected in laboratory stressed igneous rocks can be explained by the p-holes. When the p-holes are activated in the Earth's crust accompanied with seismic or volcanic events, they would lead to anomalous electromagnetic phenomena and could affect our electronic communication.

  17. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  18. How tectonics controlled post-collisional magmatism within the Dinarides: Inferences based on study of tectono-magmatic events in the Kopaonik Mts. (Southern Serbia)

    NASA Astrophysics Data System (ADS)

    Mladenović, Ana; Trivić, Branislav; Cvetković, Vladica

    2015-04-01

    In this study, we report evidence about coupling between tectonic and magmatic processes in a complex orogenic system. The study focuses on the Kopaonik Mts. situated between the Dinarides and the Carpatho-Balkanides (Southern Serbia), and a perfect area for investigating tectono-magmatic evolution. We combine a new data set on tectonic paleostress tensors with the existing information on Cenozoic magmatic rocks in the wider Kopaonik Mts. area. The paleostress study revealed the presence of four brittle deformational phases. The established link between fault mechanism and igneous processes suggests that two large tectono-magmatic events occurred in this area. The Late Eocene-Early Miocene tectono-magmatic event was generally characterized by transpressional tectonics that provided conditions for formation of basaltic underplating and subsequent lower crustal melting and generation of I-type magmas. Due to predominant compression in the first half of this event, these magmas could not reach the upper crustal levels. Later on, limited extensional pulses that occurred before the end of this event opened pathways for newly formed mantle melts to reach shallower crustal levels and mix with the evolving I-type magmas. The second event is Middle-Late Miocene in age. It was first associated with clear extensional conditions that caused advancing of basaltic melts to mid-crustal levels. This, in turn, induced the elevation of geotherms, melting of shallow crust and S-type granite formation. This event terminated with transpression that produced small volumes of basaltic melts and finally closed the igneous scene in this part of the Balkan Peninsula. Although we agree that the growth of igneous bodies is usually internally controlled and can be independent from the ambient structural pattern, we have strong reasons to believe that the integration of regional scale observations of fault kinematics with crucial petrogenetic information can be used for establishing spatial-temporal relationships between brittle tectonics and magmatism.

  19. Cognitive complexity of the medical record is a risk factor for major adverse events.

    PubMed

    Roberson, David; Connell, Michael; Dillis, Shay; Gauvreau, Kimberlee; Gore, Rebecca; Heagerty, Elaina; Jenkins, Kathy; Ma, Lin; Maurer, Amy; Stephenson, Jessica; Schwartz, Margot

    2014-01-01

    Patients in tertiary care hospitals are more complex than in the past, but the implications of this are poorly understood as "patient complexity" has been difficult to quantify. We developed a tool, the Complexity Ruler, to quantify the amount of data (as bits) in the patient’s medical record. We designated the amount of data in the medical record as the cognitive complexity of the medical record (CCMR). We hypothesized that CCMR is a useful surrogate for true patient complexity and that higher CCMR correlates with risk of major adverse events. The Complexity Ruler was validated by comparing the measured CCMR with physician rankings of patient complexity on specific inpatient services. It was tested in a case-control model of all patients with major adverse events at a tertiary care pediatric hospital from 2005 to 2006. The main outcome measure was an externally reported major adverse event. We measured CCMR for 24 hours before the event, and we estimated lifetime CCMR. Above empirically derived cutoffs, 24-hour and lifetime CCMR were risk factors for major adverse events (odds ratios, 5.3 and 6.5, respectively). In a multivariate analysis, CCMR alone was essentially as predictive of risk as a model that started with 30-plus clinical factors. CCMR correlates with physician assessment of complexity and risk of adverse events. We hypothesize that increased CCMR increases the risk of physician cognitive overload. An automated version of the Complexity Ruler could allow identification of at-risk patients in real time.

  20. Evidence from xenoliths for a dynamic lower crust, eastern Mojave Desert, California

    USGS Publications Warehouse

    Hanchar, John M.; Miller, Calvin F.; Wooden, Joseph L.; Bennett, Victoria C.; Staude, John-Mark G.

    1994-01-01

    Garnet-rich xenoliths in a Tertiary dike in the eastern Mojave Desert, California, preserve information about the nature and history of the lower crust. These xenoliths record pressures of ∼ 10–12 kbar and temperatures of ∼ 750–800°C. Approximately 25% have mafic compositions and bear hornblende + plagioclase + clinopyroxene + quartz in addition to garnet. The remainder, all of which contain quartz, include quartzose, quartzofeldspathic, and aluminous (kyanite±sillimanite-bearing) varieties. Most xenoliths have identifiable protoliths—mafic from intermediate or mafic igneous rocks, quartzose from quartz-rich sedimentary rocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathic from feldspathic sediments and/or intermediate to felsic igneous rocks. However, many have unusual chemical compositions characterized by high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspond to high garnet abundance. The mineralogy and major-and trace-element compositions are consistent with the interpretation that the xenoliths are the garnet-rich residues of high-pressure crustal melting, from which granitic melt was extracted. High 87Sr/86Sr and low 143Nd/144Nd, together with highly discordant zircons from a single sample with Pb/Pb ages of ∼ 1.7 Ga, demonstrate that the crustal material represented by the xenoliths is at least as old as Early Proterozoic. This supracrustal-bearing lithologic assemblage may have been emplaced in the lower crust during either Proterozoic or Mesozoic orogenesis, but Sr and Nd model ages> 4 Ga require late Phanerozoic modification of parent/daughter ratios, presumably during the anatectic event. Pressures of equilibration indicate that peak metamorphism and melting occurred before the Mojave crust had thinned to its current thickness of <30 km. The compositions of the xenoliths suggest that the lower crust here is grossly similar to estimated world-wide lower-crustal compositions in terms of silica and mafic content; however, it is considerably more peraluminous, has a lower mg-number, and is distinctive in some trace element concentrations, reflecting its strong metasedimentary and restitic heritage.

  1. Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting

    USGS Publications Warehouse

    Allen, C.M.; Wooden, J.L.; Chappell, B.W.

    1997-01-01

    The eastern margin of Australia is understood to be the result of continental rifting during the Cretaceous and Tertiary. Consistent with this model, Cretaceous igneous rocks (granites to basalts) in a continental marginal setting near Bowen, Queensland are isotonically retarded, having isotopic ratios similar to those of most island arcs (Sri = 0.7030-0.7039, ??Nd = +6.46 to +3.00 and 206Pb/204Pb = 18.44-18.77, 207Pb/204Pb = 15.552-15.623, and 208Pb/204Pb = 37.90-38.52). These isotopic signatures are much less evolved than the Late Carboniferous-Permian batholith that many Cretaceous plutons intrude. As rocks ranging in age from about 300-100 Ma are well exposed near Bowen, we can track magma evolution through time. The significant change of magma source occurred much earlier than the Cretaceous based on the fact that Triassic granites in the same area are also isotonically primitive. We attribute the changes of magma composition to crustal rifting during the Late Permian and earliest Triassic. The Cretaceous rocks (actually latest Jurassic to Cretaceous, 145-98 Ma) themselves show compositional trends with time. Rocks of appropriate mineralogy for Al-in-hornblende geobarometry yield pressures ranging from 250 to 80 MPa for rocks ranging in age from 145 to 125 Ma, respectively. More significantly, this older group is relatively compositionally restricted, and is Sr-rich, and Y- and Zr-poor compared to 120-98 Ma rocks. This younger groups is bimodal, being comprised principally of basalts and rhyolites (granites). REE patterns for a given rock type, however, do not differ with age tribute these relatively subtle trace element differences to small differences in conditions (T, aH2O) at the site of melting. Cretaceous crustal rifting can explain the range of rock types and the spatial distribution of rocks < 120 Ma in a longitudinal strip between and overlapping with provinces of older Cretaceous intrusions. A subduction-related setting is assigned to the 145-125 Ma igneous rocks (those more than 50 Ma older than sea floor spreading). ?? 1997 Elsevier Science B.V.

  2. A Method to Predict the Structure and Stability of RNA/RNA Complexes.

    PubMed

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.

  3. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    PubMed

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  4. Quantification of the Thermodynamically Linked Quaternary and Tertiary Structural Stabilities of Transthyretin and its Disease-Associated Variants–the Relationship between Stability and Amyloidosis†

    PubMed Central

    Hurshman Babbes, Amy R.; Powers, Evan T.; Kelly, Jeffery W.

    2009-01-01

    Urea denaturation studies were carried out as a function of transthyretin (TTR) concentration to quantify the thermodynamically linked quaternary and tertiary structural stability and to better understand the relationship between mutant folding energetics and amyloid disease phenotype. Urea denaturation of TTR involves at least two equilibria—dissociation of tetramers into folded monomers, and monomer unfolding. To deal with the thermodynamic linkage of these equilibria, we analyzed concentration-dependent denaturation data by global fitting to an equation that simultaneously accounts for the two-step denaturation process. Using this method, the quaternary and tertiary structural stabilities of well-behaved TTR sequences, wild type (WT) TTR and the disease-associated variant V122I, were scrutinized. The V122I variant is linked to late onset familial amyloid cardiomyopathy, the most common familial TTR amyloid disease. V122I TTR exhibits a destabilized quaternary structure and a stable tertiary structure relative to WT TTR. Three other variants of TTR were also examined, L55P, V30M, and A25T TTR. The L55P mutation is associated with the most aggressive familial TTR amyloid disease. L55P TTR has a complicated denaturation pathway that includes dimers and trimers, and so globally fitting its concentration-dependent urea denaturation data yielded error-laden estimates of stability parameters. Nevertheless, it is clear that L55P TTR is substantially less stable than WT TTR, primarily because its tertiary structure is unstable, although its quaternary structure is destabilized as well. V30M is the most common mutation associated with neuropathic forms of TTR amyloid disease. V30M TTR is certainly destabilized relative to WT TTR, but like L55P TTR it has a complex denaturation pathway that cannot be fit to the aforementioned two-step denaturation model. Literature data suggest that V30M TTR has stable quaternary structure but unstable tertiary structure. The A25T mutant, associated with central nervous system amyloidosis, is highly aggregation-prone and exhibits drastically reduced quaternary and tertiary structural stability. The observed differences in stability amongst the disease-associated TTR variants highlight the complexity and the heterogeneity of TTR amyloid disease, an observation having important implications for the treatment of these diseases. PMID:18537267

  5. The geology of the Inconsolable Range, east-central Sierra Nevada, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, G.M; Reed, W.E.

    1993-04-01

    Detailed mapping of the Inconsolable Range in the east-central Sierra Nevada reveals a structurally and lithologically complex region of multi-phase intrusions. Some plutons are compositionally-zoned [e.g., Inconsolable (100 Ma) and Lamarck (90 Ma)]; others may be the result of magma mixing. Intrusive borders vary from brittle to ductile and sharp to gradational, and are bounded by contact aureoles of varying metamorphic grade. A shear zone (Long Lake shear zone -- LLSZ) bounds the western margin of the Inconsolable Range for 8 km; this is truncated in the south by the Cretaceous Lamarck intrusive suite, and is tectonically overlain in themore » north by the Bishop Creek Pendant (Ordovician ). The LLSZ is a complex zone of interleaved septa of biotite schists, orthogneisses, aplitic screens, and calc-silicate gneisses approximately 500 to 800 m wide. Preliminary interpretation suggests that the LLSZ is the sheared remnant of a Triassic-Jurassic igneous terrane complete with metasedimentary pendants. Juxtaposition of greenschist facies meta-sedimentary rocks of the Chocolate Peak klippe over highly deformed amphibolite grade meta-igneous rocks of the LLSZ postdates movement along the LLSZ. Metamorphic grades suggest that deeper structural levels are exposed within the LLSZ near its southern terminus. Twenty plutonic lithologies have been mapped and informally named (e.g., Spotted biotite quartz diorite), including 3 compositionally-zoned plutons. Zonation within the Lamarck, Inconsolable, and Spotted intrusions are the result of multiple emplacement events into partially crystallized host plutons. Along the eastern border of the Lamarck intrusive suite field evidence indicates four separate intrusive events. The Inconsolable body is a compositionally-zoned biotite, clinopyroxene, quartz diorite with irregular granodiorite margins. The base of the Spotted intrusion appears to have been magmatically eroded by a pulse of the younger Lamarck intrusion.« less

  6. The Lusi eruption and implications for understanding fossil piercement structures in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Mazzini, Adriano; Planke, Sverre; Hadi, Soffian

    2016-04-01

    The Lusi eruption started in northeast Java, Indonesia, on May 29th 2006, and it has been erupting rocks, mud, water, and gas ever since. We have been doing field work and research on Lusi ever since the eruption commenced. This work was initially motivated from studying the initiation of a mud volcano. However, the longevity of the eruption has made it possible to describe and monitor the lifespan of this unique piercement structure. . One of the first-order questions regarding the eruption is how it should be classified and if there are any other modern or fossil analogues that can place Lusi in a relevant geological context. During the initial stages of eruption, Lusi was classified as a mud volcano, but following geochemical studies the eruption did not show the typical CH4-dominated gas composition of other mud volcanoes and the temperature was also too high. Moreover, mud volcano eruptions normally last a few days, but Lusi never stopped during the past decade. In particular, the crater fluid geochemistry suggests a connection to the neighboring volcanic complex. Lusi represent a sedimentary hosted hydrothermal system. This opens up new possibilities for understanding fossil hydrothermal systems in sedimentary basins, such as hydrothermal vent complexes and breccia-pipes found in sedimentary basins affected by the formation of Large igneous provinces. We will present examples from the Karoo Basin (South Africa) and the Vøring Basin (offshore Norway) and discuss how Lusi can be used to refine existing formation models. Finally, by comparing Lusi to fossil hydrothermal systems we may get insight into the processes operating at depth where the Lusi system interacts with the igneous rocks of the neighbouring volcanic arc.

  7. Neoproterozoic extension in the greater dharwar craton: A reevaluation of the "betsimisaraka suture" in madagascar

    USGS Publications Warehouse

    Tucker, R.D.; Roig, J.-Y.; Delor, C.; Amlin, Y.; Goncalves, P.; Rabarimanana, M.H.; Ralison, A.V.; Belcher, R.W.

    2011-01-01

    The Precambrian shield of Madagascar is reevaluated with recently compiled geological data and new U-Pb sensitive high-resolution ion microprobe (SHRIMP) geochronology. Two Archean domains are recognized: the eastern Antongil-Masora domain and the central Antananarivo domain, the latter with distinctive belts of metamafic gneiss and schist (Tsaratanana Complex). In the eastern domain, the period of early crust formation is extended to the Paleo-Mesoarchean (3.32-3.15 Ga) and a supracrustal sequence (Fenerivo Group), deposited at 3.18 Ga and metamorphosed at 2.55 Ga, is identified. In the central domain, a Neoarchean period of high-grade metamorphism and anatexis that affected both felsic (Betsiboka Suite) and mafic gneisses (Tsaratanana Complex) is documented. We propose, therefore, that the Antananarivo domain was amalgamated within the Greater Dharwar Craton (India + Madagascar) by a Neoarchean accretion event (2.55-2.48 Ga), involving emplacement of juvenile igneous rocks, high-grade metamorphism, and the juxtaposition of disparate belts of mafic gneiss and schist (metagreenstones). The concept of the "Betsimisaraka suture" is dispelled and the zone is redefined as a domain of Neoproterozoic metasedimentary (Manampotsy Group) and metaigneous rocks (Itsindro-Imorona Suite) formed during a period of continental extension and intrusive igneous activity between 840 and 760 Ma. Younger orogenic convergence (560-520 Ma) resulted in east-directed overthrusting throughout south Madagascar and steepening with local inversion of the domain in central Madagascar. Along part of its length, the Manampotsy Group covers the boundary between the eastern and central Archean domains and is overprinted by the Angavo-Ifanadiana high-strain zone that served as a zone of crustal weakness throughout Cretaceous to Recent times.

  8. Variable sulfur isotope composition of sulfides provide evidence for multiple sources of contamination in the Rustenburg Layered Suite, Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Magalhães, Nivea; Penniston-Dorland, Sarah; Farquhar, James; Mathez, Edmond A.

    2018-06-01

    The Rustenburg Layered Suite (RLS) of the Bushveld Complex (BC) is famous for its platinum group element (PGE) ore, which is hosted in sulfides. The source of sulfur necessary to generate this type of mineralization is inferred to be the host rock of the intrusion. The RLS has a sulfur isotopic signature that indicates the presence of Archean surface-derived material (Δ33 S ≠ 0) in the magma. This signature, with an average value of Δ33 S = 0.112 ± 0.024 ‰, deviates from the expected Δ33 S value of the mantle of 0 ± 0.008 ‰. Previous work suggested that this signature is uniform throughout the RLS, which contrasts with radiogenic isotopes which vary throughout the igneous stratigraphy of the RLS. In this study, samples from key intervals within the igneous stratigraphy were analyzed, showing that Δ33 S values vary in the same stratigraphic levels as Sr and Nd isotopes. However, the variation is not consistent; in some levels there is a positive correlation and in others a negative correlation. This observation suggests that in some cases distinct magma pulses contained assimilated sulfur from different sources. Textural analysis shows no evidence for late addition of sulfur. These results also suggest that it is unlikely that large-scale assimilation and/or efficient mixing of host rock material in a single magma chamber occurred during emplacement. The data do not uniquely identify the source of sulfur in the different layers of the RLS, but the variation in sulfur isotope composition and its relationship to radiogenic isotope data calls for a reevaluation of the models for the formation and evolution of the RLS, which has the potential to impact the knowledge of how PGE deposits form.

  9. Cadomian magmatism and metamorphism at the Ossa Morena/Central Iberian zone boundary, Iberian Massif, Central Portugal: Geochemistry and P-T constraints of the Sardoal Complex

    NASA Astrophysics Data System (ADS)

    Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.

    2017-01-01

    A well preserved Cadomian basement is exposed in the Iberian Massif, Central Portugal, at the Ossa Morena/Central Iberian zone boundary, which allows the determination of reliable geochemical data. A sequence of Cadomian and Variscan magmatic and tectonometamorphic events has been already described for this area and are documented in other areas of the Avalonian-Cadomian orogen. However, the geochemical information concerning the Cadomian basement for this area is still limited. We present whole rock geochemical and oxygen isotopic information to characterize the igneous protoliths of the Sardoal Complex, located within the Tomar-Badajoz-Córdoba Shear Zone, and identify their tectonic setting. We use detailed petrography, mineral chemistry and P-T data to characterize the final Cadomian tectonometamorphic event. The Sardoal Complex contains orthogneiss and amphibolite units. The protoliths of the orthogneiss are calc-alkaline magmas of acid composition and peraluminous character that were generated in an active continental margin in three different stages (ca. 692 Ma, ca. 569 Ma and ca. 548 Ma). The most significant processes in their petrogenesis are the partial melting of old metasedimentary and meta-igneous crust at different crustal levels and the crystal fractionation of plagioclase, alkali feldspars, apatite, zircon and Fe-Ti oxides. The protoliths of the amphibolite, older than ca. 540 Ma, are tholeiitic and calc-alkaline magmas of basic composition that display N-, T- and E-MORB affinities. They were generated in an active continental margin. Crustal contamination and fractional crystallization of hornblende and diopside were involved in their petrogenesis. However, the fractional crystallization was not significant. The magmatic activity recorded in the Sardoal Complex indicates the existence of a long-lived continental arc (ca. 692-540 Ma) with coeval felsic and mafic magmatism. The final stage of the Cadomian metamorphism is usually represented in other areas of the Cadomian basement as a LP-HT metamorphic event. However, the P-T data obtained by thermodynamic modelling indicates medium pressure/high temperature conditions at ca. 540 Ma. These data suggest that the Sardoal Complex represents a deeper level of the exhumed Cadomian basement where the final stage of the Cadomian metamorphism was recorded.

  10. Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields

    DTIC Science & Technology

    2007-01-01

    Coarse Sand Fine Sand Fine-Grained Sandstone Fractured Igneous and Metamorphic Rock Gravel Karst Limestone, Dolomite Medium Sand Medium-Grained...Coarse Sand; Fine Sand; Fine-Grained Sandstone; Fractured Igneous and Metamorphic Rock; Gravel; Karst Limestone/ Dolomite ; Medium Sand; Medium...aquifer lithology (rock type; Babcock and other, 2004). - 20 - Data Type: List, 1-character code C Consolidated porous sedimentary I Fractured

  11. Enantioselective addition of nitromethane to 2-acylpyridine N-oxides. Expanding the generation of quaternary stereocenters with the Henry reaction.

    PubMed

    Holmquist, Melireth; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R

    2014-02-21

    The direct asymmetric Henry reaction with prochiral ketones, leading to tertiary nitroaldols, is an elusive reaction so far limited to a reduced number of reactive substrates such as trifluoromethyl ketones or α-keto carbonyl compounds. Expanding the scope of this important reaction, the direct asymmetric addition of nitromethane to 2-acylpyridine N-oxides catalyzed by a BOX-Cu(II) complex to give the corresponding pyridine-derived tertiary nitroaldols having a quaternary stereogenic center with variable yields and good enantioselectivity, is described.

  12. Profile of Neonatal Sepsis due to Burkholderia capacia Complex.

    PubMed

    Chandrasekaran, Aparna; Subburaju, Nivedhana; Mustafa, Muzamil; Putlibai, Sulochana

    2016-12-15

    We report the result of retrospective record review of the clinical profile of 59 neonates who presented to a tertiary-care extramural neonatal unit with Burkholderia cepacia complex infection. Among the 3265 admissions over 45 months, incidence of Burkholderia sepsis was 18 per 1000 admissions. Case fatality rate was 17%. Most (95%) isolates were sensitive to cotrimoxazole.

  13. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary Province), despite the inferred distant locus of the initial plume head. Alternatively, preservation of large-scale pre-plume fabric in the Scottish mantle would imply long-lived tectonic heredity in the continental lithospheric mantle, and place important constraints on the plume-related effects (or lack thereof) in the mantle lithosphere.

  14. The Misis-Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Unlügenç, Ülvi Can; İnan, Nurdan; Ta ṡli, Kemal

    2004-01-01

    The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis-Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments. The Misis-Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time. Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated a Lower Miocene flexural basin infilled with turbidites and a flexural bulge to the south. Miocene turbiditic sediments also covered the former accretionary prism. Further west (Misis Range) the easternmost Mediterranean remained in a pre-collisional setting with northward underthrusting (incipient subduction) along the Cyprus arc. The Lower Miocene basins to the north (Misis and Adana) indicate an extensional (to transtensional) setting. The NE-SW linking segment (Andırın) probably originated as a Mesozoic palaeogeographic offset of the Tauride margin. This was reactivated by strike-slip (and transtension) during Later Tertiary diachronous collision. Related to on-going plate convergence the former accretionary wedge (upper plate) was thrust over the Lower Miocene turbiditic basins in Mid-Late Miocene time. The Plio-Quaternary was dominated by left-lateral strike-slip along the East Anatolian transform fault and also along fault strands cutting the Misis-Andırın Complex.

  15. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado

    USGS Publications Warehouse

    Kelley, K.D.; Romberger, S.B.; Beaty, D.W.; Pontius, J.A.; Snee, L.W.; Stein, H.J.; Thompson, T.B.

    1998-01-01

    The Cripple Creek district (653 metric tons (t) of Au) consists of Au-Te veins and disseminated gold deposits that are spatially related to alkaline igneous rocks in an Oligocene intrusive complex. Vein paragenesis includes quartz-biotite-K feldspar-fluorite-pyrite followed by base metal sulfides and telluride minerals. Disseminated deposits consist of microcrystalline native gold with pyrite that are associated with zones of pervasive adularia. New 40Ar/39Ar dates indicate that there was a complex magmatic and hydrothermal history. Relatively felsic rocks (tephriphonolite, trachyandesite, and phonolite) were emplaced into the complex over about 1 m.y., from 32.5 ?? 0.1 (1??) to 31.5 ?? 0.1 Ma. A younger episode of phonolite emplacement outside of the complex is indicated by an age of 30.9 ?? 0.1 Ma. Field relationships suggest that at least one episode of mafic and ultramafic dike emplacement occurred after relatively more felsic rocks and prior to the main gold mineralizing event. Only a single whole-rock date for mafic phonolite (which indicated a maximum age of 28.7 Ma) was obtained. However, constraints on the timing of mineralization are provided by paragenetically early vein minerals and K feldspar from the disseminated gold pyrite deposits. Early vein minerals (31.3 ?? 0.1-29.6 ?? 0.1 Ma) and K feldspar (29.8 ?? 0.1 Ma) from the Cresson disseminated deposit, together with potassically altered phonolite adjacent to the Pharmacist vein (28.8 and 28.2 ?? 0.1 Ma), suggest there was a protracted history of hydrothermal activity that began during the waning stages of phonolite and early mafic-ultramafic activity and continued, perhaps intermittently, for at least 2 m.y. Estimated whole-rock ??18O values of the alkaline igneous rocks range from 6.4 to 8.2 per mil. K feldspar and albite separates from igneous rocks have lead isotope compositions of 206Pb/204Pb = 17.90 to 18.10, 207Pb/204Pb = 15.51 to 15.53, and 208Pb/204Pb = 38.35 to 38.56. These isotopic compositions, together with major and trace element data, indicate that the phonolitic magmas probably evolved by fractional crystallization of an alkali basalt that assimilated lower crustal material. Upper crustal contamination of the magmas was not significant. The 206Pb/204Pb compositions of vein galenas almost entirely overlap those of phonolites, suggesting a genetic relationship between alkaline magmatism and mineralization. However, a trend toward higher 207Pb/204Pb (15.57-15.60) and 208Pb/204Pb ratios (38.94-39.48) of some galenas suggests a contribution to the ore fluid from surrounding Early Proterozoic rocks, probably through leaching by mineralizing fluids. Limited stable isotope compositions of quartz, K feldspar, and biotite from this and previous studies support a largely magmatic origin for the early vein fluids. It is suggested that three features were collectively responsible for generating alkaline magmas and associated mineral deposits: (1) the timing of magmatism and mineralization, which coincided with the transition between subduction-related compression and extension related to continental rifting; (2) the location of Cripple Creek at the junction of four major Precambrian units and at the intersection of major northeast-trending regional structures with northwest-trending faults, which served as conduits for magmas and subsequent hydrothermal fluids; and (3) the complex magmatic history which included emplacement of relatively felsic magmas followed by successively more mafic magmas with time.

  16. Radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico with annotated bibliography. [Over 600 citations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLemore, V. T.

    1982-01-01

    From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less

  17. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    PubMed

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Generation of syntectonic calc-alkaline, magnesian granites through remelting of pre-tectonic igneous sources - U-Pb zircon ages and Sr, Nd and Pb isotope data from the Donkerhoek granite (southern Damara orogen, Namibia)

    NASA Astrophysics Data System (ADS)

    Schwark, L.; Jung, S.; Hauff, F.; Garbe-Schönberg, D.; Berndt, J.

    2018-06-01

    The 541 ± 4 Ma-old magnesian, weakly peraluminous, calc-alkalic Donkerhoek Onanis granite is part of the ca. 6000 km2 large Donkerhoek batholith in the Southern Zone of the Damara orogen of Namibia. Linear major and trace element variations and decreasing MgO, FeO, Al2O3, CaO, K2O, Na2O, Ba and Sr concentrations with increasing SiO2 indicate that this part of the batholith represent a coherent mass and underwent fractional crystallization processes. The Donkerhoek Onanis granites are isotopically evolved (initial εNd: -4.7 to -12.3, initial 87Sr/86Sr: 0.7099-0.7157) with moderately radiogenic Pb isotope ratios (206Pb/204Pb: 17.26-18.22; 207Pb/204Pb: 15.59-15.67; 208Pb/204Pb: 37.60-38.06). Beside heterogeneities imparted by the sources, an evaluation of LREE fractionation and Nd isotope data suggests that AFC processes also modified some samples. Based on the chemical and isotope data, the Donkerhoek Onanis granites cannot be derived by partial melting of Al- and Fe-rich metasedimentary rocks of the Kuiseb formation in which they intruded. Instead, melting of meta-igneous crustal sources with Proterozoic crustal residence ages is more likely. Three igneous to meta-igneous rock suites from the area (Matchless amphibolites, Proterozoic mafic to felsic gneisses from the southern Kalahari craton basement, syn-tectonic Salem granodiorites to granites) are potential sources. An evaluation of chemical and isotope data suggests that remelting of early syn-orogenic Salem-type granites is the most likely process which would also explain the existence of ca. 563 ± 4 Ma-old zircon in the Donkerhoek Onanis granites. Comparison of the Donkerhoek Onanis granites with experimentally derived melt compositions from an intermediate igneous parent indicates temperatures between 800 and 850 °C. It is suggested that the Pan-African igneous activity in this part of the Damara Belt was a moderate-temperature intra-crustal event. Although there are some compositional similarities with juvenile granites generated in subduction zones, unradiogenic Pb isotope ratios and moderately radiogenic Sr and unradiogenic Nd isotopes suggest that reprocessed crustal rocks are more likely sources. Previously obtained high δ18O values of the Donkerhoek Onanis granites ranging from 11.8 to 13.6‰, covering the range of δ18O values obtained on Salem-type granites from the area (12.5-13.3‰) confirm this view. In contrast to igneous processes along active continental margins that produce juvenile batholiths with calc-alkaline affinities, this igneous event was not a major crust-forming episode and the Donkerhoek Onanis granites represent reprocessed crustal material.

  19. Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Schweitzer, J. K.; Hatton, C. J.; De Waal, S. A.

    1997-02-01

    Until recently, it was proposed that the Bushveld Complex, consisting of the extrusive Rooiberg Group and the intrusive Rashoop Granophyre, Rustenburg Layered and Lebowa Granite Suites, evolved over a long period of time, possibly exceeding 100 Ma. Most workers therefore considered that the various intrusive and extrusive episodes were unrelated. Recent findings suggest that the intrusive, mafic Rustenburg Layered Suite, siliceous Rashoop Granophyre Suite and the volcanic Rooiberg Group were synchronous, implying that the Bushveld igneous event was short-lived. Accepting the short-lived nature of the complex, the hypothesis that the granites are genetically unrelated to the other events of the Bushveld Complex can be reconsidered. Re-examination of the potential Rooiberg Group/Lebowa Granite Suite relationship suggests that the granites form part of the Bushveld event. Rhyolite lava, granite and granophyre melts originated from a source similar in composition to upper crustal rocks. This source is interpreted to have been melted by a thermal input associated with a mantle plume. Granite intruded after extrusion of the last Rooiberg rhyolite, or possibly overlapped in time with the formation of the youngest volcanic flows.

  20. Relation Between the Molopo Farms and Bushveld Complexes: An Analysis of Pyroxene Exsolution Lamellae

    NASA Astrophysics Data System (ADS)

    Moore, I.; Feineman, M. D.; Nyblade, A.

    2017-12-01

    The Molopo Farms Complex (MFC) is a layered igneous intrusion in Botswana, considered to be related to the nearby South African Bushveld Complex (BC) due to their similarities. The BC has been researched in depth for its economic deposits of platinum group elements (PGEs), while the under-researched MFC has no PGEs and is under 200 m of sediment. This study aims to increase knowledge about the MFC regarding the theory that the BC and MFC come from the same parental magma body by showing similar cooling history in the exsolution of pyroxenes. Using optical microscopy and scanning electron microscopy (SEM) paired with an energy-dispersive detector (EDS), thin sections of pyroxenes with exsolution lamellae from both complexes were observed in terms of chemical composition and microtextures. MFC pyroxenes were then compared to literature data of BC pyroxenes. The pyroxenes are closely related, indicating that the MFC and the BC cooled at a similar rate and come from the same parental magma body. Further research can expand on these findings to prove that the MFC and BC are from the same magma.

  1. Impact of long-stay beds on the performance of a tertiary hospital in emergencies

    PubMed Central

    Pazin, Antonio; de Almeida, Edna; Cirilo, Leni Peres; Lourençato, Frederica Montanari; Baptista, Lisandra Maria; Pintyá, José Paulo; Capeli, Ronaldo Dias; da Silva, Sonia Maria Pirani Felix; Wolf, Claudia Maria; Dinardi, Marcelo Marcos; Scarpelini, Sandro; Damasceno, Maria Cecília

    2015-01-01

    ABSTRACT OBJECTIVE To assess the impact of implementing long-stay beds for patients of low complexity and high dependency in small hospitals on the performance of an emergency referral tertiary hospital. METHODS For this longitudinal study, we identified hospitals in three municipalities of a regional department of health covered by tertiary care that supplied 10 long-stay beds each. Patients were transferred to hospitals in those municipalities based on a specific protocol. The outcome of transferred patients was obtained by daily monitoring. Confounding factors were adjusted by Cox logistic and semiparametric regression. RESULTS Between September 1, 2013 and September 30, 2014, 97 patients were transferred, 72.1% male, with a mean age of 60.5 years (SD = 1.9), for which 108 transfers were performed. Of these patients, 41.7% died, 33.3% were discharged, 15.7% returned to tertiary care, and only 9.3% tertiary remained hospitalized until the end of the analysis period. We estimated the Charlson comorbidity index – 0 (n = 28 [25.9%]), 1 (n = 31 [56.5%]) and ≥ 2 (n = 19 [17.5%]) – the only variable that increased the chance of death or return to the tertiary hospital (Odds Ratio = 2.4; 95%CI 1.3;4.4). The length of stay in long-stay beds was 4,253 patient days, which would represent 607 patients at the tertiary hospital, considering the average hospital stay of seven days. The tertiary hospital increased the number of patients treated in 50.0% for Intensive Care, 66.0% for Neurology and 9.3% in total. Patients stayed in long-stay beds mainly in the first 30 (50.0%) and 60 (75.0%) days. CONCLUSIONS Implementing long-stay beds increased the number of patients treated in tertiary care, both in general and in system bottleneck areas such as Neurology and Intensive Care. The Charlson index of comorbidity is associated with the chance of patient death or return to tertiary care, even when adjusted for possible confounding factors. PMID:26603353

  2. Geologic Map of Prescott National Forest and the Headwaters of the Verde River, Yavapai and Coconino Counties, Arizona

    USGS Publications Warehouse

    DeWitt, Ed; Langenheim, V.E.; Force, Eric; Vance, R.K.; Lindberg, P.A.; Driscoll, R.L.

    2008-01-01

    This 1:100,000-scale digital geologic map details the complex Early Proterozoic metavolcanic and plutonic basement of north-central Arizona; shows the mildly deformed cover of Paleozoic rocks; reveals where Laramide to mid-Tertiary plutonic rocks associated with base- and precious-metals deposits are exposed; subdivides the Tertiary volcanic rocks according to chemically named units; and maps the Pliocene to Miocene fill of major basins. Associated digital files include more than 1,300 geochemical analyses of all rock units; 1,750 logs of water wells deeper than 300 feet; and interpreted logs of 300 wells that define the depth to basement in major basins. Geophysically interpreted buried features include normal faults defining previous unknown basins, mid-Tertiary intrusive rocks, and half-grabens within shallow bains.

  3. Apollo 16 exploration of Descartes - A geologic summary.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  4. Experimental geochemistry of Pu and Sm and the thermodynamics of trace element partitioning

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Burnett, Donald S.

    1987-01-01

    An experimental study of the partitioning of Pu and Sm between diopside/liquid and whitlockite/liquid supports the hypothesis that Pu behaves as a light rare earth element during igneous processes in reducing environments. D-Pu/D-Sm is found to be about 2 for both diopsidic pyroxene and whitlockite, and the amount of fractionation would be decreased further if Pu were compared to Ce or Nd. Data indicate that temperature, rather than melt composition, is the most important control on elemental partitioning, and that P2O5 in aluminosilicate melts serves as a complexing agent for the actinides and lanthanides.

  5. Vesta Evolution from Surface Mineralogy: Mafic and Ultramafic Mineral Distribution

    NASA Technical Reports Server (NTRS)

    DeSanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Mittlefehldt, D. W.; McSween, H. Y; Marchi, S.; Capria, M. T.; Capaccioni, F.; Frigeri, A.; hide

    2014-01-01

    Vesta is the only intact, differentiated, rocky protoplanet and it is the parent body of HED meterorites. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, a mineral that is a major component of the mantles of differentiated bodies, including Vesta. The HED parent body experienced complex igneous processes that are not yet fully understood and olivine and diogenite distribution is a key measurement to understand Vesta evolution. Here we report on the distribution of olivine and its constraints on vestan evolution models.

  6. Late Cenozoic strike-slip faulting in the NE Mojave Block: Deformation at the southwest boundary of the Walker Lane belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schermer, E.R.

    1993-04-01

    New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less

  7. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence based on stratigraphic correlation that show thinning of strata in the northeastern part of the basin. The Isachsen Formation (Valanginian or Hauterivian to late Aptian) is a sandstone unit with interbeds of mudstone, coal, volcanic, and volcaniclastic/tuffaceous rocks attributed to HALIP. Isachsen Formation has a fairly consistent thickness over most of the Sverdrup Basin, ranging from ~120 m at basin margins to 1370 m on western Axel Heiberg Island but is generally > 400 m thick, even over the large salt domes that rose almost to the surface immediately prior to its deposition. The thickness of the formation decreases from over 400 m thick at Ellef Ringnes Island and southern Axel Heiberg Island to less than 120 m across a broad area of central Ellesmere Island. We interpret NE thinning of these strata to be the result of topographic uplift associated with initial mantle plume activity of HALIP. However, the rejuvenation of Sverdrup Basin formation (nearer the plume centre) in the Hauterivian-Aptian reflects complexities in the uplift pattern. References: 1-Griffiths, R.W. and Campbell, I.H. 1991 JGR 96: 18295-18310. 2-Campbell, I.H. 2007. Chem. Geol., 241: 153-176. 3-Ernst, 2014. LIPs. Cambridge U. Press, 653 p.

  8. Numerical Modelling of Tertiary Tides

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen

    2018-06-01

    Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.

  9. Subsurface geology of the late Tertiary and Quaternary water-bearing deposits of the southern part of the San Joaquin Valley, California

    USGS Publications Warehouse

    Croft, M.G.

    1972-01-01

    The study area, which includes about 5,000 square miles of the southern part of the San Joaquin Valley, is a broad structural trough of mostly interior drainage. The Sierra Nevada on the east is composed of consolidated igneous and metamorphic rocks of pre-Tertiary age. The surface of these rocks slopes 4?-6? southwestward from the foothills and underlies the valley. The Coast Ranges on the west consist mostly of complexly folded and faulted consolidated marine and nonmarine sedimentary rocks of Jurassic, Cretaceous, and Tertiary age, which dip eastward and overlie the basement complex. Unconsolidated deposits, of late Pliocene to Holocene age, blanket the underlying consolidated rocks in the valley and are the source of most of the fresh ground water. The unconsolidated deposits, the subject of this report, are divided into informal stratigraphic units on the basis of source of sediment, environment of deposition, and texture. Flood-basin, lacustrine, and marsh deposits are fine grained and underlie the valley trough. They range in age from late Pliocene to Holocene. These deposits, consisting of nearly impermeable gypsiferous fine sand, silt, and clay, are more than 3,000 feet thick beneath parts of Tulare Lake bed. In other parts of the trough, flood-basin, lacustrine, and marsh deposits branch into clayey or silty clay tongues designated by the letter symbols A to F. Three of these tongues, the E, C, and A clays, lie beneath large areas of the southern part of the valley. The E clay includes the Corcoran Clay Member of the Tulare Formation, the most extensive hydrologic confining layer in the valley. The E clay underlies about 3,500 square miles of bottom land and western slopes. The beds generally are dark-greenish-gray mostly diatomaceous silty clay of Pleistocene age. Marginally, the unit bifurcates into an upper and a lower stratum that contains thin beds of moderately yellowish-brown silt and sand. The E clay is warped into broad, gentle northwesterly trending anticlines and synclines. The C clay, of Pleistocene age, is a fine-grained lacustrine or paludal deposit occurring 220-300 feet beneath Tulare Lake bed and parts of Fresno Slough. The beds consist of bluish-gray silty clay. Structural contours indicate that the C clay has been extensively warped and folded. The A clay of Pleistocene and Holocene (?) age is a fine-grained lacustrine or paludal deposit occurring 10-60 feet beneath Buena Vista, Kern, and Tulare Lake beds, and parts of Fresno Slough. The clay is mainly blue or dark greenish gray, plastic, and highly organic. In some areas the unit is separated into an upper and a lower stratum by several feet of sand. A radiocarbon date of 26,780 ? 600 years was obtained from wood cored 3 feet beneath the clay. Continental deposits are arkosic beds of late Pliocene and Pleistocene (?) age and were derived from the Sierra Nevada, Tehachapi, and San Emigdio Mountains. In places, a reduced-oxidized contact transgresses the deposits derived from the Sierra Nevada. The reduced deposits consist of moderately permeable bluish-green or bluish-gray fine to medium sand, silt, and clay. The oxidized deposits consist mainly of poorly permeable yellowish-brown silt and fine sand. Deposits derived from the Tehachapi and the San Emigdio Mountains consist of poorly to moderately permeable yellowish-brown sand and silt. Continental and alluvial deposits of Tertiary and Quaternary age that were derived from the Coast Ranges consist mainly of poorly to moderately permeable yellowish-brown gravel, sand, silt, and clay. They include the Tulare Formation and overlying alluvial deposits. Alluvium is composed of coarse arkosic deposits derived from the Sierra Nevada, Tehachapi, and San Emigdio Mountains. A reduced-oxidized contact also transgresses the alluvial deposits derived from the Sierra Nevada. The oxidized deposits consist of poorly to highly permeable yellowish-brown gravel, sand, silt, and clay. The reduc

  10. Geology and ground water of the Savannah River Plant and vicinity, South Carolina

    USGS Publications Warehouse

    Siple, George E.

    1967-01-01

    The area described in this report covers approximately 2,600 square miles in west-central South Carolina and includes the site of the Savannah River Plant, a major production facility of the U.S. Atomic Energy Commission. The climate, surface drainage, and land forms of the study area are typical of the southern part of the Atlantic Coastal Plain. Precipitation is normally abundant and fairly evenly distributed throughout the year, and the mean annual temperature is moderately warm (64?F). The major streams that drain the area (the Savannah, Salkehatchie, and Edisto Rivers) have low gradients and flow in a southeasterly direction toward the Atlantic Ocean. Surface features of the area include narrow, flat-bottomed, steep-sided valleys and broad gently rolling interfluvial areas. Those parts of the Coastal Plain included within the report area can be subdivided into the Aiken Plateau, the Congaree Sandhills, and the Coastal Terraces. The area is underlain by a sequence of unconsolidated and partly consolidated sediments of Late Cretaceous, Tertiary, and Quaternary age. The unconsolidated sediments were deposited unconformably on a basement of igneous and metamorphic rocks of Precambrian and Paleozoic age and sedimentary rocks of Triassic age. The basement rocks are similar to the granite-diorite complex of the Charlotte Belt, the metamorphosed rocks of the Carolina Slate Belt, and the consolidated sediments of the Newark Group. The unconsolidated sediments strike about N. 60 ? E. and dip 6-20 feet per mile to the southeast. They form a wedge-shaped mass that increases in thickness toward the southeast to slightly more than 1,200 feet in the vicinity of Allendale, S.C., on the southeast or downdip side of the study area. The oldest or lowermost unconsolidated sedimentary unit, the Tuscaloosa Formation of Late Cretaceous age, is overlain in the subsurface by beds that are also probably Late Cretaceous in age and that herein are named the Ellenton Formation. The Upper Cretaceous deposits are, in turn, overlain by the, McBean Formation and the Congaree(?) Formation of middle Eocene age, the Barnwell Formation of late Eocene age, the Hawthorn Formation of early and middle Miocene age, and by fluvial and marine(?) terrace deposits of Pliocene(?), Pleistocene, and Recent age. In the mapped area, the Congaree(?) Formation includes undifferentiated rocks (mostly Congaree and Barnwell Formations and some Mcbean outliers). (See map explanation.) Structurally, the Upper Cretaceous sediments are overlapped to the northwest by Tertiary deposits. A preliminary geologic map of the general area is included in the report. The principal aquifer in the area is composed of the beds of medium to coarse sand and gravel contained in the Tuscaloosa and Ellenton Formations. Subordinate aquifers include deposits of sand and limestone of Tertiary and Quaternary age. The ground water in the principal aquifer occurs under water-table conditions in the outcrop area of the Tuscaloosa Formation in the northern and western parts of the study area, but it is under artesian pressure downdip in the southern and eastern parts of the study area. Contours drawn on the piezometric surface of the water in the principal aquifer indicate that water is recharged to the aquifer mainly by leakage through the overlying Tertiary formations. Likewise, the piezometric contours show that the outcrop area of the Tuscaloosa Formation functions chiefly as an area of discharge. Doubtless, water is also discharged from the aquifer by moving downdip to areas near the coast where the prevailing hydraulic gradient may favor the upward leakage of water through the upper confining beds. The hydraulic properties of the principal aquifer were determined by a series of pumping tests. The results indicate that the aquifer is highly productive and could supply 15 million gallons per day in the vicinity of the Savannah River Plant without exceeding the available drawdown. Gr

  11. Summary mineral resource appraisal of the Richfield 1 degree x 2 degrees Quadrangle, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas August; Morris, Hal T.

    1987-01-01

    The mineral resource potential of the Richfield 1? x 2? quadrangle, Utah, has been appraised using geological, geophysical, geochemical, and remote-sensing techniques. These studies have led to many publications giving basic data and interpretations; of these, a series of 18 maps at 1:250,000 and 1:500,000 scales summarizing aspects of the geology, geophysics, geochemistry, and remote sensing is designated the CUSMAP (Conterminous United States Mineral Appraisal Program) folio. This circular uses the data shown on these maps to appraise the mineral resource potential of the quadrangle. The oldest rocks exposed in the Richfield quadrangle are small patches of Early Proterozoic (1.7 billion years old) gneiss and schist on the west side of the Mineral Mountains. These rocks presumably formed the basement on which many thousands of meters of Late Proterozoic, Paleozoic, and lower Mesozoic sedimentary strata were deposited. These rocks were deformed during the Late Cretaceous Sevier orogeny when Precambrian and Paleozoic strata in the western part of the quadrangle were thrust relatively eastward across Paleozoic and Mesozoic strata in the eastern part of the quadrangle. Late Cretaceous and early Tertiary highlands above the overthrust belt were eroded and much of the debris was deposited in broad basins east of the belt. Volcanism in Oligocene and earliest Miocene time formed an east-northeast-trending belt of calcalkalic volcanoes across the southern half of the quadrangle. In early Miocene time, the composition of the volcanic rocks changed to a bimodal assemblage of mafic rocks and high-silica alkali rhyolite that has been erupted episodically ever since. Syngenetic mineral resources developed during formation of both sedimentary and volcanic rocks. These include limestone and dolomite, silica-rich sandstone, metalliferous black shale, evaporite deposits, zeolite deposits, pumice, cinders and scoria, and evaporitic or diagenetic deposits in playa environments. Most of these deposits need to have markets established, or extraction and fabrication techniques developed, for them to be utilized. Most epigenetic deposits are of volcanogenic-hydrothermal origin. Deposits associated with calc-alkalic igneous activity largely contain Cu, Pb, Zn, Au, and Ag, and occur in a variety of types zoned around core intrusions. Younger deposits are mostly associated with silicic igneous centers belonging to the bimodal mafic-silicic igneous association. Resources associated with this latter group are likely to contain one or more of the elements Mo, W, U, Sn, Be, and F, as well as Pb, Zn, Au, and Ag. Alunite and kaolinite deposits are found at many mineralized centers. Most epigenetically mineralized areas expose only the upper, near-surface parts of the different hydrothermal systems; most of whatever mineral deposits formed in these systems probably still exist at depth, awaiting discovery. Our conclusion is that many mineralized areas have excellent possibilities for the occurrence of mineral resources. Each of the many identified centers of mineralization is discussed briefly in this report and an estimate made of its resource potential.

  12. Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data

    NASA Astrophysics Data System (ADS)

    Beck, Andrew W.; Lawrence, David J.; Peplowski, Patrick N.; Viviano-Beck, Christina E.; Prettyman, Thomas H.; McCoy, Timothy J.; McSween, Harry Y.; Yamashita, Naoyuki

    2017-04-01

    We use data collected by the Dawn Gamma-Ray and Neutron Detector (GRaND) at Vesta to map compositions corresponding to nearly pure igneous lithologies in the howardite, eucrite, diogenite (HED) meteorite clan (samples likely from Vesta). At the ∼300-km spatial scale of GRaND measurements, basaltic eucrite occurs on only 3% of the surface, whereas cumulate eucrite and orthopyroxenitic diogenite are not detected. The basaltic eucrite region is generally coincident with an area of the surface with thick regolith, elevated H, and moderate crater density, and may represent the best compositional sample of primordial vestan crust. We observe an absence of pure orthopyroxenitic diogenite terrains in the Rheasilvia basin and its ejecta, an observation corroborated by VIR (0.1%), which suggests the south-polar crust was a polymict mixture of igneous lithologies (howardite) at the time of the Rheasilvia impact, or was a thick basaltic eucrite crust with heterogeneously distributed orthopyroxenitic diogenite plutons. The most dominant igneous composition detected (11% of the surface) corresponds to one of the least-abundant igneous lithologies in the HED meteorite collection, the Yamato Type B diogenites (plagioclase-bearing pyroxenites). The distribution of Type B diogenite is spatially correlated with post-Rheasilvia craters in the north-polar region that are in close proximity to the Rheasilvia basin antipode. This suggests that north-polar Type B plutonism may have been associated with the Rheasilvia impact event. We propose that this was either through 1) uplift of pre-existing plutons at the antipode through focusing of Rheasilvia impact stress, or 2) Rheasilvia impact antipodal crustal melting, creating magmas that underwent fractionation to produce Type B plutons.

  13. O2 Chemistry of Dicopper Complexes with Alkyltriamine Ligands. Comparing Synergistic Effects on O2 Binding

    PubMed Central

    Company, Anna; Lamata, Diana; Poater, Albert; Solà, Miquel; Que, Lawrence; Fontrodona, Xavier; Parella, Teodor; Llobet, Antoni

    2008-01-01

    Two dicopper(I) complexes containing tertiary N-methylated hexaaza ligands which impose different steric constrains to the Cu ions have been synthetized, and their reactivity towards O2 has been compared with a mononuclear related system, highlighting the importance of cooperative effects between the metal centers in O2 activation. PMID:16813375

  14. Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.

    2006-01-01

    This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.

  15. Late Cretaceous paleomagnetism and clockwise rotation of the Silver Bell Mountains, south central Arizona

    USGS Publications Warehouse

    Hagstrum, J.T.; Sawyer, D.A.

    1989-01-01

    Late Cretaceous ash flow volcanism in the Silver Bell Mountains of southern Arizona (32.3??N, 248.5??E) was associated with caldera formation and porphyry copper mineralization. Oriented samples from 34 sites in volcanic, volcaniclastic, and intrusive units related to this episode of igneous activity (73-69 Ma) yield a mean paleomagnetic direction of (I = 61.2??, D = 24.0??, ??95 = 7.6??. Previously determined paleomagnetic data for southeastern Arizona suggest that this apparent clockwise rotation in the Silver Bell Mountains is a local phenomenon. Although preliminary, the average paleomagnetic direction for Oligocene and lower Miocene rocks in the Silver Bell area (I = 43.8??, D = 357.3??, ??95 = 16.5??) is similar to that calculated for stable North America (I = 50.2??, D = 352.2??, ??95 = 3.9??), implying that the observed rotation in the Silver Bell Mountains occurred before 26 Ma and was most likely associated with dextral strike-slip movement along the Ragged Top and related WNW trending faults bounding the Silver Bell Mountain block. These data, in conjunction with plate reconstructions and other paleomagnetic data from southwestern North America, imply that WNW trending strike-slip faults may have played an important role during Late Cretaceous to early Tertiary deformation in southern Arizona. -Authors

  16. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  17. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  18. Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the Philippine island arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, U.; Daniels, U.

    1987-02-01

    The Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines) is compatible with either a Tertiary or a Paleozoic age. The former is considered as unlikely because nonmetamorphic sediments of that age overlie the metamorphic complex. This implies that the metamorphic complex does not represent the basement of the Philippine arc but is an accreted terrane.

  19. Geochemical and Nd-Sr isotopic constraints on the genesis of Mesozoic alkaline magmatism in Tu Le basin, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.

    2003-04-01

    Mesozoic alkaline magmatism that occurred in the Tu Le basin, northern Vietnam, resulted in several igneous complexes composed of different lithologies. They are represented by the Suoi Be basalts, the Ban Hat gabbros, the Phu Sa Phin syenites, the Van Chan rhyolites and the Ngoi Thia rhyolites, which overall show a bimodal chemical composition. Ar-Ar dating and stratigraphic data indicate that the magmatism clustered in two periods, i.e., the middle-late Jurassic (176 - 145 Ma) and the late Cretaceous-earliest Tertiary (80 - 60 Ma), respectively. The Suoi Be basalts, the Ban Hat gabbros, the Van Chan rhyolites and some of the Phu Sa Phin syenites formed in the Jurassic stage, whilst the Ngoi Thia rhyolites and most of the Phu Sa Phin syenites formed in the Cretaceous stage. The mafic Jurassic magmas are silica-undersaturated (SiO_2 = 44-49 wt.%) and sodium-rich, with low MgO (˜7-3 wt.%) but high TiO_2 (3.6-2.0 wt.%). They exhibit various degrees of LREE-enrichment, with (La)N = 79-290, 5.5<(La/Yb)N<20 (chondrite-normalized) and without apparent Eu anomalies. On the other hand, the felsic magmas of Jurassic and Cretaceous ages show similar geochemical features, with SiO_2 = 62-78 wt.%, (Na_2O+K_2O) = 5.3-10.2 wt.%, significant Eu anomalies (Eu/Eu*= 0.1-0.54), and enrichments in the HFSE (Nb, Ta, Zr) and LILE (Rb, Th, U, K) along with pronounced depletions in Ba, Sr, P and Ti in the primitive mantle-normalized multi-element variation diagram. They are geochemically comparable to A-type granitoids. The mafic and felsic magmas have distinguishable Nd isotope ratios. In contrast to the Jurassic and Cretaceous felsic magmas that have uniform eNd(T) values (-1.5 to -2.8), the Jurassic mafic rocks are marked by more radiogenic and heterogenous eNd(T) values (-1.9 to -8.9), implying different magma sources and independent petrogenetic processes involved in generation of the Jurassic bimodal magmatism. Combining with relevant geological data from northern Vietnam and SW China, we propose an intraplate lithospheric extension setting to account for the Jurassic-Cretaceous magmatism whose generation postdated the continental collision between the Indochina and South China blocks in the early Triassic. Formed originally in the western margin of the South China block, SW China, the Tu Le basin and associated Mesozoic magmatic rocks were transported southeastward to the present location by the mid-Tertiary sinistral displacement of the Ailao Shan-Red River shear zone, related to the India-Asia collision.

  20. New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models

    NASA Astrophysics Data System (ADS)

    Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.

    2007-05-01

    The Gorgona Island, located 50 km to the west of the Colombian Pacific coast, is the only known site with Phanerozoic komatiites in the world besides a key element in several reconstruction of the interaction between the Caribbean and the South America Plate. The Gorgona komatiites are part of an igneous complex that also includes picritic basalts and breccias, gabbros and peridotites (dunites and wherlites), and is covered by deformed mid-Eocene and younger underformed marine sediments. Datings of the igneous rocks were only performed on basalts and include an 86 Ma K-Ar age, an 88.9 ± 1.2 Ma weighted mean of four Ar-Ar ages and an 89.2 ± 5.2 Ma Re-Os isochron age from basalts. Gorgona rocks are affected by reverse faulting with a general eastward vergence. The island is the only subaerially exposed part of a NE elongated sliver accreted in a dextral transpressional regime to the South America continental margin between the Late Eocene and the Early Miocene. Petrologic studies found large spread in radiogenic isotopes and incompatible trace element ratios in Gorgona ultramafic rocks, which have been interpreted as requiring at least two different sources of: 1) a depleted mantle responsible for the generation of the komatiites and most basalts, and 2) an enriched mantle responsible for some rarer enriched basalts and picrites. Despite the large compositional and isotopic heterogeneity the most common interpretation is that the Gorgona ultramafic rocks are the product of a single mantle plume, although it has recently proposed that this would be a separate plume from that generating the bulk of the Caribbean plateau at ~90 Ma. Our new study focused on the geochronology of the Gorgona igneous suite as we consider that this tectonically and petrologically complex island is unlike to have such a narrow age range. We attempted to date eight samples of komatiites, basalts and gabbros by Ar-Ar laser step heating. For four of these samples we successfully obtain reliable plateau and/or isochron ages. Only one basaltic sample, located in the western coast, yielded an age comparable with those previously reported in the literature. For two basalts intercalated with komatiites and a gabbro exposed in the north-eastern coast of the island we obtained younger ages, similar to those reported for some mafic and ultramafic rocks along the Pacific coast of Colombia. The two sets of ages for the ultramafic suite of Gorgona also correspond to different petrologic types. The depleted rocks in the eastern coast are younger than the enriched basalts and picrites located in the southern and western part of the island with ages around 90 Ma, suggesting a more complex tectonic evolution with the accretion of at least two different blocks. This eventually questions the "single plume" model for the formation of the Gorgona Island plateau.

  1. Publications - PDF 97-29I | Alaska Division of Geological & Geophysical

    Science.gov Websites

    igneous rocks of the Tanana B-1 Quadrangle and vicinity Authors: Newberry, R.J., and Haug, S.A , and Sr isotopic data for igneous rocks of the Tanana B-1 Quadrangle and vicinity: Alaska Division of ; Isotopes; Plutonic; STATEMAP Project; Trace Elements; Volcanic Top of Page Department of Natural Resources

  2. Meteoritic basalts. Final report, 1986-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treiman, A.H.

    1989-10-01

    The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant.more » Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.« less

  3. Compilation of new and previously published geochemical and modal data for Mesoproterozoic igneous rocks of the St. Francois Mountains, southeast Missouri

    USGS Publications Warehouse

    du Bray, Edward A.; Day, Warren C.; Meighan, Corey J.

    2018-04-16

    The purpose of this report is to present recently acquired as well as previously published geochemical and modal petrographic data for igneous rocks in the St. Francois Mountains, southeast Missouri, as part of an ongoing effort to understand the regional geology and ore deposits of the Mesoproterozoic basement rocks of southeast Missouri, USA. The report includes geochemical data that is (1) newly acquired by the U.S. Geological Survey and (2) compiled from numerous sources published during the last fifty-five years. These data are required for ongoing petrogenetic investigations of these rocks. Voluminous Mesoproterozoic igneous rocks in the St. Francois Mountains of southeast Missouri constitute the basement buried beneath Paleozoic sedimentary rock that is over 600 meters thick in places. The Mesoproterozoic rocks of southeast Missouri represent a significant component of approximately 1.4 billion-year-old (Ga) igneous rocks that crop out extensively in North America along the southeast margin of Laurentia and subsequent researchers suggested that iron oxide-copper deposits in the St. Francois Mountains are genetically associated with ca. 1.4 Ga magmatism in this region. The geochemical and modal data sets described herein were compiled to support investigations concerning the tectonic setting and petrologic processes responsible for the associated magmatism.

  4. Meteoritic basalts

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1989-01-01

    The objectives were to: explain the abundances of siderophile elements in the SNC meteorite suite, of putative Martian origin; discover the magmatic origins and possibly magma compositions behind the Nakhla meteorite, one of the SNC meteorites; and a re-evaluation of the petrology of Angra dos Reis, a unique meteorite linked to the earliest planetary bodies of the solar nebula. A re-evaluation of its petrography showed that the accepted scenario for its origin, as a cumulate igneous rock, was not consistent with the meteorite's textures (Treiman). More likely is that the meteorite represents a prophyritic igneous rock, originally with magma dominant. Studies of the Nakhla meteorite, of possible Martian origin, although difficult, were successful. It became necessary to reject the basic categorization of Nakhla: that is was a cumulate igneous rock. Detailed studies of the chemical zoning of Nakhlas' minerals, coupled with the failure of experimental studies to yield expected results, forced the conclusion that Nakhla is not a cumulate rock in the usual sense: a rock composed of igneous crystals and intercrystal magma. Study of the siderophile element abundances in the SNC meteorite groups involved trying to find reasonable core formation processes and parameters that would reproduce the observed abundances. Modelling was successful, and delimited a range of models which overlap with those reasonable from geophysical constraints.

  5. Igpet software for modeling igneous processes: examples of application using the open educational version

    NASA Astrophysics Data System (ADS)

    Carr, Michael J.; Gazel, Esteban

    2017-04-01

    We provide here an open version of Igpet software, called t-Igpet to emphasize its application for teaching and research in forward modeling of igneous geochemistry. There are three programs, a norm utility, a petrologic mixing program using least squares and Igpet, a graphics program that includes many forms of numerical modeling. Igpet is a multifaceted tool that provides the following basic capabilities: igneous rock identification using the IUGS (International Union of Geological Sciences) classification and several supplementary diagrams; tectonic discrimination diagrams; pseudo-quaternary projections; least squares fitting of lines, polynomials and hyperbolae; magma mixing using two endmembers, histograms, x-y plots, ternary plots and spider-diagrams. The advanced capabilities of Igpet are multi-element mixing and magma evolution modeling. Mixing models are particularly useful for understanding the isotopic variations in rock suites that evolved by mixing different sources. The important melting models include, batch melting, fractional melting and aggregated fractional melting. Crystallization models include equilibrium and fractional crystallization and AFC (assimilation and fractional crystallization). Theses, reports and proposals concerning igneous petrology are improved by numerical modeling. For reviewed publications some elements of modeling are practically a requirement. Our intention in providing this software is to facilitate improved communication and lower entry barriers to research, especially for students.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Persoff

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. Thesemore » studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.« less

  7. Bermuda and Appalachian-Labrador rises: Common non-hotspot processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, P.R.

    1991-01-01

    Other than the Corner Rise-New England seamounts and associated White Mountains, most postbreakup intraplate igneous activity and topographic uplift in the western North Atlantic and eastern North America do not readily conform to simple hotspot models. For examples, the Bermuda Rise trends normal to its predicted hotspot trace. On continental crust, Cretaceous-Eocene igneous activity is scattered along a northeast-trending belt {approximately}500-1,000 km west of and paralleling the continent-ocean boundary. Corresponding activity in the western Atlantic generated seamounts preferentially clustered in a belt {approximately}1,000 km east of the boundary. The Eocene volcanism on Bermuda is paired with coeval magmatism of themore » Shenandoah igneous province, and both magmatic belts are associated with northeast-trending topographic bulges - the Appalachian-Labrador Rise to the west and the Bermuda Rise (Eocene ) to the east. The above observations suggest the existence of paired asthenosphere upwelling, paralleling and controlled by the deep thermal contrast across the northeast-trending continental margin. Such convection geometry, apparently fixed to the North American plate rather than to hotspots, is consistent with recent convection models by B. Hager. The additional importance of plate-kinematic reorganizations (causing midplate stress enhancement) is suggested by episodic igneous activity ca. 90-100 Ma and 40-45 Ma.« less

  8. Geochronology of the Sleeper deposit, Humboldt County, Nevada: epithermal gold-silver mineralization following emplacement of a silicic flow-dome complex

    USGS Publications Warehouse

    Conrad, J.E.; McKee, E.H.; Rytuba, J.J.; Nash, J.T.; Utterback, W.C.

    1993-01-01

    The high-grade gold-silver deposits at the Sleeper mine are low sulfidation, quartz-adularia-type epithermal deposits, formed during the final stages of igneous hydrothermal activity of a small middle Miocene silicic flow-dome complex in north-central Nevada. There were multiple pulses of alteration and mineralization but all occurred within a period of less than 2 m.y. Later supergene alteration formed opal and alunite about 5.4 Ma but produced no Au or Ag mineralization other than some remobilization to produce locally rich pockets of secondary Au and Ag enrichment and is unrelated to the older magmatic hydrothermal system. The Sleeper deposit in the northern part of the Great Basin is genetically related to bimodal volcanism that followed a long period of arc-related andesitic volcanism in the same general region. -from Authors

  9. Variable Melt Production Rate of the Kerguelen HotSpot Due To Long-Term Plume-Ridge Interaction

    NASA Astrophysics Data System (ADS)

    Bredow, Eva; Steinberger, Bernhard

    2018-01-01

    For at least 120 Myr, the Kerguelen plume has distributed enormous amounts of magmatic rocks over various igneous provinces between India, Australia, and Antarctica. Previous attempts to reconstruct the complex history of this plume have revealed several characteristics that are inconsistent with properties typically associated with plumes. To explore the geodynamic behavior of the Kerguelen hotspot, and in particular address these inconsistencies, we set up a regional viscous flow model with the mantle convection code ASPECT. Our model features complex time-dependent boundary conditions in order to explicitly simulate the surrounding conditions of the Kerguelen plume. We show that a constant plume influx can result in a variable magma production rate if the plume interacts with nearby spreading ridges and that a dismembered plume, multiple plumes, or solitary waves in the plume conduit are not required to explain the fluctuating magma output and other unusual characteristics attributed to the Kerguelen hotspot.

  10. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  11. Brittle extension of the continental crust along a rooted system of low-angle normal faults: Colorado River extensional corridor

    NASA Technical Reports Server (NTRS)

    John, B. E.; Howard, K. A.

    1985-01-01

    A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.

  12. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    USGS Publications Warehouse

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to thinly layered sediments that contained rather high percentages of fine-grained volcanic debris. Metadiabase and metabasalt extrusives above Derby Hill Schist south of the map area represent more intense volcanic activity before or during the early stages of the Taconic disturbance in Late Ordovician time. Impure argillaceous, siliceous, and minor calcareous sediments of the Wepawaug Schist, which is Silurian and Devonian in age, were deposited unconformably on older rocks during renewed subsidence of a geosyncline. The Wepawaug now occupies the trough of a tight syncline, which formed before and during progressive regional metamorphism at the time of the Acadian orogeny in middle to Late Devonian time. Felsic igneous rocks were intruded into the metasedimentary formations of Paleozoic age before the climax of the latest progressive regional metamorphism. Intrusives that gave rise to the Prospect and Ansonia Gneisses were emplaced mainly in the Southington Mountain Schist, and the igneous rocks as well as the host rocks were metamorphosed in the staurolite zone. Although it is possible that these two intrusives were emplaced during the Taconic disturbance, the writer believes it more likely that the igneous rocks from which the Prospect and Ansonia Gneisses formed were emplaced during the Acadian orogeny. Woodbridge Granite, which intruded the Wepawaug Schist, is Devonian in age and undoubtedly was emplaced during the Acadian orogeny. In this area the granite is essentially unmetamorphosed, because it is in the chlorite, garnet, and biotite zones. Southwest of the map area, however, metamorphic equivalents of the Woodbridge are found in Wepawaug Schist in the staurolite zone. The Ansonia Gneiss, therefore, may be a metamorphic equivalent of the Woodbridge Granite. Rocks of Late Triassic age formerly covered the entire map area, but were eroded from the western part after tilting and faulting in Late Triassic time. The New Haven Arkose of the Newark

  13. Rhodium-catalyzed asymmetric tandem cyclization for efficient and rapid access to underexplored heterocyclic tertiary allylic alcohols containing a tetrasubstituted olefin.

    PubMed

    Li, Yi; Xu, Ming-Hua

    2014-05-16

    The first Rh-catalyzed asymmetric tandem cyclization of nitrogen- or oxygen-bridged 5-alkynones with arylboronic acids was achieved. The simple catalytic system involving a rhodium(I) complex with readily available chiral BINAP ligand promotes the reaction to proceed in a highly stereocontrolled manner. This protocol provides a very reliable and practical access to a variety of chiral heterocyclic tertiary allylic alcohols possessing a tetrasubstituted carbon stereocenter and an all-carbon tetrasubstituted olefin functionality in good yields with great enantioselectivities up to 99% ee.

  14. Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Brew, D.A.; Douglass, S.L.

    1996-01-01

    Nearly all of the bedrock in Southeastern Alaska has been metamorphosed, much of it under medium-grade conditions during metamorphic episodes that were associated with widespread plutonism. The oldest metamorphisms affected probable arc rocks near southern Prince of Wales Island and occurred during early and middle Paleozoic orogenies. The predominant period of metamorphism and associated plutonism occurred during Early Cretaceous to early Tertiary time and resulted in the development of the Coast plutonic-metamorphic complex that extends along the inboard half of Southeastern Alaska. Middle Tertiary regional thermal metamorphism affected a large part of Baranof Island.

  15. Geology and geochemistry of samples from Los Alamos National Laboratory HDR Well EE-2, Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, R.; Laughlin, A.W.; Aldrich, M.J. Jr.

    1981-07-01

    Petrologic, geochemical, and structural analyses of cores and cuttings obtained from 3000 to 4389-m true vertical depth in drill hole EE-2 indicate that this deeper part of the Precambrian section at Fenton Hill, New Mexico is composed primarily of a very heterogeneous and structurally anisotropic metamorphic complex, locally intruded by dikes and sills of granodioritic and monzogranitic composition. In this borehole none of these igneous bodies approach in size the 335-m-thick biotite-granodiorite body encountered at 2591-m depth beneath Fenton Hill in the other two drill holes. Contacts between the igneous and metamorphic rocks range from sharp and discordant to gradational.more » Analysis of cuttings indicates that clay-rich alteration zones are relatively common in the openhole portion of EE-2. These zones average about 20 m in thickness. Fracture sets in the Precambrian basement rock intersected by the EE-2 well bore mostly trend northeast and are steeply dipping to vertical; however, one of the sets dips gently to the northwest. Slickensided fault planes are present in a core (No.5) taken from a true vertical depth of 4195 m. Available core orientation data and geologic inference suggest that the faults dip steeply and trend between N.42/sup 0/ and 59/sup 0/E.« less

  16. Holocene evolution of Dahab coastline - Gulf of Aqaba, Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Torab, Magdy

    2018-03-01

    Dahab is a little Bedouin-village in Sinai Peninsula on the east coast of the Gulf of Aqaba and it lies approximately 90 km north of Sharm-el-Sheikh City. Dahab means "gold" in the Arabic language; over the past 20 years it has become one of the most visited tourist sites in Egypt. The basement complex is composed mostly of biotite aplite-granite, mica-aplite granite, granodiorite, quartz diorite, alaskite, and diorite. This composition correlates to similar igneous rocks in the most southern areas of Sinai and the Red Sea. Wadi Dahab is composed of igneous and metamorphic rocks and the coastline is formed of fragments of its rocks mixed with fragments of coral reef. The morphology of Dahab's coastline is characterized by a hooked marine spit composed of fluvial sediments carried by marine currents from the mouth of Wadi Dahab. This spit encloses a shallow lagoon, but the active deposition on the lagoon bottom will turn it into saline marsh. This paper investigates the evolution of the Dahab spit and lagoon during the Holocene and over the last 100 years, as well as the potential impacts of future management of the coastal area. The coastline mapping during the study was dependent on GIS techniques and data were collected by using total station, aerial photographs and satellite image interpretation as well as soil sample dating.

  17. Cognitive Complexity of the Medical Record Is a Risk Factor for Major Adverse Events

    PubMed Central

    Roberson, David; Connell, Michael; Dillis, Shay; Gauvreau, Kimberlee; Gore, Rebecca; Heagerty, Elaina; Jenkins, Kathy; Ma, Lin; Maurer, Amy; Stephenson, Jessica; Schwartz, Margot

    2014-01-01

    Context: Patients in tertiary care hospitals are more complex than in the past, but the implications of this are poorly understood because “patient complexity” has been difficult to quantify. Objective: We developed a tool, the Complexity Ruler, to quantify the amount of data (as bits) in the patient’s medical record. We designated the amount of data in the medical record as the cognitive complexity of the medical record (CCMR). We hypothesized that CCMR is a useful surrogate for true patient complexity and that higher CCMR correlates with risk of major adverse events. Design: The Complexity Ruler was validated by comparing the measured CCMR with physician rankings of patient complexity on specific inpatient services. It was tested in a case-control model of all patients with major adverse events at a tertiary care pediatric hospital from 2005 to 2006. Main Outcome Measures: The main outcome measure was an externally reported major adverse event. We measured CCMR for 24 hours before the event, and we estimated lifetime CCMR. Results: Above empirically derived cutoffs, 24-hour and lifetime CCMR were risk factors for major adverse events (odds ratios, 5.3 and 6.5, respectively). In a multivariate analysis, CCMR alone was essentially as predictive of risk as a model that started with 30-plus clinical factors. Conclusions: CCMR correlates with physician assessment of complexity and risk of adverse events. We hypothesize that increased CCMR increases the risk of physician cognitive overload. An automated version of the Complexity Ruler could allow identification of at-risk patients in real time. PMID:24626065

  18. A Tertiary Carbon–Iron Bond as an Fe I Cl Synthon and the Reductive Alkylation of Diphosphine-Supported Iron(II) Chloride Complexes to Low-Valent Iron

    DOE PAGES

    Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.

    2016-05-23

    We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less

  19. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    PubMed

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  20. Structure of β- N-dimethylamino-4-dodecyloxypropiophenone complexes with di- and polycarboxylic acids

    NASA Astrophysics Data System (ADS)

    Lebedeva, Tamara L.; Shandryuk, George A.; Sycheva, Tatyana I.; Bezborodov, Vladimir S.; Talroze, Raissa V.; Platé, Nicolai A.

    1995-07-01

    The type of bonds responsible for the complexation of di- and polyacids with the tertiary amine β- N-dimethylamino-4-dodecyloxypropiophenone is studied by means of FTIR spectroscopy. The complexes are shown to be stable due to strong H-bonding with partial charge transfer. The characteristic composition for complexes of polyacrylic, polymethacrylic and malonic acids is calculated as 2:1 (number of carboxylic groups per number of amine molecules) whereas glutaric acid forms complexes of different composition including 1:1. The characteristic composition results from the structure of the initial acid. The structures of both the characteristic complex and "excess" acid are also discussed.

  1. Invasive Aspergillus niger complex infections in a Belgian tertiary care hospital.

    PubMed

    Vermeulen, E; Maertens, J; Meersseman, P; Saegeman, V; Dupont, L; Lagrou, K

    2014-05-01

    The incidence of invasive infections caused by the Aspergillus niger species complex was 0.043 cases/10 000 patient-days in a Belgian university hospital (2005-2011). Molecular typing was performed on six available A. niger complex isolates involved in invasive disease from 2010 to 2011, revealing A. tubingensis, which has higher triazole minimal inhibitory concentrations, in five out of six cases. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  2. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0)

    DTIC Science & Technology

    2012-04-01

    are the Blue Ridge Province and the Piedmont Plateau, composed mainly of highly eroded Precambrian metamorphic rocks . The Piedmont Plateau extends...older igneous and metamorphic rocks (Atwood 1940; Hunt 1974; USGS 2004). Caverns and karst features are found in marble formations in the Piedmont...colluvium derived from sandstone, shale, limestone, and metamorphic and igneous rocks . Other parent materials include deposits of wind-blown loess

  3. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng

    2016-12-01

    The Emeishan large igneous province (ELIP) is renowned for its world-class Ni-Cu-(PGE) deposits and its link with the Capitanian mass extinction. The ELIP is generally thought to be associated with a deep mantle plume; however, evidence for such a model has been challenged through geology, geophysics and geochemistry. In many large igneous province settings, olivine-melt equilibrium thermometry has been used to argue for or against the existence of plumes. However, this method involves large uncertainties such as assumptions regarding melt compositions and crystallisation pressures. The Al-in-olivine thermometer avoids these uncertainties and is used here to estimate the temperatures of picrites in the ELIP. The calculated maximum temperature (1440 °C) is significantly ( 250 °C) higher than the Al-in-olivine temperature estimated for the average MORB, thus providing compelling evidence for the existence of thermal mantle plumes in the ELIP.

  4. The Manihiki Plateau—a key to missing hotspot tracks?

    NASA Astrophysics Data System (ADS)

    Pietsch, R.; Uenzelmann-Neben, G.

    2016-08-01

    A Neogene magmatic reactivation of the Manihiki Plateau, a large igneous province (LIP) in the central Pacific, is studied using seismic reflection data. Igneous diapirs have been identified exclusively within a narrow WNW-ESE striking corridor in the southern High Plateau (HP), which is parallel to the Neogene Pacific Plate motion and overlaps with an extrapolation of the Society Islands Hotspot (SIH) path. The igneous diapirs are characterized by a narrow width (>5 km), penetration of the Neogene sediments, and they become progressively younger towards the East (23-10 Ma). The magmatic source appears to be of small lateral extent, which leads to the conclusion that the diapirs represent Neogene hotspot volcanism within a LIP, and thus may be an older, previously unknown extension of the SIH track (>4.5 Ma). Comparing hotspot volcanism within oceanic and continental lithosphere, we further conclude that hotspot volcanism within LIP crust has similarities to tectonically faulted continental crust.

  5. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    USGS Publications Warehouse

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  6. Magnetic investigation and 2½ D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Baiyegunhi, Christopher; Gwavava, Oswald

    2017-03-01

    The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.

  7. Geochemistry and metamorphism of the Mouriscas Complex, Ossa-Morena/Central Iberian zone boundary, Iberian Massif, Central Portugal: Implications for the Cadomian and Variscan orogenies

    NASA Astrophysics Data System (ADS)

    Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.

    2018-01-01

    The Mouriscas Complex is a deformed and metamorphosed predominantly mafic igneous complex of Ediacaran and Ordovician age and crops out at the Ossa-Morena/Central Iberian zone boundary in the Iberian Massif, Central Portugal. It comprises amphibolite with Neoproterozoic protoliths (ca. 544 Ma), protomylonitic felsic dykes derived from younger trondhjemitic protoliths (ca. 483 Ma) and garnet amphibolite derived of even younger dioritic protoliths (ca. 477 Ma). The protoliths of the Neoproterozoic amphibolites are calc-alkaline magmas of basic to intermediate compositions with intraplate and active continental margin affinities and are considered to represent the final phase of the Cadomian arc magmatism. They are interpreted to have originated as coarse-grained intrusions, likely gabbro or diorite and generated from the partial melting of meta-igneous lower crust and mantle. Their emplacement occurred near the Cadomian metamorphic event dated at ca. 540 Ma (P = 7-8 kbar and T = 640-660 °C) which is interpreted to represent a continental collision. During the Late Cambrian-Early Ordovician an extensional episode occurred in the central-southern Iberian Massif and was also observed in other areas of the Variscan Orogen. It led to mantle upwelling and to the development of an aborted intracratonic rift located at the Ossa-Morena/Central Iberian zone boundary and to the opening of the Rheic Ocean to the south of the area studied in present coordinates (i.e., between the Ossa-Morena and South Portuguese Zones). This event has been dated at ca. 477 Ma and was responsible for the melting of deep ancient mafic crust and mantle with formation of bimodal magmatism in an intra-plate setting, as indicated by the protoliths of the protomylonitic felsic dykes with trondhjemitic composition and of the garnet amphibolite. Subsequent Variscan metamorphism took place under amphibolite facies conditions (P = 4-5.5 kbar; T = 600-625 °C) at lower P-T conditions than the Cadomian metamorphic event. It was followed by greenschist retrogression as suggested by the appearance of actinolite rims and formation of chlorite and epidote.

  8. Southern African Phanerozoic Carbonatites: Perspectives on Their Sources and Petrogeneses

    NASA Astrophysics Data System (ADS)

    Janney, P. E.; Ogungbuyi, P. I.; Marageni, M.; Harris, C.; Reid, D. L.

    2017-12-01

    Found worldwide, carbonatites are particularly numerous in southern Africa and reflect one expression of abundant intraplate alkaline magmatism of Proterozoic to Paleogene age in the region. Phanerozoic southern African carbonatites tend to be concentrated near the margins of the continent (especially the western margin), and near the East African Rift, and often occur in discrete magmatic lineations also containing kimberlites, melilitites, nephelinites and differentiated silica-undersaturated rocks such as phonolites and syenites. We present a synthesis of geochemical and radiogenic and stable isotope results for southern African carbonatites, including new trace element and isotope data from four Phanerozoic carbonatite complexes in South Africa and Namibia: Marinkas Quellen (MQ; southernmost Namibia, ≈525 Ma), Saltpeterkop (SPK; near Sutherland, South Africa, 74 Ma), Zandkopsdrift (ZKD; near Garies, South Africa, 55 Ma, a major REE deposit in development), and Dicker Willem (DW; near Aus, southern Namibia, 49 Ma). All are located in the Early-mid Proterozoic Namaqua-Natal mobile belt. These carbonatite complexes are each associated with linear, NE-SW oriented magmatic provinces, i.e., the Kuboos-Bremen Line of felsic alkaline intrusions and ultramafic lamprophyres (MQ); the Western Cape olivine melilitite province (SPK); the Namaqualand-Bushmanland-Warmbad province of olivine melilitites and kimberlites (ZKD) and the Schwarzeberg-Klinghardt-Gibeon swarm of nephelinites, phonolites and kimberlites (DW), the latter three provinces are of Paleogene to Late Cretaceous age and are clearly age progressive. Each of the four carbonatite complexes contain silica-undersaturated igneous rocks such as potassic trachyte (MQ, SPK & DW), alkaline lamprophyre (ZKD), ijolite (MQ & DW) and olivine melilitite (ZKD and SPK). Most also contain hybrid silicate-carbonate igneous rocks with <35 wt.% SiO2 and ≥20 wt.% CO2 such as nepheline sövite (DW), aillikite (ZKD) and other carbonated ultramafic lamprophyre types (SPK) that could represent magmas parental to the carbonatites. Like the magmatic provinces that host them, the carbonatites span a range of isotopic compositions from strong HIMU to EM1. We will present a model of carbonatite origin and source evolution related to lithospheric setting.

  9. Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex

    NASA Astrophysics Data System (ADS)

    Sarjoughian, Fatemeh; Lentz, David; Kananian, Ali; Ao, Songjian; Xiao, Wenjiao

    2018-04-01

    The Zafarghand Igneous Complex is composed of granite, granodiorite, diorite, and gabbro that contain many mafic microgranular enclaves. This complex was emplaced during the late Oligocene (24.6 Ma) to form part of the Urumieh-Dokhtar magmatic arc of Central Iran. The enclaves have spheroidal to elongated/lenticular shapes and are quenched mafic melts in felsic host magma as evidenced by fine-grained sinuous margins and (or) locally transitional and diffuse contacts with the host rocks, as well as having disequilibrium textures. These textures including oscillatory zoning with resorption surfaces on plagioclase, feldspar megacrysts with poikilitic and anti-rapakivi textures, mafic clots, acicular apatites, and small lath-shaped plagioclase in larger plagioclase crystals all indicate that the enclaves crystallized from mafic magma that was injected into and mixing/mingling with the host felsic magma. The studied rocks have calc-alkaline, metaluminous compositions, with an arc affinity. They are enriched in large ion lithophile elements, light rare-earth elements, and depleted in high field strength elements with significant negative Eu anomalies. The Sr-Nd isotopic data for all of the samples are similar and display ISr = 0.705123-0.705950 and ɛNd (24.6 Ma) = - 1.04-1.03 with TDM 0.9-1.1 Ga. The host granites and enclaves are of mixed/mingled origin and most probably formed by the interaction between the juvenile lower crust with a basaltic composition and old lower or middle continental crust as a major component and lithospheric mantle as a minor component; this was followed by fractional crystallization and possibly minor crustal assimilation. The source seems to be comprised of about 90-80% of the basaltic magma and about 10-20% of lower/middle-crust-derived magma. Geochemical characteristics indicate that the intrusion of these rocks from a subduction zone setting below the Central Iran micro-continent was related to an active continental margin, although was transitional to a transtensional setting possibly due oblique convergence to slab rollback or break-off.

  10. Evolution of Palaeoproterozoic mafic intrusions located within the thermal aureole of the Sudbury Igneous Complex, Canada: Isotopic, geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Prevec, Stephen A.; Baadsgaard, Halfdan

    2005-07-01

    Impact cratering and their resultant geological phenomena are recognised as significant factors in the lithological and biologic evolution of the earth. Age-dating of impact events is critical in correlating cause and effects for these catastrophic processes. The Falconbridge and Drury Township (Twp) intrusions were emplaced at the contact between Neoarchaean basement and Palaeoproterozoic volcanosedimentary rocks, and also lie at the southeast and southwest edges of the Sudbury Igneous Complex (SIC), within its thermal contact aureole. The Falconbridge Twp intrusion is dated at 2441 ± 3 Ma by U-Pb zircon, with evidence of Archaean inheritance from its host granitoids. Granitoids from the southernmost Abitibi Subprovince are dated here between 2670 ± 11 Ma for an undeformed Algoman granite, and 2696 ± 18 Ma for a foliated granitoid, consistent with existing data from the Abitibi Greenstone Belt and from the Wawa Subprovince. Major and trace element geochemical evidence, common-Pb isotopic compositions, and ɛNd2440 values between 0 and -1 are all consistent with a Palaeoproterozoic origin for the Falconbridge Twp intrusion, and support inclusion in the East Bull Lake-type suite of leucogabbroic plutons and sills. In contrast, the Drury Twp intrusion gives a U-Pb zircon age of 1859 ± 13 Ma, coincident with the date of SIC-emplacement. While the major and trace element compositions are comparable to the Falconbridge data, the Drury displays significant heterogeneity in ɛNd2440, with values ranging from +3.7 to -0.1, and contains more radiogenic Pb isotopic compositions. Field, geochemical and isotopic evidence clearly distinguishes this intrusion from constituents of the SIC itself, and indicates that the Drury too is a Palaeoproterozoic intrusion. This requires that apparently unshocked, undeformed magmatic-looking zircon has been grown or reset in a postmagmatic setting. This has significant implications for the identification of mantle-derived magmas and crustal remelts associated with large impact craters. A resetting mechanism involving aggressive hydrothermal alteration of zircon facilitated by halogen-complexing is proposed, inducing rapid, postshock lead loss and subsequent annealing.

  11. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and metaluminous granitic magmas involved both fractio??nation and partial melting as they ascended through the late Precambrian crust of the Arabian plate. ?? 1992.

  12. Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.

    2017-05-01

    A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.

  13. ‘Large Igneous Provinces (LIPs)’: Definition, recommended terminology, and a hierarchical classification

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.

    2007-12-01

    This article is an appeal for the adoption of a correct and appropriate terminology with respect to the so-called Large Igneous Provinces (LIPs). The term LIP has been widely applied to large basaltic provinces such as the Deccan Traps, and the term Silicic Large Igneous Province (SLIP) to volcanic provinces of dominantly felsic composition, such as the Whitsunday Province. However, neither term (LIP, SLIP) has been applied to the large granitic batholiths of the world (e.g., Andes) to which both terms are perfectly applicable. LIP has also not been applied to broad areas of contemporaneous basalt magmatism (e.g., Indochina, Mongolia) and sizeable layered mafic intrusions (e.g., Bushveld) which in many significant respects may also be considered to represent 'Large Igneous Provinces'. Here, I suggest that the term LIP is used in its broadest sense and that it should designate igneous provinces with outcrop areas ≥ 50,000 km 2. I propose a simple hierarchical classification of LIPs that is independent of composition, tectonic setting, or emplacement mechanism. I suggest that provinces such as the Deccan and Whitsunday provinces should be called Large Volcanic Provinces (LVPs), whereas large intrusive provinces (mafic-ultramafic intrusions, dyke/sill swarms, granitic batholiths) should be called Large Plutonic Provinces (LPPs). LVPs and LPPs thus together cover all LIPs, which can be felsic, mafic, or ultramafic, of sub-alkalic or alkalic affinity, and emplaced in continental or oceanic settings. LVPs are subdivided here into four groups: (i) the dominantly/wholly mafic Large Basaltic Provinces (LBPs) (e.g., Deccan, Ontong Java); (ii) the dominantly felsic Large Rhyolitic Provinces (LRPs) (e.g., Whitsunday, Sierra Madre Occidental); (iii) the dominantly andesitic Large Andesitic Provinces (LAPs) (e.g., Andes, Indonesia, Cascades), and (iv) the bimodal Large Basaltic-Rhyolitic Provinces (LBRPs) (e.g., Snake River-High Lava Plains). The intrusive equivalents of LRPs are the Large Granitic Provinces (LGPs) (e.g., the Andean batholiths), although an equivalent term for intrusive equivalents of LBPs is not necessary or warranted. The accuracy and usefulness of the terms flood basalt, plateau basalt, and trap are also examined. The largest LBP, LVP, and LIP is, of course, the bulk of the ocean floor. It is contended that the proposed LIP nomenclature and classification will lead to more accurate and precise terminology and hence better understanding of the wide variety of Large Igneous Provinces.

  14. Precambrrian crustal evolution in the great falls tectonic zone

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer N.

    The Great Falls Tectonic Zone (GFTZ) is a zone of northeast trending geological structures in central Montana that parallel structures in the underlying basement. U-Pb zircon and Nd isotopic data from the Little Belt Mountains (LBM) suggest that the GFTZ formed at ~1.86 to 1.80 Ga due to ocean subduction followed by collision between the Archean Wyoming Province (WP) and Medicine Hat Block (MHB). This study characterizes the GFTZ basement by geochronological and geochemical analysis of crustal xenoliths collected from Montana Alkali Province volcanics and exposed basement rock in the Little Rocky Mountains (LRM). Xenoliths collected from the Grassrange and Missouri Breaks diatremes and volcanics in the Bearpaw and Highwood Mountains have igneous crystallization ages from ~1.7 Ga to 1.9 Ga and 2.4 Ga to 2.7 Ga, and metamorphic ages from ~1.65 Ga to 1.84 Ga. Zircon Lu-Hf and whole-rock Sm-Nd data indicate that the xenoliths originated from reworked older continental crust mixed with mantle-derived components in all cases. Trace element patterns show fluid mobile element enrichments and fluid immobile element depletions suggestive of a subduction origin. Igneous ages in the LRM range older, from ~2.4 Ga to 3.2 Ga. Geochemical evidence suggests that the LRM meta-igneous units also formed in a subduction setting. Detrital zircon ages span the early Paleoproterozoic to Mesoarchean, with abundant 2.8 Ga ages. Zircon U-Pb igneous crystallization age data from xenoliths and the LRM are consistent with U-Pb zircon igneous crystallization ages from the MHB, suggesting that this segment of the GFTZ shares an affinity with concealed MHB crust. Published detrital zircon ages from the northern Wyoming Province reveal more abundant >3.0 Ga ages than the MHB or GFTZ samples. These geochronologic and geochemical data from the xenoliths and LRM samples allow for a refined model for crustal evolution in the GFTZ. Subduction under the Neoarchean to Paleoproterozoic crust of the MHB formed an igneous arc followed by metamorphism during the MHB-WP collision. Later Paleoproterozoic tectonothermal activity represents post-orogenic collapse after the terminal collision. Tectonic activity in the Cenozoic led to basement uplift and the formation of xenolith bearing volcanic units sampled for this study.

  15. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    PubMed

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  16. Magnetic subdomains of the High Arctic Magnetic High - Speculations and implications for understanding of the High Arctic Large Igneous Province and related tectonics.

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G. N.

    2015-12-01

    The crustal magnetic anomaly pattern for the high Arctic is dominated by a 1.3 x 106 km2 roughly oval domain of magnetic high, the High Arctic Magnetic High (HAMH) that includes numerous linear and curvi-linear shorter wavelength magnetic highs and lows with no single overall trend. Previous workers (including us) have associated this magnetic domain with the intrusive and extrusive mafic rocks of the High Arctic Large Igneous Province (HALIP). The HAMH shows the HALIP to be roughly the same size as other more well-known LIPs such as the Deccan Traps. The broad crustal magnetic character of LIPs is similar (and distinctive from non-LIP regions) worldwide. We identify 5 general subdomains and further distinguish 2 or 3 sections within each subdomain. We examine matched filter magnetic anomaly depth slices and the bathymetric and gravimetric expression of each sub-domain. Subdomains I and II associated respectively with the Mendeleev and Alpha Ridges have the deepest crustal roots. Subdomain III spans most of the central HAMH between I and II and has a distinctly less magnetic core. Subdomain IV on the Canadian margin side appears transitional to the relatively non-magnetic deep Canada Basin. Subdomain V is a zone of parallel magnetic highs at 90 degrees to the trend of the adjacent Lomonosov Ridge. Subdomains I and II may represent the deep cores of two smaller mantle plume heads that contributed to the overall HALIP. The presence of two plumes might serve to explain the two separate clusters of age dates (80 - 90 Ma and 120 - 130 Ma) found on igneous rocks surrounding and dredged from the HALIP region, and two stratigraphic sequence boundaries and extinction events associated with those time ranges. The boundaries between the magnetic subdomains might coincide with tectonic zones related to the post-LIP complex tectonic history of the Amerasian basin. A linear, through-going boundary that bisects the HAMH and runs perpendicular to the trend of the Lomonosov ridge may have served as a transform for at least a portion of the Canada basin extension.

  17. Assessing the variation in mercury deposition around the North Atlantic during the Palaeocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Jones, Morgan; Percival, Lawrence; Frieling, Joost; Mather, Tamsin; Svensen, Henrik

    2017-04-01

    The Palaeocene-Eocene Thermal Maximum (PETM) is a widely studied extreme global warming event that occurred 55.8 Ma. The PETM is marked by a sharp and sustained negative δ13C excursion, indicating a voluminous and rapid release of isotopically light carbon to the ocean-atmosphere system. The source(s) of carbon that instigated this global warming event remain heavily debated. The PETM is broadly contemporaneous with the second major pulse of activity (56-54 Ma) from the North Atlantic Igneous Province (NAIP), suggesting a possible causal relationship. This may have been driven by direct volcanic degassing of carbon dioxide (CO2) and/or thermogenic volatiles (e.g. CH4 and CO2) through contact metamorphism of organic-rich sedimentary layers affected by igneous intrusions. An emerging field in geochemistry that could shed light on the possible link between large igneous province emplacements and hyperthermal events is the use of mercury (Hg) preserved in the sedimentary record as a far field proxy for periods of major volcanic activity. Significant emissions of Hg could be sourced from both volcanic gases and from contact metamorphism, which are transported globally prior to deposition if released directly to the atmosphere. In marine settings, organic matter and clay minerals scavenge Hg and bury it in sediments; spikes in Hg/TOC (total organic carbon) ratios represent increases in Hg loading. Therefore, this method may be able to differentiate between magmatic and other sources as triggers for the PETM and the general activity through time. Here we present new Hg and C data from selected cores around Europe and North America to assess the variability of Hg deposition across the PETM with geographic location. The results indicate that while there is a slight background increase in Hg deposition during the PETM, there is significant variability between cores and extreme peaks within individual sections. This suggests that the behaviour of the Hg cycle during the PETM is a complex one, and that local factors such as core lithology and post-depositional mobility may be a factor.

  18. A novel primary-specialist care collaborative demonstration project to improve the access and health care of medically complex patients.

    PubMed

    Siu, Henry Yu-Hin; Steward, Nicole; Peter, Jessica; Cooke, Laurel; Arnold, Donald M; Price, David

    2017-09-01

    Objective Medically complex patients experience fragmented health care compounded by long wait times. The MedREACH program was developed to improve access and overall system experience for medically complex patients. Program description MedREACH is a novel primary-tertiary care collaborative demonstration program that features community nursing outreach, community specialist outreach, and a multi-specialty consultation clinic. Methods All 179 patients, referring primary care clinicians, and specialists involved were eligible to participate. Patient and clinician feedback were elicited by feedback surveys. Process measures were evaluated by participant retrospective chart reviews. Community nursing outreach patients completed the Goal Attainment Scale. Results Forty-eight patients and 22 clinicians consented to the feedback survey. About 75% of patients were seen within 2 weeks of referral. Patients spent an average of 3, 1.63, and 1.2 visits with the nursing outreach, multi-specialty clinic, and specialist outreach, respectively. Patients indicated a better medical experience, health enablement, and goals attainment. Family physicians felt more supported in the community management of medically complex patients and, overall, physicians felt MedREACH could improve collaborative care for medically complex patients. Qualitative analysis of clinician responses identified the need for increased mental health services. Discussion MedREACH demonstrates a patient-centered link between primary and tertiary care that could improve health care access and overall experience.

  19. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  20. PHASS99: A software program for retrieving and decoding the radiometric ages of igneous rocks from the international database IGBADAT

    NASA Astrophysics Data System (ADS)

    Al-Mishwat, Ali T.

    2016-05-01

    PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.

  1. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  2. S-type rhyolites from the Tolmie Igneous Complex, Australia: deep crust origins and shallow crustal evolution

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Birch, W. D.

    2010-05-01

    The Late Devonian Tolmie Igneous Complex, in Central Victoria, Australia, is composed mainly of Ba-rich (up to 3000 ppm) S-type rhyolite ignimbrites with SiO2 varying from 69 to 79 wt% and low Mg#s (1 to 43). Two main ignimbrite flows fill the Wabonga Caldera, the Ryans Creek and the overlying Toombullup Ignimbrites, totalling 750 to 1000 km3 in volume. The tectonic environment is late post-tectonic continental extension, with rifting and normal faulting. However, the volcanism was unimodal, without associated mafic lavas or pyroclastic rocks. Devonian red-beds underlie the Complex, Carboniferous, red-bed basins overlie the volcanic rocks, and some mafic lavas are present in the overlying red-bed sequences. The presence of almandine-rich garnet phenocrysts with rutile, in the Ryans Creek, implies minimum pressures of magma generation of 0.9 - 1.0 GPa. The Toombullup Ignimbrite contains two generations of garnet phenocrysts and three of orthopyroxene. Grt+Opx assemblages in the Toombullup imply early magmatic temperatures near 1000 ° C. The early phenocryst assemblage of Grt+Opx+Pl+Qtz constrains early magmatic crystallisation to around 0.4 GPa. Later Grt+Opx+Crd+Pl+Bt+Qtz assemblages suggest crystallisation at around 0.3 GPa and 750 to 800 ° C. The presence of ferroan Opx+Fa as late microphenocrysts suggest continued crystallisation at around 0.15 GPa and 800 ° C. Thus the magmas may were generated by high-T contact anatectic partial melting of Ba-enriched quartzofeldspathic metasediments near the base of the continental crust, during extension and mantle upwelling. There is then a record of partial crystallisation during ascent to shallow crustal pressures, where the felsic magmas evolved and interacted prior to eruption. Geochemical variations in the Complex suggest that there are at least 3 separate magma groups. Mafic-felsic magma mixing and restite unmixing can be ruled out as processes responsible for the variation. The chemistry of the magmas is interpreted to be the result of a complex interplay between partial melting of heterogeneous source rocks, variable entrainment of peritectic phases formed during the melting reactions and some crystal fractionation involving garnet, orthopyroxene, plagioclase and accessory minerals (Ap, Mon, Ilm, Zrn). The implication of these rocks for the local geology is that pre-Palaeozoic supracrustal rocks must have been carried to the base of the crust but escaped high-grade metamorphism and partial melting for 100s of millions of years after the orogenic events that brought them to those depths.

  3. A Systems Approach to Vaccine Decision Making

    PubMed Central

    Lee, Bruce Y.; Mueller, Leslie E.; Tilchin, Carla G.

    2016-01-01

    Vaccines reside in a complex multiscale system that includes biological, clinical, behavioral, social, operational, environmental, and economical relationships. Not accounting for these systems when making decisions about vaccines can result in changes that have little effect rather than solutions, lead to unsustainable solutions, miss indirect (e.g., secondary, tertiary, and beyond) effects, cause unintended consequences, and lead to wasted time, effort, and resources. Mathematical and computational modeling can help better understand and address complex systems by representing all or most of the components, relationships, and processes. Such models can serve as “virtual laboratories” to examine how a system operates and test the effects of different changes within the system. Here are ten lessons learned from using computational models to bring more of a systems approach to vaccine decision making: (i) traditional single measure approaches may overlook opportunities; (ii) there is complex interplay among many vaccine, population, and disease characteristics; (iii) accounting for perspective can identify synergies; (iv) the distribution system should not be overlooked; (v) target population choice can have secondary and tertiary effects; (vi) potentially overlooked characteristics can be important; (vii) characteristics of one vaccine can affect other vaccines; (viii) the broader impact of vaccines is complex; (ix) vaccine administration extends beyond the provider level; (x) and the value of vaccines is dynamic. PMID:28017430

  4. A systems approach to vaccine decision making.

    PubMed

    Lee, Bruce Y; Mueller, Leslie E; Tilchin, Carla G

    2017-01-20

    Vaccines reside in a complex multiscale system that includes biological, clinical, behavioral, social, operational, environmental, and economical relationships. Not accounting for these systems when making decisions about vaccines can result in changes that have little effect rather than solutions, lead to unsustainable solutions, miss indirect (e.g., secondary, tertiary, and beyond) effects, cause unintended consequences, and lead to wasted time, effort, and resources. Mathematical and computational modeling can help better understand and address complex systems by representing all or most of the components, relationships, and processes. Such models can serve as "virtual laboratories" to examine how a system operates and test the effects of different changes within the system. Here are ten lessons learned from using computational models to bring more of a systems approach to vaccine decision making: (i) traditional single measure approaches may overlook opportunities; (ii) there is complex interplay among many vaccine, population, and disease characteristics; (iii) accounting for perspective can identify synergies; (iv) the distribution system should not be overlooked; (v) target population choice can have secondary and tertiary effects; (vi) potentially overlooked characteristics can be important; (vii) characteristics of one vaccine can affect other vaccines; (viii) the broader impact of vaccines is complex; (ix) vaccine administration extends beyond the provider level; and (x) the value of vaccines is dynamic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The nakhlite meteorites: Augite-rich igneous rocks from Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2005-01-01

    The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg' = 63% and rims that are normally zoned to iron enrichment. The core-rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning - sharp rim zoning goes with the most magnesian cores (Mg' = 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. Compared to common basalts, they are rich in Ca, strongly depleted in Al, and enriched in magmaphile (incompatible) elements, including the LREE. Nakhlites contain little pre-terrestrial organic matter. Oxygen isotope ratios are not terrestrial, and are different in anhydrous silicates and in iddingsite. The alteration assemblages all have heavy oxygen and heavy carbon, while D/H values are extreme and scattered. Igneous sulfur had a solar-system isotopic ratio, but in most minerals was altered to higher and lower values. High precision analyses show mass-independent fractionations of S isotopes. Nitrogen and noble gases are complex and represent three components: two mantle sources (Chas-E and Chas-S), and fractionated Martian atmosphere. The nakhlites are igneous cumulate rocks, formed from basaltic magma at approx.1.3 Ga, containing excess crystals over what would form from pure magma. After accumulation of their augite and olivine crystals, they were affected (to various degrees) by crystallization of the magma, element diffusion among minerals and magma, chemical reactions among minerals and magma, magma movement among the crystals, and post-igneous chemical equilibration. The extent of these modifications varies, from least to greatest, in the order: MIL03346, NWA817, Y000593, Nakhla = Governador Valadares, Lafayette, and NWA998. Chemical, isotopic, and chronologic data confirm that the nakhlites formed on Mars, most likely in thick lava flows or shallow intrusions. Their crystallization ages, referenced to crater count chronologies for Mars, suggest that the nakhlites formed on the large volcanic constructs of Tharsis, Elysium, or Syrtis Major. The nakhlites were suffused with liquid water, probably at approx.620 ma. This water dissolved olivine and mesostasis glass, and deposited iddingsite and salt minerals in their places. The nakhlites were ejected from Mars at approx.10.75Ma by an asteroid impact and fell to Earth within the last 10,000 years. Although the nakhlites are enriched in incompatible elements, their source mantle was strongly depleted. This depletion event was ancient, as the nakhlites source mantle was fractionated while short-lived radionuclides (e.g., t(sub 1/2 = 9 my) were still active. This differentiation event may have been core formation coupled with a magma ocean, as is inferred for the moon.

  6. Extensional faulting in the southern Klamath Mountains, California

    USGS Publications Warehouse

    Schweickert, R.A.; Irwin, W.P.

    1989-01-01

    Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestem side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a vertical axis during the extension. We propose that the Trinity ultramafic sheet is structurally analogous to a metamorphic core complex; if so, it is the first core complex to be described that involves ultramafic rocks. We infer that Mesozoic terrane accretion produced a large gravitational instability in the crust that spread laterally during Tertiary extension

  7. Functional-Group-Tolerant, Silver-Catalyzed N-N Bond Formation by Nitrene Transfer to Amines.

    PubMed

    Maestre, Lourdes; Dorel, Ruth; Pablo, Óscar; Escofet, Imma; Sameera, W M C; Álvarez, Eleuterio; Maseras, Feliu; Díaz-Requejo, M Mar; Echavarren, Antonio M; Pérez, Pedro J

    2017-02-15

    Silver(I) promotes the highly chemoselective N-amidation of tertiary amines under catalytic conditions to form aminimides by nitrene transfer from PhI═NTs. Remarkably, this transformation proceeds in a selective manner in the presence of olefins and other functional groups without formation of the commonly observed aziridines or C-H insertion products. The methodology can be applied not only to rather simple tertiary amines but also to complex natural molecules such as brucine or quinine, where the products derived from N-N bond formation were exclusively formed. Theoretical mechanistic studies have shown that this selective N-amidation reaction proceeds through triplet silver nitrenes.

  8. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as mass extinctions.

  9. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  10. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  11. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix.

    PubMed

    Pley, H W; Flaherty, K M; McKay, D B

    1994-11-03

    In large structured RNAs, RNA hairpins in which the strands of the duplex stem are connected by a tetraloop of the consensus sequence 5'-GNRA (where N is any nucleotide, and R is either G or A) are unusually frequent. In group I introns there is a covariation in sequence between nucleotides in the third and fourth positions of the loop with specific distant base pairs in putative RNA duplex stems: GNAA loops correlate with successive 5'-C-C.G-C base pairs in stems, whereas GNGA loops correlate with 5'-C-U.G-A. This has led to the suggestion that GNRA tetraloops may be involved in specific long-range tertiary interactions, with each A in position 3 or 4 of the loop interacting with a C-G base pair in the duplex, and G in position 3 interacting with a U-A base pair. This idea is supported experimentally for the GAAA loop of the P5b extension of the group I intron of Tetrahymena thermophila and the L9 GUGA terminal loop of the td intron of bacteriophage T4 (ref. 4). NMR has revealed the overall structure of the tetraloop for 12-nucleotide hairpins with GCAA and GAAA loops and models have been proposed for the interaction of GNRA tetraloops with base pairs in the minor groove of A-form RNA. Here we describe the crystal structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. The interactions we observe correlate with the specificity of GNRA tetraloops inferred from phylogenetic studies, suggesting that this complex is a legitimate model for intramolecular tertiary interactions mediated by GNRA tetraloops in large structured RNAs.

  12. New Complexity-Building Reactions of Alpha-Keto Esters

    NASA Astrophysics Data System (ADS)

    Bartlett, Samuel L.

    I. Introduction: Importance of Asymmetric Catalysis and the Reactivity Patterns of alpha-Keto Esters. II. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile alpha-Keto Esters. Enantioconvergent arylation reactions of boronic acids and racemic ?-stereogenic alpha-keto esters have been developed. The reactions are catalyzed by a chiral (diene)Rh(I) complex and provide a wide array of beta-stereogenic tertiary aryl glycolate derivatives with high levels of diastereo- and enantioselectivity. Racemization studies employing a series of sterically differentiated tertiary amines suggest that the steric nature of the amine base additive exerts a significant influence on the rate of substrate racemization. III. Palladium-Catalyzed beta-Arylation of alpha-Keto Esters . A catalyst system derived from commercially available Pd2(dba) 3 and PtBu3 has been applied to the coupling of alpha-keto ester enolates and aryl bromides. The reaction provides access to an array of beta-stereogenic alpha-keto ester derivatives. When the air stable ligand precursor PtBu 3˙HBF4 is employed, the reaction can be carried out without use of a glovebox. The derived products are of broad interest given the prevalence of the alpha-keto acid substructure in biologically important molecules. IV. Catalytic Enantioselective [3+2] Cycloaddition of alpha-Keto Ester Enolates and Nitrile Oxides. An enantioselective [3+2] cycloaddition reaction between nitrile oxides and transiently generated enolates of alpha-keto esters has been developed. The catalyst system was found to be compatible with in situ nitrile oxide generation conditions. A versatile array of nitrile oxides and alpha-keto esters could participate in the cycloaddition, providing novel 5-hydroxy-2-isoxazolines in high chemical yield with high levels of diastereo- and enantioselectivity. Notably, the optimal reaction conditions circumvented concurrent reaction via O-imidoylation and hetero-[3+2] pathways.

  13. Preliminary AMS Study in Cretaceous Igneous Rocks of Valle Chico Complex, Uruguay: Statistical Determination of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.

    2009-05-01

    The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.

  14. Global stone heritage: larvikite, Norway

    NASA Astrophysics Data System (ADS)

    Heldal, Tom; Dahl, Rolv

    2013-04-01

    Larvikite has for more than hundred years been appreciated as one of the world's most attractive dimension-stones, and at present time its production and use is more extensive than ever. The main reason for the continuous success of the larvikite on the world market is the blue iridescence displayed on polished surfaces, which is caused by optical interference in microscopic lamellae within the ternary feldspars. The larvikite complex consists of different intrusions defining several ring-shaped structures, emplaced during a period of approximately five million years. Following this pattern, several commercial subtypes of larvikite, characterised by their colour and iridescence, have been identified. The name "larvikite" was first applied by Waldemar Brøgger, in his descriptions of the monzonitic rocks within the southern part of the Carboniferous-Permian Oslo Igneous Province. The name has its origin in the small coastal town of Larvik, situated almost right in the centre of the main plutonic complex of larvikite. From a geologist's point of view, the larvikites are important for understanding the igneous mechanisms behind the formation of the Oslo rift, representing a series of semi-circular intrusions, varying from quartz-bearing monzonites in the east (earliest phases) towards nepheline-bearing monzonites and nepheline syenite in the west (latest phases). However, most other people see larvikite as a particularly beautiful rock. Production started already in the 1880s, and at present time the export value of rough blocks of dimension-stone from the Larvik Region is close to 100 million euro, distributed on approximately 20 individual quarries. Different types of larvikite have different market value, and the customers can choose between a range of types and qualities under trade names such as "Blue Pearl", "Emerald Pearl" and "Marina Pearl". Globally, larvikite has put a significant mark on architecture around the world, and should be included in the global stone heritage.

  15. Petroleum Systems of the Nigerian Sector of Chad Basin: Insights from Field and Subsurface Data

    NASA Astrophysics Data System (ADS)

    Suleiman, A. A.; Nwaobi, G. O.; Bomai, A.; Dauda, R.; Bako, M. D.; Ali, M. S.; Moses, S. D.

    2017-12-01

    A.A. Suleiman, A. Bomai, R. Dauda, O.G. NwaobiNigerian National Petroleum CorporationAbstract:Formation of the West and Central African Rift systems (WCARS) reflects intra-plate deformation linked to the Early to Late Cretaceous opening of South Atlantic Ocean. From an economic point of view, the USGS (2010) estimated Chad Basin, which is part of WCARS rift system to contain, up to 2.32 BBO and 14.62 TCF. However, there has been no exploration success in the Nigerian sector of the Chad Basin principally because of a poor understanding of the basin tectono-stratigraphic evolution and petroleum system development. In this study, we use 3D seismic, geochemical and field data to construct a tectono-stratigraphic framework of the Nigerian sector of Chad Basin; within this framework we then investigate the basins petroleum system development. Our analysis suggests two key plays exist in the basin, Lower and Upper Cretaceous plays. Pre-Bima lacustrine shale and the Gongila Formation constitute the prospective source rocks for the Lower Cretaceous play, whereas the Fika Shale may provide the source, for the Upper Cretaceous play. Source rock hydrocarbon modeling indicates possible oil and gas generation and expulsion from the lacustrine shales and Fika Shale in Cretaceous and Tertiary times respectively. Bima Sandstone and weathered basement represent prospective reservoirs for the Lower Cretaceous play and intra-Fika sandstone beds for the Upper Cretaceous play. We identify a range of trapping mechanisms such as inversion-related anticlines. Shales of the Gongila Formation provide the top sealing for the Lower Cretaceous play. Our field observations have proved presence of the key elements of the petroleum system in the Nigerian Sector of the Chad Basin. It has also demonstrated presence of igneous intrusions in the stratigraphy of the basin that we found to influence the hydrocarbon potential of the basin through source rock thermal maturity and degradation. Our study indicates that Nigerian sector of the Chad Basin is affected by igneous activity and basin inversion both of which impact its petroleum system development. Therefore, a detailed study of the tectono-stratigraphic framework of a rift basin is crucial to investigate the development of its petroleum system and hydrocarbon prospectivity.

  16. Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Vazquez, Jorge A.; Wooden, Joseph L.

    2012-01-01

    Historically Sactive Redoubt volcano is an Aleutian arc basalt-to-dacite cone constructed upon the Jurassic–Early Tertiary Alaska–Aleutian Range batholith. The batholith intrudes the Peninsular tectonostratigraphic terrane, which is considered to have developed on oceanic basement and to have accreted to North America, possibly in Late Jurassic time. Xenoliths in Redoubt magmas have been thought to be modern cumulate gabbros and fragments of the batholith. However, new sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages for zircon from gabbro xenoliths from a late Pleistocene pyroclastic deposit are dominated by much older, ca. 310 Ma Pennsylvanian and ca. 1865 Ma Paleoproterozoic grains. Zircon age distributions and trace-element concentrations indicate that the ca. 310 Ma zircons date gabbroic intrusive rocks, and the ca. 1865 Ma zircons also are likely from igneous rocks in or beneath Peninsular terrane basement. The trace-element data imply that four of five Cretaceous–Paleocene zircons, and Pennsylvanian low-U, low-Th zircons in one sample, grew from metamorphic or hydrothermal fluids. Textural evidence of xenocrysts and a dominant population of ca. 1865 Ma zircon in juvenile crystal-rich andesite from the same pyroclastic deposit show that this basement has been assimilated by Redoubt magma. Equilibration temperatures and oxygen fugacities indicated by Fe-Ti–oxide minerals in the gabbros and crystal-rich andesite suggest sources near the margins of the Redoubt magmatic system, most likely in the magma accumulation and storage region currently outlined by seismicity and magma petrology at ∼4–10 km below sea level. Additionally, a partially melted gabbro from the 1990 eruption contains zircon with U-Pb ages between ca. 620 Ma and ca. 1705 Ma, as well as one zircon with a U-Th disequilibrium model age of 0 ka. The zircon ages demonstrate that Pennsylvanian, and probably Paleoproterozoic, igneous rocks exist in, or possibly beneath, Peninsular terrane basement. Discovery of Pennsylvanian gabbro similar in age to Skolai arc plutons 500 km to the northeast indicates that the Peninsular terrane, along with the Wrangellia and Alexander terranes, has been part of the Wrangellia composite terrane since at least Pennsylvanian time. Moreover, the zircon data suggest that a Paleoproterozoic continental fragment may be present in the mid-to-upper crust in southern Alaska.

  17. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  18. Geology and Ore Deposits of the Uncompahgre (Ouray) Mining District, Southwestern Colorado

    USGS Publications Warehouse

    Burbank, Wilbur Swett; Luedke, Robert G.

    2008-01-01

    The Uncompahgre mining district, part of the Ouray mining district, includes an area of about 15 square miles (mi2) on the northwestern flank of the San Juan Mountains in southwestern Colorado from which ores of gold, silver, copper, lead, and zinc have had a gross value of $14 to 15 million. Bedrock within the district ranges in age from Proterozoic to Cenozoic. The oldest or basement rocks, the Uncompahgre Formation of Proterozoic age, consist of metamorphic quartzite and slate and are exposed in a small erosional window in the southern part of the district. Overlying those rocks with a profound angular unconformity are Paleozoic marine sedimentary rocks consisting mostly of limestones and dolomites and some shale and sandstone that are assigned to the Elbert Formation and Ouray Limestone, both of Devonian age, and the Leadville Limestone of Mississippian age. These units are, in turn, overlain by rocks of marine transitional to continental origin that are assigned to the Molas and Hermosa Formations of Pennsylvanian age and the Cutler Formation of Permian age; these three formations are composed predominantly of conglomerates, sandstones, and shales that contain interbedded fossiliferous limestones within the lower two-thirds of the sequence. The overlying Mesozoic strata rest also on a pronounced angular unconformity upon the Paleozoic section. This thick Mesozoic section, of which much of the upper part was eroded before the region was covered by rocks of Tertiary age, consists of the Dolores Formation of Triassic age, the Entrada Sandstone, Wanakah Formation, and Morrison Formation all of Jurassic age, and the Dakota Sandstone and Mancos Shale of Cretaceous age. These strata dominantly consist of shales, mudstones, and sandstones and minor limestones, breccias, and conglomerates. In early Tertiary time the region was beveled by erosion and then covered by a thick deposit of volcanic rocks of mid-Tertiary age. These volcanic rocks, assigned to the San Juan Formation, are chiefly tuff breccias of intermediate composition, which were deposited as extensive volcaniclastic aprons around volcanic centers to the east and south of the area. The Ouray area, in general, exhibits the typical effects of a minimum of three major uplifts of the ancestral San Juan Mountains. The earliest of these uplifts, with accompanying deformation and erosion, occurred within the Proterozoic, and the other two occurred at the close, respectively, of the Paleozoic and Mesozoic. The last event, known as the Laramide orogeny, locally was accompanied by extensive intrusion of igneous rocks of dominantly intermediate composition. Domal uplifts of the ancestral mountains resulted in peripheral monoclinal folds, plunging anticlines radial to the central core of the mountain mass, faults, and minor folds. The principal ore deposits of the Uncompahgre district were associated with crosscutting and laccolithic intrusions of porphyritic granodiorite formed during the Laramide (Late Cretaceous to early Tertiary) orogeny. The ores were deposited chiefly in the Paleozoic and Mesozoic sedimentary strata having an aggregate thickness of about 4,500 feet (ft) and occur beneath the early Tertiary unconformity, which in places truncated some of the uppermost deposits. A few ore deposits of late Tertiary age occur also in the sedimentary rocks near the southern margin of the district, but are restricted mostly to the overlying volcanic rocks. Ore deposits in the Uncompahgre district range from low-grade, contact-metamorphic through pyritic base-metal bodies containing silver and gold tellurides and native gold to silver-bearing lead-zinc deposits, and are zoned about the center of intrusive activity, a stock in an area referred to as The Blowout. Ore deposition within the Uncompahgre district was largely controlled by structural trends and axes of uplift established mainly in the late Paleozoic phase of deformation, but also in part by structural lin

  19. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison counties, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.

    1988-01-01

    The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks include, from oldest to youngest, the Sawatch Quartzite, Manitou Dolomite, Harding Quartzite, Fremont Dolomite, Parting Formation and Dyer Dolomite of the Chaffee Group, Leadville Dolomite, and Belden Formation. In the Cochetopa district, Paleozoic rocks are absent. Mesozoic sedimentary rocks overlie the Precambrian rocks in the Cochetopa district and comprise the Junction Creek Sandstone, Morrison Formation, Dakota Sandstone, and Mancos Shale. In the Marshall Pass district, Mesozoic rocks are absent and were presumably removed by pre-Tertiary erosion. Tertiary volcanic rocks were deposited on an irregular surface of unconformity; they blanketed both districts but have been eroded, away from much of the area. They include silicic ash flows as well as andesitic lava flows and breccias. In the Marshall Pass district, a 20to 20D-m thickness of waterlaid tuff of early Tertiary age indicates the former presence of a lake over much of the district. In the Cochetopa district, faults have a predominantly east-west trend, and the major Los Ochos fault shows displacement during Laramide time. In the Marshall Pass district, the Chester fault is a major north-trending reverse fault along which Proterozoic rocks have been thrust westward over Paleozoic and Proterozoic rocks. Displacement on the Chester fault was almost entirely of Laramide age. Both faults and old erosion surfaces or unconformities are important in the origin of uranium deposits because of their influence on the movement and localization of ore-forming solutions. In the Cochetopa district, all the known uranium occurrences crop out within 100 m of the inferred position of the unconformity surface beneath the Tertiary volcanic rocks. Much of the district was part of the drainage of an ancestral Cochetopa Creek. The principal uranium deposit, at the Los Ochos mine, is localized along the Los Ochos fault and is near the bottom of the paleovalley where the paleovalley crosses the fault. This

  20. The Far East hydrocarbon habitat - the charge perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doust, H.

    From a hydrocarbon exploration point of view, the Far East is typically the realm of Tertiary basins with youthful prospects. Considering the archipelagic nature of the area and the extensive marine environments associated with shallow seas, it is perhaps surprising that nearly all of the oil and gas in these basins is of terrestrial origin (typical for the basins are low-sulfur, light waxy oils with strong land-plant imprint, and a superabundance of gas). The reason for this can be sought in the late Mesozoic-early Tertiary history, when the current cycle of tectonic development commenced. At that time, much of whatmore » is now east and southeast Asia consisted of a large land area, comprised of microcontinental blocks welded together by fold belts. In the Paleogene, this continental area became subject to back-arc extension and collapse as a consequence of complex plate readjustments. Subsidence took place in fault-bounded (graben) depressions of many orientations throughout the area, and widespread lacustrine environments were established, especially in the Oligocene. The middle to late Tertiary history of these basins was dictated by their proximity to the open ocean and by the extent of crustal subsidence, but follows a transgressive-regressive cycle that gives rise to the following groups of plays: (1) early Tertiary transgressive clastics, basically oil-prone, (2) Miocene carbonates of the maximum transgression, gas prone, and (3) late Tertiary regressive clastics, oil and gas prone.« less

  1. Development and Validation of a Decision Tool for Early Identification of Adult Patients with Severe and Complex Eating Disorder Psychopathology in Need of Highly Specialized Care.

    PubMed

    Dingemans, Alexandra E; Goorden, Maartje; Lötters, Freek J B; Bouwmans, Clazien; Danner, Unna N; van Elburg, Annemarie A; van Furth, Eric F; Hakkaart-van Roijen, Leona

    2017-09-01

    Patients with complex and severe eating disorders often receive a number of ineffective or/and insufficient treatments. Direct referral of these patients to highly specialized tertiary treatment facilities in an earlier stage of the disorder is likely to be more (cost)-effective. The aim of the study was to develop a decision tool that aids clinicians in early identification of these patients. After identification of criteria that were indicative of severity and complexity of eating disorder psychopathology by means of a systematic review of literature and consultation of a focus group, a Delphi method was applied to obtain consensus from experts on the list of relevant criteria. Finally, the decision tool was validated in clinical practice, and cut-off criteria were established. The tool demonstrated good feasibility and validity to identify patients for highly specialized tertiary care. The final decision tool consisted of five criteria that can easily be implemented in clinical practice. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  3. Geology and origin of epigenetic lode gold deposits, Tintina Gold Province, Alaska and Yukon: Chapter A in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Goldfarb, Richard J.; Marsh, Erin E.; Hart, Craig J.R.; Mair, John L.; Miller, Marti L.; Johnson, Craig; Gough, Larry P.; Day, Warren C.

    2007-01-01

    -rich and 18O-rich crustal fluids, most commonly of low salinity. The older group of ores includes the low-grade intrusion-related gold systems at Fort Knox near Fairbanks and those in Yukon, with fluids exsolved from fractionating melts at depths of 3 to 9 kilometers and forming a zoned sequence of auriferous mineralization styles extending outward to the surrounding metasedimentary country rocks. The causative plutons are products of potassic mafic magmas generated in the subcontinental lithospheric mantle that interacted with overlying lower to middle crust to generate the more felsic ore-related intrusions. In addition, the older ores include spatially associated, high-grade, shear-zonerelated orogenic gold deposits formed at the same depths from upward-migrating metamorphic fluids; the Pogo deposit is a relatively deep-seated example of such. The younger gold ores, restricted to southwestern Alaska, formed in unmetamorphosed sedimentary rocks of the Kuskokwim basin within 1 to 2 kilometers of the surface. Most of these deposits formed via fluid exsolution from shallowly emplaced, highly evolved igneous complexes generated mainly as mantle melts. However, the giant Donlin Creek orogenic gold deposit is a product of either metamorphic devolatilization deep in the basin or of a gold-bearing fluid released from a flysch-melt igneous body.

  4. Reconnaissance survey of the Duolun ring structure in Inner Mongolia: Not an impact structure

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Kenkmann, Thomas; Xiao, Zhiyong; Sturm, Sebastian; Metzger, Nicolai; Yang, Yu; Weimer, Daniela; Krietsch, Hannes; Zhu, Meng-Hua

    2017-09-01

    The Duolun basin, which is located in Inner Mongolia, China, has been proposed to be an impact structure with an apparent rim diameter of about 70, or even 170 km. The designation as an impact structure was based on its nearly circular topography, consisting of an annular moat that surrounds an inner hummocky region, and the widespread occurrences of various igneous rocks, polymict breccias, and deformed crustal rocks. Critical shock metamorphic evidence is not available to support the impact hypothesis. We conducted two independent reconnaissance field surveys to this area and studied the lithology both within and outside of the ring structure. We collected samples from all lithologies that might contain evidence of shock metamorphism as suggested by their locations, especially those sharing similar appearances with impact breccias, suevites, impact melt rocks, and shatter cones. Field investigation, together with thin-section examination, discovered that the suspected impact melt rocks are actually Early Cretaceous and Late Jurassic lava flows and pyroclastic deposits of rhyolitic to trachytic compositions, and the interpreted impact glass is typical volcanic glass. Petrographic analyses of all the samples reveal no indications for shock metamorphic overprint. All these lines of evidence suggest that the Duolun basin was not formed through impact cratering. The structural deformation and spatial distribution pattern of the igneous rocks suggest that the Duolun basin is most likely a Jurassic-Cretaceous complex rhyolite caldera system that has been partly filled with sediments forming an annular basin, followed by resurgent doming of the central area.

  5. Holocene evolution of Dahab coastline - Gulf of Aqaba, Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Magdy, Torab

    2016-04-01

    Dahab was a little Bedouin-village in Sinai Peninsula at the mid-western coast of Gulf of Aqaba approx. 90 km north of Sharm-el-Sheikh City and it means "gold" in Arabic language. But in the past 20 years ago it becomes one of the most tourist sites in Egypt. The basement complex is composed mostly of biotiteaplite-granite, mica-aplitegranite, granodiorite, quartzdiorite, alaskite, and diorite. Based on correlation with similar igneous in the most southern part of Sinai and the Red Sea area. Wadi Dahab composed of igneous and metamorphic rocks and the coastline is formed of the fragments of its rocks, mixed with fragments of coral reef and fluvial deposits of Wadi Dahab. The morphology of Dahab coastline is characterized by hooked marine spit, which composed of fluvial sediments carried by marine current from wadi Dahab mouth, this spit encloses shallow lagoon, but the active deposition on the lagoon bottom will evaluate it into saline marsh. This paper dealing with the evolution of Dahab spit and lagoon during the Holocene in addition to the recent time for last 100 years, and it impacts of the future management of the coast area. The coastline mapping during the period of study depends upon GIS technique for data were collected during field measuring by using total station, aerial photo and satellite image interpretation as well as soil sample dating. Suggested geomorphological evolution of Dahab area during the Holocene depending upon geomorphic investigation of the sedimentological process into 6 stages.

  6. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Ling, Xiao-Xiao; Stern, Robert J.; Santos, Jose F.; Meinhold, Guido; Ghorbani, Ghasem; Shahabi, Shirin

    2015-01-01

    Carboniferous igneous rocks constitute volumetrically minor components of Iranian crust but preserve important information about the magmatic and tectonic history of SW Asia. Ghushchi granites and gabbronorites in NW Iran comprise a bimodal magmatic suite that intruded Ediacaran-Cambrian gneiss and are good representatives of carboniferous igneous activity. Precise SIMS U-Pb zircon ages indicate that the gabbronorites and granites were emplaced synchronously at ~ 320 Ma. Ghushchi granites show A-type magmatic affinities, with typical enrichments in alkalis, Ga, Zr, Nb and Y, depletion in Sr and P and fractionated REE patterns showing strong negative Eu anomalies. The gabbronorites are enriched in LREEs, Nb, Ta and other incompatible trace elements, and are similar in geochemistry to OIB-type rocks. Granites and gabbronorites have similar εNd(t) (+ 1.3 to + 3.4 and - 0.1 to + 4.4, respectively) and zircon εHf(t) (+ 1.7 to + 6.2 and + 0.94 to + 6.5, respectively). The similar variation in bulk rock εNd(t) and zircon εHf(t) values and radiometric ages for the granites and gabbronorites indicate a genetic relationship between mafic and felsic magmas, either a crystal fractionation or silicate liquid immiscibility process; further work is needed to resolve petrogenetic details. The compositional characteristics of the bimodal Ghushchi complex are most consistent with magmatic activity in an extensional tectonic environment. This extension may have occurred during rifting of Cadomian fragments away from northern Gondwana during early phases of Neotethys opening.

  7. SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.

    2008-12-01

    Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.

  8. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  9. Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins.

    PubMed

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano

    2013-09-01

    In the last decade, protein allostery has experienced a major resurgence, boosted by the extension of the concept to systems of increasing complexity and by its exploitation for the development of drugs. Expansion of the field into new directions has not diminished the key role of hemoglobin as a test molecule for theory and experimental validation of allosteric models. Indeed, the diffusion of hemoglobins in all kingdoms of life and the variety of functions and of quaternary assemblies based on a common tertiary fold indicate that this superfamily of proteins is ideally suited for investigating the physical and molecular basis of allostery and firmly maintains its role as a main player in the field. This review is an attempt to briefly recollect common and different strategies adopted by metazoan hemoglobins, from monomeric molecules to giant complexes, exploiting homotropic and heterotropic allostery to increase their functional dynamic range. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Three-channel false colour AFM images for improved interpretation of complex surfaces: a study of filamentous cyanobacteria.

    PubMed

    Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H

    2010-05-01

    Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.

  11. Tertiary tilting and dismemberment of the laramide arc and related hydrothermal systems, Sierrita Mountain, Arizona

    USGS Publications Warehouse

    Stavast, W.J.A.; Butler, R.P.; Seedorff, E.; Barton, M.D.; Ferguson, C.A.

    2008-01-01

    Multiple lines of evidence, including new and published geologic mapping and paleomagnetic and geobarometric determinations, demonstrate that the rocks and large porphyry copper systems of the Sierrita Mountains in southern Arizona were dismembered and tilted 50?? to 60?? to the south by Tertiary normal faulting. Repetition of geologic features and geobarometry indicate that the area is segmented into at least three major structural blocks, and the present surface corresponds to oblique sections through the Laramide plutonic-hydrothermal complex, ranging in paleodepth from ???1 to ???12 km. These results add to an evolving view of a north-south extensional domain at high angles to much extension in the southern Basin and Range, contrast with earlier interpretations that the Laramide systems are largely upright and dismembered by thrust faults, highlight the necessity of restoring Tertiary rotations before interpreting Laramide structural and hydrothermal features, and add to the broader understanding of pluton emplacement and evolution of porphyry copper systems. ?? 2008 Society of Economic Geologists, Inc.

  12. High-Throughput, Data-Rich Cellular RNA Device Engineering

    PubMed Central

    Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.

    2015-01-01

    Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292

  13. The Impact of Continental Configuration on Global Response to Large Igneous Province Eruptions

    NASA Astrophysics Data System (ADS)

    Stellmann, J.; West, A. J.; Ridgwell, A.; Becker, T. W.

    2017-12-01

    The impact of Large Igneous Province eruptions as recorded in the geologic record varies widely; some eruptions cause global warming, large scale ocean acidification and anoxia and mass extinctions while others cause some or none of these phenomena. There are several potential factors which may determine the global response to a Large Igneous Province eruption; here we consider continental configuration. The arrangement of continents controls the extent of shallow seas, ocean circulation and planetary albedo; all factors which impact global climate and its response to sudden changes in greenhouse gas concentrations. To assess the potential impact of continental configuration, a suite of simulated eruptions was carried out using the cGENIE Earth system model in two end-member continental configurations: the end-Permian supercontinent and the modern. Eruptions simulated are comparable to an individual pulse of a Large Igneous Province eruption with total CO2 emissions of 1,000 or 10,000 GtC erupted over 1,000 or 10,000 years, spanning eruptions rates of .1-10 GtC/yr. Global response is characterized by measuring the magnitude and duration of changes to atmospheric concentration of CO2, saturation state of calcite and ocean oxygen levels. Preliminary model results show that end-Permian continental configuration and conditions (radiative balance, ocean chemistry) lead to smaller magnitude and shorter duration changes in atmospheric pCO2 and ocean saturation state of calcite following the simulated eruption than the modern configuration.

  14. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  15. Reassessing Geophysical Models of the Bushveld Complex in 3D

    NASA Astrophysics Data System (ADS)

    Cole, J.; Webb, S. J.; Finn, C.

    2012-12-01

    Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less dense, thicker crust underneath the Bushveld Complex necessitates the presence of dense material in the central area between the eastern and western lobes. The simplest way to achieve this is to model the mafic component of the Bushveld Complex as a single intrusion. This is similar to what the first students of the Bushveld Complex suggested. Conceptual models are by definition simplified versions of the real situation, and the geometry of the Bushveld Complex is expected to be much more intricate. References Cawthorn, R.G., Cooper, G.R.J., Webb, S.J. (1998). Connectivity between the western and eastern limbs of the Bushveld Complex. S Afr J Geol, 101, 291-298. Cousins, C.A. (1959). The structure of the mafic portion of the Bushveld Igneous Complex. Trans Geol Soc S Afr, 62, 179-189. Du Plessis, A., Kleywegt, R.J. (1987). A dipping sheet model for the mafic lobes of the Bushveld Complex. S Afr J Geol, 90, 1-6. Nguuri, T.K., Gore, J., James, D.E., Webb, S.J., Wright, C., Zengeni, T.G., Gwavava, O., Snoke, J.A. and Kaapvaal Seismic Group. (2001). Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geoph Res Lett, 28, 2501-2504. Webb, S.J., Cawthorn, R.G., Nguuri, T., James, D. (2004). Gravity modelling of Bushveld Complex connectivity supported by Southern African Seismic Experiment results, S Afr J Geol, 107, 207-218.

  16. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and distinct sources. Sm-Nd two-mineral "isochrons" yield apparent ages for petrographically identical rocks believed to be coeval ranging from -0 to 113 ?? 26 Ma, indicating the unreliability of dating these rocks with this method. Amphibole and plagioclase megacrysts are isotopically like the host basalts and probably originate by mechanical breakup of veins comagmatic with the host basaltic rocks. Unlike other Basin and Range localities, Cima Cr-diopside group isotopic compositions do not overlap with those of the host basalts. Copyright 1997 by the American Geophysical Union.

  17. Deep Vadose Zone Flow and Transport Behavior at T-Tunnel Complex, Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Reeves, D. M.

    2010-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.

  18. Achieving Equivalence: A Transnational Curriculum Design Framework

    ERIC Educational Resources Information Center

    Clarke, Angela; Johal, Terry; Sharp, Kristen; Quinn, Shayna

    2016-01-01

    Transnational education is now essential to university international development strategies. As a result, tertiary educators are expected to engage with the complexities of diverse cultural contexts, different delivery modes, and mixed student cohorts to design quality learning experiences for all. To support this transition we developed a…

  19. Science and Technology Facilities

    ERIC Educational Resources Information Center

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  20. Clinical Practice Improvement Approach in Multiple Sclerosis Rehabilitation: A Pilot Study

    ERIC Educational Resources Information Center

    Khan, Fary

    2010-01-01

    The objective of this study was to explore methods examining patient complexity and therapy interventions in relation to functional outcomes from an inpatient multiple sclerosis (MS) rehabilitation program. Retrospective and prospective data for 24 consecutive inpatients at a tertiary rehabilitation facility assessed (i)…

  1. Managing Curriculum Change and "Ontological Uncertainty" in Tertiary Education

    ERIC Educational Resources Information Center

    Keesing-Styles, Linda; Nash, Simon; Ayres, Robert

    2014-01-01

    Curriculum reform at institutional level is a challenging endeavour. Those charged with leading this process will encounter both enthusiasm and multiple obstacles to teacher engagement including the particularly complex issue of confronting existing teacher identities. At Unitec Institute of Technology (Unitec), the "Living Curriculum"…

  2. Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol.

    PubMed

    Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E

    2012-06-05

    In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.

  3. Crystalline solution series and order-disorder within the natrolite mineral group

    USGS Publications Warehouse

    Ross, M.; Flohr, M.J.K.; Ross, D.R.

    1992-01-01

    Electron microprobe and X-ray analyses were made of natrolite, tetranatrolite, gonnardite, and thomsonite from the Magnet Cove alkaline igneous complex, Arkansas, and of selected specimens from the U.S. National Museum. This information and data from the literature indicate that natrolite, mesolite, scolecite, edingtonite, and tetraedingtonite show only small deviations from the ideal stoichiometry. In contrast, gonnardite, tetranatrolite, and thomsonite show large deviations from the ideal end-member compositions and compose three crystalline series. The structures of the natrolite minerals are defined by combining each of the three types of framework structures with various combinations of channel-occupying polyhedra. Various polysomatic series can be constructed by combining slices of two basic structures to form new hybrid structures. -from Authors

  4. Al-rich objects in ordinary chondrites - Related origin of carbonaceous and ordinary chondrites and their constituents

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1984-01-01

    A description is given of 169 Al-rich objects (arbitrarily defined as having 10 wt pct or more of Al2O3) from 24 ordinary chondrites of types 3 and 4, five regolith breccias containing unequilibrated material, the unique meteorite Kakangari, and a few ordinary chondrites of types 5 and 6. On the basis of shape and texture, the Al-rich objects are divided into chondrules (round, with igneous textures), irregularly shaped inclusions (similar to type F and spinel-rich complex Ca-Al-rich inclusions), and fragments (probably fragments of Al-rich chondrules and inclusions). For descriptive purposes, the Al-rich chondrules are further subdivided into compositional subgroups, although they are entirely transitional.

  5. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, Janet K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  6. Notes on Lithology, Mineralogy, and Production for Lunar Simulants

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Stoeser, D. B.; Benzel, W. M.; Schrader, C. M.; Edmunson, J. E.

    2011-01-01

    The creation of lunar simulants requires a very broad range of specialized knowledge and information. This document covers several topic areas relevant to lithology, mineralogy, and processing of feedstock materials that are necessary components of the NASA lunar simulant effort. The naming schemes used for both terrestrial and lunar igneous rocks are discussed. The conflict between the International Union of Geological Sciences standard and lunar geology is noted. The rock types known as impactites are introduced. The discussion of lithology is followed by a brief synopsis of pyroxene, plagioclase, and olivine, which are the major mineral constituents of the lunar crust. The remainder of the text addresses processing of materials, particularly the need for separation of feedstock minerals. To illustrate this need, the text includes descriptions of two norite feedstocks for lunar simulants: the Stillwater Complex in Montana, United States, and the Bushveld Complex in South Africa. Magnetic mineral separations, completed by Hazen Research, Inc. and Eriez Manufacturing Co. for the simulant task, are discussed.

  7. The Iron Hill (Powderhorn) Carbonatite Complex, Gunnison County, Colorado - A Potential Source of Several Uncommon Mineral Resources

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2009-01-01

    A similar version of this slide show was presented on three occasions during 2008: two times to local chapters of the Society for Mining, Metallurgy, and Exploration (SME), as part of SME's Henry Krumb lecture series, and the third time at the Northwest Mining Association's 114th Annual Meeting, held December 1-5, 2008, in Sparks (Reno), Nevada. In 2006, the U.S. Geological Survey (USGS) initiated a study of the diverse and uncommon mineral resources associated with carbonatites and associated alkaline igneous rocks. Most of these deposit types have not been studied by the USGS during the last 25 years, and many of these mineral resources have important applications in modern technology. The author chose to begin this study at Iron Hill in southwestern Colorado because it is the site of a classic carbonatite complex, which is thought to host the largest known resources of titanium and niobium in the United States.

  8. Diverse ages and origins of basement complexes, Luzon, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geary, E.E.; Harrison, T.M.; Heizler, M.

    1988-04-01

    Geological field investigations and /sup 40/Ar//sup 39/Ar ages from two basement complexes in southeast Luzon document the first known occurrences of pre-Late Cretaceous age rocks in the eastern Philippines. However, individual components within the two complexes vary in age from Late Jurassic (Caramoan basement complex) to Early Cretaceous and early Miocene (Camarines Norte-Calaguas Islands basement complex). These and other data show that southeast Luzon basement complexes are genetically diverse, and they indicate that the concept of an old, autochthonous basement in the Philippines is open to question. This supports the hypothesis that the Philippine Archipelago is an amalgamation of allochthonousmore » Mesozoic and Cenozoic island-arc, ocean-basin, and continental fragments that were assembled during the Tertiary.« less

  9. 40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.

    2005-05-01

    The Crazy Mountains basin of south-central Montana is a complex foreland basin that formed during the interaction of thin-skinned, decollement-style folds of the Montana thrust belt and the basement-involved folds and thrust faults of the Rocky Mountain foreland province. Near the depositional center of the basin, synorogenic strata of the Paleocene Fort Union Formation have been intruded and locally thermally metamorphosed by strongly alkaline to subalkaline Tertiary intrusive rocks. The subalkaline rocks are found mostly in the southern Crazy Mountains and form stocks (Big Timber stock, Loco Mountain stock), radiating dikes and sills. With the exception of the Ibex Mountain sill (?), the alkaline rocks are restricted to the northern Crazy Mountains. New 40Ar/39Ar dates are reported from the strongly alkaline rocks, including the Comb Creek stock and dike swarm, the Ibex Mountain sill(?), and sills from the Robinson anticline intrusive complex. The alkaline rocks of the Robinson anticline intrusive complex are exposed in the easternmost folds of the Cordilleran fold and thrust belt, but despite their arcuate and apparently folded map geometry they have been shown to post-date folding. Hornblende from a trachyte sill in the Robinson anticline intrusive complex yielded a relatively simple age spectrum with a weighted mean of 50.61 ± 0.14 Ma (2σ), which probably records the age of sill emplacement. Nepheline syenite and mafic nepheline syenites of the Comb Creek stock and a dike from its radial dike swarm, two sills from the Robinson antlicline intrusive complex, and the Ibex Mountains sill(?) gave biotite plateau dates ranging from 50.03 to 50.22 Ma, with 2σ errors of ± 0.11 to 0.19 Ma. Because these dates are from fairly small, hypabyssal intrusions, they must have cooled quickly and thus these dates closely approximate the emplacement age of the intrusions. These data indicate that the strongly alkaline intrusions were emplaced during a fairly restricted interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.

  10. Geologic map of the Vigo NE quadrangle, Lincoln County, Nevada

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.

    2006-01-01

    This map of the Vigo NE quadrangle, Lincoln County, Nevada records the distribution, stratigraphy, and structural relationships of Tertiary intracaldera lavas and tuffs in the southeastern part of the Kane Springs Wash caldera, extracaldera Tertiary and upper Paleozoic rocks, and late Cenozoic surficial deposits both within and outside the caldera. The alkaline to peralkaline Kane Springs Wash caldera is the youngest (14 Ma) of three chemically related metaluminous to peralkaline calderas (Boulder Canyon caldera, 15 Ma; Narrow Canyon caldera, 16 Ma) of the nested Kane Springs Wash caldera complex. The chemistry of this caldera complex became progressively more alkalic with time, in contrast to the older calc-alkalic calderas and caldera complexes to the north that migrated progressively southward in eastern Nevada. The increasingly peralkaline eruptions from the Kane Springs Wash caldera complex reached a climax that was simultaneous with the end of both rapid extension and magmatism in this part of the Basin and Range. Using the assumption that degree of tilting is related to the degree of extension, the rate of extension increased until the abrupt halt at about 14 Ma. Silicic volcanism terminated at the Kane Springs Wash caldera followed only by local sporadic basaltic eruptions that ended by about 8 Ma. The northern boundary of an east-west-trending amagmatic corridor appears in the Vigo NE quadrangle south of the Kane Springs Wash caldera.

  11. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    PubMed

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  12. Impact of introduction of endoscopic ultrasound on volume, success, and complexity of endoscopic retrograde cholangiopancreatography in a tertiary referral center.

    PubMed

    Yandrapu, Harathi; Elhanafi, Sherif; Chowdhury, Farhanaz; Liu, Jiayang; Onate, Eduardo J; Dwivedi, Alok; Othman, Mohamed O

    2017-01-01

    Endoscopic ultrasound (EUS) is commonly used to examine pancreaticobiliary disorders. We hypothesize that the introduction of EUS service may change the pattern and the complexity of endoscopic retrograde cholangiopancreatographies (ERCPs) performed. The aim of this study is to assess the impact of introducing EUS on the volume, success, and complexity of ERCP. This is a single-center retrospective data review of ERCP procedures done "before" and "after" the introduction of EUS (before EUS and after EUS). Patients' demographics, ERCP indications, types of sedation, therapeutic interventions, outcomes, complications, and complexity of ERCP were collected. The categorical and continuous variables were compared using Fisher's exact test and the unpaired t-test, respectively. Multivariable logistic regression analysis was used to compare ERCP outcomes. A total of 945 ERCPs performed over a 3-year period between January 2010 and January 2013 (411 and 534 in the "before EUS" and "after EUS" time periods, respectively) were included in this study. There was a 30% relative increase in the volume of ERCPs after the introduction of EUS. ERCP success rate was higher after the introduction of EUS, even after adjusting the complexity grade [odds ratio (OR) = 4.54, P = 0.001]. Significant increase in the complexity of ERCP was observed after the introduction of EUS service. The OR of performing grade 4 ERCP was 4.44 (P = 0.0005) after the introduction of EUS. The introduction of a new EUS service in our tertiary referral university medical center is associated with an increase in the volume, success, and complexity of ERCP procedures. EUS expertise may be valuable for better ERCP outcomes.

  13. New geological data of New Siberian Archipelago

    NASA Astrophysics Data System (ADS)

    Sobolev, Nikolay; Petrov, Evgeniy

    2014-05-01

    The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.

  14. Mineralogy and diagenesis of low-permeability sandstones of Late Cretaceous age, Piceance Creek Basin, northwestern Colorado

    USGS Publications Warehouse

    Hansley, Paula L.; Johnson, Ronald C.

    1980-01-01

    This report presents preliminary results of a mineralogic and diagenetic study of some low-permeability sandstones from measured surface sections and cores obtained from drill holes in the Piceance Creek Basin of northwestern Colorado. A documentation of the mineralogy and diagenetic history will aid in the exploration for natural gas and in the development of recovery technology in these low-permability sandstones. These sandstones are in the nonmarine upper part of the Mesaverde Formation (or Group) of Late Cretaceous age and are separated from overlying lower Tertiary rocks by a major regional unconformity. Attention is focused on the sandstone units of the Ohio Creek Member, which directly underlies the unconformity; however, comparisons between the mineralogy of the Ohio Creek strata and that of the underlying sandstone units are made whenever possible. The Ohio Creek is a member of the Hunter Canyon Formation (Mesaverde Group) in the southwestern part of the basin, and the Mesaverde Formation in the southern and central parts of the basin. The detrital mineralogy is fairly constant throughout all of these nonrnarine Cretaceous sandstone units; however, in the southeastern part of the basin, there is an increase in percentage of feldspar, quartzite, and igneous rock fragments in sandstones of the Ohio Creek Member directly underlying the unconformity. In the southwestern part of the basin, sandstones of the Ohio Creek Member are very weathered and are almost-entirely comprised of quartz, chert, and kaolinite. A complex diagenetic history, partly related to the overlying unconformity, appears to be responsible for transforming these sandstones into potential gas reservoirs. The general diagenetic sequence for the entire Upper Cretaceous interval studied is interpreted to be (early to late): early(?) calcite cement, chlorite, quartz overgrowths, calcite cement, secondary porosity, analcime (surface only), kaolinite and illite, and late carbonate cements. Authigenic high-iron chlorite, which occurs on grain rims and in pore throats, is primarily responsible for the low-permeability of the subsurface sandstones of the Ohio Creek Member in the center of the basin. Kaolinite is the most abundant pore-filling authigenic clay in these sandstones, from the southwestern part of the basin and is responsible for their distinctive white-weathering color in outcrop. In the sandstones below the Ohio Creek Member, however, chlorite and kaolinite occur locally, and authigenic calcite and illite are more abundant. The occurrence and distribution of secondary porosity is one of the most important aspects of the diagenetic history of these sandstones. It is present as moldic intra- and intergranular porosity, as well as microporosity among authigenic clay pariicles. Although present locally in most sandstone units, secondary porosity is particularly common in the uppermost sandstone units and is interpreted to have formed primarily asa result ofweathering during the time represented by the Cretaceous-Tertiary unconformity.

  15. Geometric description and analysis of metamorphic tectonites (Pelagonian Zone, Internal Hellenides, Northern Greece)

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, A.

    2009-04-01

    An assortment of alpine and pre-Permian metamorphic tectonites, belonging to the Pelagonian Zone of the Internal Hellenides, are analyzed from Askion, Vernon and Vorras mountains. They in fact compose the Upper plate of the Western Macedonia core complex, overlying Late Tertiary high-P rocks through large-scale detachment fautls (Diamantopoulos et al. 2007). This work wants to determine the architecture and the kinematic path of rocks in a 3D assumption. Field analysis concludes: a) Meta-sedimentary lithologies and amphibolites, meta-igneous lithologies, granitoid mylonites composed of augen fieldspar gneisses, Permo-Triassic fossiliferous rocks, meta-carbonates of Triassic-Jurassic age, a Jurassic mélange including meta-sedimentary lithologies, serpentinites and carbonate tectonic blocks, Mesozoic Ophiolites, Cretaceous limestones and conglomerates as well as flysch sediments compose the architecture of the study area, b) Multiple high and low-angle cataclastic zones of intense non-coaxial strain separate distinct pre-Permian lithologies, alpine from pre-alpine rocks, Triassic-Jurassic rocks from Permo-Triassic rocks, Jurassic mélange from flysch sediments, Jurassic mélange from Triassic-Jurassic rocks, Cretaceous rocks from the Jurassic mélange, Cretaceous limestones from flysch lithologies and Cretaceous rocks from serpentinites, c) Geometric analysis and description of asymmetric structures found in fault cores, damage zones and in the footwall-related rocks showed a prominent kinematic direction towards WSW in low-T conditions affected all the rock lithologies, d) Multiple S- and L- shape fabric elements in the pre-Permian and Permo-Triassic rocks appear an intricate orientation, produced by intense non-coaxial syn-metamorphic deformation, e) Sheath and isoclinal folds oriented parallel to the L-shape fabric elements as well as a major S-shape fabric element, producing macroscopic fold-like structures compose the main syn-metamorphic fabric elements in the pre-alpine tectonites, f) Discrete and distributed strain along the former boundaries and within footwall- and hangingwall rocks is connoted to control the bulk kinematic path of the involved sequences, g) Field evaluation of the structural geology and the tectonics connote the conjugate character of the cataclastically-deformed boundaries, causing overprinting of the pre-existed ductile-related geometries, h) For the age of the inferred WSW kinematic direction of the involved rocks we believe that it is closely associated with the tectonic superimposition of the Pelagonian Zone onto the Olympos tectonic window during post-Late Eocene times. Miocene to Quaternary faulting activity in all the scales overprint the above Late Tertiary perturbation, resulting a real complicated structural feature (Diamantopoulos 2006). Diamantopoulos A., 2006. Plio-Quaternary geometry and Kinematics of Ptolemais basin (Northern Greece). Implications for the intra-plate tectonics in Western Macedonia. Geologica Croatica 59/1, pages 85-96. Diamantopoulos A., Krohe A., Mposkos E., 2007. Structural asymmetry and distributed strain of low-T shear planes inducing evidence for orogen-scale kinematic partitioning during denudation of high-P rocks (Pelagonian Zone, Greece). Geophysical Research Abstracts, Vol. 9, 03622.

  16. The Complexities of Supporting Asian International Pre-Service Teachers as They Undertake Practicum

    ERIC Educational Resources Information Center

    Spooner-Lane, Rebecca; Tangen, Donna; Campbell, Marilyn

    2009-01-01

    Increasing numbers of Asian international students are choosing to undertake their tertiary studies in English-speaking countries. For universities, international students are an important source of revenue. However, Asian international students face multiple challenges in adapting to a foreign culture, understanding the expectations of their…

  17. Undergraduate Students as Partners in New Faculty Orientation and Academic Development

    ERIC Educational Resources Information Center

    Cook-Sather, Alison

    2016-01-01

    Addressing both the increasingly complex process of becoming an educator at the tertiary level and the growing recognition of the importance of student engagement, student-faculty partnerships have emerged as one way of fundamentally rethinking academic development. Participant reflections suggest that the over-time, partnership approach to…

  18. Encapsulated chloride coordinating with two in-in protons of bridgehead amines in an octaprotonated azacryptand

    PubMed Central

    Saeed, Musabbir A.; Fronczek, Frank R.; Hossain, Md. Alamgir

    2010-01-01

    An encapsulated chloride in a thiophene-based cryptand is bridged with the two in-in protons of tertiary amines with a N…Cl− distance of 3.048(3) Å, similar to that observed in the chloride complex of Park and Simmons’ katapinand. PMID:19841792

  19. Facilitating LGBT Medical, Health and Social Care Content in Higher Education Teaching

    ERIC Educational Resources Information Center

    Davy, Zowie; Amsler, Sarah; Duncombe, Karen

    2015-01-01

    Increasingly, Lesbian, Gay, Bisexual, and Transgender (LGBT) health care is becoming an important quality assurance feature of primary, secondary and tertiary healthcare in Britain. While acknowledging these very positive developments, teaching LGBT curricula content is contingent upon having educators understand the complexity of LGBT lives. The…

  20. Educating for an Entrepreneurial Career: Developing Opportunity-Recognition Ability

    ERIC Educational Resources Information Center

    Sardeshmukh, Shruti R.; Smith-Nelson, Ronda M.

    2011-01-01

    Entrepreneurship as a career option has become increasingly desirable, and there is a real need to develop an opportunity-oriented entrepreneurial mindset among tertiary students. Current entrepreneurship education heavily relies on the linear process of business planning and rarely encourages the complex and non-linear thinking patterns necessary…

  1. Potential Future Igneous Activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Cline, M.; Perry, F. V.; Valentine, G. A.; Smistad, E.

    2005-12-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgement, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 X 10-8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. U.S. Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 X 10-8 be evaluated. Two consequence scenarios are considered; 1) igneous intrusion-groundwater transport case and 2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of the waste packages into the atmosphere, deposition of a tephra sheet, and redistribution of the contaminated ash. In both cases radioactive material is released to the accessible environment either through groundwater transport or through the atmospheric dispersal and deposition. Six Quaternary volcanic centers exist within 20 km of Yucca Mountain. Lathrop Wells cone (LWC), the youngest (approximately 75,000 yrs), is a well-preserved cinder cone with associated flows and tephra sheet that provides an excellent analogue for consequence studies related to future volcanism. Cone, lavas, hydrovolcanic ash, and ash-fall tephra have been examined to estimate eruptive volume and eruption type. LWC ejecta volumes suggest basaltic volcanism may be waning in the Yucca Mountain region.. The eruptive products indicate a sequence of initial fissure fountaining, early Strombolian ash and lapilli deposition forming the scoria cone, a brief hydrovolcanic pulse (possibly limited to the NW sector), and a violent Strombolian phase. Mathematical models have been developed to represent magmatic processes and their consequences on proposed repository performance. These models address dike propagation, magma interaction and flow into drifts, eruption through the proposed repository, and post intrusion/eruption effects. These models continue to be refined to reduce the uncertainty associated with the consequences from a possible future igneous event.

  2. Structure and evolution of the NE Atlantic conjugate margins off Norway and Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Faleide, J.; Planke, S.; Theissen-Krah, S.; Abdelmalak, M.; Zastrozhnov, D.; Tsikalas, F.; Breivik, A. J.; Torsvik, T. H.; Gaina, C.; Schmid, D. W.; Myklebust, R.; Mjelde, R.

    2013-12-01

    The continental margins off Norway and NE Greenland evolved in response to the Cenozoic opening of the NE Atlantic. The margins exhibit a distinct along-margin segmentation reflecting structural inheritance extending back to a complex pre-breakup geological history. The sedimentary basins at the conjugate margins developed as a result of multiple phases of post-Caledonian rifting from Late Paleozoic time to final NE Atlantic breakup at the Paleocene-Eocene transition. The >200 million years of repeated extension caused comprehensive crustal thinning and formation of deep sedimentary basins. The main rift phases span the following time intervals: Late Permian, late Middle Jurassic-earliest Cretaceous, Early-mid Cretaceous and Late Cretaceous-Paleocene. The late Mesozoic-early Cenozoic rifting was related to the northward propagation of North Atlantic sea floor spreading, but also linked to important tectonic events in the Arctic. The pre-drift extension is quantified based on observed geometries of crustal thinning and stretching factors derived from tectonic modeling. The total (cumulative) pre-drift extension amounts to in the order of 300 km which correlates well with estimates from plate reconstructions based on paleomagnetic data. Final lithospheric breakup at the Paleocene-Eocene transition culminated in a 3-6 m.y. period of massive magmatic activity during breakup and onset of early sea-floor spreading, forming a part of the North Atlantic Volcanic Province. At the outer parts of the conjugate margins, the lavas form characteristic seaward dipping reflector sequences and lava deltas that drilling has demonstrated to be subaerially and/or neritically erupted basalts. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower-crustal levels. Maximum igneous crustal thickness of about 18 km is found across the outer Vøring Plateau on the Norwegian Margin, and lower-crustal P-wave velocities of up to 7.3 km/s are found at the bottom of the igneous crust here. The igneous crust, including the characteristic 7+ km/s lower crustal body, is even thicker on the East Greenland Margin. During the main igneous episode, sills intruded into the thick Cretaceous successions throughout the NE Atlantic margins. Strong crustal reflections can be mapped widespread on both conjugate margins. In some areas they are associated with the top of the high-velocity lower crustal body, in other areas they may represent deeply buried sedimentary sequence boundaries or moho at the base of the crust. Following breakup, the subsiding margins experienced modest sedimentation until the late Pliocene when large wedges of glacial sediments prograded into the deep ocean from uplifted areas along the continental margins. The outbuilding was probably initiated in Miocene time indicating pre-glacial tectonic uplift of Greenland, Fennoscandia and the Barents Shelf. The NE Atlantic margins also reveal evidence of widespread Cenozoic compressional deformation.

  3. Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.

    2017-12-01

    Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.

  4. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification. This is partially remedied by four field trips and two supplemental assignments (igneous and metamorphic) in which students identify hand samples of a wide variety of rock types. The project-based approach enhances critical thinking, math, reading, and writing skills at the expense of hand sample identification and the benefits of review of material prior to testing.

  5. Thermomagmatic evolution of Mesoproterozoic crust in the Blue Ridge of SW Virginia and NW North Carolina: Evidence from U-Pb geochronology and zircon geothermometry

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Wooden, Joseph L.; Mazdab, Frank K.; Southworth, Scott; Fanning, Mark C.

    2010-01-01

    New geologic mapping, petrology, and U-Pb geochronology indicate that Mesoproterozoic crust near Mount Rogers consists of felsic to mafic meta-igneous rocks emplaced over 260 m.y. The oldest rocks are compositionally diverse and migmatitic, whereas younger granitoids are porphyritic to porphyroclastic. Cathodoluminescence imaging indicates that zircon from four representative units preserves textural evidence of multiple episodes of growth, including domains of igneous, metamorphic, and inherited origin. Sensitive high-resolution ion microprobe (SHRIMP) trace-element analyses indicate that metamorphic zircon is characterized by lower Th/U, higher Yb/Gd, and lower overall rare earth element (REE) concentrations than igneous zircon. SHRIMP U-Pb isotopic analyses of zircon define three episodes of magmatism: 1327 ± 7 Ma, 1180–1155 Ma, and 1061 ± 5 Ma. Crustal recycling is recorded by inherited igneous cores of 1.33–1.29 Ga age in 1161 ± 7 Ma meta-monzogranite. Overlapping ages of igneous and metamorphic crystallization indicate that plutons of ca. 1170 and 1060 Ma age were emplaced during episodes of regional heating. Local development of hornblende + plagioclase + quartz ± clinopyroxene indicates that prograde metamorphism at 1170–1145 Ma and 1060–1020 Ma reached upper-amphibolite-facies conditions, with temperatures estimated using Ti-in-zircon geothermometry at ~740 ± 40 °C during both episodes. The chemical composition of 1327 ± 7 Ma orthogranofels from migmatite preserves the first evidence of arc-generated rocks in the Blue Ridge, indicating a subduction-related environment that may have been comparable to similar-age systems in inliers of the Northern Appalachians and the Composite Arc belt of Canada. Granitic magmatism at 1180–1155 Ma and ca. 1060 Ma near Mount Rogers was contemporaneous with anorthosite-mangerite-charnockite-granite (AMCG) plutonism in the Northern Appalachian inliers and Canadian Grenville Province. Metamorphism at ca. 1160 and 1060 Ma correlates temporally with the Shawinigan orogeny and Ottawan phase of the Grenvillian orogeny, respectively, suggesting that the Blue Ridge was part of Rodinia dating back to ca. 1180 Ma.

  6. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to the plagioclase SPO and high-field AMS lineation. Magma flow in the Palisades magmatic system is interpreted to have originated from a point source feeder. Low-field AMS records the flow direction, whereas high-field AMS records extension within the igneous sheet. The multiple fabric analysis techniques presented in this dissertation have advanced our understanding of the development of fabric and its relationship to internal structure, emplacement, and magma dynamics in mafic igneous systems.

  7. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Ma, Changqian; Zhang, Chao; Wang, Shiming; She, Zhenbing; Liu, Lei; Xu, Haijin

    2013-09-01

    This work presents an integrated study of zircon U-Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic-felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093-0.7127, low ɛNd(t) values ranging from -5.6 to -5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have ɛHf(t) values ranging from -2.7 to 2.6 and model ages of 951-1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053-0.7058, ɛNd(t) values of 0.2-1.6 and corresponding T2DM of 1.0-1.1 Ga. Their zircon grains have ɛHf(t) values ranging from 3.2 to 6.1 and model ages of 774-911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065-0.7117, ɛNd(t) values from -5.7 to -1.9 and Nd model ages of 1.3-1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd-Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.

  8. Lu-Hf isotopic memory of plume-lithosphere interaction in the source of layered mafic intrusions, Windimurra Igneous Complex, Yilgarn Craton, Australia

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Arculus, R. J.; Ivanic, T. J.; Nebel-Jacobsen, Y. J.

    2013-10-01

    Most layered mafic intrusions (LMI) are formed via multiple magma injections into crustal magma chambers. These magmas are originally sourced from the mantle, likely via plume activity, but may interact with the overriding lithosphere during ascent and emplacement in the crust. The magma injections lead to the establishment of different layers and zones with complex macroscopic, microscopic and cryptic compositional layering through magmatic differentiation and associated cumulate formation, sometimes accompanied by crustal assimilation. These complex mineralogical and petrological processes obscure the nature of the mantle sources of LMI, and typically have limited the degree to which parental liquids can be fully characterised. Here, we present Lu-Hf isotope data for samples from distinct layers of the Upper Zone of the Windimurra Igneous Complex (WIC), an immense late-Archean LMI in the West Australian Yilgarn Craton. Lu-Hf isotope systematics of whole rocks are well correlated (MSWD=5.6, n=17) with an age of ˜3.05±0.05 Ga and initial ɛHf˜+8. This age, however, is older than whole rock Sm-Nd and zircon U-Pb ages of the intrusion, both of which are ca. 2.8 Ga. Stratigraphically-controlled initial Hf isotope variations (associated with multiple episodes of emplacement at ca. 2.8 Ga) indicate isotope mixing between a near-chondritic and an ultra-radiogenic component, the latter with ɛHf[2.8 Ga]>+15. This Hf isotope mixing creates a pseudochron-relationship at the time of intrusion of ˜250 Myr that is superimposed on subsequent radiogenic ingrowth after crystallisation, generating an age that predates the actual emplacement event. Mixing between late-stage crystallisation products (melt + crystals) from the Middle Zone and replenishing, plume-derived liquids was followed by crystal accumulation in a chemically evolving magma chamber. The ultra-radiogenic Hf isotope endmember in the WIC mantle source requires parent-daughter ratios consistent with very early formation in Earth history, akin to early Archean komatiitic plume sources. We propose that plume-derived melts that formed the Windimurra LMI reacted with ancient refractory lithospheric keels already underpinning ancient cratons, creating a melt with extremely high ɛHf[t]. Melting a refractory component with super-chondritic, time-integrated high Lu/Hf, in this case by plume-lithosphere interaction, simultaneously accounts for the extreme Hf isotope signals, Hf-Nd isotope decoupling, and difference in radiometric Lu-Hf and Sm-Nd ages.

  9. Geological and structural interpretation of Peninsular Malaysia by marine and aeromagnetic data: Some preliminary results

    NASA Astrophysics Data System (ADS)

    Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar

    2016-11-01

    Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.

  10. Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska

    USGS Publications Warehouse

    Sanger, Elizabeth A.; Glen, Jonathan M.G.

    2003-01-01

    This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.

  11. Geochemistry of Martian Meteorites and the Petrologic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2002-01-01

    Mafic igneous rocks serve as probes of the interiors of their parent bodies - the compositions of the magmas contain an imprint of the source region composition and mineralogy, the melting and crystallization processes, and mixing and assimilation. Although complicated by their multifarious history, it is possible to constrain the petrologic evolution of an igneous province through compositional study of the rocks. Incompatible trace elements provide one means of doing this. I will use incompatible element ratios of martian meteorites to constrain the early petrologic evolution of Mars. Incompatible elements are strongly partitioned into the melt phase during igneous processes. The degree of incompatibility will differ depending on the mineral phases in equilibrium with the melt. Most martian meteorites contain some cumulus grains, but nevertheless, incompatible element ratios of bulk meteorites will be close to those of their parent magmas. ALH 84001 is an exception, and it will not be discussed. The martian meteorites will be considered in two groups; a 1.3 Ga group composed of the clinopyroxenites and dunite, and a younger group composed of all others.

  12. The Lusi eruption site: insights from surface and subsurface investigations

    NASA Astrophysics Data System (ADS)

    Mazzini, A.

    2017-12-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km at depth, matching the observations and images obtained with geophysical investigations. Converging results support a scenario where igneous intrusions and hydrothermal fluid migrating from the AW complex moved towards the NE of Java. The triggered metamorphic reaction resulted in high overpressures that initiated the Lusi eruption site.

  13. Deformation mechanisms accommodating the emplacement of an igneous sill-complex in the Irish sector of the Rockall Basin, offshore NW Ireland

    NASA Astrophysics Data System (ADS)

    Magee, Craig; Jackson, Christopher; Schofield, Nick

    2013-04-01

    Magma intrusion within the subsurface is heavily influenced by the pre-existing architecture of the upper crust and, depending on the emplacement mechanisms, may modify basin structure and fluid flow pathways. Seismic reflection data reveal that intrusive networks predominantly consist of interconnected, saucer-shaped sills that are often associated with dome-shaped 'forced' folds generated by intrusion-induced uplift. Previous studies of intrusion-related forced folds have primarily focused on isolated sills or laccoliths and have shown that the fold amplitude is less than the intrusion thickness, suggesting that additional space-making mechanisms (e.g. grain comminution, fluidization) accompanied emplacement. Furthermore, forced folding is often considered as an instantaneous process over geological time. However, fold growth and the interplay between accompanying ductile and brittle deformation styles remains poorly understood. Here, we use 3D seismic reflection data from the eastern margin of the Irish Rockall Basin, NE Atlantic, to quantitatively study eighty-two igneous intrusions (i.e. saucer-shaped sills and inclined sheets) in order to constrain the emplacement history of a Palaeocene-to-Middle Eocene sill-complex. Emplacement occurred across a Cretaceous clastic-to-marl dominated succession at palaeodepths of <5 km. Northwards-dipping, planar transgressive sheet intrusions are most abundant in the deeper portion of the sill-complex and magma flow indicators within them (i.e. steps and broken bridges) reveal that magma flowed upwards and outwards, feeding into shallow-level saucer-shaped sills at the peak of the transgressive limbs. The saucer-shaped sills are characterized by radial magma flow patterns, emanating from the inner sill, distinguished by mapping the long axes of magma lobes and fingers. These magma flow indictors also provide a proxy for intrusion style; i.e. where sills intrude the Lower Cretaceous sandstones, magma propagation was facilitated by brittle fracturing while non-brittle processes (e.g. fluidization) accompanied shallow-level intrusions into the Upper Cretaceous marls. Directly overlying the sill-complex, within the Palaeocene-Mid-Eocene succession, are a series of 22 forced folds that are interpreted to have formed via intrusion-induced uplift. Onlap and truncational relationships observed throughout the folded Palaeocene-Mid-Eocene strata indicate that the folds grew progressively, likely due to the near-continuous intrusion of small magmatic pulses within the sill-complex. Importantly, individual forced folds cannot be attributed to a single intrusion and, instead, appear to have been generated from the incremental emplacement of adjacent and overlapping sills. Furthermore, where the sills are clustered, individual folds have merged together to form broad, compound folds. We show that emplacement depth below the contemporaneous seabed and vertical stacking of the sills strongly influenced forced fold development. Furthermore, magmatic activity occurred for a prolonged (~8 Ma) time period.

  14. Overview of radiometric ages in three allochthonous belts of Northern Venezuela: Old ones, new ones, and their impact on regional geology

    USGS Publications Warehouse

    Sisson, V.B.; Ave Lallemant, H.G.; Ostos, M.; Blythe, A.E.; Snee, L.W.; Copeland, Peter; Wright, J.E.; Donelick, R.A.; Guth, L.R.

    2005-01-01

    The margin of northern Venezuela is a complex zone representing the orogenic events from basement formation to subsequent subduction and exhumation during transpressional collision. This boundary zone has six east-west-trending belts that each record a different segment of its development. This geologic complexity requires radiometric ages to unravel, and we herein provide 48 new ages including U-Pb (4), Rb-Sr (2), 40Ar/39Ar (24), zircon and apatite fission-track (17), and 14C (1) ages to constrain the evolution of three of these belts. These three belts are the Cordillera de la Costa, Caucagua-El Tinaco, and Serran??a del Interior belts. In the Cordillera de la Costa belt, U-Pb geochronologic data indicate portions of the basement igneous and metaigneous rocks formed in the Cambro-Ordovician (513-471 Ma). New 40Ar/39Ar data from Margarita Island indicate that some of the subduction complex was rapidly cooled and exhumed, whereas other portions indicate slower cooling. This contrasts with new 40Ar/39Ar data from the Puerto Cabello. ?? 2005 Geological Society of America.

  15. Medical tourism in India: perceptions of physicians in tertiary care hospitals.

    PubMed

    Qadeer, Imrana; Reddy, Sunita

    2013-12-17

    Senior physicians of modern medicine in India play a key role in shaping policies and public opinion and institutional management. This paper explores their perceptions of medical tourism (MT) within India which is a complex process involving international demands and policy shifts from service to commercialisation of health care for trade, gross domestic profit, and foreign exchange. Through interviews of 91 physicians in tertiary care hospitals in three cities of India, this paper explores four areas of concern: their understanding of MT, their views of the hospitals they work in, perceptions of the value and place of MT in their hospital and their views on the implications of MT for medical care in the country. An overwhelming majority (90%) of physicians in the private tertiary sector and 74.3 percent in the public tertiary sector see huge scope for MT in the private tertiary sector in India. The private tertiary sector physicians were concerned about their patients alone and felt that health of the poor was the responsibility of the state. The public tertiary sector physicians' however, were sensitive to the problems of the common man and felt responsible. Even though the glamour of hi-tech associated with MT dazzled them, only 35.8 percent wanted MT in their hospitals and a total of 56 percent of them said MT cannot be a public sector priority. 10 percent in the private sector expressed reservations towards MT while the rest demanded state subsidies for MT. The disconnect between their concern for the common man and professionals views on MT was due to the lack of appreciation of the continuum between commercialisation, the denial of resources to public hospitals and shift of subsidies to the private sector. The paper highlights the differences and similarities in the perceptions and context of the two sets of physicians, presents evidence, that questions the support for MT and finally analyzes some key implications of MT on Indian health services, ethical issues emerging out of that and the need for understanding the linkages between public and private sectors for a more effective intervention for an equitable medical care policy.

  16. Medical tourism in india: perceptions of physicians in tertiary care hospitals

    PubMed Central

    2013-01-01

    Senior physicians of modern medicine in India play a key role in shaping policies and public opinion and institutional management. This paper explores their perceptions of medical tourism (MT) within India which is a complex process involving international demands and policy shifts from service to commercialisation of health care for trade, gross domestic profit, and foreign exchange. Through interviews of 91 physicians in tertiary care hospitals in three cities of India, this paper explores four areas of concern: their understanding of MT, their views of the hospitals they work in, perceptions of the value and place of MT in their hospital and their views on the implications of MT for medical care in the country. An overwhelming majority (90%) of physicians in the private tertiary sector and 74.3 percent in the public tertiary sector see huge scope for MT in the private tertiary sector in India. The private tertiary sector physicians were concerned about their patients alone and felt that health of the poor was the responsibility of the state. The public tertiary sector physicians’ however, were sensitive to the problems of the common man and felt responsible. Even though the glamour of hi-tech associated with MT dazzled them, only 35.8 percent wanted MT in their hospitals and a total of 56 percent of them said MT cannot be a public sector priority. 10 percent in the private sector expressed reservations towards MT while the rest demanded state subsidies for MT. The disconnect between their concern for the common man and professionals views on MT was due to the lack of appreciation of the continuum between commercialisation, the denial of resources to public hospitals and shift of subsidies to the private sector. The paper highlights the differences and similarities in the perceptions and context of the two sets of physicians, presents evidence, that questions the support for MT and finally analyzes some key implications of MT on Indian health services, ethical issues emerging out of that and the need for understanding the linkages between public and private sectors for a more effective intervention for an equitable medical care policy. PMID:24345280

  17. Deformation-related microstructures in magmatic zircon and implications for diffusion

    NASA Astrophysics Data System (ADS)

    Reddy, Steven Michael; Timms, Nicholas E.; Hamilton, Patrick Joseph; Smyth, Helen R.

    2009-02-01

    An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.

  18. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions are comparable to and often exceed the economic concentrations of the metals within the ores themselves. As a consequence of these results, current genetic models must be revised to consider the role played by hydrous saline melts and magmatic brines in deposit development, and the potential for interaction and competition between sulfide liquids (or PGE-bearing sulfide minerals) and hydrosaline volatiles for available PGE and Au in a crystallizing mafic igneous system must be critically evaluated.

  19. Petrographic Analyses of Lonestones from ODP Drill Sites Leg 188 Prydz Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Detterman, K.; Warnke, D. A.; Richter, C.

    2006-12-01

    ODP Leg 188 was drilled in 2000 to sample the first advances of the Antarctic ice sheet and to document further cryospheric development. Continental shelf Site 1166 documented the earliest stages of glaciation during the Eocene-Oligocene and continental slope Site 1167 documented rapid deposition by debris flows during the Pliocene-Pleistocene and a subtle change in onshore erosion areas. Site 1165, located on the continental rise, documented long-term transition from wet-based lower Miocene glaciers to dry-based upper Miocene glaciers, including short-term fluctuations starting in the early Miocene. Source areas for all drill sites are the Lambert Glacier-Amery Ice Shelf drainage area, encompassing the Northern and Southern Prince Charles Mountains, the Gamburtsev Sub-glacial Mountains, and the Grove Mountains. Lonestones occur in most of the cores from all sites of Leg 188 prompting research for potential source areas and transportation modes of the lonestones. One-hundred and seventeen thin sections of lonestones were prepared from Sites 1166, 1167, and 1165 for petrographic analyses. Metamorphic lonestones outnumber igneous and sedimentary lonestones at all three sites. Sedimentary lonestones were not found in the thin sections of Site 1166. Extrusive igneous lonestones were found only at Site 1165 and comprised 5.1 percent of Leg 188's lithology. The anorthite content of igneous and metamorphic lonestones represented at all three sites was albite-oligoclase plagioclase. Albite oligoclase plagioclase has been documented in the Southern Prince Charles Mountains. The results of this study of a selection of lonestones from Site 1167 supports a hypothesis first proposed by the Shipboard Scientific Party in 2001 that as time elapsed, the source area for Site 1167 lonestones shifted slightly from a largely sandstone source to a largely granitic source within the drainage area. One potential source area for the Site 1167 sandstone lonestones is the Permian to Triassic Amery Group in the Beaver Lake area of the Northern Prince Charles Mountains. We hypothesize that more easily eroded portions of the sandstone outcrops were planed off first while ubiquitous gneiss and granite outcrops provided the source material for the younger debris flows at Site 1167 in the Pliocene-Pleistocene. None of all the available lonestones suggest sources other than the drainage area of the Lambert Glacier- Amery Ice Shelf complex.

  20. Magmatic Enclaves in Granitic Rocks: Paragons or Parasites?

    NASA Astrophysics Data System (ADS)

    Clemens, John; Stevens, Gary; Elburg, Marlina

    2017-04-01

    Granitic rocks form the fundamental building blocks of Earth's continents and provide us with a wide range of resources, so their formation is worth trying to understand. Fine-grained, igneous-textured microgranular enclaves of tonalitic to monzogranitic composition (ME) are common in granitic rocks and their origins have been hotly debated, with some workers suggesting that ME are not igneous. These ME have been studied intensively enough that we are now certain that they are of igneous origin - globules of mingled and quenched magma. Although a mantle connection is evident in many cases, their ultimate origin (including where in the lithosphere they originate) is still debated. This contribution explores the systematics of chemical variation in ME and their host granites, with the aim of uncovering any systematics in their behaviour and modelling the processes that have led to the variations that we measure, comparing host-rock series to their respective ME series. As always, the hope is that the study of ME may lead to improved understanding and modelling of the processes that are responsible for the formation of the host granitic magmas. Using variations between the molecular quantities Ti and M (Fe+Mn+Mg), we demonstrate that the petrogenetic processes that operated within a diverse group of S- and I-type granitic host magmas and their ME suites are dissimilar. Variations within the granitic series result from a variety of what might be called 'orderly' processes, resulting in linear or curvilinear trends in chemical variation diagrams. In contrast, processes that affected the ME series commonly resulted in scattered, chaotic variations. Even in cases in which an ME series displays more orderly variation, it can be shown that the hypothesis of simple mixing between a parent enclave magma and its host granitic magma, to produce the overall variations, cannot be supported. ME magmas had vastly smaller volumes compared with their host granitic magmas. Thus, they have commonly undergone hybridisation through mixing with deep crustal melts and both chemical and mechanical interactions with wall rocks and their host granitic magmas. As a result of this complex and chaotic set of processes, it remains extremely difficult to unravel the precise mechanisms that produced a given suite of ME magmas. Due to the similarities between the studied granites and their ME with occurrences worldwide, we suggest that our findings are likely to be generally applicable.

  1. Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.

  2. In Situ Dating Experiments of Igneous Rocks Using the KArLE Instrument: A Case Study for Approximately 380 Ma Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Cho, Yuichiro; Cohen, Barbara A.

    2018-01-01

    We report new K-Ar isochron data for two approximately 380 Ma basaltic rocks, using an updated version of the Potassium-Argon Laser Experiment (KArLE). These basalts have K contents comparable to lunar KREEP basalts or igneous lithologies found by Mars rovers, whereas previous proof-of-concept studies focused primarily on more K-rich rocks. We continue to measure these analogue samples to show the advancing capability of in situ K-Ar geochronology. KArLE is applicable to other bodies including the Moon or asteroids.

  3. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  4. Origins of igneous microgranular enclaves in granites: the example of Central Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Elburg, M. A.; Harris, C.

    2017-10-01

    To investigate their genesis and relations with their host rocks, we study igneous microgranular enclaves (IMEs) in the c. 370 Ma, post-orogenic, high-level, felsic plutons and volcanic rocks of Central Victoria, Australia. The IMEs are thermally quenched magma globules but are not autoliths, and they do not form mixing series with their host magmas. These IMEs generally represent hybrids between mantle-derived magmas and very high- T crust-derived melts, modified by fractionation, ingestion of host-derived crystals and, to a lesser extent, by chemical interactions with their hosts. Isotopic and elemental evidence suggests that their likely mafic progenitors formed by partial melting of subcontinental mantle, but that the IME suites from different felsic host bodies did not share a common initial composition. We infer that melts of heterogeneous mantle underwent high- T hybridisation with melts from a variety of crustal rocks, which led to a high degree of primary variability in the IME magmas. Our model for the formation of the Central Victorian IMEs is likely to be applicable to other occurrences, especially in suites of postorogenic granitic magmas emplaced in the shallow crust. However, there are many different origins for the mingled magma globules that we call IMEs, and different phenomena seem to occur in differing tectonic settings. The complexity of IME formation means that it is difficult to unravel the petrogenesis of these products of chaotic magma processes. Nevertheless, the survival of fine-grained, non-equilibrium mineralogy and texture in the IMEs suggests that their tenure in the host magmas must have been geologically brief.

  5. Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton

    NASA Astrophysics Data System (ADS)

    Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.

    2016-11-01

    We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.

  6. Surgical scheduling categorization system (SSCS): A novel classification system to improve coordination and scheduling of operative cases in a tertiary pediatric medical system.

    PubMed

    Gantwerker, Eric A; Bannos, Cassandra; Cunningham, Michael J; Rahbar, Reza

    2017-01-01

    To describe a surgical categorization system to create a universal nomenclature, delineating patient complexity as a first step toward developing a true risk stratification system. Retrospective database review of all otolaryngology surgical procedures performed in a tertiary pediatric hospital system over one academic year (July 2012-June 2013). All otolaryngology surgical procedures were reviewed, encompassing 8478 procedures on 5711 patients. The attending otolaryngologist assigned surgical scheduling category (SSCS) at the time of case booking based on an institution specific guidelines. The guidelines are as follow: Category I was assigned to American Society of Anesthesiologists physical status classification (ASA) I/II patients, designating them appropriate for institution's suburban ambulatory surgery centers; Category II was ASA I/II patients with social or transportation issues; Category III was ASA I/II patients who required case coordination with other medical or surgical departments; Category IV was reserved for patients of any ASA class whom the surgeon designated to be of a higher complexity. 8478 total procedures analyzed with 7198 having complete records. 48% were Category I, 13.6% were Category II, 1.9% were Category III and 36.5% were Category IV. The ASA were 34.7% ASA I, 50% ASA II, 13.39% ASA III, and 1.9% ASA IV. Although the largest proportion of patients were ASA II (50%), 39.6% of all ASA II were Category IV. Category IV was split into 54.2% ASA II and 34% ASA III and shows that peri-operative surgical concerns were not encompassed by the ASA system. This surgical categorization system streamlines surgical scheduling in a tertiary pediatric hospital system, particularly with respect to the designation of cases as ambulatory surgery center or main operating room appropriate. The case mix complexity is also readily apparent, enhancing recognition of the coordination and attention required for the perioperative management of high complexity patients. The SSCS helps convey concerns not addressed by ASA physical status alone. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2014-01-29

    A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.

  8. Integration of Work Experience and Learning for International Students: From Harmony to Inequality

    ERIC Educational Resources Information Center

    Tran, Ly Thi; Soejatminah, Sri

    2017-01-01

    The integration of work experience and learning in tertiary education is a complex issue for different stakeholders, including students, institutions, and employers. The provision of course-related work experience for international students is far more challenging as it involves issues of visa status, different cultural expectations,…

  9. Tertiary-Tier PBIS in Alternative, Residential and Correctional School Settings: Considering Intensity in the Delivery of Evidence-Based Practice

    ERIC Educational Resources Information Center

    Scott, Terrance M.; Cooper, Justin

    2013-01-01

    Students in alternative, residential, and correctional settings present challenges in the classroom and facility due to the complexity and intensity of their behaviors. In addition, the factors typically associated with these settings including crowding, inconsistency, and conflicting staff perspectives on education and discipline present…

  10. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard

    2018-04-01

    The Wajilitag and Puchang intrusive complexes of the Tarim large igneous province (TLIP) are associated with significant resources of Fe-Ti oxide ores. These two mafic-ultramafic intrusions show differences in lithology and mineral chemistry. Clinopyroxenite and melagabbro are the dominant rock types in the Wajilitag complex, whereas the Puchang complex is generally gabbroic and anorthositic in composition with minor plagioclase-bearing clinopyroxenites in the marginal zone. Disseminated Fe-Ti oxide ores are found in the Wajilitag complex and closely associated with clinopyroxenites, whereas the Puchang complex hosts massive to disseminated Fe-Ti oxide ores mainly within its gabbroic rocks. The Wajilitag intrusive rocks are characterized by a restricted range of initial 87Sr/86Sr ratios (0.7038-0.7048) and positive εNd(t) (+0.04 - +3.01), indicating insignificant involvement of continental crustal contamination. The slightly higher initial 87Sr/86Sr ratios (0.7039-0.7059) and lower εNd(t) values (-1.05 - +2.35) of the Puchang intrusive rocks also suggest that the isotopic characteristics was controlled primarily by their mantle source, rather than by crustal contamination. Both complexes have Sr-Nd isotopic compositions close the neighboring kimberlitic rocks and their hosted mantle xenoliths in the TLIP. This indicates that the ferrobasaltic parental magmas were most probably originated from partial melting of a metasomatized subcontinental lithospheric mantle, modified recently with subduction-related materials by the impingement of the ascending mantle plume. The recycled subduction-related materials preserved in the lithospheric mantle could play a key role in the formation of the parental Fe-rich magmas in the context of an overall LIP system. The distinct variations in mineral assemblage for each complex and modeled results indicated that the Wajilitag and Puchang complexes experienced different crystallization path. Fe-Ti oxides in Wajilitag joined the liquidus earlier in the crystallization sequence, especially relative to the crystallization of plagioclase. This is attributed to the relatively high TFeO, TiO2 and initial H2O contents of the parental magma. In combination with definitive field and petrological evidence, the enrichment of highly incompatible elements (e.g., Zr, Hf, Nb and Ta) and the depletion of rare earth elements in the Fe-Ti oxide ores is consistent with the plausible interpretation that the ores could be formed by fractional crystallization and crystal accumulation of the Fe-Ti oxide crystals from the ferrobasaltic parental magmas. A considerable amount of the Fe-Ti oxides in the Puchang has transported and sunk from higher up in the chamber to the underlying unconsolidated silicate crystal pile. The highly dense Fe-Ti oxide crystal slurries further tended to effective accumulate Fe-Ti oxides to form high-grade Fe-Ti oxide ore bodies, and subsequent rapid collapse and intrusive into lower lithologies within the complex under a H2O-rich environment during the late-stage of magmatic differentiation. The development of massive Fe-Ti oxide ores in the case of the Puchang, could plausibly result from a combination of the protracted differentiation history of a Fe highly enriched parental magma and the later addition of external H2O from the country rocks (e.g., carbonates) to the slowly cooling magma chamber.

  11. Geology and petroleum resources of Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemme, H.D.

    1986-05-01

    Venezuela occupies a peripheral position to the Guiana shield and craton in northern South America. The larger sedimentary basins of the Venezuelan craton zone are marginal cratonic basins (Lanos-Barinas), resulting from Tertiary Andean eastward movements, and basins formed by collisional, extensional, and transformed movement of the American portion of Tethys (eastern Venezuela-Trinidad). The smaller sedimentary basins of Venezuela are Tertiary transverse-wrench basins in the disturbed intermontane zone peripheral to the cratonic basins (Maracaibo, Falcon, parts of the Gulf of Venezuela, Carioca, and parts of Tobago-Margarita). Venezuela accounts for 75% of the recoverable oil and 55% of the gas discovered inmore » South America. These deposits occur primarily in two basins (East Venezuela and Maracaibo - where one complex, the Bolivar Coastal and lake pools, represents 40% of South American discovered oil). The East Venezuela basin contains the Orinico heavy oil belt, currently assessed at 1 to 2 trillion bbl of oil in place. Source rocks for Venezuelan hydrocarbons are middle Cretaceous calcareous bituminous shales and marls (40% of discovered hydrocarbons), lower Tertiary deltaic and transitional shales, Paleocene-Eocene (40%), and Oligocene-Miocene deltaic and coastal shales (20%). A key factor in high recovery of hydrocarbons appears to be preservation of middle Cretaceous and lower Tertiary source rocks during maturation and migration. Reservoirs are dominantly (> 90%) clastic sediments (sandstones) within, above, or updip from source sequences. Cap rocks are interbedded and overlying shale.« less

  12. Geology of parts of the Johnny Gulch quadrangle, Montana

    USGS Publications Warehouse

    Freeman, Val L.

    1954-01-01

    An area of about 35 square miles, situated about 30 miles southeast of Helena, Montana, was mapped during the summer of 1952 at a scale of l:24, 000. The area includes a part of the eastern foothills of the Elkhorn Mountains, and is underlain by sedimentary mad volcanic rocks of Cretaceous age that were intruded during late Cretaceous or early Tertiary time by several types of igneous rocks. The oldest rocks in the map area are the nonmarine sandstone, shale, and limestone of the Kootenai formation. These are overlain disconformably by the black shale siltstone, sandstone, and siliceous mudstone of the Colorado group that is subdivided into three map units; a lower black shale unit composed of black shale and silty shale with a basal clean sandstone, all of probable marine origin; a middle siliceous unit composed of sandstone, siltstone, and siliceous mudstone of both marine and nonmarine origin; and an upper black unit composed of black shale of marine origin. Conformably above the Colorado group are crystal lithic turfs of the Slim Sam formation; in places theme grade into and in other places are unconformably overlain by the Elkhorn Mountains volcanics composed of crystal tuff, breccia, flows, and bedded tuff of andesitic composition. The rocks of the Elkhorn Mountains volcanics and older formations have been intruded by diorite porphyry and related rocks and by hornblende quartz monzonite. The diorite porphyry and related rocks include hornblende diorite porphyry, hornblende augite diorite porphyry, augite diorite porphyry, and basalt. Resting with marked unconformity upon older rocks are volcanic sedimentary rocks of early Tertiary age that are locally overlain by thin rhyolite flows. Late Tertiary and Quaternary fans overlie the rhyolite flows. Alluvium, talus, and other mantle are present in small amounts in many parts of the area. The sedimentary rocks of the area mapped form a part of the east flank of a major anticline. A major north-south syncline to the north of map area is believed to have been deflected to the east of the area because of the rigidity of large irregular plutons of diorite porphyry. The location of the plutons may have been controlled by the initiation of the major syncline, by a postulated pre-intrusive fault, or by both. Most of the small-scale structural features are related to the emplacement of the plutons. During emplacement the intruded sediments yielded either by faulting or by folding; the deeper rocks failed by faulting and the shallower rocks failed by folding. The area contains deposits of gold, silver, copper, lead, and zinc, none of which are currently being mined; and a deposit of magnetite which is being mined for use in cement.

  13. Tertiary gold-bearing channel gravel in northern Nevada County, California

    USGS Publications Warehouse

    Peterson, D.W.; Yeend, W.E.; Oliver, H.W.; Mattick, R.E.

    1968-01-01

    The remains of a huge Tertiary gravel-filled channel lie in the area between the South and Middle Yuba Rivers in northern Nevada County, Calif. The deposits in this channel were the site of some of the most productive hydraulic gold mines in California between the 1850's and 1884. The gravel occupies a major channel and parts of several tributaries that in Tertiary time cut into a surface of Paleozoic and Mesozoic igneous and metamorphic rocks. The gravel is partly covered by the remains of an extensive sheet of volcanic rocks, but it crops out along the broad crest of the ridge between the canyons of the South and Middle Yuba Rivers. The lower parts of the gravel deposits generally carry the highest values of placer gold. Traditionally, the richest deposits of all are found in the so-called blue gravel, which, when present, lies just above the bedrock and consists of a very coarse, poorly sorted mixture of cobbles, pebbles, sand, and clay. It is unoxidized, and, at least locally, contains appreciable quantities of secondary sulfide minerals, chiefly pyrite. Information in drill logs from private sources indicates that a 2-mile stretch of the channel near North Columbia contains over half a million ounces of gold dispersed through about 22 million cubic yards of gravel at a grade .averaging about 81 cents per cubic yard. The deposit is buried at depths ranging from 100 to 400 feet. Several geophysical methods have been tested for their feasibility in determining the configuration of the buried bedrock surface, in delineating channel gravel buried under volcanic rocks, and in identifying concentrations of heavy minerals within the gravel. Although the data have not yet been completely processed, preliminary conclusions indicate that some methods may be quite useful. A combination of seismic-refraction and gravity methods was used to determine the depth and configuration of the bottom of the channel to an accuracy within 10 percent as checked by the drill holes. Seismic-refraction methods have identified depressions which are in the bedrock surface, below volcanic rocks, and which may be occupied by gravels. Seismic methods, however, cannot actually recognize the presence of low-velocity gravels beneath the higher velocity volcanic rocks. Electromagnetic methods, supplemented in part by induced-polarization methods, show promise of being able to recognize and trace blue gravel buried less than 200 feet deep. A broad vague magnetic anomaly across the channel suggests that more precise magnetic studies might delineate concentrations of magnetic material. The usefulness of resistivity methods appears from this study to be quite restricted because of irregular topography and the variable conductivity of layers within the gravel.

  14. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt. %' indicates that the numbers tell what percentage of the total weight of each rock is silica (on the horizontal scale) and what percentage is oxides of sodium and potassium (on the vertical scale). The thin lines separate volcanic rock types identified on Earth by different scientific names such as foidite and picrobasalt. Various classes of Gusev rocks (see box in upper right) all plot either on or to the left of the green lines, which define 'alkaline' and 'subalkaline' categories (subalkaline rocks have more silica than alkaline rocks).

    Members of the rover team have named different classes of rocks after specimens examined by Spirit that represent their overall character. During the rover's travels, Spirit discovered that Adirondack-class rocks littered the Gusev plains; that Backstay, Irvine, and Wishstone-class rocks occurred as loose blocks on the northwest slope of 'Husband Hill'; and that outcrops of Algonquin-class rocks protruded in several places on the southeast face.

    These rocks have less silica than all previously analyzed Mars samples, which are subalkaline. The previously analyzed Mars samples include Martian meteorites found on Earth and rocks analyzed by the Mars Pathfinder rover in 1997. Gusev is the first documented example of an alkaline igneous province on Mars.

  15. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United States and Indonesia, and (5) plutonic igneous rocks from the Henderson Climax-type Mo deposit, United States, and the un-mineralized Inner Zone Batholith granodiorite, Japan. These five settings represent a diverse suite of geological settings and cover a wide range of formation conditions. The main discriminator elements for magnetite are Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. These elements are commonly present at detectable levels (10 to > 1000 ppm) and display systematic variations. We propose a combination of Ni/(Cr + Mn) vs. Ti + V, Al + Mn vs. Ti + V, Ti/V and Sn/Ga discriminant plots and upper threshold concentrations to discriminate hydrothermal from igneous magnetite and to fingerprint different hydrothermal ore deposits. The overall trends in upper threshold values for the different settings can be summarized as follows: (I) BIF (hydrothermal) — low Al, Ti, V, Cr, Mn, Co, Ni, Zn, Ga and Sn; (II) Ag–Pb–Zn veins (hydrothermal) — high Mn and low Ga and Sn; (III) Mg-skarn (hydrothermal) — high Mg and Mn and low Al, Ti, Cr, Co, Ni and Ga; (IV) skarn (hydrothermal) — high Mg, Al, Cr, Mn, Co, Ni and Zn and low Sn; (V) porphyry (hydrothermal) — high Ti and V and low Sn; (VI) porphyry (igneous) — high Ti, V and Cr and low Mg; and (VII) Climax-Mo (igneous) — high Al, Ga and Sn and low Mg and Cr.

  16. Explaining the uptake of paediatric guidelines in a Kenyan tertiary hospital--mixed methods research.

    PubMed

    Irimu, Grace W; Greene, Alexandra; Gathara, David; Kihara, Harrison; Maina, Christopher; Mbori-Ngacha, Dorothy; Zurovac, Dejan; Santau, Migiro; Todd, Jim; English, Mike

    2014-03-10

    Evidence-based standards for management of the seriously sick child have existed for decades, yet their translation in clinical practice is a challenge. The context and organization of institutions are known determinants of successful translation, however, research using adequate methodologies to explain the dynamic nature of these determinants in the quality-of-care improvement process is rarely performed. We conducted mixed methods research in a tertiary hospital in a low-income country to explore the uptake of locally adapted paediatric guidelines. The quantitative component was an uncontrolled before and after intervention study that included an exploration of the intervention dose-effect relationship. The qualitative component was an ethnographic research based on the theoretical perspective of participatory action research. Interpretive integration was employed to derive meta-inferences that provided a more complete picture of the overall study results that reflect the complexity and the multifaceted ontology of the phenomenon studied. The improvement in health workers' performance in relation to the intensity of the intervention was not linear and was characterized by improved and occasionally declining performance. Possible root causes of this performance variability included challenges in keeping knowledge and clinical skills updated, inadequate commitment of the staff to continued improvement, limited exposure to positive professional role models, poor teamwork, failure to maintain professional integrity and mal-adaptation to institutional pressures. Implementation of best-practices is a complex process that is largely unpredictable, attributed to the complexity of contextual factors operating predominantly at professional and organizational levels. There is no simple solution to implementation of best-practices. Tackling root causes of inadequate knowledge translation in this tertiary care setting will require long-term planning, with emphasis on promotion of professional ethics and values and establishing an organizational framework that enhances positive aspects of professionalism. This study has significant implications for the quality of training in medical institutions and the development of hospital leadership.

  17. Explaining the uptake of paediatric guidelines in a Kenyan tertiary hospital – mixed methods research

    PubMed Central

    2014-01-01

    Background Evidence-based standards for management of the seriously sick child have existed for decades, yet their translation in clinical practice is a challenge. The context and organization of institutions are known determinants of successful translation, however, research using adequate methodologies to explain the dynamic nature of these determinants in the quality-of-care improvement process is rarely performed. Methods We conducted mixed methods research in a tertiary hospital in a low-income country to explore the uptake of locally adapted paediatric guidelines. The quantitative component was an uncontrolled before and after intervention study that included an exploration of the intervention dose-effect relationship. The qualitative component was an ethnographic research based on the theoretical perspective of participatory action research. Interpretive integration was employed to derive meta-inferences that provided a more complete picture of the overall study results that reflect the complexity and the multifaceted ontology of the phenomenon studied. Results The improvement in health workers’ performance in relation to the intensity of the intervention was not linear and was characterized by improved and occasionally declining performance. Possible root causes of this performance variability included challenges in keeping knowledge and clinical skills updated, inadequate commitment of the staff to continued improvement, limited exposure to positive professional role models, poor teamwork, failure to maintain professional integrity and mal-adaptation to institutional pressures. Conclusion Implementation of best-practices is a complex process that is largely unpredictable, attributed to the complexity of contextual factors operating predominantly at professional and organizational levels. There is no simple solution to implementation of best-practices. Tackling root causes of inadequate knowledge translation in this tertiary care setting will require long-term planning, with emphasis on promotion of professional ethics and values and establishing an organizational framework that enhances positive aspects of professionalism. This study has significant implications for the quality of training in medical institutions and the development of hospital leadership. PMID:24613001

  18. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  19. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon.

    PubMed

    Moser, D E; Chamberlain, K R; Tait, K T; Schmitt, A K; Darling, J R; Barker, I R; Hyde, B C

    2013-07-25

    Invaluable records of planetary dynamics and evolution can be recovered from the geochemical systematics of single meteorites. However, the interpreted ages of the ejected igneous crust of Mars differ by up to four billion years, a conundrum due in part to the difficulty of using geochemistry alone to distinguish between the ages of formation and the ages of the impact events that launched debris towards Earth. Here we solve the conundrum by combining in situ electron-beam nanostructural analyses and U-Pb (uranium-lead) isotopic measurements of the resistant micromineral baddeleyite (ZrO2) and host igneous minerals in the highly shock-metamorphosed shergottite Northwest Africa 5298 (ref. 8), which is a basaltic Martian meteorite. We establish that the micro-baddeleyite grains pre-date the launch event because they are shocked, cogenetic with host igneous minerals, and preserve primary igneous growth zoning. The grains least affected by shock disturbance, and which are rich in radiogenic Pb, date the basalt crystallization near the Martian surface to 187 ± 33 million years before present. Primitive, non-radiogenic Pb isotope compositions of the host minerals, common to most shergottites, do not help us to date the meteorite, instead indicating a magma source region that was fractionated more than four billion years ago to form a persistent reservoir so far unique to Mars. Local impact melting during ejection from Mars less than 22 ± 2 million years ago caused the growth of unshocked, launch-generated zircon and the partial disturbance of baddeleyite dates. We can thus confirm the presence of ancient, non-convecting mantle beneath young volcanic Mars, place an upper bound on the interplanetary travel time of the ejected Martian crust, and validate a new approach to the geochronology of the inner Solar System.

  20. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone

    NASA Astrophysics Data System (ADS)

    Yang, Wu-Bin; Niu, He-Cai; Shan, Qiang; Chen, Hua-Yong; Hollings, Pete; Li, Ning-Bo; Yan, Shuang; Zartman, Robert E.

    2014-10-01

    Arc magmatism plays an important role in the recycling of subducted carbon and returning it to the surface. However, the transfer mechanisms of carbon are poorly understood. In this study, the contribution of subducted carbonate-rich sediments to the genesis of the carbonate-bearing K-rich igneous rocks from western Tianshan was investigated. Four key triggers are involved, including sediments subduction, slab decarbonation, partial melting and magma segregation. The globular carbonate ocelli show C-O isotope signatures intermediate between oceanic sediments and mantle, suggesting that the carbon of the primary carbonate ocelli was derived from recycled subducted sediments in the mantle. Decarbonation of the subducted slab is regarded as the primary agent to carbonize the mantle wedge. Geochemical features indicate that the carbonate ocelli are primary, and that the parental K- and carbon-rich mafic alkaline magma was derived from partial melting of carbonated mantle wedge veined with phlogopite. Major and trace element compositions indicate that globular carbonate ocelli hosted in the Bugula K-rich igneous rocks are calcio-carbonate and formed primarily by segregation of the differentiated CO2-rich alkaline magma after crystallization fractionation. The K-rich alkaline magma, which formed from partial melting of metasomatized (i.e., phlogopite bearing) mantle wedge in the sub-arc region, is a favorable agent to transport subducted carbon back to the Earth's surface during carbon recycling in subduction zones, because of the high CO2 solubility in alkaline mafic magma. We therefore propose a model for the petrogenesis of the carbonate-bearing K-rich igneous rocks in western Tianshan, which are significant for revealing the mechanism of carbon recycling in subduction zones.

Top