Sample records for tesla mri scanner

  1. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  2. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience

    NASA Astrophysics Data System (ADS)

    Yarnykh, V.; Korostyshevskaya, A.

    2017-08-01

    Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.

  3. Quantitative techniques for musculoskeletal MRI at 7 Tesla.

    PubMed

    Bangerter, Neal K; Taylor, Meredith D; Tarbox, Grayson J; Palmer, Antony J; Park, Daniel J

    2016-12-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems.

  4. Quantitative techniques for musculoskeletal MRI at 7 Tesla

    PubMed Central

    Taylor, Meredith D.; Tarbox, Grayson J.; Palmer, Antony J.; Park, Daniel J.

    2016-01-01

    Whole-body 7 Tesla MRI scanners have been approved solely for research since they appeared on the market over 10 years ago, but may soon be approved for selected clinical neurological and musculoskeletal applications in both the EU and the United States. There has been considerable research work on musculoskeletal applications at 7 Tesla over the past decade, including techniques for ultra-high resolution morphological imaging, 3D T2 and T2* mapping, ultra-short TE applications, diffusion tensor imaging of cartilage, and several techniques for assessing proteoglycan content in cartilage. Most of this work has been done in the knee or other extremities, due to technical difficulties associated with scanning areas such as the hip and torso at 7 Tesla. In this manuscript, we first provide some technical context for 7 Tesla imaging, including challenges and potential advantages. We then review the major quantitative MRI techniques being applied to musculoskeletal applications on 7 Tesla whole-body systems. PMID:28090448

  5. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms

    PubMed Central

    Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans

    2014-01-01

    Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654

  6. An RF dosimeter for independent SAR measurement in MRI scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is

  7. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  8. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  9. Subjective perception of safety in healthy individuals working with 7 T MRI scanners: a retrospective multicenter survey.

    PubMed

    Fatahi, Mahsa; Demenescu, Liliana Ramona; Speck, Oliver

    2016-06-01

    To retrospectively assess perception of safety of healthy individuals working with human 7 Tesla (T) magnetic resonance imaging (MRI) scanners. A total of 66 healthy individuals with a mean age of 31 ± 7 years participated in this retrospective multicentre survey study. Nonparametric correlation analysis was conducted to evaluate the relation between self-reported perception of safety and prevalence of sensory effects while working with 7 T MRI scanners for an average 47 months. The results indicated that 98.5 % of the study participants had a neutral or positive feeling about safety aspects at 7 T MRI scanners. 45.5 % reported that they feel very safe and none of the participants stated that they feel moderately or very unsafe while working with 7 T MRI scanners. Perception of safety was not affected by the number of hours per week spent in the vicinity of the 7 T MRI scanner or the duration of experience with 7 T MRI. More than 50 % of individuals experienced vertigo and metallic taste while working with 7 T MRI scanners. However, participants' perceptions of safety were not affected by the prevalence of MR-related symptoms. The overall data indicated an average perception of a moderately safe work environment. To our knowledge, this study delineates the first attempt to assess the subjective safety perception among 7 T MRI workers and suggests further investigations are indicated.

  10. Acute vertigo in an anesthesia provider during exposure to a 3T MRI scanner

    PubMed Central

    Gorlin, Andrew; Hoxworth, Joseph M; Pavlicek, William; Thunberg, Christopher A; Seamans, David

    2015-01-01

    Vertigo induced by exposure to the magnetic field of a magnetic resonance imaging (MRI) scanner is a well-known phenomenon within the radiology community but is not widely appreciated by other clinical specialists. Here, we describe a case of an anesthetist experiencing acute vertigo while providing sedation to a patient undergoing a 3 Tesla MRI scan. After discussing previous reports, and the evidence surrounding MRI-induced vertigo, we review potential etiologies that include the effects of both static and time-varying magnetic fields on the vestibular apparatus. We conclude our review by discussing the occupational standards that exist for MRI exposure and methods to minimize the risks of MRI-induced vertigo for clinicians working in the MRI environment. PMID:25792858

  11. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyman, G

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less

  12. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    PubMed

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  13. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study

    PubMed Central

    Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1

  14. Functional magnetic resonance imaging in a low-field intraoperative scanner.

    PubMed

    Schulder, Michael; Azmi, Hooman; Biswal, Bharat

    2003-01-01

    Functional magnetic resonance imaging (fMRI) has been used for preoperative planning and intraoperative surgical navigation. However, most experience to date has been with preoperative images acquired on high-field echoplanar MRI units. We explored the feasibility of acquiring fMRI of the motor cortex with a dedicated low-field intraoperative MRI (iMRI). Five healthy volunteers were scanned with the 0.12-tesla PoleStar N-10 iMRI (Odin Medical Technologies, Israel). A finger-tapping motor paradigm was performed with sequential scans, acquired alternately at rest and during activity. In addition, scans were obtained during breath holding alternating with normal breathing. The same paradigms were repeated using a 3-tesla MRI (Siemens Corp., Allandale, N.J., USA). Statistical analysis was performed offline using cross-correlation and cluster techniques. Data were resampled using the 'jackknife' process. The location, number of activated voxels and degrees of statistical significance between the two scanners were compared. With both the 0.12- and 3-tesla imagers, motor cortex activation was seen in all subjects to a significance of p < 0.02 or greater. No clustered pixels were seen outside the sensorimotor cortex. The resampled correlation coefficients were normally distributed, with a mean of 0.56 for both the 0.12- and 3-tesla scanners (standard deviations 0.11 and 0.08, respectively). The breath holding paradigm confirmed that the expected diffuse activation was seen on 0.12- and 3-tesla scans. Accurate fMRI with a low-field iMRI is feasible. Such data could be acquired immediately before or even during surgery. This would increase the utility of iMRI and allow for updated intraoperative functional imaging, free of the limitations of brain shift. Copyright 2003 S. Karger AG, Basel

  15. Construction of 0.15 Tesla Overhauser Enhanced MRI.

    PubMed

    Tokunaga, Yuumi; Nakao, Motonao; Naganuma, Tatsuya; Ichikawa, Kazuhiro

    2017-01-01

    Overhauser enhanced MRI (OMRI) is one of the free radical imaging technologies and has been used in biomedical research such as for partial oxygen measurements in tumor, and redox status in acute oxidative diseases. The external magnetic field of OMRI is frequently in the range of 5-10 mTesla to ensure microwave penetration into small animals, and the S/N ratio is limited. In this study, a 0.15 Tesla OMRI was constructed and tested to improve the S/N ratio for a small sample, or skin measurement. Specification of the main magnet was as follows: 0.15 Tesla permanent magnet; gap size 160 mm; homogenous spherical volume of 80 mm in diameter. The OMRI resonator was designed based on TE 101 cavity mode and machined from a phosphorus deoxidized copper block for electron spin resonance (ESR) excitation and a solenoid transmission/receive resonator for NMR detection. The resonant frequencies and Q values were 6.38 MHz/150 and 4.31-4.41 GHz/120 for NMR and ESR, respectively. The Q values were comparable to those of conventional low field OMRI resonators at 15 mTesla. As expected, the MRI S/N ratio was improved by a factor of 30. Triplet dynamic nuclear polarization spectra were observed for 14 N carboxy-PROXYL, along the excitation microwave sweep. In the current setup, the enhancement factor was ca. 0.5. In conclusion, the results of this preliminary evaluation indicate that the 0.15 Tesla OMRI could be useful for free radical measurement for small samples.

  16. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner.

    PubMed

    Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru

    2016-10-11

    An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.

  17. Cortical microinfarcts detected in vivo on 3 Tesla MRI: clinical and radiological correlates.

    PubMed

    van Dalen, Jan Willem; Scuric, Eva E M; van Veluw, Susanne J; Caan, Matthan W A; Nederveen, Aart J; Biessels, Geert Jan; van Gool, Willem A; Richard, Edo

    2015-01-01

    Cortical microinfarcts (CMIs) are a common postmortem finding associated with vascular risk factors, cognitive decline, and dementia. Recently, CMIs identified in vivo on 7 Tesla MRI also proved retraceable on 3 Tesla MRI. We evaluated CMIs on 3 Tesla MRI in a population-based cohort of 194 nondemented older people (72-80 years) with systolic hypertension. Using a case-control design, participants with and without CMIs were compared on age, sex, cardiovascular risk factors, and white matter hyperintensity volume. We identified 23 CMIs in 12 participants (6%). CMIs were associated with older age, higher diastolic blood pressure, and a history of recent stroke. There was a trend for a higher white matter hyperintensity volume in participants with CMIs. We found an association of CMIs with clinical parameters, including age and cardiovascular risk factors. Although the prevalence of CMIs is relatively low, our results suggest that the study of CMIs in larger clinical studies is possible using 3 Tesla MRI. This opens the possibility of large-scale prospective investigation of the clinical relevance of CMIs in older people. © 2014 American Heart Association, Inc.

  18. Diagnostic usefulness of 3 tesla MRI of the brain for cushing disease in a child.

    PubMed

    Ono, Erina; Ozawa, Ayako; Matoba, Kaori; Motoki, Takanori; Tajima, Asako; Miyata, Ichiro; Ito, Junko; Inoshita, Naoko; Yamada, Syozo; Ida, Hiroyuki

    2011-10-01

    It is sometimes difficult to confirm the location of a microadenoma in Cushing disease. Recently, we experienced an 11-yr-old female case of Cushing disease with hyperprolactinemia. She was referred to our hospital because of decrease of height velocity with body weight gain. On admission, she had typical symptoms of Cushing syndrome. Although no pituitary microadenomas were detected on 1.5 Tesla MRI of the brain, endocrinological examinations including IPS and CS sampling were consistent with Cushing disease with hyperprolactinemia. Oral administration of methyrapone instead of neurosurgery was started after discharge, but subsequent 3 Tesla MRI of the brain clearly demonstrated a 3-mm less-enhanced lesion in the left side of the pituitary gland. Finally, transsphenoidal surgery was performed, and a 3.5-mm left-sided microadenoma was resected. Compared with 1.5 Tesla MRI, 3 Tesla MRI offers the advantage of a higher signal to noise ratio (SNR), which provides higher resolution and proper image quality. Therefore, 3 Tesla MRI is a very useful tool to localize microadenomas in Cushing disease in children as well as in adults. It will be the first choice of radiological examinations in suspected cases of Cushing disease.

  19. [3-Tesla MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results].

    PubMed

    von Engelhardt, L V; Schmitz, A; Burian, B; Pennekamp, P H; Schild, H H; Kraft, C N; von Falkenhausen, M

    2008-09-01

    The literature contains only a few studies investigating the magnetic resonance imaging (MRI) diagnostics of degenerative cartilage diseases. Studies on MRI diagnostics of the cartilage using field strengths of 3-Tesla demonstrate promising results. To assess the value of 3-Tesla MRI for decision making regarding conservative or operative treatment possibilities, this study focused on patients with degenerative cartilage diseases. Thirty-two patients with chronic knee pain, a minimum age of 40 years, a negative history of trauma, and at least grade II degenerative cartilage disease were included. Cartilage abnormalities detected at preoperative 3-Tesla MRI (axial/koronar/sagittal PD-TSE-SPAIR, axial/sagittal 3D-T1-FFE, axial T2-FFE; Intera 3.0T, Philips Medical Systems) were classified (grades I-IV) and compared with arthroscopic findings. Thirty-six percent (70/192) of the examined cartilage surfaces demonstrated no agreement between MRI and arthroscopic grading. In most of these cases, grades II and III cartilage lesions were confounded with each other. Regarding the positive predictive values, the probability that a positive finding in MRI would be exactly confirmed by arthroscopy was 39-72%. In contrast, specificities and negative predictive values of different grades of cartilage diseases were 85-95%. Regarding the high specificities and negative predictive values, 3-Tesla MRI is a reliable method for excluding even slight cartilage degeneration. In summary, in degenerative cartilage diseases, 3-Tesla MRI is a supportive, noninvasive method for clinical decision making regarding conservative or operative treatment possibilities. However, the value of diagnostic arthroscopy for a definitive assessment of the articular surfaces and for therapeutic planning currently cannot be replaced by 3-Tesla MRI. This applies especially to treatment options in which a differentiation between grade II and III cartilage lesions is of interest.

  20. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    PubMed

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  1. In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL

    PubMed Central

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Background and Purpose Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Methods Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. Results MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Conclusions Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined. PMID:25165824

  2. Assessment of MRI Issues at 3 Tesla for a New Metallic Tissue Marker

    PubMed Central

    Cronenweth, Charlotte M.; Shellock, Frank G.

    2015-01-01

    Purpose. To assess the MRI issues at 3 Tesla for a metallic tissue marker used to localize removal areas of tissue abnormalities. Materials and Methods. A newly designed, metallic tissue marker (Achieve Marker, CareFusion, Vernon Hills, IL) used to mark biopsy sites, particularly in breasts, was assessed for MRI issues which included standardized tests to determine magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3 Tesla. Temperature changes were determined for the marker using a gelled-saline-filled phantom. MRI was performed at a relatively high specific absorption rate (whole body averaged SAR, 2.9-W/kg). MRI artifacts were evaluated using T1-weighted, spin echo and gradient echo pulse sequences. Results. The marker displayed minimal magnetic field interactions (2-degree deflection angle and no torque). MRI-related heating was only 0.1°C above background heating (i.e., the heating without the tissue marker present). Artifacts seen as localized signal loss were relatively small in relation to the size and shape of the marker. Conclusions. Based on the findings, the new metallic tissue marker is acceptable or “MR Conditional” (using current labeling terminology) for a patient undergoing an MRI procedure at 3 Tesla or less. PMID:26266051

  3. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  4. Use of a 1.0 Tesla open scanner for evaluation of pediatric and congenital heart disease: a retrospective cohort study.

    PubMed

    Lu, Jimmy C; Nielsen, James C; Morowitz, Layne; Musani, Muzammil; Ghadimi Mahani, Maryam; Agarwal, Prachi P; Ibrahim, El-Sayed H; Dorfman, Adam L

    2015-05-25

    Open cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease. This retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012-2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner. A total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen. Open 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia

  5. [3 Tesla MRI: successful results with higher field strengths].

    PubMed

    Schmitt, F; Grosu, D; Mohr, C; Purdy, D; Salem, K; Scott, K T; Stoeckel, B

    2004-01-01

    The recent development of 3 Tesla MRI (3T MRI) has been fueled by promise of increased signal-to-noise ratio(SNR). Many are excited about the opportunity to not only use the increased SNR for clearer images, but also the chance to exchange it for better resolution or faster scans. These possibilities have caused a rapid increase in the market for 3T MRI, where the faster scanning tips an already advantageous economic outlook in favor of the user. As a result, the global market for 3T has grown from a research only market just a few years ago to an ever-increasing clinically oriented customer base. There are, however, significant obstacles to 3T MRI presented by the physics at higher field strengths. For example, the T1 relaxation times are prolonged with increasing magnet field strength. Further, the increased RF-energy deposition (SAR), the larger the chemical shift and the stronger susceptibility effect have to be considered as challenges. It is critical that one looks at both the advantages and disadvantages of using 3T. While there are many issues to address aand a number of different methods for doing so, to properly tackle each of these concerns will take time and effort on the part od researchers and clinicians. The optimization of 3T MRI scanning will have to be a combined effort, though much of the work to date has been in neuroimaging. Multiple applications have been explored in addition to clinical anatomical imaging, where resolution is improved showing structure in the brain never seen before in human MRI. Body and cardiac imaging provide a great challenge but are also achievable at 3T. As an example, the full range of clinical applications currently achieved on today's state-of-the-art 1.5T cardiac MR scanners has also been demonstrated at 3T. In the body, the full range of contrast is available over large fields of view allowing whole liver studies in the clinic or, as needed, one may choose a smaller field of view for high-resolution imaging of the

  6. Quantitative evaluation of ischemic myocardial scar tissue by unenhanced T1 mapping using 3.0 Tesla MR scanner

    PubMed Central

    Okur, Aylin; Kantarcı, Mecit; Kızrak, Yeşim; Yıldız, Sema; Pirimoğlu, Berhan; Karaca, Leyla; Oğul, Hayri; Sevimli, Serdar

    2014-01-01

    PURPOSE We aimed to use a noninvasive method for quantifying T1 values of chronic myocardial infarction scar by cardiac magnetic resonance imaging (MRI), and determine its diagnostic performance. MATERIALS AND METHODS We performed cardiac MRI on 29 consecutive patients with known coronary artery disease (CAD) on 3.0 Tesla MRI scanner. An unenhanced T1 mapping technique was used to calculate T1 relaxation time of myocardial scar tissue, and its diagnostic performance was evaluated. Chronic scar tissue was identified by delayed contrast-enhancement (DE) MRI and T2-weighted images. Sensitivity, specificity, and accuracy values were calculated for T1 mapping using DE images as the gold standard. RESULTS Four hundred and forty-two segments were analyzed in 26 patients. While myocardial chronic scar was demonstrated in 45 segments on DE images, T1 mapping MRI showed a chronic scar area in 54 segments. T1 relaxation time was higher in chronic scar tissue, compared with remote areas (1314±98 ms vs. 1099±90 ms, P < 0.001). Therefore, increased T1 values were shown in areas of myocardium colocalized with areas of DE and normal signal on T2-weighted images. There was a significant correlation between T1 mapping and DE images in evaluation of myocardial wall injury extent (P < 0.05). We calculated sensitivity, specificity, and accuracy as 95.5%, 97%, and 96%, respectively. CONCLUSION The results of the present study reveal that T1 mapping MRI combined with T2-weighted images might be a feasible imaging modality for detecting chronic myocardial infarction scar tissue. PMID:25010366

  7. 3-Tesla MRI: Beneficial visualization of the meniscofemoral ligaments?

    PubMed

    Ebrecht, Johanna; Krasny, Andrej; Hartmann, Dinah Maria; Rückbeil, Marcia Viviane; Ritz, Thomas; Prescher, Andreas

    2017-10-01

    Recent investigations have confirmed an important stabilizing and protective function of the meniscofemoral ligaments (MFLs) to the knee joint and suggest a clinical relevance. Concerning their incidences, however, there have been discrepancies between data acquired from cadaveric studies and MRI data using 0.3- to 1.5-Tesla field strengths probably due to lower resolution. This study aims to investigate whether imaging with 3-Tesla magnetic resonance imaging (3-T MRI) is beneficial in gaining information regarding the ligaments' incidence, length, width and anatomic variation. 3-T MRI images of 448 patients (224 males, 224 females, with, respectively, 32 patients of each sex in the age groups: 0-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70years) were retrospectively reviewed. The influence of the parameters 'sex' and 'age' was determined. Whereas 71% of the patients had at least one MFL, 22% had an anterior MFL (aMFL), 53% had a posterior MFL (pMFL) and five percent had coexisting ligaments. The pMFLs were more likely to be present in female patients (P<0.05) but if so, they were longer in the males (P<0.05). The pMFL was categorized according to its insertion on the medial femoral condyle. 3-T MRI enables an excellent illustration of the anatomic variations of pMFLs. By modifying an anatomic classification for radiological use we measured lengths and widths of the MFLs without any difficulties. Despite its increased resolution, 3-T MRI lends no diagnostic benefit in visualizing the course of the aMFL or filigree coexisting ligaments as compared to MRI at lower field strengths. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    PubMed

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  9. Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI.

    PubMed

    Cuda, D; Murri, A; Succo, G

    2013-04-01

    We report a retrospective case of inner magnet migration, which occurred after 1.5 Tesla MRI scanning in an adult recipient of a bilateral cochlear implant (CI) despite a focused head dressing. The patient, bilaterally implanted with Nucleus 5 CIs (Cochlear LTD, Sydney, Australia), underwent a 1.5 Tesla cholangio-MRI scan for biliary duct pathology. In subsequent days, a focal skin alteration appeared over the left inner coil. Plain skull radiographs showed partial magnet migration on the left side. Surgical exploration confirmed magnet twisting; the magnet was effectively repositioned. Left CI performance was restored to pre-migration level. The wound healed without complications. Thus, focused dressing does not prevent magnet migration in CI recipients undergoing 1.5 Tesla MRI. All patients should be counselled on this potential complication. A minor surgical procedure is required to reposition the magnet. Nevertheless, timely diagnosis is necessary to prevent skin breakdown and subsequent device contamination. Plain skull radiograph is very effective in identifying magnet twisting; it should be performed systematically after MRI or minimally on all suspected cases.

  10. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis.

    PubMed

    McGarvey, Ciaran; Harb, Ziad; Smith, Christian; Houghton, Russell; Corbett, Steven; Ajuied, Adil

    2016-02-01

    To compare the diagnostic accuracy of magnetic resonance imaging (MRI), 2-dimensional magnetic resonance arthrogram (MRA) and 3-dimensional isotropic MRA in the diagnosis of rotator cuff tears when performed exclusively at 3-T. A systematic review was undertaken of the Cochrane, MEDLINE and PubMed databases in accordance with the PRISMA guidelines. Studies comparing 3-T MRI or 3-T MRA (index tests) to arthroscopic surgical findings (reference test) were included. Methodological appraisal was performed using QUADAS 2. Pooled sensitivity and specificity were calculated and summary receiver-operating curves generated. Kappa coefficients quantified inter-observer reliability. Fourteen studies comprising 1332 patients were identified for inclusion. Twelve studies were retrospective and there were concerns regarding index test bias and applicability in nine and six studies respectively. Reference test bias was a concern in all studies. Both 3-T MRI and 3-T MRA showed similar excellent diagnostic accuracy for full-thickness supraspinatus tears. Concerning partial-thickness supraspinatus tears, 3-T 2D MRA was significantly more sensitive (86.6 vs. 80.5 %, p = 0.014) but significantly less specific (95.2 vs. 100 %, p < 0.001). There was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA showed similar accuracy to 3-T conventional 2D MRA. Three-Tesla MRI appeared equivalent to 3-T MRA in the diagnosis of full- and partial-thickness tears, although there was a trend towards greater accuracy in the diagnosis of subscapularis tears with 3-T MRA. Three-Tesla 3D isotropic MRA appears equivalent to 3-T 2D MRA for all types of tears.

  11. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  12. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    PubMed

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p < 0.001). There was a moderate, significant inverse correlation of prostate volume to a positive biopsy result (r = -0.24, p = 0.004). The ellipsoid formula gives sufficient approximation of prostate volume on 3-Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.

  13. Automated hippocampal subfield segmentation at 7 tesla MRI

    PubMed Central

    Wisse, Laura E.M.; Kuijf, Hugo J.; Honingh, Anita M.; Wang, Hongzhi; Pluta, John B.; Das, Sandhitsu R.; Wolk, David A.; Zwanenburg, Jaco J.M.; Yushkevich, Paul A.; Geerlings, Mirjam I.

    2015-01-01

    Purpose We aimed to evaluate an automated technique to segment hippocampal subfields and the entorhinal cortex (ERC) at 7 tesla MRI. Materials and Methods Cornu Ammonis (CA)1, CA2, CA3, dentate gyrus (DG), subiculum (SUB) and ERC were manually segmented, covering most of the long axis of the hippocampus, on 0.70 mm3 T2-weighted 7 tesla images of twenty-six participants (59±9 years, 46% men). The Automated Segmentation of Hippocampal Subfields (ASHS) approach was applied and evaluated using leave-one-out cross-validation. Results Comparison of automated segmentations with corresponding manual segmentation yielded a Dice similarity coefficient (DSC) of >0.75 for CA1, DG, SUB and ERC; and >0.54 for CA2 and CA3. Intraclass correlation coefficients (ICC) were >0.74 for CA1, DG and SUB; and >0.43 for CA2, CA3 and the ERC. Restricting the comparison of the ERC segmentation to a smaller range along the anterior-posterior axis improved both ICCs (left: 0.71; right: 0.82) and DSCs (left: 0.78; right: 0.77). The accuracy of ASHS vs a manual rater was lower, though only slightly for most subfields, than the intra-rater reliability of an expert manual rater, but was similar or slightly higher than the accuracy of an expert vs. a manual rater with ~170h of training for almost all subfields. Conclusion This work demonstrates the feasibility of using a computational technique to automatically label hippocampal subfields and the ERC at 7 tesla MRI, with a high accuracy for most subfields that is competitive with the labor intensive manual segmentation. The software and atlas are publicly available: http://www.nitrc.org/projects/ashs/. PMID:26846925

  14. REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA

    PubMed Central

    Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.

    2011-01-01

    Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854

  15. MRI safety of a programmable shunt assistant at 3 and 7 Tesla.

    PubMed

    Mirzayan, M Javad; Klinge, Petra M; Samii, Madjid; Goetz, Friedrich; Krauss, Joachim K

    2012-06-01

    Several new shunt technologies have been developed to optimize hydrocephalus treatment within the past few years. Overdrainage, however, still remains an unresolved problem. One new technology which may reduce the frequency of this complication is the use of a programmable shunt assistant (proSA). Inactive in a horizontal position, it impedes CSF flow in a vertical position according to a prescribed pressure level ranging from 0 to 40 cm H(2)O. We exposed the proSA valve in an ex vivo protocol to MR systems operating at 3 and 7 Tesla to investigate its MRI safety. Following 3 Tesla exposure, no changes in valve settings were noted. Adjustment to any pressure level was possible thereafter. The mean deflection angle was 23 ± 3°. After exposure to 7 Tesla, however, there were unintended pressure changes, and the mechanism for further adjustment of the valves even disintegrated. According to the results of this study, proSA is safe with heteropolar vertical magnet alignment at 3 Tesla. Following 7 Tesla exposure, the valves lost their functional capability.

  16. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  17. In vitro assessment of MRI issues at 3-Tesla for a breast tissue expander with a remote port.

    PubMed

    Linnemeyer, Hannah; Shellock, Frank G; Ahn, Christina Y

    2014-04-01

    A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port. A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences. Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7°C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located. A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Anatomical and metabolic assessment of prostate using a 3-Tesla MR scanner with a custom-made external transceive coil: healthy volunteer study.

    PubMed

    Kaji, Yasushi; Kuroda, Kagayaki; Maeda, Takaki; Kitamura, Yuri; Fujiwara, Toshitaka; Matsuoka, Yuichiro; Tamura, Mitsuru; Takei, Naoyuki; Matsuda, Tsuyoshi; Sugimura, Kazuro

    2007-03-01

    To examine the possibility of using a 3 Tesla (T) magnetic resonance (MR) scanner with a custom-made external coil to obtain ductal details of the prostate, high-quality spectra, and metabolite mapping corresponding to prostate zonal anatomy in healthy volunteers. MRI and two-dimensional (2D) chemical shift imaging (CSI) were performed in 16 healthy volunteers using a 3T scanner with a custom-made external transmit-receive (transceive) coil. Visualization of the prostatic duct-like structure was analyzed on T2-weighted (T2W) images. The resolution of the metabolite peaks and the distribution of metabolites in CSI were also assessed. In the axial plane, 3-mm-thick images were better than 4-mm-thick images with the same voxel volume for assessing duct-like structures and prostatic urethra. Differentiation between inner and outer citrate (Cit) peaks was frequently observed (29 out of 30). The mean peak area ratio of choline (Cho) plus creatine (Cr) over Cit in the peripheral zone (PZ) was significantly lower than in the transition zone (TZ) (P = 0.014). 3T MR examinations of the prostate using an external coil allow information to be collected about the details of duct-like structures, the high-quality spectra of Cit, and the zone-specific distribution of metabolites.

  19. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    PubMed

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  20. Assessment of the cervical spine denticulate ligament using MRI volumetric sequence: Comparison between 1.5 Tesla and 3.0 Tesla.

    PubMed

    Seragioli, Rafael; Simao, Marcelo Novelino; Simao, Gustavo Novelino; Herrero, Carlos Fernando P S; Nogueira-Barbosa, Marcello H

    2018-03-01

    Denticulate ligaments (DLs) are pial extensions on each side of the spinal cord, comprising about 20 to 21 pairs of fibrous structures connecting the dura mater to the spinal cord. These ligaments are significant anatomical landmarks in the surgical approach to intradural structures. To our knowledge, there is no previous study on the detection of DLs using MRI. After IRB approval, we retrospectively evaluated 116 consecutive MRI scans of the cervical spine, using the volumetric sequence 3D COSMIC, 65 and 51 studies with 1.5T and 3.0T respectively. We did not include trauma and tumor cases. Two independent radiologists assessed the detection of cervical spine DLs independently and blinded for each cervical vertebral level. We compared the frequency of detection of these ligaments in 1.5 Tesla and 3.0 Tesla MRI using Fisher exact test considering P<0.05 as significant. We evaluated interobserver agreement with Kappa coefficient. We observed high detection frequency of the cervical spine DLs using both 1.5T (70 to 91%) and 3.0T (68 to 98%). We found no statistically significant difference in the detection frequency of ligaments between the 1.5T and 3.0T MRI in all vertebral levels. Using 3.0T, radiologists identified ligaments better in higher vertebral levels than for lower cervical levels (P=0.0003). Interobserver agreement on the identification of DL was poor both for 1.5T (k=0.3744; CI 95% 0.28-0.46) and 3.0T (k=0.3044; CI 95% 0.18-0.42) MRI. Radiologists identified most of the cervical DLs using volumetric MRI acquisition. Our results suggest 1.5T and 3.0T MRI performed similarly in the detection of DLs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design].

    PubMed

    Adamietz, B; Cavallaro, A; Radkow, T; Alibek, S; Holter, W; Bautz, W A; Staatz, G

    2007-08-01

    To investigate the tolerance of MR examinations in children and adolescents performed in a 1.5 Tesla MR scanner with an expanded bore diameter. 163 patients, ages 4 to 25, underwent MR examinations in a 1.5 Tesla MR scanner with an open design (MAGNETOM Espree, Siemens, Erlangen, Germany), characterized by a compact length of 125 cm and an expanded 70 cm bore diameter. MR imaging of the brain was carried out in most cases (78.5 %), followed by examinations of the spinal canal (9.8 %), the extremities (9.2 %) and the neck (2.5 %). The patients were divided into four age groups and the success rate, motion artifacts and diagnostic quality of the MR examinations were assessed using a 3-grade scale. In 119 of 163 patients (73.0 %), MR examination was possible without any motion artifacts. With respect to the different age groups, 41.7 % of the 4 - 7-year-old children, 67.6 % of the 8 - 10-year-old children, 84.1 % of the 11 - 16-year-old children and 95.8 % of the patients older than 17 showed tolerance grade I without motion artifacts and excellent diagnostic image quality. In 39 of 163 children (23.9 %), the MR images showed moderate motion artifacts but had sufficient diagnostic quality. With regard to the different age groups, 52.8 % of the 4 - 7-year-old children, 26.5 % of the 8 - 10-year-old children, 15.9 % of the 11 - 16-year-old children and none of the patients older than 17 showed tolerance grade II with moderate motion artifacts and sufficient diagnostic image quality. In only 4 of 124 children < 10 years old and 1 child > 10 years old, the MR examination was not feasible and had to be repeated under sedation. Pediatric MR imaging using a 1.5 Tesla MR scanner with an open design can be conducted in children and adolescents with excellent acceptance. The failure rate of 3.0 % of cases for pediatric MR imaging is comparable to that of a conventional low-field open MR scanner.

  2. 3 Tesla MRI-negative focal epilepsies: Presurgical evaluation, postoperative outcome and predictive factors.

    PubMed

    Kogias, Evangelos; Klingler, Jan-Helge; Urbach, Horst; Scheiwe, Christian; Schmeiser, Barbara; Doostkam, Soroush; Zentner, Josef; Altenmüller, Dirk-Matthias

    2017-12-01

    To investigate presurgical diagnostic modalities, clinical and seizure outcome as well as predictive factors after resective epilepsy surgery in 3 Tesla MRI-negative focal epilepsies. This retrospective study comprises 26 patients (11 males/15 females, mean age 34±12years, range 13-50 years) with 3 Tesla MRI-negative focal epilepsies who underwent resective epilepsy surgery. Non-invasive and invasive presurgical diagnostic modalities, type and localization of resection, clinical and epileptological outcome with a minimum follow-up of 1year (range 1-11 years, mean 2.5±2.3years) after surgery as well as outcome predictors were evaluated. All patients underwent invasive video-EEG monitoring after implantation of intracerebral depth and/or subdural electrodes. Ten patients received temporal and 16 extratemporal or multilobar (n=4) resections. There was no perioperative death or permanent morbidity. Overall, 12 of 26 patients (46%) were completely seizure-free (Engel IA) and 65% had a favorable outcome (Engel I-II). In particular, seizure-free ratio was 40% in the temporal and 50% in the extratemporal group. In the temporal group, long duration of epilepsy correlated with poor seizure outcome, whereas congruent unilateral FDG-PET hypometabolism correlated with a favorable outcome. In almost two thirds of temporal and extratemporal epilepsies defined as "non-lesional" by 3 Tesla MRI criteria, a favorable postoperative seizure outcome (Engel I-II) can be achieved with accurate multimodal presurgical evaluation including intracranial EEG recordings. In the temporal group, most favorable results were obtained when FDG-PET displayed congruent unilateral hypometabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    PubMed

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms.

    PubMed

    Kang, Geraldine H; Cruite, Irene; Shiehmorteza, Masoud; Wolfson, Tanya; Gamst, Anthony C; Hamilton, Gavin; Bydder, Mark; Middleton, Michael S; Sirlin, Claude B

    2011-10-01

    To evaluate magnetic resonance imaging (MRI)-determined proton density fat fraction (PDFF) reproducibility across two MR scanner platforms and, using MR spectroscopy (MRS)-determined PDFF as reference standard, to confirm MRI-determined PDFF estimation accuracy. This prospective, cross-sectional, crossover, observational pilot study was approved by an Institutional Review Board. Twenty-one subjects gave written informed consent and underwent liver MRI and MRS at both 1.5T (Siemens Symphony scanner) and 3T (GE Signa Excite HD scanner). MRI-determined PDFF was estimated using an axial 2D spoiled gradient-recalled echo sequence with low flip-angle to minimize T1 bias and six echo-times to permit correction of T2* and fat-water signal interference effects. MRS-determined PDFF was estimated using a stimulated-echo acquisition mode sequence with long repetition time to minimize T1 bias and five echo times to permit T2 correction. Interscanner reproducibility of MRI determined PDFF was assessed by correlation analysis; accuracy was assessed separately at each field strength by linear regression analysis using MRS-determined PDFF as reference standard. 1.5T and 3T MRI-determined PDFF estimates were highly correlated (r = 0.992). MRI-determined PDFF estimates were accurate at both 1.5T (regression slope/intercept = 0.958/-0.48) and 3T (slope/intercept = 1.020/0.925) against the MRS-determined PDFF reference. MRI-determined PDFF estimation is reproducible and, using MRS-determined PDFF as reference standard, accurate across two MR scanner platforms at 1.5T and 3T. Copyright © 2011 Wiley-Liss, Inc.

  5. Ventricular Assist Device implant (AB 5000) prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    PubMed Central

    Shellock, Frank G; Valencerina, Samuel

    2008-01-01

    Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028

  6. Reproducibility of MRI-Determined Proton Density Fat Fraction Across Two Different MR Scanner Platforms

    PubMed Central

    Kang, Geraldine H.; Cruite, Irene; Shiehmorteza, Masoud; Wolfson, Tanya; Gamst, Anthony C.; Hamilton, Gavin; Bydder, Mark; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose To evaluate magnetic resonance imaging (MRI)-determined proton density fat fraction (PDFF) reproducibility across two MR scanner platforms and, using MR spectroscopy (MRS)-determined PDFF as reference standard, to confirm MRI-determined PDFF estimation accuracy. Materials and Methods This prospective, cross-sectional, crossover, observational pilot study was approved by an Institutional Review Board. Twenty-one subjects gave written informed consent and underwent liver MRI and MRS at both 1.5T (Siemens Symphony scanner) and 3T (GE Signa Excite HD scanner). MRI-determined PDFF was estimated using an axial 2D spoiled gradient-recalled echo sequence with low flip-angle to minimize T1 bias and six echo-times to permit correction of T2* and fat-water signal interference effects. MRS-determined PDFF was estimated using a stimulated-echo acquisition mode sequence with long repetition time to minimize T1 bias and five echo times to permit T2 correction. Interscanner reproducibility of MRI determined PDFF was assessed by correlation analysis; accuracy was assessed separately at each field strength by linear regression analysis using MRS-determined PDFF as reference standard. Results 1.5T and 3T MRI-determined PDFF estimates were highly correlated (r = 0.992). MRI-determined PDFF estimates were accurate at both 1.5T (regression slope/intercept = 0.958/−0.48) and 3T (slope/intercept = 1.020/0.925) against the MRS-determined PDFF reference. Conclusion MRI-determined PDFF estimation is reproducible and, using MRS-determined PDFF as reference standard, accurate across two MR scanner platforms at 1.5T and 3T. PMID:21769986

  7. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  8. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  9. PLACD-7T Study: Atherosclerotic Carotid Plaque Components Correlated with Cerebral Damage at 7 Tesla Magnetic Resonance Imaging.

    PubMed

    den Hartog, A G; Bovens, S M; Koning, W; Hendrikse, J; Pasterkamp, G; Moll, F L; de Borst, G J

    2011-02-01

    In patients with carotid artery stenosis histological plaque composition is associated with plaque stability and with presenting symptomatology. Preferentially, plaque vulnerability should be taken into account in pre-operative work-up of patients with severe carotid artery stenosis. However, currently no appropriate and conclusive (non-) invasive technique to differentiate between the high and low risk carotid artery plaque in vivo is available. We propose that 7 Tesla human high resolution MRI scanning will visualize carotid plaque characteristics more precisely and will enable correlation of these specific components with cerebral damage. The aim of the PlaCD-7T study is 1: to correlate 7T imaging with carotid plaque histology (gold standard); and 2: to correlate plaque characteristics with cerebral damage ((clinically silent) cerebral (micro) infarcts or bleeds) on 7 Tesla high resolution (HR) MRI. We propose a single center prospective study for either symptomatic or asymptomatic patients with haemodynamic significant (70%) stenosis of at least one of the carotid arteries. The Athero-Express (AE) biobank histological analysis will be derived according to standard protocol. Patients included in the AE and our prospective study will undergo a pre-operative 7 Tesla HR-MRI scan of both the head and neck area. We hypothesize that the 7 Tesla MRI scanner will allow early identification of high risk carotid plaques being associated with micro infarcted cerebral areas, and will thus be able to identify patients with a high risk of periprocedural stroke, by identification of surrogate measures of increased cardiovascular risk.

  10. PLACD-7T Study: Atherosclerotic Carotid Plaque Components Correlated with Cerebral Damage at 7 Tesla Magnetic Resonance Imaging

    PubMed Central

    den Hartog, A.G; Bovens, S.M; Koning, W; Hendrikse, J; Pasterkamp, G; Moll, F.L; de Borst, G.J

    2011-01-01

    Introduction: In patients with carotid artery stenosis histological plaque composition is associated with plaque stability and with presenting symptomatology. Preferentially, plaque vulnerability should be taken into account in pre-operative work-up of patients with severe carotid artery stenosis. However, currently no appropriate and conclusive (non-) invasive technique to differentiate between the high and low risk carotid artery plaque in vivo is available. We propose that 7 Tesla human high resolution MRI scanning will visualize carotid plaque characteristics more precisely and will enable correlation of these specific components with cerebral damage. Study objective: The aim of the PlaCD-7T study is 1: to correlate 7T imaging with carotid plaque histology (gold standard); and 2: to correlate plaque characteristics with cerebral damage ((clinically silent) cerebral (micro) infarcts or bleeds) on 7 Tesla high resolution (HR) MRI. Design: We propose a single center prospective study for either symptomatic or asymptomatic patients with haemodynamic significant (70%) stenosis of at least one of the carotid arteries. The Athero-Express (AE) biobank histological analysis will be derived according to standard protocol. Patients included in the AE and our prospective study will undergo a pre-operative 7 Tesla HR-MRI scan of both the head and neck area. Discussion: We hypothesize that the 7 Tesla MRI scanner will allow early identification of high risk carotid plaques being associated with micro infarcted cerebral areas, and will thus be able to identify patients with a high risk of periprocedural stroke, by identification of surrogate measures of increased cardiovascular risk. PMID:22294972

  11. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  12. Safety Implications of High-Field MRI: Actuation of Endogenous Magnetic Iron Oxides in the Human Body

    PubMed Central

    Dobson, Jon; Bowtell, Richard; Garcia-Prieto, Ana; Pankhurst, Quentin

    2009-01-01

    Background Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body. Methodology Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles. Principal Finding and Conclusions Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation. PMID:19412550

  13. Impact of functional magnetic resonance imaging (fMRI) scanner noise on affective state and attentional performance.

    PubMed

    Jacob, Shawna N; Shear, Paula K; Norris, Matthew; Smith, Matthew; Osterhage, Jeff; Strakowski, Stephen M; Cerullo, Michael; Fleck, David E; Lee, Jing-Huei; Eliassen, James C

    2015-01-01

    Previous research has shown that performance on cognitive tasks administered in the scanner can be altered by the scanner environment. There are no previous studies that have investigated the impact of scanner noise using a well-validated measure of affective change. The goal of this study was to determine whether performance on an affective attentional task or emotional response to the task would change in the presence of distracting acoustic noise, such as that encountered in a magnetic resonance imaging (MRI) environment. Thirty-four young adults with no self-reported history of neurologic disorder or mental illness completed three blocks of the affective Posner task outside of the scanner. The task was meant to induce frustration through monetary contingencies and rigged feedback. Participants completed a Self-Assessment Manikin at the end of each block to rate their mood, arousal level, and sense of dominance. During the task, half of the participants heard noise (recorded from a 4T MRI system), and half heard no noise. The affective Posner task led to significant reductions in mood and increases in arousal in healthy participants. The presence of scanner noise did not impact task performance; however, individuals in the noise group did report significantly poorer mood throughout the task. The results of the present study suggest that the acoustic qualities of MRI enhance frustration effects on an affective attentional task and that scanner noise may influence mood during similar functional magnetic resonance imaging (fMRI) tasks.

  14. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  15. Unshielded asymmetric transmit-only and endorectal receive-only radiofrequency coil for (23) Na MRI of the prostate at 3 tesla.

    PubMed

    Farag, Adam; Peterson, Justin Charles; Szekeres, Trevor; Bauman, Glenn; Chin, Joseph; Romagnoli, Cesare; Bartha, Robert; Scholl, Timothy J

    2015-08-01

    To develop and optimize radiofrequency (RF) hardware for the detection of endogenous sodium ((23) Na) by 3.0 Tesla (T) MRI in the human prostate. A transmit-only receive-only (TORO) RF system of resonators consisting of an unshielded, asymmetric, quadrature birdcage (transmit), and an endorectal (ER), linear, surface (receive) coil were developed and tested on a 3T MRI scanner. Two different ER receivers were constructed; a single-tuned ((23) Na) and a dual-tuned ((1) H/(23) Na). Both receivers were evaluated by the measurements of signal-to-noise ratio (SNR) and B1 homogeneity. For tissue sodium concentration (TSC) quantification, vials containing known sodium concentrations were incorporated into the ER. The system was used to measure the prostate TSC of three men (age 55 ± 5 years) with biopsy-proven prostate cancer. B1 field inhomogeneity of the asymmetric transmitter was estimated to be less than 5%. The mean SNR measured in a region of interest within the prostate using the single-tuned ER coil was 54.0 ± 4.6. The mean TSC in the central gland was 60.2 ± 5.7 mmol/L and in the peripheral gland was 70.5 ± 9.0 mmol/L. A TORO system was developed and optimized for (23) Na MRI of the human prostate which showed good sensitivity throughout the prostate for quantitative measurement of TSC. © 2014 Wiley Periodicals, Inc.

  16. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003

  17. MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-Tesla.

    PubMed

    Dedini, Russell D; Karacozoff, Alexandra M; Shellock, Frank G; Xu, Duan; McClellan, R Trigg; Pekmezci, Murat

    2013-07-01

    Few studies exist for magnetic resonance imaging (MRI) issues and ballistics, and there are no studies addressing movement, heating, and artifacts associated with ballistics at 3-tesla (T). Movement because of magnetic field interactions and radiofrequency (RF)-induced heating of retained bullets may injure nearby critical structures. Artifacts may also interfere with the diagnostic use of MRI. To investigate these potential hazards of MRI on a sample of bullets and shotgun pellets. Laboratory investigation, ex vivo. Thirty-two different bullets and seven different shotgun pellets, commonly encountered in criminal trauma, were assessed relative to 1.5-, 3-, and 7-T magnetic resonance systems. Magnetic field interactions, including translational attraction and torque, were measured. A representative sample of five bullets were then tested for magnetic field interactions, RF-induced heating, and the generation of artifacts at 3-T. At all static magnetic field strengths, non-steel-containing bullets and pellets exhibited no movement, whereas one steel core bullet and two steel pellets exhibited movement in excess of what might be considered safe for patients in MRI at 1.5-, 3- and 7-Tesla. At 3-T, the maximum temperature increase of five bullets tested was 1.7°C versus background heating of 1.5°C. Of five bullets tested for artifacts, those without a steel core exhibited small signal voids, whereas a single steel core bullet exhibited a very large signal void. Ballistics made of lead with copper or alloy jackets appear to be safe with respect to MRI-related movement at 1.5-, 3-, and 7-T static magnetic fields, whereas ballistics containing steel may pose a danger if near critical body structures because of strong magnetic field interactions. Temperature increases of selected ballistics during 3-T MRI was not clinically significant, even for the ferromagnetic projectiles. Finally, ballistics containing steel generated larger artifacts when compared with ballistics

  18. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Eric S., E-mail: epaulson@mcw.edu; Erickson, Beth; Schultz, Chris

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP ofmore » brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams

  19. Three-Tesla MRI does not improve the diagnosis of multiple sclerosis: A multicenter study.

    PubMed

    Hagens, Marloes H J; Burggraaff, Jessica; Kilsdonk, Iris D; de Vos, Marlieke L; Cawley, Niamh; Sbardella, Emilia; Andelova, Michaela; Amann, Michael; Lieb, Johanna M; Pantano, Patrizia; Lissenberg-Witte, Birgit I; Killestein, Joep; Oreja-Guevara, Celia; Ciccarelli, Olga; Gasperini, Claudio; Lukas, Carsten; Wattjes, Mike P; Barkhof, Frederik

    2018-06-20

    In the work-up of patients presenting with a clinically isolated syndrome (CIS), 3T MRI might offer a higher lesion detection than 1.5T, but it remains unclear whether this affects the fulfilment of the diagnostic criteria for multiple sclerosis (MS). We recruited 66 patients with CIS within 6 months from symptom onset and 26 healthy controls in 6 MS centers. All participants underwent 1.5T and 3T brain and spinal cord MRI at baseline according to local optimized protocols and the MAGNIMS guidelines. Patients who had not converted to MS during follow-up received repeat brain MRI at 3-6 months and 12-15 months. The number of lesions per anatomical region was scored by 3 raters in consensus. Criteria for dissemination in space (DIS) and dissemination in time (DIT) were determined according to the 2017 revisions of the McDonald criteria. Three-Tesla MRI detected 15% more T2 brain lesions compared to 1.5T ( p < 0.001), which was driven by an increase in baseline detection of periventricular (12%, p = 0.015), (juxta)cortical (21%, p = 0.005), and deep white matter lesions (21%, p < 0.001). The detection rate of spinal cord lesions and gadolinium-enhancing lesions did not differ between field strengths. Three-Tesla MRI did not lead to a higher number of patients fulfilling the criteria for DIS or DIT, or subsequent diagnosis of MS, at any of the 3 time points. Scanning at 3T does not influence the diagnosis of MS according to McDonald diagnostic criteria. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  20. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    PubMed

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (< or = 0.6 degrees C) and the artifacts were acceptable for diagnostic MRI examinations. The low degree of heating and minor artifacts associated with the Resolve-based cervical external immobilization devices indicated that these products are safe for patients

  1. Quantification of Liver Proton-Density Fat Fraction in an 7.1 Tesla preclinical MR Systems: Impact of the Fitting Technique

    PubMed Central

    Mahlke, C; Hernando, D; Jahn, C; Cigliano, A; Ittermann, T; Mössler, A; Kromrey, ML; Domaska, G; Reeder, SB; Kühn, JP

    2016-01-01

    Purpose To investigate the feasibility of estimating the proton-density fat fraction (PDFF) using a 7.1 Tesla magnetic resonance imaging (MRI) system and to compare the accuracy of liver fat quantification using different fitting approaches. Materials and Methods Fourteen leptin-deficient ob/ob mice and eight intact controls were examined in a 7.1 Tesla animal scanner using a 3-dimensional six-echo chemical shift-encoded pulse sequence. Confounder-corrected PDFF was calculated using magnitude (magnitude data alone) and combined fitting (complex and magnitude data). Differences between fitting techniques were compared using Bland-Altman analysis. In addition, PDFFs derived with both reconstructions were correlated with histopathological fat content and triglyceride mass fraction using linear regression analysis. Results The PDFFs determined with use of both reconstructions correlated very strongly (r=0.91). However, small mean bias between reconstructions demonstrated divergent results (3.9%; CI 2.7%-5.1%). For both reconstructions, there was linear correlation with histopathology (combined fitting: r=0.61; magnitude fitting: r=0.64) and triglyceride content (combined fitting: r=0.79; magnitude fitting: r=0.70). Conclusion Liver fat quantification using the PDFF derived from MRI performed at 7.1 Tesla is feasible. PDFF has strong correlations with histopathologically determined fat and with triglyceride content. However, small differences between PDFF reconstruction techniques may impair the robustness and reliability of the biomarker at 7.1 Tesla. PMID:27197806

  2. 3 Tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT.

    PubMed

    Attenberger, U I; Morelli, J N; Henzler, T; Buchheidt, D; Fink, C; Schoenberg, S O; Reichert, M

    2014-01-01

    To evaluate the diagnostic accuracy of 3 Tesla proton MRI for the assessment of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia. In a prospective study, 3 Tesla MRI was performed in 19 febrile neutropenic patients (5 women, 14 men; mean age 61 years ± 14.2; range 23-77 years). All patients underwent high-resolution CT less than 24h prior to MRI. The MRI protocol (Magnetom Tim Trio, Siemens) included a T2-weighted HASTE sequence (TE/TR: 49 ms/∞, slice thickness 6mm) and a high-resolution 3D VIBE sequence with an ultra-short TE<1 ms (TE/TR 0.8/2.9 ms, slice thickness 2mm). The VIBE sequence was examined before and after intravenous injection of 0.1 mmol/kg gadoterate meglumine (Dotarem, Guerbet). The presence of pulmonary abnormalities, their location within the lung, and lesion type (nodules, consolidations, glass opacity areas) were analyzed by one reader and compared to the findings of HRCT, which was evaluated by a second independent radiologist who served as the reference standard. The findings were compared per lobe in each patient and rated as true positive (TP) findings if all three characteristics (presence, location, and lesion type) listed above were concordant to HRCT. Pulmonary abnormalities were characterized by 3 Tesla MRI with a sensitivity of 82.3% and a specificity of 78.6%, resulting in an overall accuracy of 88% (NPV/PPV 66.7%/89.5%). In 51 lobes (19 of 19 patients), pulmonary abnormalities visualized by MR were judged to be concordant in their location and in the lesion type identified by both readers. In 22 lobes (11 of 19 patients), no abnormalities were present on either MR or HRCT (true negative). In 6 lobes (5 of 19 patients), ground glass opacity areas were detected on MRI but were not visible on HRCT (false positives). In 11 lobes (7 of 19 patients), MRI failed to detect ground glass opacity areas identified by HRCT. However, since the abnormalities were disseminated in these patients, accurate treatment

  3. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    PubMed

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  4. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  5. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging.

    PubMed

    Singh, Arun D; Platt, Sean M; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E; Alzahrani, Yahya; Plesec, Thomas

    2016-04-01

    The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation.

  6. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  7. 7 Tesla Magnetic Resonance Imaging to Detect Cortical Pathology in Multiple Sclerosis

    PubMed Central

    van Gelderen, Peter; Merkle, Hellmuth; Chen, Christina; Lassmann, Hans; Duyn, Jeff H.; Bagnato, Francesca

    2014-01-01

    Background Neocortical lesions (NLs) are an important pathological component of multiple sclerosis (MS), but their visualization by magnetic resonance imaging (MRI) remains challenging. Objectives We aimed at assessing the sensitivity of multi echo gradient echo (ME-GRE) T2 *-weighted MRI at 7.0 Tesla in depicting NLs compared to myelin and iron staining. Methods Samples from two MS patients were imaged post mortem using a whole body 7T MRI scanner with a 24-channel receive-only array. Isotropic 200 micron resolution images with varying T2 * weighting were reconstructed from the ME-GRE data and converted into R2 * maps. Immunohistochemical staining for myelin (proteolipid protein, PLP) and diaminobenzidine-enhanced Turnbull blue staining for iron were performed. Results Prospective and retrospective sensitivities of MRI for the detection of NLs were 48% and 67% respectively. We observed MRI maps detecting only a small portion of 20 subpial NLs extending over large cortical areas on PLP stainings. No MRI signal changes suggestive of iron accumulation in NLs were observed. Conversely, R2 * maps indicated iron loss in NLs, which was confirmed by histological quantification. Conclusions High-resolution post mortem imaging using R2 * and magnitude maps permits detection of focal NLs. However, disclosing extensive subpial demyelination with MRI remains challenging. PMID:25303286

  8. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.

    PubMed

    Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi

    2007-08-01

    To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.

  9. Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI

    PubMed Central

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-01-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among “good quality” structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects’ tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion—even at levels which do not manifest in visible motion artifact—can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. PMID:27004471

  10. Effect of disease progression on liver apparent diffusion coefficient and T2 values in a murine model of hepatic fibrosis at 11.7 Tesla MRI.

    PubMed

    Anderson, Stephan W; Jara, Hernan; Ozonoff, Al; O'Brien, Michael; Hamilton, James A; Soto, Jorge A

    2012-01-01

    To evaluate the effects of hepatic fibrosis on ADC and T(2) values of ex vivo murine liver specimens imaged using 11.7 Tesla (T) MRI. This animal study was IACUC approved. Seventeen male, C57BL/6 mice were divided into control (n = 2) and experimental groups (n = 15), the latter fed a 3, 5-dicarbethoxy-1, 4-dihydrocollidine (DDC) supplemented diet, inducing hepatic fibrosis. Ex vivo liver specimens were imaged using an 11.7T MRI scanner. Spin-echo pulsed field gradient and multi-echo spin-echo acquisitions were used to generate parametric ADC and T(2) maps, respectively. Degrees of fibrosis were determined by the evaluation of a pathologist as well as digital image analysis. Scatterplot graphs comparing ADC and T(2) to degrees of fibrosis were generated and correlation coefficients were calculated. Strong correlation was found between degrees of hepatic fibrosis and ADC with higher degrees of fibrosis associated with lower hepatic ADC values. Moderate correlation between hepatic fibrosis and T(2) values was seen with higher degrees of fibrosis associated with lower T(2) values. Inverse relationships between degrees of fibrosis and both ADC and T(2) are seen, highlighting the utility of these parameters in the ongoing development of an MRI methodology to quantify hepatic fibrosis. Copyright © 2011 Wiley Periodicals, Inc.

  11. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  12. Magnetic Resonance Medical Imaging (MRI)-from the inside

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at <0.2T. I moved to Johns Hopkins University to apply MRI methods to localized MRS and study cardiac metabolism, and then to GE to build a whole-body MRS machine. The largest uniform magnet possible-then, a 1.5T superconducting system-was required. Body MRI was first thought impossible above 0.35T due to RF penetration, detector coil and signal-to-noise ratio (SNR) issues. When GE finally did take on MRI, their plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  13. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips.

    PubMed

    Gill, Amreeta; Shellock, Frank G

    2012-01-09

    Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.

  14. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    PubMed Central

    2012-01-01

    Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants. PMID:22230200

  15. Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.

    PubMed

    Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L

    2014-03-01

    Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.

  16. Voltage-based Device Tracking in a 1.5 Tesla MRI during Imaging: Initial validation in swine models

    PubMed Central

    Schmidt, Ehud J; Tse, Zion TH; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L

    2013-01-01

    Purpose Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological (EP) cardiac-arrhythmia therapy. During EP procedures, electro-anatomic-mapping (EAM) workstations provide guidance by integrating VDT location and intra-cardiac-ECG information with X-ray, CT, Ultrasound, and MR images. MR assists navigation, mapping and radio-frequency-ablation. Multi-modality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound EP suite, increasing the likelihood of patient-motion and image mis-registration. An MRI-compatible VDT system may increase efficiency, since there is currently no single method to track devices both inside and outside the MRI scanner. Methods An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radio-frequency-unblanking-pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT EAM-mapping interventions were performed, navigating inside and thereafter outside the MRI. Results Three-catheter VDT interventions were performed at >12 frames-per-second both inside and outside the MRI scanner with <3mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition-time (TR) >32 msec sequences with <0.5mm errors, and <5% MRI SNR loss. At shorter TRs, only intra-cardiac-ECG was reliable. RF Heating was <1.5C°. Conclusion An MRI-compatible VDT system is feasible. PMID:23580479

  17. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems.

    PubMed

    Giannelli, Marco; Diciotti, Stefano; Tessa, Carlo; Mascalchi, Mario

    2010-01-01

    Although in EPI-fMRI analyses typical acquisition parameters (TR, TE, matrix, slice thickness, etc.) are generally employed, various readout bandwidth (BW) values are used as a function of gradients characteristics of the MR scanner. Echo spacing (ES) is another fundamental parameter of EPI-fMRI acquisition sequences but the employed ES value is not usually reported in fMRI studies. In the present work, the authors investigated the effect of ES and BW on basic performances of EPI-fMRI sequences in terms of temporal stability and overall image quality of time series acquisition. EPI-fMRI acquisitions of the same water phantom were performed using two clinical MR scanner systems (scanners A and B) with different gradient characteristics and functional designs of radiofrequency coils. For both scanners, the employed ES values ranged from 0.75 to 1.33 ms. The used BW values ranged from 125.0 to 250.0 kHz/64pixels and from 78.1 to 185.2 kHz/64pixels for scanners A and B, respectively. The temporal stability of EPI-fMRI sequence was assessed measuring the signal-to-fluctuation noise ratio (SFNR) and signal drift (DR), while the overall image quality was assessed evaluating the signal-to-noise ratio (SNR(ts)) and nonuniformity (NU(ts)) of the time series acquisition. For both scanners, no significant effect of ES and BW on signal drift was revealed. The SFNR, NU(ts) and SNR(ts) values of scanner A did not significantly vary with ES. On the other hand, the SFNR, NU(ts), and SNR(ts) values of scanner B significantly varied with ES. SFNR (5.8%) and SNR(ts) (5.9%) increased with increasing ES. SFNR (25% scanner A, 32% scanner B) and SNR(ts) (26.2% scanner A, 30.1% scanner B) values of both scanners significantly decreased with increasing BW. NU(ts) values of scanners A and B were less than 3% for all BW and ES values. Nonetheless, scanner A was characterized by a significant upward trend (3% percentage of variation) of time series nonuniformity with increasing BW while NU

  18. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils.

    PubMed

    Cooley, Clarissa Zimmerman; Stockmann, Jason P; Armstrong, Brandon D; Sarracanie, Mathieu; Lev, Michael H; Rosen, Matthew S; Wald, Lawrence L

    2015-02-01

    As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. We construct and validate a truly portable (<100 kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating spatial encoding magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed two-dimensional (2D) image. Multiple receive channels are used to disambiguate the nonbijective encoding field. The system is validated with experimental images of 2D test phantoms. Similar to other nonlinear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. © 2014 Wiley Periodicals, Inc.

  19. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  20. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    PubMed Central

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan

    2017-01-01

    Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG

  1. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    PubMed

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  2. [Influence on flux density of intraoral dental magnets during 1.5 and 3.0 tesla MRI].

    PubMed

    Blankenstein, F H; Truong, B; Thomas, A; Boeckler, A; Peroz, I

    2011-08-01

    When using dental duo-magnet systems, a mini-magnet remains in the jaw after removal of the prosthesis. In some cases, implant-borne magnets may be removed, whereas tooth-borne magnets are irreversibly fixed on a natural tooth root. The goal of this paper is to identify the impacts of the duration and orientation of exposure on these magnets in a 1.5 or 3 Tesla MRI. For this study, 30 SmCo and 60 NdFeB magnets were used. During the first experiment, they were exposed with free orientation for 64 minutes. During the second experiment, the magnets were fixed in position and exposed at 1.5 and 3 Tesla while aligned in a parallel or antiparallel direction. While the duration of exposure in MRI is irrelevant, the orientation is not. The coercive field strength of these NdFeB and SmCo alloys is not sufficient to reliably withstand demagnetization in a 1.5 or 3 T MRI when aligned in an antiparallel direction. At 1.5 T neodymium magnets were reduced to approx. 34 % and samarium magnets to approx. 92 % of their initial values. At 3 T all magnets were reversed. As a precaution, the worst-case scenario, i. e. an antiparallel orientation, should be assumed when using a duo-magnet system. If an MRI can be postponed, the general dentist should remove implant-borne magnets. If there is a vital indication, irreversible damage to the magnets is acceptable in consultation with the patient since the replacement costs are irrelevant given the underlying disease. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.

    PubMed

    Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd

    2009-12-01

    We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.

  4. A Magnetic Resonance Imaging-Conditional External Cardiac Defibrillator for Resuscitation Within the Magnetic Resonance Imaging Scanner Bore.

    PubMed

    Schmidt, Ehud J; Watkins, Ronald D; Zviman, Menekhem M; Guttman, Michael A; Wang, Wei; Halperin, Henry A

    2016-10-01

    Subjects undergoing cardiac arrest within a magnetic resonance imaging (MRI) scanner are currently removed from the bore and then from the MRI suite, before the delivery of cardiopulmonary resuscitation and defibrillation, potentially increasing the risk of mortality. This precludes many higher-risk (acute ischemic and acute stroke) patients from undergoing MRI and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the seconds of MRI after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by the addition of novel radiofrequency filters between the generator and commercial disposable surface pads. The radiofrequency filters reduced emission into the MRI scanner and prevented cable/surface pad heating during imaging, while preserving all the defibrillator monitoring and delivery functions. Human volunteers were imaged using high specific absorption rate sequences to validate MRI image quality and lack of heating. Swine were electrically fibrillated (n=4) and thereafter defibrillated both outside and inside the MRI bore. MRI image quality was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface pads did not create artifacts deeper than 6 mm below the skin surface. Radiofrequency heating was within US Food and Drug Administration guidelines. Defibrillation was completely successful inside and outside the MRI bore. A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading the image quality or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures. © 2016 American Heart Association, Inc.

  5. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.

    PubMed

    Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald

    2016-08-01

    To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.

  7. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  8. Diagnosis of glenoid labral tears using 3-tesla MRI vs. 3-tesla MRA: a systematic review and meta-analysis.

    PubMed

    Ajuied, Adil; McGarvey, Ciaran P; Harb, Ziad; Smith, Christian C; Houghton, Russell P; Corbett, Steven A

    2018-05-01

    Various protocols exist for magnetic resonance arthrogram (MRA) of the shoulder, including 3D isotropic scanning and positioning in neutral (2D neutral MRA), or abduction-external-rotation (ABER). MRA does not improve diagnostic accuracy for labral tears when compared to magnetic resonance imaging (MRI) performed using 3-Tesla (3T) magnets. Systematic review of the Cochrane, MEDLINE, and PubMed databases according to PRISMA guidelines. Included studies compared 3T MRI or 3T MRA (index tests) to arthroscopic findings (reference test). Methodological appraisal performed using QUADAS-2. Pooled sensitivity and specificity were calculated. Ten studies including 929 patients were included. Index test bias and applicability were a concern in the majority of studies. The use of arthroscopy as the reference test raised concern of verification bias in all studies. For anterior labral lesions, 3T MRI was less sensitive (0.83 vs. 0.87 p = 0.083) than 3T 2D neutral MRA. Compared to 3T 2D neutral MRA, both 3T 3D Isotropic MRA and 3T ABER MRA significantly improved sensitivity (0.87 vs. 0.95 vs. 0.94). For SLAP lesions, 3T 2D neutral MRA was of similar sensitivity to 3T MRI (0.84 vs. 0.83, p = 0.575), but less specific (0.99 vs. 0.92 p < 0.0001). For posterior labral lesions, 3T 2D neutral MRA had greater sensitivity than 3T 3D Isotropic MRA and 3T MRI (0.90 vs. 0.83 vs. 0.83). At 3-T, MRA improved sensitivity for diagnosis of anterior and posterior labral lesions, but reduced specificity in diagnosis of SLAP tears. 3T MRA with ABER positioning further improved sensitivity in diagnosis of anterior labral tears. IV.

  9. Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla.

    PubMed

    Wrede, Karsten H; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E; Forsting, Michael; Schlamann, Marc U; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and

  10. Non-Enhanced MR Imaging of Cerebral Aneurysms: 7 Tesla versus 1.5 Tesla

    PubMed Central

    Wrede, Karsten H.; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I. Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E.; Forsting, Michael; Schlamann, Marc U.; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    Purpose To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Material and Methods Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. Results A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. Conclusion 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high

  11. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results.

    PubMed

    Chang, Gregory; Friedrich, Klaus M; Wang, Ligong; Vieira, Renata L R; Schweitzer, Mark E; Recht, Michael P; Wiggins, Graham C; Regatte, Ravinder R

    2010-03-01

    To determine the feasibility of performing MRI of the wrist at 7 Tesla (T) with parallel imaging and to evaluate how acceleration factors (AF) affect signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality. This study had institutional review board approval. A four-transmit eight-receive channel array coil was constructed in-house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture (3D-Fast Low Angle Shot (FLASH) with and without fat suppression, repetition time/echo time = 20 ms/4.5 ms, flip angle = 10 degrees , 0.169-0.195 x 0.169-0.195 mm, 0.5-1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo (FSE), proton density-weighted FSE, and multiple-echo data image combination (MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone (r < -0.98). At AF 4, reductions in SNR/CNR were:52%/60% (cartilage), 72%/63% (muscle), 45%/50% (trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent (P = 0.075), and AF 4 as average-to-good (P = 0.11). It is feasible to perform high resolution 7T MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average.

  12. Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy.

    PubMed

    Veersema, Tim J; Ferrier, Cyrille H; van Eijsden, Pieter; Gosselaar, Peter H; Aronica, Eleonora; Visser, Fredy; Zwanenburg, Jaco M; de Kort, Gerard A P; Hendrikse, Jeroen; Luijten, Peter R; Braun, Kees P J

    2017-06-01

    The aim of this study is to determine whether the use of 7 tesla (T) MRI in clinical practice leads to higher detection rates of focal cortical dysplasias in possible candidates for epilepsy surgery. In our center patients are referred for 7 T MRI if lesional focal epilepsy is suspected, but no abnormalities are detected at one or more previous, sufficient-quality lower-field MRI scans, acquired with a dedicated epilepsy protocol, or when concealed pathology is suspected in combination with MR-visible mesiotemporal sclerosis-dual pathology. We assessed 40 epilepsy patients who underwent 7 T MRI for presurgical evaluation and whose scans (both 7 T and lower field) were discussed during multidisciplinary epilepsy surgery meetings that included a dedicated epilepsy neuroradiologist. We compared the conclusions of the multidisciplinary visual assessments of 7 T and lower-field MRI scans. In our series of 40 patients, multidisciplinary evaluation of 7 T MRI identified additional lesions not seen on lower-field MRI in 9 patients (23%). These findings were guiding in surgical planning. So far, 6 patients underwent surgery, with histological confirmation of focal cortical dysplasia or mild malformation of cortical development. Seven T MRI improves detection of subtle focal cortical dysplasia and mild malformations of cortical development in patients with intractable epilepsy and may therefore contribute to identification of surgical candidates and complete resection of the epileptogenic lesion, and thus to postoperative seizure freedom.

  13. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multi-pool CEST MRI at 7.0 Tesla.

    PubMed

    Paech, Daniel; Windschuh, Johannes; Oberhollenzer, Johanna; Dreher, Constantin; Sahm, Felix; Meissner, Jan-Eric; Goerke, Steffen; Schuenke, Patrick; Zaiss, Moritz; Regnery, Sebastian; Bickelhaupt, Sebastian; Bäumer, Philipp; Bendszus, Martin; Wick, Wolfgang; Unterberg, Andreas; Bachert, Peter; Ladd, Mark Edward; Schlemmer, Heinz-Peter; Radbruch, Alexander

    2018-05-04

    Early identification of prognostic superior characteristics in glioma patients such as Isocitrate dehydrogenase(IDH)-mutation and O6-methylguanine-DNA-methyltransferase (MGMT) promotor methylation status is of great clinical importance. The study purpose was to investigate the non-invasive predictability of IDH-mutation status, MGMT promotor methylation, and differentiation of lower versus higher grade glioma (LGG vs. HGG) in newly-diagnosed patients employing relaxation-compensated multi-pool Chemical Exchange Saturation Transfer (CEST) magnetic resonance imaging (MRI) at 7.0 Tesla (7T). Thirty-one newly-diagnosed glioma patients were included in this prospective study. CEST MRI was performed at a 7T whole-body scanner. Nuclear Overhauser Effect (NOE) and isolated amide proton transfer (APT, downfield NOE-suppressed APT=dns-APT) CEST signals (mean value and 90th signal percentile) were quantitatively investigated in the whole tumor area with regard to predictability of IDH-mutation, MGMT promotor methylation status, and differentiation of LGG vs. HGG. Statistics were performed using receiver operating characteristic (ROC) and area under the curve (AUC) analysis. Results were compared to advanced MRI methods (apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) ROC/AUC analysis) obtained at 3T. dns-APT CEST contrasts yielded highest AUCs in IDH-mutation status prediction (dns-APTmean=91.84%, p<0.01; dns-APT90=97.96%, p<0.001). Furthermore, dns-APT metrics enabled significant differentiation of LGG vs. HGG (AUC: dns-APTmean=0.78, p<0.05; dns-APT90=0.83, p<0.05). There was no significant difference regarding MGMT promotor methylation status at any contrast (p>0.05). Relaxation-compensated multi-pool CEST MRI, particularly dns-APT imaging, enabled prediction of IDH-mutation status and differentiation of LGG vs. HGG and should therefore be considered as non-invasive MR biomarker in the diagnostic workup.

  14. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  15. [Studies of three-dimensional cardiac late gadolinium enhancement MRI at 3.0 Tesla].

    PubMed

    Ishimoto, Takeshi; Ishihara, Masaru; Ikeda, Takayuki; Kawakami, Momoe

    2008-12-20

    Cardiac late Gadolinium enhancement MR imaging has been shown to allow assessment of myocardial viability in patients with ischemic heart disease. The current standard approach is a 3D inversion recovery sequence at 1.5 Tesla. The aims of this study were to evaluate the technique feasibility and clinical utility of MR viability imaging at 3.0 Tesla in patients with myocardial infarction and cardiomyopathy. In phantom and volunteer studies, the inversion time required to suppress the signal of interests and tissues was prolonged at 3.0 Tesla. In the clinical study, the average inversion time to suppress the signal of myocardium at 3.0 Tesla with respect to MR viability imaging at 1.5 Tesla was at 15 min after the administration of contrast agent (304.0+/-29.2 at 3.0 Tesla vs. 283.9+/-20.9 at 1.5 Tesla). The contrast between infarction and viable myocardium was equal at both field strengths (4.06+/-1.30 at 3.0 Tesla vs. 4.42+/-1.85 at 1.5 Tesla). Even at this early stage, MR viability imaging at 3.0 Tesla provides high quality images in patients with myocardial infarction. The inversion time is significantly prolonged at 3.0 Tesla. The contrast between infarction and viable myocardium at 3.0 Tesla are equal to 1.5 Tesla. Further investigation is needed for this technical improvement, for clinical evaluation, and for limitations.

  16. Is the body-coil at 3 Tesla feasible for the MRI evaluation of the painful knee? A comparative study.

    PubMed

    Lutterbey, G; Behrends, K; Falkenhausen, M V; Wattjes, M P; Morakkabati, N; Gieseke, J; Schild, H

    2007-02-01

    The purpose of this study was to compare the in-built body coil of the 3.0-Tesla (T) scanner with a dedicated surface coil of a 1.5 T system regarding knee imaging. We performed an intraindividual prospective clinical trial on 17 patients with knee pain using magnetic resonance imaging (MRI) at 1.5 and 3.0 T systems equipped with identical gradient systems. Proton-density-weighted turbo spin echo sequences with the same spatial resolution and comparable contrast parameters were used. A quantitative measurement of signal to noise ratio (SNR), relative contrast (RC) and contrast to noise ratio (CNR) between muscle and bone marrow was performed, followed by a qualitative assessment of anatomic/pathologic structures and the extent of artefacts. At 3.0 T, 30 lesions (91%) compared to 33 lesions at 1.5 T were detected. The SNR/CNR/RC were moderately reduced at 3.0 T versus 1.5 T (muscle 42 vs 47 and bone 83 vs 112/46 vs 69/0.33 vs 0.43). Motion artefacts from the pulsating popliteal artery were significantly increased at 3.0 T. A visible and measurable signal loss occurred at 3.0 T using the built-in body coil compared with the dedicated 1.5 T knee coil, but nearly all clinically important information could be obtained.

  17. Development of functional imaging in the human brain (fMRI); the University of Minnesota experience

    PubMed Central

    Uğurbil, Kâmil

    2012-01-01

    The human functional magnetic resonance imaging (fMRI) experiments performed in the Center for Magnetic Resonance Research (CMRR), University of Minnesota, were planned between two colleagues who had worked together previously in Bell Laboratories in the late nineteen seventies, namely myself and Seiji Ogawa. These experiments were motivated by the Blood Oxygenation Level Dependent (BOLD) contrast developed by Seiji. We discussed and planned human studies to explore imaging human brain activity using the BOLD mechanism on the 4 Tesla human system that I was expecting to receive for CMRR. We started these experiments as soon as this 4 Tesla instrument became marginally operational. These were the very first studies performed on the 4 Tesla scanner in CMRR; had the scanner became functional earlier, they would have been started earlier as well. We had positive results certainly by August 1991 annual meeting of the Society of Magnetic Resonance in Medicine (SMRM) and took some of the data with us to that meeting. I believe, however, that neither the MGH colleagues nor us, at the time, had enough data and/or conviction to publish these extraordinary observations; it took more or less another six months or so before the papers from these two groups were submitted for publication within five days of each other to the Proceedings of the National Academy of Sciences, USA, after rejections by Nature. Based on this record, it is fair to say that fMRI was achieved independently and at about the same time at MGH, in an effort credited largely to Ken Kwong, and in CMRR, University of Minnesota in an effort led by myself and Seiji Ogawa. PMID:22342875

  18. Lobar intracerebral haematomas: Neuropathological and 7.0-tesla magnetic resonance imaging evaluation.

    PubMed

    De Reuck, Jacques; Cordonnier, Charlotte; Deramecourt, Vincent; Auger, Florent; Durieux, Nicolas; Leys, Didier; Pasquier, Florence; Maurage, Claude-Alain; Bordet, Regis

    2016-10-15

    The Boston criteria for cerebral amyloid angiopathy (CAA) need validation by neuropathological examination in patients with lobar cerebral haematomas (LCHs). In "vivo" 1.5-tesla magnetic resonance imaging (MRI) is unreliable to detect the age-related signal changes in LCHs. This post-mortem study investigates the validity of the Boston criteria in brains with LCHs and the signal changes during their time course with 7.0-tesla MRI. Seventeen CAA brains including 26 LCHs were compared to 13 non-CAA brains with 14 LCHs. The evolution of the signal changes with time was examined in 25 LCHs with T2 and T2* 7.0-tesla MRI. In the CAA group LCHs were predominantly located in the parieto-occipital lobes. Also white matter changes were more severe with more cortical microinfarcts and cortical microbleeds. On MRI there was a progressive shift of the intensity of the hyposignal from the haematoma core in the acute stage to the boundaries later on. During the residual stage the hyposignal mildly decreased in the boundaries with an increase of the superficial siderosis and haematoma core collapse. Our post-mortem study of LCHs confirms the validity of the Boston criteria for CAA. Also 7.0-tesla MRI allows staging the age of the LCHs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Computational dosimetry of induced electric fields during realistic movements in the vicinity of a 3 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Kännälä, Sami; Jokela, Kari

    2013-04-01

    Medical staff working near magnetic resonance imaging (MRI) scanners are exposed both to the static magnetic field itself and also to electric currents that are induced in the body when the body moves in the magnetic field. However, there are currently limited data available on the induced electric field for realistic movements. This study computationally investigates the movement induced electric fields for realistic movements in the magnetic field of a 3 T MRI scanner. The path of movement near the MRI scanner is based on magnetic field measurements using a coil sensor attached to a human volunteer. Utilizing realistic models for both the motion of the head and the magnetic field of the MRI scanner, the induced fields are computationally determined using the finite-element method for five high-resolution numerical anatomical models. The results show that the time-derivative of the magnetic flux density (dB/dt) is approximately linearly proportional to the induced electric field in the head, independent of the position of the head with respect to the magnet. This supports the use of dB/dt measurements for occupational exposure assessment. For the path of movement considered herein, the spatial maximum of the induced electric field is close to the basic restriction for the peripheral nervous system and exceeds the basic restriction for the central nervous system in the international guidelines. The 99th percentile electric field is a considerably less restrictive metric for the exposure than the spatial maximum electric field; the former is typically 60-70% lower than the latter. However, the 99th percentile electric field may exceed the basic restriction for dB/dt values that can be encountered during tasks commonly performed by MRI workers. It is also shown that the movement-induced eddy currents may reach magnitudes that could electrically stimulate the vestibular system, which could play a significant role in the generation of vertigo-like sensations reported

  20. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    PubMed

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  1. Whole-body continuously moving table fat-water MRI with dynamic B0 shimming at 3 Tesla.

    PubMed

    Sengupta, Saikat; Smith, David S; Gifford, Aliya; Welch, E Brian

    2016-07-01

    The purpose of this work was to develop a rapid and robust whole-body fat-water MRI (FWMRI) method using a continuously moving table (CMT) with dynamic field corrections at 3 Tesla. CMT FWMRI was developed at 3 Tesla with a multiecho golden angle (GA) radial trajectory and dynamic B0 field shimming. Whole-body imaging was performed with 4 echoes and superior-inferior coverage of 1.8 meters without shims in 90 s. 716 axial images were reconstructed with GA profile binning followed by B0 field map generation using fast three-point seeded region growing fat-water separation and slice-specific 0(th) and 1(st) order shim calculation. Slice-specific shims were applied dynamically in a repeated CMT FWMRI scan in the same session. The resulting images were evaluated for field homogeneity improvements and quality of fat-water separation with a whole-image energy optimized algorithm. GA sampling allowed high quality whole-body FWMRI from multiecho CMT data. Dynamic B0 shimming greatly improved field homogeneity in the body and produced high quality water and fat only images as well as fat signal fraction and R2 * relaxivity maps. A rapid and robust technique for whole-body fat-water quantification has been developed with CMT MRI with dynamic B0 field correction. Magn Reson Med 76:183-190, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. [How do metallic middle ear implants behave in the MRI?].

    PubMed

    Kwok, P; Waldeck, A; Strutz, J

    2003-01-01

    Magnetic resonance imaging (MRI) has gained in frequency and importance as a diagnostic procedure. In respect to the close anatomical relationship in the temporal bone it is necessary to know whether it is hazardous to patients with metallic middle ear implants regarding displacement and rise in temperature. For the MR image quality artefacts caused by metallic prostheses should be low. Four different stapes prostheses made from titanium, gold, teflon/platinum and teflon/steel, a titanium total ossicular reconstruction prosthesis (TORP) and two ventilation tubes (made from titanium and gold) were tested in a 1.5 Tesla MRI machine regarding their displacement. All objects were first placed in a petri dish, then suspended from a thread and finally immersed in a dish filled with Gadolinium. Temperature changes of the implants were recorded by a pyrometer. None of the implants moved when they were placed in the petri dish or suspended from the thread. On the water surface the teflon/platinum and the teflon/steel pistons adjusted their direction with their axis longitudinally to the MRI scanner opening and the teflon/steel piston floated towards the MRI-machine when put close enough to the scanner opening. No rise in temperature was recorded. All implants showed as little artefacts that would still make an evaluation of the surrounding tissue possible. Patients with any of the metallic middle ear implants that were examined in this study may undergo MRI-investigations without significant adverse effects.

  3. In Vivo MRI Quantification of Individual Muscle and Organ Volumes for Assessment of Anabolic Steroid Growth Effects

    PubMed Central

    Wu, Ed X.; Tang, Haiying; Tong, Christopher; Heymsfield, Steve B.; Vasselli, Joseph R.

    2015-01-01

    This study aimed to develop a quantitative and in vivo magnetic resonance imaging (MRI) approach to investigate the muscle growth effects of anabolic steroids. A protocol of MRI acquisition on a standard clinical 1.5 Tesla scanner and quantitative image analysis was established and employed to measure the individual muscle and organ volumes in the intact and castrated guinea pigs undergoing a 16-week treatment protocol by two well-documented anabolic steroids, testosterone and nandrolone, via implanted silastic capsules. High correlations between the in vivo MRI and postmortem dissection measurements were observed for shoulder muscle complex (R = 0.86), masseter (R=0.79), temporalis (R=0.95), neck muscle complex (R=0.58), prostate gland and seminal vesicles (R=0.98), and testis (R=0.96). Furthermore, the longitudinal MRI measurements yielded adequate sensitivity to detect the restoration of growth to or towards normal in castrated guinea pigs by replacing circulating steroid levels to physiological or slightly higher levels, as expected. These results demonstrated that quantitative MRI using a standard clinical scanner provides accurate and sensitive measurement of individual muscles and organs, and this in vivo MRI protocol in conjunction with the castrated guinea pig model constitutes an effective platform to investigate the longitudinal and cross-sectional growth effects of other potential anabolic steroids. The quantitative MRI protocol developed can also be readily adapted for human studies on most clinical MRI scanner to investigate the anabolic steroid growth effects, or monitor the changes in individual muscle and organ volume and geometry following injury, strength training, neuromuscular disorders, and pharmacological or surgical interventions. PMID:18241900

  4. Fast T2*-weighted MRI of the prostate at 3 Tesla.

    PubMed

    Hardman, Rulon L; El-Merhi, Fadi; Jung, Adam J; Ware, Steve; Thompson, Ian M; Friel, Harry T; Peng, Qi

    2011-04-01

    To describe a rapid T2*-weighted (T2*W), three-dimensional (3D) echo planar imaging (EPI) sequence and its application in mapping local magnetic susceptibility variations in 3 Tesla (T) prostate MRI. To compare the sensitivity of T2*W EPI with routinely used T1-weighted turbo-spin echo sequence (T1W TSE) in detecting hemorrhage and the implications on sequences sensitive to field inhomogeneities such as MR spectroscopy (MRS). B(0) susceptibility weighted mapping was performed using a 3D EPI sequence featuring a 2D spatial excitation pulse with gradients of spiral k-space trajectory. A series of 11 subjects were imaged using 3T MRI and combination endorectal (ER) and six-channel phased array cardiac coils. T1W TSE and T2*W EPI sequences were analyzed quantitatively for hemorrhage contrast. Point resolved spectroscopy (PRESS MRS) was performed and data quality was analyzed. Two types of susceptibility variation were identified: hemorrhagic and nonhemorrhagic T2*W-positive areas. Post-biopsy hemorrhage lesions showed on average five times greater contrast on the T2*W images than T1W TSE images. Six nonhemorrhage regions of severe susceptibility artifact were apparent on the T2*W images that were not seen on standard T1W or T2W images. All nonhemorrhagic susceptibility artifact regions demonstrated compromised spectral quality on 3D MRS. The fast T2*W EPI sequence identifies hemorrhagic and nonhemorrhagic areas of susceptibility variation that may be helpful in prostate MRI planning at 3.0T. Copyright © 2011 Wiley-Liss, Inc.

  5. Noninvasive Assessment of Oxygen Extraction Fraction in Chronic Ischemia Using Quantitative Susceptibility Mapping at 7 Tesla.

    PubMed

    Uwano, Ikuko; Kudo, Kohsuke; Sato, Ryota; Ogasawara, Kuniaki; Kameda, Hiroyuki; Nomura, Jun-Ichi; Mori, Futoshi; Yamashita, Fumio; Ito, Kenji; Yoshioka, Kunihiro; Sasaki, Makoto

    2017-08-01

    The oxygen extraction fraction (OEF) is an effective metric to evaluate metabolic reserve in chronic ischemia. However, OEF is considered to be accurately measured only when using positron emission tomography (PET). Thus, we investigated whether OEF maps generated by magnetic resonance quantitative susceptibility mapping (QSM) at 7 Tesla enabled detection of OEF changes when compared with those obtained with PET. Forty-one patients with chronic stenosis/occlusion of the unilateral internal carotid artery or middle cerebral artery were examined using 7 Tesla-MRI and PET scanners. QSM images were obtained from 3-dimensional T2*-weighted images, using a multiple dipole-inversion algorithm. OEF maps were generated based on susceptibility differences between venous structures and brain tissues on QSM images. OEF ratios of the ipsilateral middle cerebral artery territory against the contralateral side were calculated on the QSM-OEF and PET-OEF images, using an anatomic template. The OEF ratio in the middle cerebral artery territory showed significant correlations between QSM-OEF and PET-OEF maps ( r =0.69; P <0.001), especially in patients with a substantial increase in the PET-OEF ratio of 1.09 ( r =0.79; P =0.004), although showing significant systematic biases for the agreements. An increased QSM-OEF ratio of >1.09, as determined by receiver operating characteristic analysis, showed a sensitivity and specificity of 0.82 and 0.86, respectively, for the substantial increase in the PET-OEF ratio. Absolute QSM-OEF values were significantly correlated with PET-OEF values in the patients with increased PET-OEF. OEF ratios on QSM-OEF images at 7 Tesla showed a good correlation with those on PET-OEF images in patients with unilateral steno-occlusive internal carotid artery/middle cerebral artery lesions, suggesting that noninvasive OEF measurement by MRI can be a substitute for PET. © 2017 American Heart Association, Inc.

  6. Corticospinal Tract Tracing in the Marmoset with a Clinical Whole-Body 3T Scanner Using Manganese-Enhanced MRI

    PubMed Central

    Plas, Benjamin; Bolan, Faye; Boulanouar, Kader; Renaud, Luc; Darmana, Robert; Vaysse, Laurence; Vieu, Christophe; Loubinoux, Isabelle

    2015-01-01

    Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. In this study we investigated the potential use of in vivo MRI detection of manganese for tracing neuronal projections from the primary motor cortex (M1) in healthy marmosets (Callithrix Jacchus). We determined the optimal dose of manganese chloride (MnCl2) among 800, 400, 40 and 8nmol that led to manganese-induced hyperintensity furthest from the injection site, as specific to the corticospinal tract as possible, and that would not induce motor deficit. A commonly available 3T human clinical MRI scanner and human knee coil were used to follow hyperintensity in the corticospinal tract 24h after injection. A statistical parametric map of seven marmosets injected with the chosen dose, 8 nmol, showed the corticospinal tract and M1 connectivity with the basal ganglia, substantia nigra and thalamus. Safety was determined for the lowest dose that did not induce dexterity and grip strength deficit, and no behavioral effects could be seen in marmosets who received multiple injections of manganese one month apart. In conclusion, our study shows for the first time in marmosets, a reliable and reproducible way to perform longitudinal ME-MRI experiments to observe the integrity of the marmoset corticospinal tract on a clinical 3T MRI scanner. PMID:26398500

  7. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  8. [Method of correcting sensitivity nonuniformity using gaussian distribution on 3.0 Tesla abdominal MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Takanaga, Masako; Ohno, Naoki; Hamaguchi, Takashi; Kozaka, Kazuto; Sanada, Shigeru; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    In the direction where the phased array coil used in parallel magnetic resonance imaging (MRI) is perpendicular to the arrangement, sensitivity falls significantly. Moreover, in a 3.0 tesla (3T) abdominal MRI, the quality of the image is reduced by changes in the relaxation time, reinforcement of the magnetic susceptibility effect, etc. In a 3T MRI, which has a high resonant frequency, the signal of the depths (central part) is reduced in the trunk part. SCIC, which is sensitivity correction processing, has inadequate correction processing, such as that edges are emphasized and the central part is corrected. Therefore, we used 3T with a Gaussian distribution. The uneven compensation processing for sensitivity of an abdomen MR image was considered. The correction processing consisted of the following methods. 1) The center of gravity of the domain of the human body in an abdomen MR image was calculated. 2) The correction coefficient map was created from the center of gravity using the Gaussian distribution. 3) The sensitivity correction image was created from the correction coefficient map and the original picture image. Using the Gaussian correction to process the image, the uniformity calculated using the NEMA method was improved significantly compared to the original image of a phantom. In a visual evaluation by radiologists, the uniformity was improved significantly using the Gaussian correction processing. Because of the homogeneous improvement of the abdomen image taken using 3T MRI, the Gaussian correction processing is considered to be a very useful technique.

  9. Comparison of Deep Brain Stimulation Lead Targeting Accuracy and Procedure Duration between 1.5- and 3-Tesla Interventional Magnetic Resonance Imaging Systems: An Initial 12-Month Experience.

    PubMed

    Southwell, Derek G; Narvid, Jared A; Martin, Alastair J; Qasim, Salman E; Starr, Philip A; Larson, Paul S

    2016-01-01

    Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed. To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems. Radial targeting error, the number of targeting attempts, and procedure duration were compared between surgeries performed on 1.5- and 3-tesla iMRI systems (SmartFrame and ClearPoint systems). During the first year of operation of each system, 26 consecutive leads were implanted using the 1.5-tesla system, and 23 consecutive leads were implanted using the 3-tesla system. There was no significant difference in radial error (Mann-Whitney test, p = 0.26), number of lead placements that required multiple targeting attempts (Fisher's exact test, p = 0.59), or bilateral procedure durations between surgeries performed with the two systems (p = 0.15). Accurate DBS lead targeting can be achieved with iMRI systems utilizing either 1.5- or 3-tesla magnets. The use of a 3-tesla magnet, however, offers improved visualization of the target structures and allows comparable accuracy and efficiency of placement at the selected targets. © 2016 S. Karger AG, Basel.

  10. 3-Tesla MRI-assisted detection of compression points in ulnar neuropathy at the elbow in correlation with intraoperative findings.

    PubMed

    Hold, Alina; Mayr-Riedler, Michael S; Rath, Thomas; Pona, Igor; Nierlich, Patrick; Breitenseher, Julia; Kasprian, Gregor

    2018-03-06

    Releasing the ulnar nerve from all entrapments is the primary objective of every surgical method in ulnar neuropathy at the elbow (UNE). The aim of this retrospective diagnostic study was to validate preoperative 3-Tesla MRI results by comparing the MRI findings with the intraoperative aspects during endoscopic-assisted or open surgery. Preoperative MRI studies were assessed by a radiologist not informed about intraoperative findings in request for the exact site of nerve compression. The localizations of compression were then correlated with the intraoperative findings obtained from the operative records. Percent agreement and Cohen's kappa (κ) values were calculated. From a total of 41 elbows, there was a complete agreement in 27 (65.8%) cases and a partial agreement in another 12 (29.3%) cases. Cohen's kappa showed fair-to-moderate agreement. High-resolution MRI cannot replace thorough intraoperative visualization of the ulnar nerve and its surrounding structures but may provide valuable information in ambiguous cases or relapses. Copyright © 2018 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. MRI information for commonly used otologic implants: review and update.

    PubMed

    Azadarmaki, Roya; Tubbs, Rhonda; Chen, Douglas A; Shellock, Frank G

    2014-04-01

    To review information on magnetic resonance imaging (MRI) issues for commonly used otologic implants. Manufacturing companies, National Library of Medicine's online database, and an additional online database (www.MRIsafety.com). A literature review of the National Library of Medicine's online database with focus on MRI issues for otologic implants was performed. The MRI information on implants provided by manufacturers was reviewed. Baha and Ponto Pro osseointegrated implants' abutment and fixture and the implanted magnet of the Sophono Alpha 1 and 2 abutment-free systems are approved for 3-Tesla magnetic resonance (MR) systems. The external processors of these devices are MR Unsafe. Of the implants tested, middle ear ossicular prostheses, including stapes prostheses, except for the 1987 McGee prosthesis, are MR Conditional for 1.5-Tesla (and many are approved for 3-Tesla) MR systems. Cochlear implants with removable magnets are approved for patients undergoing MRI at 1.5 Tesla after magnet removal. The MED-EL PULSAR, SONATA, CONCERT, and CONCERT PIN cochlear implants can be used in patients undergoing MRI at 1.5 Tesla with application of a protective bandage. The MED-EL COMBI 40+ can be used in 0.2-Tesla MR systems. Implants made from nonmagnetic and nonconducting materials are MR Safe. Knowledge of MRI guidelines for commonly used otologic implants is important. Guidelines on MRI issues approved by the US Food and Drug Administration are not always the same compared with other parts of the world. This monograph provides a current reference for physicians on MRI issues for commonly used otologic implants.

  12. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer

    PubMed Central

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J

    2013-01-01

    Objective: A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Methods: Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Results: Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. Conclusion: The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior–inferior spatial coverage was slightly limited in the lower neck. Advances in knowledge: These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment. PMID:23690434

  13. Resection and Resolution of Bone Marrow Lesions Associated with an Improvement of Pain after Total Knee Replacement: A Novel Case Study Using a 3-Tesla Metal Artefact Reduction MRI Sequence.

    PubMed

    Kurien, Thomas; Kerslake, Robert; Haywood, Brett; Pearson, Richard G; Scammell, Brigitte E

    2016-01-01

    We present our case report using a novel metal artefact reduction magnetic resonance imaging (MRI) sequence to observe resolution of subchondral bone marrow lesions (BMLs), which are strongly associated with pain, in a patient after total knee replacement surgery. Large BMLs were seen preoperatively on the 3-Tesla MRI scans in a patient with severe end stage OA awaiting total knee replacement surgery. Twelve months after surgery, using a novel metal artefact reduction MRI sequence, we were able to visualize the bone-prosthesis interface and found complete resection and resolution of these BMLs. This is the first reported study in the UK to use this metal artefact reduction MRI sequence at 3-Tesla showing that resection and resolution of BMLs in this patient were associated with an improvement of pain and function after total knee replacement surgery. In this case it was associated with a clinically significant improvement of pain and function after surgery. Failure to eradicate these lesions may be a cause of persistent postoperative pain that is seen in up to 20% of patients following TKR surgery.

  14. Lack of hippocampal volume differences in primary insomnia and good sleeper controls: an MRI volumetric study at 3 Tesla.

    PubMed

    Winkelman, John W; Benson, Kathleen L; Buxton, Orfeu M; Lyoo, In Kyoon; Yoon, Sujung; O'Connor, Shawn; Renshaw, Perry F

    2010-06-01

    A recent pilot study reported that hippocampal volume (HV) was reduced in patients with primary insomnia (PI) relative to normal sleepers. Loss of HV in PI might be due to chronic hyperarousal and/or chronic sleep debt. The aim of this study was to replicate the earlier pilot report while employing a larger sample, more rigorous screening criteria, and objective sleep data. This cross-sectional design included community recruits meeting DSM-IV criteria for PI (n=20, 10 males, mean age 39.3+/-8.7) or good sleeper controls (n=15, 9 males, mean age 38.8+/-5.3). All subjects were unmedicated and rigorously screened to exclude comorbid psychiatric and medical illness. PI subjects underwent overnight polysomnography to screen for sleep-related breathing and movement disorders. HV and total brain volumes were derived by MRI employing a Siemens/Trio scanner operating at 3 Tesla. Data also included 2 weeks of sleep diaries and wrist actigraphy. Mean HV was 4322.0+/-299.7 mm(3) for the good sleeper controls and 4601.55+/-537.4 mm(3) for the PI group. The dependent variable, HV, was analyzed by ANCOVA. Main effects were diagnosis and gender; whole brain volume served as the covariate. Although the overall model was significant (F=6.3, p=0.001), the main effects of diagnosis (F=2.14) and gender (F=0.04) were not significant. The covariate of whole brain volume was significant (F=5.74, p=0.023) as was the interaction of diagnosis with gender (F=10.22, p=0.003), with male insomniacs having larger HVs than male controls. This study did not replicate a previously published report of HV loss in primary insomnia. Differences between our finding and the previous report might be due to sample composition and method of MRI assessment. Furthermore, we demonstrated no objective differences between the controls and PIs in actigraphic measures of sleep maintenance. Within the PIs, however, actigraphic measures of poor sleep maintenance were associated with smaller HV. Copyright 2010

  15. A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Wichtmann, Barbara; Witzel, Thomas; Mekkaoui, Choukri; Schneider, Walter; Wald, Lawrence L; Huang, Susie Y

    2018-06-01

    We provide a comprehensive diffusion MRI dataset acquired with a novel biomimetic phantom mimicking human white matter. The fiber substrates in the diffusion phantom were constructed from hollow textile axons ("taxons") with an inner diameter of 11.8±1.2 µm and outer diameter of 33.5±2.3 µm. Data were acquired on the 3 T CONNECTOM MRI scanner with multiple diffusion times and multiple q-values per diffusion time, which is a dedicated acquisition for validation of microstructural imaging methods, such as compartment size and volume fraction mapping. Minimal preprocessing was performed to correct for susceptibility and eddy current distortions. Data were deposited in the XNAT Central database (project ID: dMRI_Phant_MGH).

  16. Choroidal Blood Flow Decreases with Age: An MRI Study

    PubMed Central

    San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.

    2014-01-01

    Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028

  17. Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac.

    PubMed

    Liney, Gary P; Dong, Bin; Weber, Ewald; Rai, Robba; Destruel, Aurelien; Garcia-Alvarez, Roberto; Manton, David; Jelen, Urszula; Zhang, Kevin; Barton, Michael; Keall, Paul J; Crozier, Stuart

    2018-05-25

    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions. Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20  20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation. Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons. . © 2018 Institute of Physics and Engineering in Medicine.

  18. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    PubMed

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Quantitative oxygen extraction fraction from 7-Tesla MRI phase: reproducibility and application in multiple sclerosis.

    PubMed

    Fan, Audrey P; Govindarajan, Sindhuja T; Kinkel, R Philip; Madigan, Nancy K; Nielsen, A Scott; Benner, Thomas; Tinelli, Emanuele; Rosen, Bruce R; Adalsteinsson, Elfar; Mainero, Caterina

    2015-01-01

    Quantitative oxygen extraction fraction (OEF) in cortical veins was studied in patients with multiple sclerosis (MS) and healthy subjects via magnetic resonance imaging (MRI) phase images at 7 Tesla (7 T). Flow-compensated, three-dimensional gradient-echo scans were acquired for absolute OEF quantification in 23 patients with MS and 14 age-matched controls. In patients, we collected T2*-weighted images for characterization of white matter, deep gray matter, and cortical lesions, and also assessed cognitive function. Variability of OEF across readers and scan sessions was evaluated in a subset of volunteers. OEF was averaged from 2 to 3 pial veins in the sensorimotor, parietal, and prefrontal cortical regions for each subject (total of ~10 vessels). We observed good reproducibility of mean OEF, with intraobserver coefficient of variation (COV)=2.1%, interobserver COV=5.2%, and scan-rescan COV=5.9%. Patients exhibited a 3.4% reduction in cortical OEF relative to controls (P=0.0025), which was not different across brain regions. Although oxygenation did not relate with measures of structural tissue damage, mean OEF correlated with a global measure of information processing speed. These findings suggest that cortical OEF from 7-T MRI phase is a reproducible metabolic biomarker that may be sensitive to different pathologic processes than structural MRI in patients with MS.

  20. Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance.

    PubMed

    Jeukens, Cécile R L P N; Vlooswijk, Mariëlle C G; Majoie, H J Marian; de Krom, Marc C T F M; Aldenkamp, Albert P; Hofman, Paul A M; Jansen, Jacobus F A; Backes, Walter H

    2009-09-01

    Although volumetry of the hippocampus is considered to be an established technique, protocols reported in literature are not described in great detail. This article provides a complete and detailed protocol for hippocampal volumetry applicable to T1-weighted magnetic resonance (MR) images acquired at 3 Tesla, which has become the standard for structural brain research. The protocol encompasses T1-weighted image acquisition at 3 Tesla, anatomic guidelines for manual hippocampus delineation, requirements of delineation software, reliability measures, and criteria to assess and ensure sufficient reliability. Moreover, the validity of the correction for total intracranial volume size was critically assessed. The protocol was applied by 2 readers to the MR images of 36 patients with cryptogenic localization-related epilepsy, 4 patients with unilateral hippocampal sclerosis, and 20 healthy control subjects. The uncorrected hippocampal volumes were 2923 +/- 500 mm3 (mean +/- SD) (left) and 3120 +/- 416 mm3 (right) for the patient group and 3185 +/- 411 mm3 (left) and 3302 +/- 411 mm3 (right) for the healthy control group. The volume of the 4 pathologic hippocampi of the patients with unilateral hippocampal sclerosis was 2980 +/- 422 mm3. The inter-reader reliability values were determined: intraclass-correlation-coefficient (ICC) = 0.87 (left) and 0.86 (right), percentage volume difference (VD) = 7.0 +/- 4.7% (left) and 6.0 +/- 3.8% (right), and overlap ratio (OR) = 0.82 +/- 0.04 (left) and 0.82 +/- 0.03 (right). The positive Pearson correlation between hippocampal volume and total intracranial volume was found to be low: r = 0.48 (P = 0.03, left) and r = 0.62 (P = 0.004, right) and did not significantly reduce the volumetric variances, showing the limited benefit of the brain size correction. A protocol was described to determine hippocampal volumes based on 3 Tesla MR images with high inter-reader reliability. Although the reliability of hippocampal volumetry at 3 Tesla

  1. Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques

    NASA Astrophysics Data System (ADS)

    Rathore, Saima; Bakas, Spyridon; Akbari, Hamed; Shukla, Gaurav; Rozycki, Martin; Davatzikos, Christos

    2018-02-01

    There is mounting evidence that assessment of multi-parametric magnetic resonance imaging (mpMRI) profiles can noninvasively predict survival in many cancers, including glioblastoma. The clinical adoption of mpMRI as a prognostic biomarker, however, depends on its applicability in a multicenter setting, which is hampered by inter-scanner variations. This concept has not been addressed in existing studies. We developed a comprehensive set of within-patient normalized tumor features such as intensity profile, shape, volume, and tumor location, extracted from multicenter mpMRI of two large (npatients=353) cohorts, comprising the Hospital of the University of Pennsylvania (HUP, npatients=252, nscanners=3) and The Cancer Imaging Archive (TCIA, npatients=101, nscanners=8). Inter-scanner harmonization was conducted by normalizing the tumor intensity profile, with that of the contralateral healthy tissue. The extracted features were integrated by support vector machines to derive survival predictors. The predictors' generalizability was evaluated within each cohort, by two cross-validation configurations: i) pooled/scanner-agnostic, and ii) across scanners (training in multiple scanners and testing in one). The median survival in each configuration was used as a cut-off to divide patients in long- and short-survivors. Accuracy (ACC) for predicting long- versus short-survivors, for these configurations was ACCpooled=79.06% and ACCpooled=84.7%, ACCacross=73.55% and ACCacross=74.76%, in HUP and TCIA datasets, respectively. The hazard ratio at 95% confidence interval was 3.87 (2.87-5.20, P<0.001) and 6.65 (3.57-12.36, P<0.001) for HUP and TCIA datasets, respectively. Our findings suggest that adequate data normalization coupled with machine learning classification allows robust prediction of survival estimates on mpMRI acquired by multiple scanners.

  2. Intraoperative 3 tesla magnetic resonance imaging: our experience in tumors.

    PubMed

    García-Baizán, A; Tomás-Biosca, A; Bartolomé Leal, P; Domínguez, P D; García de Eulate Ruiz, R; Tejada, S; Zubieta, J L

    To report our experience in the use of 3 tesla intraoperative magnetic resonance imaging (MRI) in neurosurgical procedures for tumors, and to evaluate the criteria for increasing the extension of resection. This retrospective study included all consecutive intraoperative MRI studies done for neuro-oncologic disease in the first 13 months after the implementation of the technique. We registered possible immediate complications, the presence of tumor remnants, and whether the results of the intraoperative MRI study changed the surgical management. We recorded the duration of surgery in all cases. The most common tumor was recurrent glioblastoma, followed by primary glioblastoma and metastases. Complete resection was achieved in 28%, and tumor remnants remained in 72%. Intraoperative MRI enabled neurosurgeons to improve the extent of the resection in 85% of cases. The mean duration of surgery was 390±122minutes. Intraoperative MRI using a strong magnetic field (3 teslas) is a valid new technique that enables precise study of the tumor resection to determine whether the resection can be extended without damaging eloquent zones. Although the use of MRI increases the duration of surgery, the time required decreases as the team becomes more familiar with the technique. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application.

    PubMed

    Hahnemann, Maria L; Kraff, Oliver; Maderwald, Stefan; Johst, Soeren; Orzada, Stephan; Umutlu, Lale; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2016-06-01

    To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  5. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI?

    PubMed Central

    Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.

    2014-01-01

    To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649

  6. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  7. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

    PubMed Central

    Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan

    2017-01-01

    PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598

  8. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    PubMed

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  9. Differences in Velopharyngeal Structure during Speech among Asians Revealed by 3-Tesla Magnetic Resonance Imaging Movie Mode.

    PubMed

    Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi

    2015-01-01

    Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.

  10. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    PubMed

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  11. Location of core diagnostic information across various sequences in brain MRI and implications for efficiency of MRI scanner utilization.

    PubMed

    Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth

    2015-04-01

    Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.

  12. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    PubMed

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  13. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner.

    PubMed

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2010-05-01

    Upgraded gradient coils can effectively enhance the MRI steering of magnetic microparticles in a branching channel. Applications of this method include MRI targeting of magnetic embolization agents for oncologic therapy. A magnetic suspension of Fe(3)O(4) magnetic particles was injected inside a y-shaped microfluidic channel. Magnetic gradients of 0, 50, 100, 200, and 400 mT/m were applied to the magnetic particles perpendicularly to the flow by a custom-built gradient coil inside a 1.5-T MRI scanner. Measurement of the steering ratio was performed both by video analyses and quantification of the mass of the particles collected at each outlet of the microfluidic channel, using atomic absorption spectroscopy. Magnetic particles steering ratios of 0.99 and 0.75 were reached with 400 mT/m gradient amplitude and measured by video analyses and atomic absorption spectroscopy, respectively. Experimental data shows that the steering ratio increases with higher magnetic gradients. Moreover, theory suggests that larger particles (or aggregates), higher magnetizations, and lower flows can also be used to improve the steering ratio. The technological limitation of the approach is that an MRI gradient amplitude increase to a few hundred milliteslas per meter is needed. A simple analytical method based on magnetophoretic velocity predictions and geometric considerations is proposed for steering ratio calculation. (c) 2010 Wiley-Liss, Inc.

  14. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  15. 3.0 Tesla breast magnetic resonance imaging in patients with nipple discharge when mammography and ultrasound fail.

    PubMed

    Lubina, Nóra; Schedelbeck, Ulla; Roth, Anne; Weng, Andreas Max; Geissinger, Eva; Hönig, Arnd; Hahn, Dietbert; Bley, Thorsten Alexander

    2015-05-01

    To compare 3.0 Tesla breast magnetic resonance imaging (MRI) with galactography for detection of benign and malignant causes of nipple discharge in patients with negative mammography and ultrasound. We prospectively evaluated 56 breasts of 50 consecutive patients with nipple discharge who had inconspicuous mammography and ultrasound, using 3.0 Tesla breast MRI with a dedicated 16-channel breast coil, and then compared the results with galactography. Histopathological diagnoses and follow-ups were used as reference standard. Lesion size estimated on MRI was compared with the size at histopathology. Sensitivity and specificity of MRI vs. galactography for detecting pathologic findings were 95.7 % vs. 85.7 % and 69.7 % vs. 33.3 %, respectively. For the supposed concrete pathology based on MRI findings, the specificity was 67.6 % and the sensitivity 77.3 % (PPV 60.7 %, NPV 82.1 %). Eight malignant lesions were detected (14.8 %). The estimated size at breast MRI showed excellent correlation with the size at histopathology (Pearson's correlation coefficient 0.95, p < 0.0001). MRI of the breast at 3.0 Tesla is an accurate imaging test and can replace galactography in the workup of nipple discharge in patients with inconspicuous mammography and ultrasound. • Breast MRI is an excellent diagnostic tool for patients with nipple discharge. • MRI of the breast reveals malignant lesions despite inconspicuous mammography and ultrasound. • MRI of the breast has greater sensitivity and specificity than galactography. • Excellent correlation of lesion size measured at MRI and histopathology was found.

  16. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  17. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  18. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  19. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  20. Intraoperative Magnetic Resonance Imaging for Cranial and Spinal Cases Using Preexisting "C" Shaped Three Side Open 0.2 Tesla Magnetic Resonance Imaging.

    PubMed

    Tewari, Vinod Kumar; Tripathi, Ravindra; Aggarwal, Subodh; Hussain, Mazhar; Das Gupta, Hari Kishan

    2017-01-01

    The existing Intraoperative MRI (IMRI) of developed countries is too costly to be affordable in any developing country and out of the reach of common and poor people of developing country at remote areas. We have used the pre-existing (refurbished) 3 side open "C" shaped 0.2 Tesla MRI for IMRI in a very remote area. In this technique the 0.2 Tesla MRI and the operating theatre were merged. MRI table was used as an operation table. We have operated 36 cases via IMRI from November 2005 to till date. First case operated was on 13 th nov 2005. Low (0.2) Tesla open setup costs very low (around Rs 40 lakhs) so highly affordable to management and thus to patients, used for diagnostic and therapeutic purposes both, the equipments like Nitrous, oxygen and suction is outside the MRI room so no noise inside operative room, positioning the patient didn't take much time due to manual adjustments, no special training to nurses and technicians required because of low (0.2) Tesla power of magnet and same instruments and techniques, sequencing took only 1.31 mints per sequence and re registration is not required since we always note down the two orthogonal axis in x and y axis in preoperative imaging and we were able to operate on posterior fossa tumors as well because of no head fixation except with leucoplast strap. Moreover the images we got intraoperative are highly acceptable. Three side open 0.2 Tesla MRI system, if used for intraoperative guidance, is highly affordable and overcomes the limitations of western setup of IMRI. Postoperative MRI images were highly acceptable and also highly affordable too.

  1. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner.

    PubMed

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  2. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  3. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    PubMed Central

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999

  4. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.

    PubMed

    Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk

    2007-12-01

    The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

  5. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  6. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright

  7. A Rare Complication of Cochlear Implantation After Magnetic Resonance Imaging: Reversion of the Magnet.

    PubMed

    Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya

    2017-06-01

    Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.

  8. Quantifying brain volumes for Multiple Sclerosis patients follow-up in clinical practice - comparison of 1.5 and 3 Tesla magnetic resonance imaging.

    PubMed

    Lysandropoulos, Andreas P; Absil, Julie; Metens, Thierry; Mavroudakis, Nicolas; Guisset, François; Van Vlierberghe, Eline; Smeets, Dirk; David, Philippe; Maertens, Anke; Van Hecke, Wim

    2016-02-01

    There is emerging evidence that brain atrophy is a part of the pathophysiology of Multiple Sclerosis (MS) and correlates with several clinical outcomes of the disease, both physical and cognitive. Consequently, brain atrophy is becoming an important parameter in patients' follow-up. Since in clinical practice both 1.5Tesla (T) and 3T magnetic resonance imaging (MRI) systems are used for MS patients follow-up, questions arise regarding compatibility and a possible need for standardization. Therefore, in this study 18 MS patients were scanned on the same day on a 1.5T and a 3T scanner. For each scanner, a 3D T1 and a 3D FLAIR were acquired. As no atrophy is expected within 1 day, these datasets can be used to evaluate the median percentage error of the brain volume measurement for gray matter (GM) volume and parenchymal volume (PV) between 1.5T and 3T scanners. The results are obtained with MSmetrix, which is developed especially for use in the MS clinical care path, and compared to Siena (FSL), a widely used software for research purposes. The MSmetrix median percentage error of the brain volume measurement between a 1.5T and a 3T scanner is 0.52% for GM and 0.35% for PV. For Siena this error equals 2.99%. When data of the same scanner are compared, the error is in the order of 0.06-0.08% for both MSmetrix and Siena. MSmetrix appears robust on both the 1.5T and 3T systems and the measurement error becomes an order of magnitude higher between scanners with different field strength.

  9. Unwrapping eddy current compensation: improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 Tesla.

    PubMed

    Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar

    2014-10-01

    Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.

  10. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    PubMed Central

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  11. Functional MRI compliance in children with attention deficit hyperactivity disorder

    PubMed Central

    Karakaş, Sirel; Dinçer, Elvin Doğutepe; Ceylan, Arzu Özkan; Tileylioğlu, Emre; Karakaş, Hakkı Muammer; Talı, E. Turgut

    2015-01-01

    PURPOSE We aimed to test the effect of prescan training and orientation in functional magnetic resonance imaging (fMRI) in children with attention deficit hyperactivity disorder (ADHD) and to investigate whether fMRI compliance was modified by state anxiety. METHODS Subjects included 77 males aged 6–12 years; there were 53 patients in the ADHD group and 24 participants in the healthy control group. Exclusion criteria included neurological and/or psychiatric comorbidities (other than ADHD), the use of psychoactive drugs, and an intelligence quotient outside the normal range. Children were individually subjected to prescan orientation and training. Data were acquired using a 1.5 Tesla scanner and an 8-channel head coil. Functional scans were performed using a standard neurocognitive task. RESULTS The neurocognitive task led to reliable fMRI maps. Compliance was not significantly different between ADHD and control groups based on success, failure, and repetition rates of fMRI. Compliance of ADHD patients with extreme levels of anxiety was also not significantly different. CONCLUSION The fMRI compliance of ADHD children is typically lower than that of healthy children. However, compliance can be increased to the level of age-matched healthy control children by addressing concerns about the technical and procedural aspects of fMRI, providing orientation programs, and performing on-task training. In patients thus trained, compliance does not change with the level of state anxiety suggesting that the anxiety hypothesis of fMRI compliance is not supported. PMID:25519454

  12. A semi-automated algorithm for hypothalamus volumetry in 3 Tesla magnetic resonance images.

    PubMed

    Wolff, Julia; Schindler, Stephanie; Lucas, Christian; Binninger, Anne-Sophie; Weinrich, Luise; Schreiber, Jan; Hegerl, Ulrich; Möller, Harald E; Leitzke, Marco; Geyer, Stefan; Schönknecht, Peter

    2018-07-30

    The hypothalamus, a small diencephalic gray matter structure, is part of the limbic system. Volumetric changes of this structure occur in psychiatric diseases, therefore there is increasing interest in precise volumetry. Based on our detailed volumetry algorithm for 7 Tesla magnetic resonance imaging (MRI), we developed a method for 3 Tesla MRI, adopting anatomical landmarks and work in triplanar view. We overlaid T1-weighted MR images with gray matter-tissue probability maps to combine anatomical information with tissue class segmentation. Then, we outlined regions of interest (ROIs) that covered potential hypothalamus voxels. Within these ROIs, seed growing technique helped define the hypothalamic volume using gray matter probabilities from the tissue probability maps. This yielded a semi-automated method with short processing times of 20-40 min per hypothalamus. In the MRIs of ten subjects, reliabilities were determined as intraclass correlations (ICC) and volume overlaps in percent. Three raters achieved very good intra-rater reliabilities (ICC 0.82-0.97) and good inter-rater reliabilities (ICC 0.78 and 0.82). Overlaps of intra- and inter-rater runs were very good (≥ 89.7%). We present a fast, semi-automated method for in vivo hypothalamus volumetry in 3 Tesla MRI. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so

  14. 3 Tesla MRI of patients with a vagus nerve stimulator: initial experience using a T/R head coil under controlled conditions.

    PubMed

    Gorny, Krzysztof R; Bernstein, Matt A; Watson, Robert E

    2010-02-01

    To assess safety of clinical MRI of the head in patients with implanted model 100, 102, and 103 vagus nerve stimulation (VNS) Therapy Systems (Cyberonics, Inc., Houston, TX) in 3.0 Tesla MRI (GE Healthcare, Milwaukee, WI). The distributions of the radiofrequency B(1) (+)-field produced by the clinically used transmit/receive (T/R) head coil (Advanced Imaging Research Incorporated, Cleveland, OH) and body coil were measured in a head and shoulders phantom. These measurements were supplemented by temperature measurements on the lead tips and the implantable pulse generator (IPG) of the VNS devices in a head and torso phantom with the same two coils. Clinical 3T MRI head scans were then acquired under highly controlled conditions in a series of 17 patients implanted with VNS. Phantom studies showed only weak B(1) (+) fields at the location of the VNS IPG and leads for MRI scans using the T/R head coil. The MRI-related heating on a VNS scanned in vitro at 3T was also found to be minimal (0.4-0.8 degrees C at the leads, negligible at the IPG). The patient MRI examinations were completed successfully without any adverse incidents. No patient reported any heating, discomfort, or any other unusual sensation. Safe clinical MRI head scanning of patients with implanted VNS is shown to be feasible on a GE Signa Excite 3T MRI system using one specific T/R head coil. These results apply to this particular MRI system configuration. Extrapolation or generalization of these results to more general or less controlled imaging situations without supporting data of safety is highly discouraged.

  15. SU-G-JeP2-12: Quantification of 3D Geometric Distortion for 1.5T and 3T MRI Scanners Used for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, M; Gupta, N; Raterman, B

    Purpose: To quantify the magnitude of geometric distortion for MRI scanners and provide recommendations for MRI imaging for radiation therapy Methods: A novel phantom, QUASAR MRID3D [Modus Medical Devices Inc.], was scanned to evaluate the level of 3D geometric distortion present in five MRI scanners used for radiation therapy in our department. The phantom was scanned using the body coil with 1mm image slice thickness to acquire 3D images of the phantom body. The phantom was aligned to its geometric center for each scan, and the field of view was set to visualize the entire phantom. The dependence of distortionmore » magnitude with distance from imaging isocenter and with magnetic field strength (1.5T and 3T) was investigated. Additionally, the characteristics of distortion for Siemens and GE machines were compared. The image distortion for each scanner was quantified in terms of mean, standard deviation (STD), maximum distortion, and skewness. Results: The 3T and 1.5T scans show a similar absolute distortion with a mean of 1.38mm (0.33mm STD) for 3T and 1.39mm (0.34mm STD) for 1.5T for a 100mm radius distance from isocenter. Some machines can have a distortion larger than 10mm at a distance of 200mm from the isocenter. The distortions are presented with plots of the x, y, and z directional components. Conclusion: The results indicate that quantification of MRI image distortion is crucial in radiation oncology for target and organ delineation and treatment planning. The magnitude of geometric distortion determines the margin needed for target contouring which is usually neglected in treatment planning process, especially for SRS/SBRT treatments. Understanding the 3D distribution of the MRI image distortion will improve the accuracy of target delineation and, hence, treatment efficacy. MRI imaging with proper patient alignment to the isocenter is vital to reducing the effects of MRI distortion in treatment planning.« less

  16. Evaluation of feasibility of 1.5 Tesla prostate MRI using body coil RF transmit in a patient with an implanted vagus nerve stimulator.

    PubMed

    Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R

    2017-11-01

    To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.

  17. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma.

    PubMed

    Noebauer-Huhmann, Iris M; Szomolanyi, Pavol; Juras, Vladimír; Kraff, Oliver; Ladd, Mark E; Trattnig, Siegfried

    2010-09-01

    PURPOSE/INTRODUCTION: The aim of this study was to determine the T1 relaxivities (r1) of 8 gadolinium (Gd)-based MR contrast agents in human blood plasma at 7 Tesla, compared with 3 Tesla. Eight commercially available Gd-based MR contrast agents were diluted in human blood plasma to concentrations of 0, 0.25, 0.5, 1, and 2 mmol/L. In vitro measurements were performed at 37 degrees C, on a 7 Tesla and on a 3 Tesla whole-body magnetic resonance imaging scanner. For the determination of T1 relaxation times, Inversion Recovery Sequences with inversion times from 0 to 3500 ms were used. The relaxivities were calculated. The r1 relaxivities of all agents, diluted in human blood plasma at body temperature, were lower at 7 Tesla than at 3 Tesla. The values at 3 Tesla were comparable to those published earlier. Notably, in some agents, a minor negative correlation of r1 with a concentration of up to 2 mmol/L could be observed. This was most pronounced in the agents with the highest protein-binding capacity. At 7 Tesla, the in vitro r1 relaxivities of Gd-based contrast agents in human blood plasma are lower than those at 3 Tesla. This work may serve as a basis for the application of Gd-based MR contrast agents at 7 Tesla. Further studies are required to optimize the contrast agent dose in vivo.

  18. Initial clinical experience with a quadrupole butterfly coil for spinal injection interventions in an open MRI system at 1.0 tesla.

    PubMed

    Jonczyk, Martin; Hamm, Bernd; Heinrich, Andreas; Thomas, Andreas; Rathke, Hendrik; Schnackenburg, Bernhard; Güttler, Felix; Teichgräber, Ulf K M; de Bucourt, Maximilian

    2014-02-01

    To report our initial clinical experience with a new magnetic resonance imaging (MRI) quadrupole coil that allows interventions in prone position. Fifteen patients (seven women, eight men; average age, 42.8 years) were treated in the same 1.0-Tesla Panorama High Field Open (HFO) MRI system (Panorama HFO) using a quadrupole butterfly coil (Bfly) and compared with 15 patients matched for sex, age, and MR intervention using the MultiPurposeL coil (MPL), performed in conventional lateral decubitus position (all, Philips Medical Systems, Best, The Netherlands). All interventions were performed with a near-real-time proton density turbo spin echo (PD TSE) sequence (time to repeat/time to echo/flip angle/acquisition time, 600 ms/10 ms/90°/3 s/image). Qualitative and quantitative image analyses were performed, including signal intensity, signal-to-noise and contrast-to-noise ratio (SNR, CNR), contrast, and full width at half maximum (FWHM) measurements. Contrast differed significantly between the needle and muscles (Bfly 0.27/MPL 0.17), as well as the needle and periradicular fat (0.13/0.24) during the intervention (both, p=0.029), as well as the CNR between muscles and the needle (10.61/5.23; p=0.010), although the FWHM values did not (2.4/2.2; p=0.754). The signal intensity of the needle in interventional imaging (1152.9/793.2; p=0.006) and the postinterventional SNR values of subcutaneous fat (15.3/28.6; p=0.007), muscles (6.6/11.8; p=0.011), and the CNR between these tissues (8.7/17.5; p=0.004) yielded significant differences. The new coil is a valid alternative for MR-guided interventions in an open MRI system at 1.0 tesla, especially if patients cannot (or prefer not to) be in a lateral decubitus position or if prone positioning yields better access to the target zone.

  19. Canine body composition quantification using 3 tesla fat-water MRI.

    PubMed

    Gifford, Aliya; Kullberg, Joel; Berglund, Johan; Malmberg, Filip; Coate, Katie C; Williams, Phillip E; Cherrington, Alan D; Avison, Malcolm J; Welch, E Brian

    2014-02-01

    To test the hypothesis that a whole-body fat-water MRI (FWMRI) protocol acquired at 3 Tesla combined with semi-automated image analysis techniques enables precise volume and mass quantification of adipose, lean, and bone tissue depots that agree with static scale mass and scale mass changes in the context of a longitudinal study of large-breed dogs placed on an obesogenic high-fat, high-fructose diet. Six healthy adult male dogs were scanned twice, at weeks 0 (baseline) and 4, of the dietary regiment. FWMRI-derived volumes of adipose tissue (total, visceral, and subcutaneous), lean tissue, and cortical bone were quantified using a semi-automated approach. Volumes were converted to masses using published tissue densities. FWMRI-derived total mass corresponds with scale mass with a concordance correlation coefficient of 0.931 (95% confidence interval = [0.813, 0.975]), and slope and intercept values of 1.12 and -2.23 kg, respectively. Visceral, subcutaneous and total adipose tissue masses increased significantly from weeks 0 to 4, while neither cortical bone nor lean tissue masses changed significantly. This is evidenced by a mean percent change of 70.2% for visceral, 67.0% for subcutaneous, and 67.1% for total adipose tissue. FWMRI can precisely quantify and map body composition with respect to adipose, lean, and bone tissue depots. The described approach provides a valuable tool to examine the role of distinct tissue depots in an established animal model of human metabolic disease. Copyright © 2013 Wiley Periodicals, Inc.

  20. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.

  1. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    PubMed

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  2. Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands.

    PubMed

    Schaap, Kristel; Christopher-De Vries, Yvette; Slottje, Pauline; Kromhout, Hans

    2013-12-01

    This study aims to characterise and quantify the population that is occupationally exposed to electromagnetic fields (EMF) from magnetic resonance imaging (MRI) devices and to identify factors that determine the probability and type of exposure. A questionnaire survey was used to collect information about scanners, procedures, historical developments and employees working with or near MRI scanners in clinical and research MRI departments in the Netherlands. Data were obtained from 145 MRI departments. A rapid increase in the use of MRI and field strength of the scanners was observed and quantified. The strongest magnets were employed by academic hospitals and research departments. Approximately 7000 individuals were reported to be working inside an MRI scanner room and were thus considered to have high probability of occupational exposure to static magnetic fields (SMF). Fifty-four per cent was exposed to SMF at least one day per month. The largest occupationally exposed group were radiographers (n ~ 1700). Nine per cent of the 7000 involved workers were regularly present inside a scanner room during image acquisition, when exposure to additional types of EMF is considered a possibility. This practice was most prevalent among workers involved in scanning animals. The data illustrate recent trends and historical developments in magnetic resonance imaging and provide an extensive characterisation of the occupationally exposed population. A considerable number of workers are potentially exposed to MRI-related EMF. Type and frequency of potential exposure depend on the job performed, as well as the type of workplace. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.

  4. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla.

    PubMed

    Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F

    2011-02-01

    Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  6. Major depressive episodes over the course of 7 years and hippocampal subfield volumes at 7 tesla MRI: the PREDICT-MR study.

    PubMed

    Wisse, L E M; Biessels, G J; Stegenga, B T; Kooistra, M; van der Veen, P H; Zwanenburg, J J M; van der Graaf, Y; Geerlings, M I

    2015-04-01

    Smaller hippocampal volumes have been associated with major depressive disorder (MDD). The hippocampus consists of several subfields that may be differentially related to MDD. We investigated the association of occurrence of major depressive episodes (MDEs), assessed five times over seven years, with hippocampal subfield and entorhinal cortex volumes at 7 tesla MRI. In this prospective study of randomly selected general practice attendees, MDEs according to DSM-IV-R criteria were assessed at baseline and after 6, 12, 39 and 84 months follow-up. At the last follow-up, a T2 (0.7 mm(3)) 7 tesla MRI scan was obtained in 47 participants (60±10 years). The subiculum, cornu ammonis (CA) 1 to 3, dentate gyrus&CA4 and entorhinal cortex volumes were manually segmented according a published protocol. Of the 47 participants, 13 had one MDE and 5 had multiple MDEs. ANCOVAs, adjusted for age, sex, education and intracranial volume, revealed no significant differences in hippocampal subfield or entorhinal cortex volumes between participants with and without an MDE in the preceding 84 months. Multiple episodes were associated with smaller subiculum volumes (B=-0.03 mL/episode; 95% CI -0.06; -0.003), but not with the other hippocampal subfield volumes, entorhinal cortex, or total hippocampal volume. A limitation of this study is the small sample size which makes replication necessary. In this exploratory study, we found that an increasing number of major depressive episodes was associated with smaller subiculum volumes in middle-aged and older persons, but not with smaller volumes in other hippocampal subfields or the entorhinal cortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  8. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    PubMed

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  9. Improving magnetic resonance imaging (MRI) examinations: Development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion.

    PubMed

    Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie

    2015-09-01

    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.

  10. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  11. Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.

    PubMed

    Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi

    2016-05-01

    MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.

  12. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  13. A Two-dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 Tesla: Design, Evaluation and Application

    PubMed Central

    Thalhammer, Christof; Renz, Wolfgang; Winter, Lukas; Hezel, Fabian; Rieger, Jan; Pfeiffer, Harald; Graessl, Andreas; Seifert, Frank; Hoffmann, Werner; von Knobelsdorff-Brenkenhoff, Florian; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Kellman, Peter; Niendorf, Thoralf

    2012-01-01

    Purpose To design, evaluate and apply a two-dimensional 16 channel transmit/receive coil array tailored for cardiac MRI at 7.0 Tesla. Material and Methods The cardiac coil array consists of 2 sections each using 8 elements arranged in a 2 × 4 array. RF safety was validated by SAR simulations. Cardiac imaging was performed using 2D CINE FLASH imaging, T2* mapping and fat-water separation imaging. The characteristics of the coil array were analyzed including parallel imaging performance, left ventricular chamber quantification and overall image quality. Results RF characteristics were found to be appropriate for all subjects included in the study. The SAR values derived from the simulations fall well in the limits of legal guidelines. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a very high spatial resolution of (1 × 1 × 4) mm3. The proposed coil array supports 1D acceleration factors of up to R=4 without impairing image quality significantly. Conclusions The 16 channel TX/RX coil has the capability to acquire high contrast and high spatial resolution images of the heart at 7.0 Tesla. PMID:22706727

  14. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie.

    PubMed

    Hanke, Michael; Baumgartner, Florian J; Ibe, Pierre; Kaule, Falko R; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset - 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film ("Forrest Gump"). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures - from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized.

  15. Minimally invasive neurosurgery within a 0.5 tesla intraoperative magnetic resonance scanner using an off-line neuro-navigation system.

    PubMed

    Mursch, K; Gotthardt, T; Kröger, R; Bublat, M; Behnke-Mursch, J

    2005-08-01

    We evaluated an advanced concept for patient-based navigation during minimally invasive neurosurgical procedures. An infrared-based, off-line neuro-navigation system (LOCALITE, Bonn, Germany) was applied during operations within a 0.5 T intraoperative MRI scanner (iMRI) (Signa SF, GE Medical Systems, Milwaukee, WI, USA) in addition to the conventional real-time system. The three-dimensional (3D) data set was acquired intraoperatively and up-dated when brain-shift was suspected. Twenty-three patients with subcortical lesions were operated upon with the aim to minimise the operative trauma. Small craniotomies (median diameter 30 mm, mean diameter 27 mm) could be placed exactly. In all cases, the primary goal of the operation (total resection or biopsy) was achieved in a straightforward procedure without permanent morbidity. The navigation system could be easily used without technical problems. In contrast to the real-time navigation mode of the MR system, the higher quality as well as the real-time display of the MR images reconstructed from the 3D reference data provided sufficient visual-manual coordination. The system combines the advantages of conventional neuro-navigation with the ability to adapt intraoperatively to the continuously changing anatomy. Thus, small and/or deep lesions can be operated upon in straightforward minimally invasive operations.

  16. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data.

    PubMed

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI≥1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. The more abundant a modality, the more equal the modality's distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force.

  17. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors

    PubMed Central

    Zwanenburg, Jaco JM; Reinink, Rik; Wisse, Laura EM; Luijten, Peter R; Kappelle, L Jaap; Geerlings, Mirjam I; Biessels, Geert Jan

    2016-01-01

    Cerebral perivascular spaces (PVS) are small physiological structures around blood vessels in the brain. MRI visible PVS are associated with ageing and cerebral small vessel disease (SVD). 7 Tesla (7T) MRI improves PVS detection. We investigated the association of age, vascular risk factors, and imaging markers of SVD with PVS counts on 7 T MRI, in 50 persons aged ≥ 40. The average PVS count ± SD in the right hemisphere was 17 ± 6 in the basal ganglia and 71 ± 28 in the semioval centre. We observed no relation between age or vascular risk factors and PVS counts. The presence of microbleeds was related to more PVS in the basal ganglia (standardized beta 0.32; p = 0.04) and semioval centre (standardized beta 0.39; p = 0.01), and white matter hyperintensity volume to more PVS in the basal ganglia (standardized beta 0.41; p = 0.02). We conclude that PVS counts on 7T MRI are high and are related SVD markers, but not to age and vascular risk factors. This latter finding may indicate that due to the high sensitivity of 7T MRI, the correlation of PVS counts with age or vascular risk factors may be attenuated by the detection of “normal”, non-pathological PVS. PMID:27154503

  18. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  19. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  20. Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla

    PubMed Central

    Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Smith, Stephen M.; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil

    2013-01-01

    We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight (MB = 8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB = 9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan. PMID:23899722

  1. EU Directive 2004/40: field measurements of a 1.5 T clinical MR scanner.

    PubMed

    Riches, S F; Collins, D J; Scuffham, J W; Leach, M O

    2007-06-01

    The European Union (EU) Physical Agents (EMF) Directive [1] must be incorporated into UK law in 2008. The directive, which applies to employees working in MRI, sets legal exposure limits for two of the three types of EMF exposure employed in MRI; time-varying gradient fields and radiofrequency (RF) fields. Limits on the static field are currently not included but may be added at a later date. Conservative action values have been set for all three types of exposure including the static field. The absolute exposure limits will exclude staff from the scanner bore and adjacent areas during scanning, impacting on many clinical activities such as anaesthetic monitoring during sedated scans, paediatric scanning and interventional MRI. When the legislation comes into force, NHS Trusts, scanner companies and academic institutions will be required to show compliance with the law. We present results of initial measurements performed on a 1.5 T clinical MRI scanner. For the static field, the proposed action value is exceeded at 40 cm from the scanner bore and would be exceeded when positioning a patient for scanning. For the RF field, the action values were only exceeded within the bore at distances of 40 cm from the scanner ends during a very RF intensive sequence; MRI employees are unlikely to be in the bore during an acquisition. For the time-varying gradient fields the action values were exceeded 52 cm out from the mouth of the bore during two clinical sequences, and estimated current densities show the exposure limit to be exceeded at 40 cm for frequencies above 333 Hz. Limiting employees to distances greater than these from the scanner during acquisition will have a severe impact on the future use and development of MRI.

  2. WE-DE-206-00: MRI Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  3. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    PubMed

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  4. A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI

    PubMed Central

    Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa

    2018-01-01

    Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369

  5. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    PubMed

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  6. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.

  7. High resolution MRI anatomy of the cat brain at 3 Tesla

    PubMed Central

    Gray-Edwards, Heather L.; Salibi, Nouha; Josephson, Eleanor M.; Hudson, Judith A.; Cox, Nancy R.; Randle, Ashley N.; McCurdy, Victoria J.; Bradbury, Allison M.; Wilson, Diane U.; Beyers, Ronald J.; Denney, Thomas S.; Martin, Douglas R.

    2014-01-01

    Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models. PMID:24525327

  8. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  9. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    PubMed Central

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  10. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  11. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    PubMed

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  12. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  13. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie

    PubMed Central

    Hanke, Michael; Baumgartner, Florian J.; Ibe, Pierre; Kaule, Falko R.; Pollmann, Stefan; Speck, Oliver; Zinke, Wolf; Stadler, Jörg

    2014-01-01

    Here we present a high-resolution functional magnetic resonance (fMRI) dataset – 20 participants recorded at high field strength (7 Tesla) during prolonged stimulation with an auditory feature film (“Forrest Gump”). In addition, a comprehensive set of auxiliary data (T1w, T2w, DTI, susceptibility-weighted image, angiography) as well as measurements to assess technical and physiological noise components have been acquired. An initial analysis confirms that these data can be used to study common and idiosyncratic brain response patterns to complex auditory stimulation. Among the potential uses of this dataset are the study of auditory attention and cognition, language and music perception, and social perception. The auxiliary measurements enable a large variety of additional analysis strategies that relate functional response patterns to structural properties of the brain. Alongside the acquired data, we provide source code and detailed information on all employed procedures – from stimulus creation to data analysis. In order to facilitate replicative and derived works, only free and open-source software was utilized. PMID:25977761

  14. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  15. MRI evidence of endolymphatic impermeability to the gadolinium molecule in the in vivo mouse inner ear at 9.4 tesla.

    PubMed

    Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran

    2013-01-01

    Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd.

  16. MRI Evidence of Endolymphatic Impermeability to the Gadolinium Molecule in the In Vivo Mouse Inner Ear at 9.4 Tesla

    PubMed Central

    Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran

    2013-01-01

    Objective: Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. Methods: A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. Results: High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. Conclusion: The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd. PMID:23894262

  17. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  18. The Usefulness of Readout-Segmented Echo-Planar Imaging (RESOLVE) for Bio-phantom Imaging Using 3-Tesla Clinical MRI.

    PubMed

    Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi

    2018-02-01

    Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.

  19. Multi-parametric MRI findings of granulomatous prostatitis developing after intravesical bacillus calmette-guérin therapy.

    PubMed

    Gottlieb, Josh; Princenthal, Robert; Cohen, Martin I

    2017-07-01

    To evaluate the multi-parametric MRI (mpMRI) findings in patients with biopsy-proven granulomatous prostatitis and prior Bacillus Calmette-Guérin (BCG) exposure. MRI was performed in six patients with pathologically proven granulomatous prostatitis and a prior history of bladder cancer treated with intravesical BCG therapy. Multi-parametric prostate MRI images were recorded on a GE 750W or Philips Achieva 3.0 Tesla MRI scanner with high-resolution, small-field-of-view imaging consisting of axial T2, axial T1, coronal T2, sagittal T2, axial multiple b-value diffusion (multiple values up to 1200 or 1400), and dynamic contrast-enhanced 3D axial T1 with fat suppression sequence. Two different patterns of MR findings were observed. Five of the six patients had a low mean ADC value <1000 (decreased signal on ADC map images) and isointense signal on high-b-value imaging (b = 1200 or 1400), consistent with nonspecific granulomatous prostatitis. The other pattern seen in one of the six patients was decreased signal on the ADC map images with increased signal on the high-b-value sequence, revealing true restricted diffusion indistinguishable from aggressive prostate cancer. This patient had biopsy-confirmed acute BCG prostatitis. Our study suggests that patients with known BCG exposure and PI-RADS v2 scores ≤3, showing similar mpMRI findings as demonstrated, may not require prostate biopsy.

  20. Experimental MRI-SPECT insert system with Hybrid Semiconductor detectors Timepix for MR animal scanner Bruker 47/20

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.

    2017-01-01

    Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.

  1. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    PubMed Central

    Chen, Yuanxin; Bernas, Lisa; Kitzler, Hagen H.; Rogers, Kem A.; Hegele, Robert A.; Rutt, Brian K.

    2009-01-01

    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol

  2. 3 Tesla MRI-detected brain lesions after pulmonary vein isolation for atrial fibrillation: results of the MACPAF study.

    PubMed

    Haeusler, Karl Georg; Koch, Lydia; Herm, Juliane; Kopp, Ute A; Heuschmann, Peter U; Endres, Matthias; Schultheiss, Heinz-Peter; Schirdewan, Alexander; Fiebach, Jochen B

    2013-01-01

    Left atrial catheter ablation (LACA) is an established therapeutic approach to abolish symptomatic atrial fibrillation (AF). Based on the prospective MACPAF study (clinicaltrials.gov NCT01061931) we report the rate of ischemic brain lesions postablation and their impact on cognitive function. Patients with symptomatic paroxysmal AF were randomized to LACA using the Arctic Front® or the HD Mesh Ablator® catheter. All patients underwent brain MRI at 3 Tesla, neurological, and neuropsychological examinations within 48 hours prior and after the ablation procedure. There was no clinically evident stroke in 37 patients (mean age 62.4 ± 8.4 years; 41% female; median CHADS2 score 1 [IQR 0-2]) after LACA but high-resolution diffusion-weighted imaging (DWI) detected new ischemic lesions in 15 (41%) patients after LACA. Four (27%) of the HD Mesh Ablator® patients and 11 (50%) of the Arctic Front® patients suffered a silent ischemic lesion (P = 0.19). In these 15 patients, there was a nonsignificant trend toward lower cardiac ejection fraction (P = 0.07) and AF episodes during LACA (P = 0.09), while activated clotting time levels, number of energy applications, periprocedural electrocardioversion or CHADS(2) score had no impact. Lesion volumes varied from 5 to 150 mm(3) and 1 to 5 lesions were detected per patient. However, acute brain lesions had no effect on cognitive performance immediately after LACA. Of the DWI lesions postablation 82% were not detectable on FLAIR images 6-9 months postablation. According to 3 Tesla high-resolution DWI, ischemic brain lesions after LACA were common but not associated with impaired cognitive function after the ablation procedure. © 2012 Wiley Periodicals, Inc.

  3. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla.

    PubMed

    Oezerdem, Celal; Winter, Lukas; Graessl, Andreas; Paul, Katharina; Els, Antje; Weinberger, Oliver; Rieger, Jan; Kuehne, Andre; Dieringer, Matthias; Hezel, Fabian; Voit, Dirk; Frahm, Jens; Niendorf, Thoralf

    2016-06-01

    To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Design of an fMRI-compatible optical touch stripe based on frustrated total internal reflection.

    PubMed

    Jarrahi, Behnaz; Wanek, Johann

    2014-01-01

    Previously we developed a low-cost, multi-configurable handheld response system, using a reflective-type intensity modulated fiber-optic sensor (FOS) to accurately gather participants' behavioral responses during functional magnetic resonance imaging (fMRI). Inspired by the popularity and omnipresence of the fingertip-based touch sensing user interface devices, in this paper we present the design of a prototype fMRI-compatible optical touch stripe (OTS) as an alternative configuration. The prototype device takes advantage of a proven frustrated total internal reflection (FTIR) technique. By using a custom-built wedge-shaped optically transparent acrylic prism as an optical waveguide, and a plano-concave lens to provide the required light beam profile, the position of a fingertip touching the surface of the wedge prism can be determined from the deflected light beams that become trapped within the prism by total internal reflection. To achieve maximum sensitivity, the optical design of the wedge prism and lens were optimized through a series of light beam simulations using WinLens 3D Basic software suite. Furthermore, OTS performance and MRI-compatibility were assessed on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) sequences. The results show that the OTS can detect a touch signal at high spatial resolution (about 0.5 cm), and is well suited for use within the MRI environment with average time-variant signal-to-noise ratio (tSNR) loss < 3%.

  5. Edison vs. Tesla

    ScienceCinema

    Hogan, Kathleen; Wallace, Hal; Ivestor, Rob

    2018-01-16

    As Edison vs. Tesla week heats up at the Energy Department, we are exploring the rivalry between Thomas Edison and Nikola Tesla and how their work is still impacting the way we use energy today. Whether you're on Team Tesla or Team Edison, both inventors were key players in creating things like batteries, power plants and wireless technologies -- all innovations we still use today. And as we move toward a clean energy future, energy efficient lighting, like LED bulbs, and more efficient electric motors not only help us save money on electricity costs but help combat climate change. For this, Tesla and Edison both deserve our recognition.

  6. Performance of a PET Insert for High-Resolution Small-Animal PET/MRI at 7 Tesla.

    PubMed

    Stortz, Greg; Thiessen, Jonathan D; Bishop, Daryl; Khan, Muhammad Salman; Kozlowski, Piotr; Retière, Fabrice; Schellenberg, Graham; Shams, Ehsan; Zhang, Xuezhu; Thompson, Christopher J; Goertzen, Andrew L; Sossi, Vesna

    2018-03-01

    We characterize a compact MR-compatible PET insert for simultaneous preclinical PET/MRI. Although specifically designed with the strict size constraint to fit inside the 114-mm inner diameter of the BGA-12S gradient coil used in the BioSpec 70/20 and 94/20 series of small-animal MRI systems, the insert can easily be installed in any appropriate MRI scanner or used as a stand-alone PET system. Methods: The insert consists of a ring of 16 detector-blocks each made from depth-of-interaction-capable dual-layer-offset arrays of cerium-doped lutetium-yttrium oxyorthosilicate crystals read out by silicon photomultiplier arrays. Scintillator crystal arrays are made from 22 × 10 and 21 × 9 crystals in the bottom and top layers, respectively, with respective layer thicknesses of 6 and 4 mm, arranged with a 1.27-mm pitch, resulting in a useable field of view 28 mm long and about 55 mm wide. Results: Spatial resolution ranged from 1.17 to 1.86 mm full width at half maximum in the radial direction from a radial offset of 0-15 mm. With a 300- to 800-keV energy window, peak sensitivity was 2.2% and noise-equivalent count rate from a mouse-sized phantom at 3.7 MBq was 11.1 kcps and peaked at 20.8 kcps at 14.5 MBq. Phantom imaging showed that features as small as 0.7 mm could be resolved. 18 F-FDG PET/MR images of mouse and rat brains showed no signs of intermodality interference and could excellently resolve substructures within the brain. Conclusion: Because of excellent spatial resolvability and lack of intermodality interference, this PET insert will serve as a useful tool for preclinical PET/MR. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression.

    PubMed

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2014-03-01

    To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. Copyright © 2013 Wiley Periodicals, Inc.

  8. [Exposure to static magnetic field and health hazards during the operation of magnetic resonance scanners].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof; Politański, Piotr; Zmyślony, Marek

    2011-01-01

    Magnetic resonance imaging (MRI) scanners belong to the most modern imaging diagnostic devices, which involve workers' exposure to static magnetic fields (SMF) during the preparation and performance of MRI examinations. This paper presents the data on workers' exposure to SMF in the vicinity of MRI scanners and the analysis of SMF-related biological effects and health hazards to find out whether softening the legislative requirements concerning protection against SMF exposure of workers involved in MRI diagnostics is justified. Measurements in the vicinity of 1.5 T MRI magnets showed that exposure to SMF by various scanners depends on both SMF of magnets and scanners design, as well as on work organization. In a routine examination of one patient the radiographer is exposed to SMF exceeding 0.5 mT for app. 1.5-7 min, and up to 1.3 min to SMF exceeding 70 mT. In examinations of patients who need more attention, the duration of exposure may be significantly longer. The mean values (B mean) of exposure to SMF are 5.6-85 mT (mean 30 +/- 19 mT, N = 16). These data demonstrate that only well designed procedures, proper organization of workplace and awareness of workers how to attend the patients without being exposed to strong SMF allow for meeting the requirements of labor law concerning workers' exposure to SMF. The analysis of the available literature on biological effects of SMF has disclosed the lack of data on health effects of many years exposure of workers and the abundance of data demonstrating the biological activity of SMF. Therefore, a radical softening of legislative requirements concerning the exposure of workers' head or trunk is premature, and what is more, it is not indispensable for the development of MRI diagnostic. Such an action should be preceded by extensive international investigations on the health status of workers exposed to electromagnetic fields by MRI scanners.

  9. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI.

    PubMed

    Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W

    2018-05-22

    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.

  10. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET.

    PubMed

    Tomiyama, Yuuki; Manabe, Osamu; Oyama-Manabe, Noriko; Naya, Masanao; Sugimori, Hiroyuki; Hirata, Kenji; Mori, Yuki; Tsutsui, Hiroyuki; Kudo, Kohsuke; Tamaki, Nagara; Katoh, Chietsugu

    2015-09-01

    To develop and validate a method for quantifying myocardial blood flow (MBF) using dynamic perfusion magnetic resonance imaging (MBFMRI ) at 3.0 Tesla (T) and compare the findings with those of (15) O-water positron emission tomography (MBFPET ). Twenty healthy male volunteers underwent magnetic resonance imaging (MRI) and (15) O-water positron emission tomography (PET) at rest and during adenosine triphosphate infusion. The single-tissue compartment model was used to estimate the inflow rate constant (K1). We estimated the extraction fraction of Gd-DTPA using K1 and MBF values obtained from (15) O-water PET for the first 10 subjects. For validation, we calculated MBFMRI values for the remaining 10 subjects and compared them with the MBFPET values. In addition, we compared MBFMRI values of 10 patients with coronary artery disease with those of healthy subjects. The mean resting and stress MBFMRI values were 0.76 ± 0.10 and 3.04 ± 0.82 mL/min/g, respectively, and showed excellent correlation with the mean MBFPET values (r = 0.96, P < 0.01). The mean stress MBFMRI value was significantly lower for the patients (1.92 ± 0.37) than for the healthy subjects (P < 0.001). The use of dynamic perfusion MRI at 3T is useful for estimating MBF and can be applied for patients with coronary artery disease. © 2014 Wiley Periodicals, Inc.

  11. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    PubMed

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  12. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B; He, W; Cvetkovic, D

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less

  13. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary

    PubMed Central

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1β, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1β, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage. PMID:16831232

  14. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary.

    PubMed

    Sunk, Ilse-Gerlinde; Trattnig, Siegfried; Graninger, Winfried B; Amoyo, Love; Tuerk, Birgit; Steiner, Carl-Walter; Smolen, Josef S; Bobacz, Klaus

    2006-01-01

    The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1beta, were analyzed by RT-PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1beta, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage.

  15. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P; Dong, B; Zhang, K

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear acceleratormore » (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.« less

  16. Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study.

    PubMed

    Conijn, Mandy M A; Hendrikse, Jeroen; Zwanenburg, Jaco J M; Takahara, Taro; Geerlings, Mirjam I; Mali, Willem P Th M; Luijten, Peter R

    2009-12-01

    The aim of this study was to investigate the ability of time-of-flight (TOF) magnetic resonance (MR) angiography at 7.0 Tesla to show the perforating branches of the posterior communicating artery (PCoA), and to investigate the presence of such visible perforating branches in relation to the size of the feeding PCoA. The secondary aim was to visualise and describe the anterior choroidal artery and the perforating branches of the P1-segment of posterior cerebral artery (P1). Forty-six healthy volunteers underwent TOF MR angiography at 7.0 Tesla. With 7.0-Tesla imaging, we visualised for the first time perforating arteries originating from the PCoA in vivo without the use of contrast agents. A perforating artery from the PCoA was found in a large proportion of the PCoAs (64%). The presence was associated with a larger diameter of the underlying PCoA (1.23 versus 1.06 mm, P = 0.03). The anterior choroidal artery was visible bilaterally in all participants. In 83% of all P1s, one or two perforating branches were visible. Non-invasive assessment of the perforating arteries of the PCoA together with the anterior choroidal artery and the perforating arteries of the P1 may increase our understanding of infarcts in the deep brain structures supplied by these arteries.

  17. Continuous EEG-fMRI in Pre-Surgical Evaluation of a Patient with Symptomatic Seizures: Bold Activation Linked to Interictal Epileptic Discharges Caused by Cavernoma.

    PubMed

    Avesani, M; Formaggio, E; Milanese, F; Baraldo, A; Gasparini, A; Cerini, R; Bongiovanni, L G; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-04-07

    We used continuous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to identify the linkage between the "epileptogenic" and the "irritative" area in a patient with symptomatic epilepsy (cavernoma, previously diagnosed and surgically treated), i.e. a patient with a well known "epileptogenic area", and to increase the possibility of a non invasive pre-surgical evaluation of drug-resistant epilepsies. A compatible MRI system was used (EEG with 29 scalp electrodes and two electrodes for ECG and EMG) and signals were recorded with a 1.5 Tesla MRI scanner. After the recording session and MRI artifact removal, EEG data were analyzed offline and used as paradigms in fMRI study. Activation (EEG sequences with interictal slow-spiked-wave activity) and rest (sequences of normal EEG) conditions were compared to identify the potential resulting focal increase in BOLD signal and to consider if this is spatially linked to the interictal focus used as a paradigm and to the lesion. We noted an increase in the BOLD signal in the left neocortical temporal region, laterally and posteriorly to the poro-encephalic cavity (residual of cavernoma previously removed), that is around the "epileptogenic area". In our study "epileptogenic" and "irritative" areas were connected with each other. Combined EEG-fMRI may become routine in clinical practice for a better identification of an irritative and lesional focus in patients with symptomatic drug-resistant epilepsy.

  18. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, A.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  19. The Interventional Loopless Antenna at 7 Tesla

    PubMed Central

    Ertürk, Mehmet Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2012-01-01

    The loopless antenna MRI detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at sub-millimeter diameters for inteventional use in guidewires, catheters or needles. Prior work up to 4.7T suggests a near-quadratic gain in signal-to-noise ratio (SNR) with field strength, and safe operation at 3T. Here for the first time, the SNR performance and RF safety of the loopless antenna is investigated both theoretically, using the electro-magnetic method-of-moments, and experimentally in a standard 7T human scanner. The results are compared with equivalent 3T devices. An absolute SNR gain of 5.7±1.5-fold was realized at 7T vs. 3T: more than 20-fold higher than at 1.5T. The effective field-of-view (FOV) area also increased approximately 10-fold compared to 3T. Testing in a saline gel phantom suggested safe operation is possible with maximum local 1-g average specific absorption rates of <12W/kg and temperature increases of <1.9°C, normalized to a 4W/kg RF field exposure at 7T. The antenna did not affect the power applied to the scanner's transmit coil. The SNR gain enabled MRI microscopy at 40-50μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-FOV or endoscopic MRI for targeted intervention in focal disease. PMID:22161992

  20. A biomarker-responsive T2ex MRI contrast agent.

    PubMed

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Quantitative (23) Na MRI of human knee cartilage using dual-tuned (1) H/(23) Na transceiver array radiofrequency coil at 7 tesla.

    PubMed

    Moon, Chan Hong; Kim, Jung-Hwan; Zhao, Tiejun; Bae, Kyongtae Ty

    2013-11-01

    To develop quantitative dual-tuned (DT) (1) H/(23) Na MRI of human knee cartilage in vivo at 7 Tesla (T). A sensitive (23) Na transceiver array RF coil was developed at 7T. B1 fields generated by the transceiver array coil were characterized and corrected in the (23) Na images. Point spread function (PSF) of the (23) Na images was measured, and the signal decrease due to partial-volume-effect was compensated in [(23) Na] quantification of knee cartilage. SNR and [(23) Na] in anterior femoral cartilage were measured from seven healthy subjects. SNR of (23) Na image with the transceiver array coil was higher than that of birdcage coil. SNR in the cartilage at 2-mm isotropic resolution was 26.80 ± 3.69 (n = 7). B1 transmission and reception fields produced by the DT coil at 7T were similar to each other. Effective full-width-half-maximum of (23) Na image was ∼5 mm at 2-mm resolution. Mean [(23) Na] was 288.13 ± 29.50 mM (n = 7) in the anterior femoral cartilage of normal subjects. We developed a new high-sensitivity (23) Na RF coil for knee MRI at 7T. Our (1) H/(23) Na MRI allowed quantitative measurement of [(23) Na] in knee cartilage by measuring PSF and cartilage thickness from (23) Na and (1) H image, respectively. Copyright © 2013 Wiley Periodicals, Inc.

  2. Retrospectively gated intracardiac 4D flow MRI using spiral trajectories.

    PubMed

    Petersson, Sven; Sigfridsson, Andreas; Dyverfeldt, Petter; Carlhäll, Carl-Johan; Ebbers, Tino

    2016-01-01

    To develop and evaluate retrospectively gated spiral readout four-dimensional (4D) flow MRI for intracardiac flow analysis. Retrospectively gated spiral 4D flow MRI was implemented on a 1.5-tesla scanner. The spiral sequence was compared against conventional Cartesian 4D flow (SENSE [sensitivity encoding] 2) in seven healthy volunteers and three patients (only spiral). In addition to comparing flow values, linear regression was used to assess internal consistency of aortic versus pulmonary net volume flows and left ventricular inflow versus outflow using quantitative pathlines analysis. Total scan time with spiral 4D flow was 44% ± 6% of the Cartesian counterpart (13 ± 3 vs. 31 ± 7 min). Aortic versus pulmonary flow correlated strongly for the spiral sequence (P < 0.05, slope = 1.03, R(2) = 0.88, N = 10), whereas the linear relationship for the Cartesian sequence was not significant (P = 0.06, N = 7). Pathlines analysis indicated good data quality for the spiral (P < 0.05, slope = 1.02, R(2) = 0.90, N = 10) and Cartesian sequence (P < 0.05, slope = 1.10, R(2) = 0.93, N = 7). Spiral and Cartesian peak flow rate (P < 0.05, slope = 0.96, R(2) = 0.72, N = 14), peak velocity (P < 0.05, slope = 1.00, R(2) = 0.81, N = 14), and pathlines flow components (P < 0.05, slope = 1.04, R(2) = 0.87, N = 28) correlated well. Retrospectively gated spiral 4D flow MRI permits more than two-fold reduction in scan time compared to conventional Cartesian 4D flow MRI, while maintaining similar data quality. © 2015 Wiley Periodicals, Inc.

  3. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  4. MRI Interscanner Agreement of the Association between the Susceptibility Vessel Sign and Histologic Composition of Thrombi.

    PubMed

    Bourcier, Romain; Détraz, Lili; Serfaty, Jean Michel; Delasalle, Beatrice Guyomarch; Mirza, Mahmood; Derraz, Imad; Toulgoat, Frédérique; Naggara, Olivier; Toquet, Claire; Desal, Hubert

    2017-11-01

    The susceptibility vessel sign (SVS) on magnetic resonance imaging (MRI) is related to thrombus location, composition, and size in acute stroke. No previous study has determined its inter-MRI scanner variability. We aimed to compare the diagnostic accuracy in-vitro of four different MRI scanners for the characterization of histologic thrombus composition. Thirty-five manufactured thrombi analogs of different composition that were histologically categorized as fibrin-dominant, mixed, or red blood cell (RBC)-dominant were scanned on four different MRI units with T2* sequence. Nine radiologists, blinded to thrombus composition and MRI scanner model, classified twice, in a 2-week interval, the SVS of each thrombus as absent, questionable, or present. We calculated the weighted kappa with 95% confidence interval (CI), sensitivity, specificity and accuracy of the SVS on each MRI scanner to detect RBC-dominant thrombi. The SVS was present in 42%, absent in 33%, and questionable in 25% of thrombi. The interscanner agreement was moderate to good, ranging from .45 (CI: .37-.52) to .67 (CI: .61-.74). The correlation between the SVS and the thrombus composition was moderate (κ: .50 [CI: .44-.55]) to good κ: .76 ([CI: .72-.80]). Sensitivity, specificity, and accuracy to identify RBC-dominant clots were significantly different between MRI scanners (P < .001). The diagnostic accuracy of SVS to determine thrombus composition varies significantly among MRI scanners. Normalization of T2*sequences between scanners may be needed to better predict thrombus composition in multicenter studies. Copyright © 2017 by the American Society of Neuroimaging.

  5. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age.

    PubMed

    Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K

    2016-12-01

    To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis.

    PubMed

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm 2 . ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm 2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm 2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm 2 ) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10 -3 mm 2 /s. 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD.

  7. Assessing the Risks Associated with MRI in Patients with a Pacemaker or Defibrillator.

    PubMed

    Russo, Robert J; Costa, Heather S; Silva, Patricia D; Anderson, Jeffrey L; Arshad, Aysha; Biederman, Robert W W; Boyle, Noel G; Frabizzio, Jennifer V; Birgersdotter-Green, Ulrika; Higgins, Steven L; Lampert, Rachel; Machado, Christian E; Martin, Edward T; Rivard, Andrew L; Rubenstein, Jason C; Schaerf, Raymond H M; Schwartz, Jennifer D; Shah, Dipan J; Tomassoni, Gery F; Tominaga, Gail T; Tonkin, Allison E; Uretsky, Seth; Wolff, Steven D

    2017-02-23

    The presence of a cardiovascular implantable electronic device has long been a contraindication for the performance of magnetic resonance imaging (MRI). We established a prospective registry to determine the risks associated with MRI at a magnetic field strength of 1.5 tesla for patients who had a pacemaker or implantable cardioverter-defibrillator (ICD) that was "non-MRI-conditional" (i.e., not approved by the Food and Drug Administration for MRI scanning). Patients in the registry were referred for clinically indicated nonthoracic MRI at a field strength of 1.5 tesla. Devices were interrogated before and after MRI with the use of a standardized protocol and were appropriately reprogrammed before the scanning. The primary end points were death, generator or lead failure, induced arrhythmia, loss of capture, or electrical reset during the scanning. The secondary end points were changes in device settings. MRI was performed in 1000 cases in which patients had a pacemaker and in 500 cases in which patients had an ICD. No deaths, lead failures, losses of capture, or ventricular arrhythmias occurred during MRI. One ICD generator could not be interrogated after MRI and required immediate replacement; the device had not been appropriately programmed per protocol before the MRI. We observed six cases of self-terminating atrial fibrillation or flutter and six cases of partial electrical reset. Changes in lead impedance, pacing threshold, battery voltage, and P-wave and R-wave amplitude exceeded prespecified thresholds in a small number of cases. Repeat MRI was not associated with an increase in adverse events. In this study, device or lead failure did not occur in any patient with a non-MRI-conditional pacemaker or ICD who underwent clinically indicated nonthoracic MRI at 1.5 tesla, was appropriately screened, and had the device reprogrammed in accordance with the prespecified protocol. (Funded by St. Jude Medical and others; MagnaSafe ClinicalTrials.gov number, NCT

  8. Effect of parallel radiofrequency transmission on arterial input function selection in dynamic contrast-enhanced 3 Tesla pelvic MRI.

    PubMed

    Chafi, Hatim; Elias, Saba N; Nguyen, Huyen T; Friel, Harry T; Knopp, Michael V; Guo, BeiBei; Heymsfield, Steven B; Jia, Guang

    2016-01-01

    To evaluate whether parallel radiofrequency transmission (mTX) can improve the symmetry of the left and right femoral arteries in dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of prostate and bladder cancer. Eighteen prostate and 24 bladder cancer patients underwent 3.0 Tesla DCE-MRI scan with a single transmission channel coil. Subsequently, 21 prostate and 21 bladder cancer patients were scanned using the dual channel mTX upgrade. The precontrast signal ( S0) and the maximum enhancement ratio (MER) were measured in both the left and the right femoral arteries. Within the patient cohort, the ratio of S0 and MER in the left artery to that in the right artery ( S0_LR, MER_LR) was calculated with and without the use of mTX. Left to right asymmetry indices for S0 ( S0_LRasym) and MER ( MER_LRasym) were defined as the absolute values of the difference between S0_LR and 1, and the difference between MER_LR and 1, respectively. S0_LRasym, and MER_LRasym were 0.21 and 0.19 for prostate cancer patients with mTX, and 0.43 and 0.45 for the ones imaged without it (P < 0.001). Also, for the bladder cancer patients, S0_LRasym, and MER_LRasym were 0.11 and 0.9 with mTX, while imaging without it yielded 0.52 and 0.39 (P < 0.001). mTX can significantly improve left-to-right symmetry of femoral artery precontrast signal and contrast enhancement. © 2015 Wiley Periodicals, Inc.

  9. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible.

    PubMed

    Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A

    2003-08-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.

  10. [70 years of Nikola Tesla studies].

    PubMed

    Juznic, Stanislav

    2013-01-01

    Nikola Tesla's studies of chemistry are described including his not very scholarly affair in Maribor. After almost a century and half of hypothesis at least usable scenario of Tesla's life and "work" in Maribor is provided. The chemistry achievements of Tesla's most influential professors Martin Sekulić and Tesla's Graz professors are put into the limelight. The fact that Tesla in Graz studied on the technological chemistry Faculty of Polytechnic is focused.

  11. A low cost fMRI-compatible tracking system using the Nintendo Wii remote.

    PubMed

    Modroño, Cristián; Rodríguez-Hernández, Antonio F; Marcano, Francisco; Navarrete, Gorka; Burunat, Enrique; Ferrer, Marta; Monserrat, Raquel; González-Mora, José L

    2011-11-15

    It is sometimes necessary during functional magnetic resonance imaging (fMRI) experiments to capture different movements made by the subjects, e.g. to enable them to control an item or to analyze its kinematics. The aim of this work is to present an inexpensive hand tracking system suitable for use in a high field MRI environment. It works by introducing only one light-emitting diode (LED) in the magnet room, and by receiving its signal with a Nintendo Wii remote (the primary controller for the Nintendo Wii console) placed outside in the control room. Thus, it is possible to take high spatial and temporal resolution registers of a moving point that, in this case, is held by the hand. We tested it using a ball and racket virtual game inside a 3 Tesla MRI scanner to demonstrate the usefulness of the system. The results show the involvement of a number of areas (mainly occipital and frontal, but also parietal and temporal) when subjects are trying to stop an object that is approaching from a first person perspective, matching previous studies performed with related visuomotor tasks. The system presented here is easy to implement, easy to operate and does not produce important head movements or artifacts in the acquired images. Given its low cost and ready availability, the method described here is ideal for use in basic and clinical fMRI research to track one or more moving points that can correspond to limbs, fingers or any other object whose position needs to be known. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Can magnetic resonance imaging at 3.0-Tesla reliably detect patients with endometriosis? Initial results.

    PubMed

    Thomeer, Maarten G; Steensma, Anneke B; van Santbrink, Evert J; Willemssen, Francois E; Wielopolski, Piotr A; Hunink, Myriam G; Spronk, Sandra; Laven, Joop S; Krestin, Gabriel P

    2014-04-01

    The aim of this study was to determine whether an optimized 3.0-Tesla magnetic resonance imaging (MRI) protocol is sensitive and specific enough to detect patients with endometriosis. This was a prospective cohort study with consecutive patients. Forty consecutive patients with clinical suspicion of endometriosis underwent 3.0-Tesla MRI, including a T2-weighted high-resolution fast spin echo sequence (spatial resolution=0.75 ×1.2 ×1.5 mm³) and a 3D T1-weighted high-resolution gradient echo sequence (spatial resolution=0.75 ×1.2 × 2.0 mm³). Two radiologists reviewed the dataset with consensus reading. During laparoscopy, which was used as reference standard, all lesions were characterized according to the revised criteria of the American Fertility Society. Patient-level and region-level sensitivities and specificities and lesion-level sensitivities were calculated. Patient-level sensitivity was 42% for stage I (5/12) and 100% for stages II, III and IV (25/25). Patient-level specificity for all stages was 100% (3/3). The region-level sensitivity and specificity was 63% and 97%, respectively. The sensitivity per lesion was 61% (90% for deep lesions, 48% for superficial lesions and 100% for endometriomata). The detection rate of obliteration of the cul-the-sac was 100% (10/10) with no false positive findings. The interreader agreement was substantial to perfect (kappa=1 per patient, 0.65 per lesion and 0.71 for obliteration of the cul-the-sac). An optimized 3.0-Tesla MRI protocol is accurate in detecting stage II to stage IV endometriosis. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  13. The effects of the use of piezoelectric motors in a 1.5-Tesla high-field magnetic resonance imaging system (MRI).

    PubMed

    Wendt, O; Oellinger, J; Lüth, T C; Felix, R; Boenick, U

    2000-01-01

    This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios

  14. HR 3 Tesla MRI for the diagnosis of endolymphatic hydrops and differential diagnosis of inner ear tumors--demonstrated by two cases with similar symptoms.

    PubMed

    Homann, G; Fahrendorf, D; Niederstadt, T; Nagelmann, N; Heindel, W; Lütkenhöner, B; Böckenfeld, Y; Basel, T; Vieth, V

    2014-03-01

    The synchronous appearance of different inner ear pathologies with a nearly equivalent clinical manifestation such as Menière's disease and vestibular schwannoma is very rare but leads to a relevant dilemma concerning therapy options. MRI is the method of choice to detect intralabyrinthine tumors. Since endolymphatic hydrops is considered the morphological equivalent of Menière's disease, magnetic resonance imaging including hT2w-FLAIR sequences 4 h after i. v. administration of gadolinium-based contrast agents (GBCA) allows the diagnosis and grading of endolymphatic hydrops in vivo synchronous to diagnosis and monitoring of ILT. To this day, only a few cases of intralabyrinthine schwannoma could be shown to appear simultaneously with endolymphatic hydrops by MRI, but to our knowledge the dedicated distinction of endolymphatic space has not been previously demonstrated. The aim of this work was not only to detect the coincidence of endolymphatic hydrops and vestibular schwannoma, but also to differentiate tumor tissue from endolymphatic space by 3 Tesla MRI. This enables therapy options that are originally indicated for Menière's disease. The aim of this work was to describe the feasibility and usefulness of endolymphatic hydrops MRI on intralabyrinthal tumors in a special case of intravestibular schwannoma to demonstrate the high clinical relevance and impact in therapeutic decision-making for the synchronous appearance of endolymphatic hydrops and intralabyrinthine tumors. Therefore, we present a typical case of Menière's disease in contrast to a patient with an intralabyrinthine schwannoma and Menière-like symptoms. © Georg Thieme Verlag KG Stuttgart · New York.

  15. High resolution MRI imaging at 9.4 Tesla of the osteochondral unit in a translational model of articular cartilage repair.

    PubMed

    Goebel, Lars; Müller, Andreas; Bücker, Arno; Madry, Henning

    2015-04-16

    Non-destructive structural evaluation of the osteochondral unit is challenging. Here, the capability of high-field magnetic resonance imaging (μMRI) at 9.4 Tesla (T) was explored to examine osteochondral repair ex vivo in a preclinical large animal model. A specific aim of this study was to detect recently described alterations of the subchondral bone associated with cartilage repair. Osteochondral samples of medial femoral condyles from adult ewes containing full-thickness articular cartilage defects treated with marrow stimulation were obtained after 6 month in vivo and scanned in a 9.4 T μMRI. Ex vivo imaging of small osteochondral samples (typical volume: 1-2 cm(3)) at μMRI was optimised by variation of repetition time (TR), time echo (TE), flip angle (FA), spatial resolution and number of excitations (NEX) from standard MultiSliceMultiEcho (MSME) and three-dimensional (3D) spoiled GradientEcho (SGE) sequences. A 3D SGE sequence with the parameters: TR = 10 ms, TE = 3 ms, FA = 10°, voxel size = 120 × 120 × 120 μm(3) and NEX = 10 resulted in the best fitting for sample size, image quality, scanning time and artifacts. An isovolumetric voxel shape allowed for multiplanar reconstructions. Within the osteochondral unit articular cartilage, cartilaginous repair tissue and bone marrow could clearly be distinguished from the subchondral bone plate and subarticular spongiosa. Specific alterations of the osteochondral unit associated with cartilage repair such as persistent drill holes, subchondral bone cysts, sclerosis of the subchondral bone plate and of the subarticular spongiosa and intralesional osteophytes were precisely detected. High resolution, non-destructive ex vivo analysis of the entire osteochondral unit in a preclinical large animal model that is sufficient for further analyses is possible using μMRI at 9.4 T. In particular, 9.4 T is capable of accurately depicting alterations of the subchondral bone that are associated with

  16. Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition.

    PubMed

    Chun, Jinsoo; Peltier, Scott J; Yoon, Daehyun; Manschreck, Theo C; Deldin, Patricia J

    2016-08-01

    Recording EEG and fMRI data simultaneously inside a fully-operating scanner has been recognized as a novel approach in human brain research. Studies have demonstrated high concordance between the EEG signals and hemodynamic response. However, a few studies reported altered cognitive process inside the fMRI scanner such as delayed reaction time (RT) and reduced and/or delayed N100 and P300 event-related brain potential (ERP) components. The present study investigated the influence of electromagnetic field (static magnetic field, radio frequency (RF) pulse, and gradient switching) and experimental environment on posterior N100 and P300 ERP components in four different settings with six healthy subjects using a visual oddball task: (1) classic fMRI acquisition inside the scanner (e.g., supine position, mirror glasses for stimulus presentation), (2) standard behavioral experiment outside the scanner (e.g., seated position, keyboard response), (3) controlled fMRI acquisition inside the scanner (e.g., organic light-emitting diode (OLED) goggles for stimulus presentation) inside; and (4) modified behavioral experiment outside the scanner (e.g., supine position, OLED goggles). The study findings indicated that the experimental environment in simultaneous EEG/fMRI acquisition could substantially delay N1P, P300 latency, and RT inside the scanner, and was associated with a reduced N1P amplitude. There was no effect of electromagnetic field in the prolongation of RT, N1P and P300 latency inside the scanner. N1P, but not P300, latency was sensitive to stimulus presentation method inside the scanner. Future simultaneous EEG/fMRI data collection should consider experimental environment in both design and analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  18. Liquid-explosives scanners stand trial in airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Jermey N. A.

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  19. In-gantry MRI guided prostate biopsy diagnosis of prostatitis and its relationship with PIRADS V.2 based score.

    PubMed

    Jyoti, Rajeev; Jina, Noel Hamesh; Haxhimolla, Hodo Z

    2017-04-01

    The recent literature has focussed predominantly on prostate cancer detection which has been revolutionized by multiparametric magnetic resonance imaging (mpMRI). Due to an overlap of features, prostatitis may mimic prostate cancer on MRI, especially in patients with chronic prostatitis. We retrospectively analysed our in-gantry MRI-guided biopsy (MRGB) results to determine incidental detection rate of prostatitis in Prostate Imaging Reporting and Data System (PIRADS) 3, 4 and 5 foci reported on diagnostic MRI of the prostate. About 137 patients underwent in-gantry MRGB for lesions with PIRADS score of 3 or above. All the biopsies were performed utilizing the dynaTRIM™ system (Invio Inc, Germany) on a three-tesla MRI scanner (Ingenia 3.0T, Philips, Netherlands) by a Radiologist and a Urologist. We biopsied 228 lesions in 137 patients. There were 55 lesions that returned positive for prostate cancer with a Gleason Score of 3 + 3 = 6 or above. There were 62 lesions that showed inflammation. The distribution of these lesions was 3 (5%) in the central zone, 32 (52%) in the transitional zone and 27 (43%) in the peripheral zone. Inflammation was found in 36 (58%) PIRADS 3 lesions, 24 (39%) PIRADS 4 lesions and 2 (3%) PIRADS 5 lesions on pre biopsy MRI evaluation. In our series, biopsies which showed inflammation had a radiological appearance on mpMRI more likely of a PIRADS 3 or 4 lesions with only 3% of PIRADS 5 biopsies showing inflammation. This would suggest that a higher PIRADS score can more reliably differentiate between prostate cancer and prostatitis. © 2016 The Royal Australian and New Zealand College of Radiologists.

  20. Visibility of Anterolateral Ligament Tears in Anterior Cruciate Ligament-Deficient Knees With Standard 1.5-Tesla Magnetic Resonance Imaging.

    PubMed

    Hartigan, David E; Carroll, Kevin W; Kosarek, Frank J; Piasecki, Dana P; Fleischli, James F; D'Alessandro, Donald F

    2016-10-01

    To attempt to visualize the ligament with standard 1.5-tesla magnetic resonance imaging (MRI) in the acute anterior cruciate ligament (ACL)-torn knee, and if it is visible, attempt to characterize it as torn or intact at its femoral, meniscal, and tibial attachment sites. This was a retrospective MRI study based on arthroscopic findings of a known ACL tear in 72 patients between the years 2006 and 2010. Patients all had hamstring ACL reconstructions, no concomitant lateral collateral ligament, or posterolateral corner injury based on imaging and physical examination, and had a preoperative 1.5-tesla MRI scan with standard sequences performed within 3 weeks of the injury. Two fellowship-trained musculoskeletal radiologists retrospectively reviewed the preoperative MRI for visualization of the anterolateral ligament (ALL) for concomitant tears. Inter- and intraobserver reliability was calculated. Learning effect was analyzed to determine if radiologists' agreement improved as reads progressed. Both radiologists were able to visualize the ALL in 100% of the scans. Overall, ALL tears were noted in 26% by radiologist 1 and in 62% by radiologist 2. The agreement between the ligament being torn or not had a kappa of 0.54 between radiologists. The agreements in torn or not torn between radiologists in the femoral, meniscal, and tibial sites were 0.14, 0.15, and 0.31. The intraobserver reliability by radiologist 1 for femoral, meniscal, and tibial tears was 0.04, 0.57, and 0.54 respectively. For radiologist 2, they were 0.75, 0.61, and 0.55. There was no learning effect noted. ALL tears are currently unable to be reliably identified as torn or intact on standard 1.5-tesla MRI sequences. Proper imaging sequences are of crucial importance to reliably follow these tears to determine their clinical significance. Level IV, therapeutic case series study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. On magnetic field strength effect on velocity and turbulence characterization using Phase-Contrast Magnetic Resonance Imaging (PC-MRI)

    NASA Astrophysics Data System (ADS)

    van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa

    2017-11-01

    Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.

  2. 1.5-Tesla Multiparametric-Magnetic Resonance Imaging for the detection of clinically significant prostate cancer.

    PubMed

    Popita, Cristian; Popita, Anca Raluca; Sitar-Taut, Adela; Petrut, Bogdan; Fetica, Bogdan; Coman, Ioan

    2017-01-01

    Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer. In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography-guided biopsy. The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively. Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease.

  3. An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.

    PubMed

    Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan

    2018-08-01

    Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med 80:833-839, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Value of 3 Tesla diffusion-weighted magnetic resonance imaging for assessing liver fibrosis

    PubMed Central

    Papalavrentios, Lavrentios; Sinakos, Emmanouil; Chourmouzi, Danai; Hytiroglou, Prodromos; Drevelegas, Konstantinos; Constantinides, Manos; Drevelegas, Antonios; Talwalkar, Jayant; Akriviadis, Evangelos

    2015-01-01

    Background Limited data are available regarding the role of magnetic resonance imaging (MRI), particularly the new generation 3 Tesla technology, and especially diffusion-weighted imaging (DWI) in predicting liver fibrosis. The aim of our pilot study was to assess the clinical performance of the apparent diffusion coefficient (ADC) of liver parenchyma for the assessment of liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Methods 18 patients with biopsy-proven NAFLD underwent DWI with 3 Tesla MRI. DWI was performed with single-shot echo-planar technique at b values of 0-500 and 0-1000 s/mm2. ADC was measured in four locations in the liver and the mean ADC value was used for analysis. Staging of fibrosis was performed according to the METAVIR system. Results The median age of patients was 52 years (range 23-73). The distribution of patients in different fibrosis stages was: 0 (n=1), 1 (n=7), 2 (n=1), 3 (n=5), 4 (n=4). Fibrosis stage was poorly associated with ADC at b value of 0-500 s/mm2 (r= -0.30, P=0.27). However it was significantly associated with ADC at b value of 0-1000 s/mm2 (r= -0.57, P=0.01). For this b value (0-1000 s/mm2) the area under receiver-operating characteristic curve was 0.93 for fibrosis stage ≥3 and the optimal ADC cut-off value was 1.16 ×10-3 mm2/s. Conclusion 3 Tesla DWI can possibly predict the presence of advanced fibrosis in patients with NAFLD. PMID:25608776

  5. A survey on abnormal uterine bleeding among radiographers with frequent MRI exposure using intrauterine contraceptive devices.

    PubMed

    Huss, A; Schaap, K; Kromhout, H

    2018-02-01

    Based on a previous case report of menometrorrhagia (prolonged/excessive uterine bleeding, occurring at irregular and/or frequent intervals) in MRI workers with intrauterine devices (IUDs), it was evaluated whether this association could be confirmed. A survey was performed among 381 female radiographers registered with their national association. Logistic regression was used to analyze associations of abnormal uterine bleeding with the frequency of working with MRI scanners, presence near the scanner/in the scanner room during image acquisition, and with scanner strength or type. A total of 68 women reported using IUDs, and 72 reported abnormal uterine bleeding. Compared with unexposed women not using IUDs, the odds ratio in women with IUDs working with MRI scanners was 2.09 (95% confidence interval 0.83-3.66). Associations were stronger if women working with MRI reported being present during image acquisition (odds ratio 3.43, 95% CI 1.26-9.34). Associations with scanner strength or type were not consistent. Radiographers using IUDs who are occupationally exposed to stray fields from MRI scanners report abnormal uterine bleeding more often than their co-workers without an IUD, or nonexposed co-workers with an IUD. In particular, radiographers present inside the scanner room during image acquisition showed an increased risk. Magn Reson Med 79:1083-1089, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Individual preferences modulate incentive values: Evidence from functional MRI

    PubMed Central

    Koeneke, Susan; Pedroni, Andreas F; Dieckmann, Anja; Bosch, Volker; Jäncke, Lutz

    2008-01-01

    Background In most studies on human reward processing, reward intensity has been manipulated on an objective scale (e.g., varying monetary value). Everyday experience, however, teaches us that objectively equivalent rewards may differ substantially in their subjective incentive values. One factor influencing incentive value in humans is branding. The current study explores the hypothesis that individual brand preferences modulate activity in reward areas similarly to objectively measurable differences in reward intensity. Methods A wheel-of-fortune game comprising an anticipation phase and a subsequent outcome evaluation phase was implemented. Inside a 3 Tesla MRI scanner, 19 participants played for chocolate bars of three different brands that differed in subjective attractiveness. Results Parametrical analysis of the obtained fMRI data demonstrated that the level of activity in anatomically distinct neural networks was linearly associated with the subjective preference hierarchy of the brands played for. During the anticipation phases, preference-dependent neural activity has been registered in premotor areas, insular cortex, orbitofrontal cortex, and in the midbrain. During the outcome phases, neural activity in the caudate nucleus, precuneus, lingual gyrus, cerebellum, and in the pallidum was influenced by individual preference. Conclusion Our results suggest a graded effect of differently preferred brands onto the incentive value of objectively equivalent rewards. Regarding the anticipation phase, the results reflect an intensified state of wanting that facilitates action preparation when the participants play for their favorite brand. This mechanism may underlie approach behavior in real-life choice situations. PMID:19032746

  7. Correlative Analysis of Vertebral Trabecular Bone Microarchitecture and Mechanical Properties: A Combined Ultra-high Field (7 Tesla) MRI and Biomechanical Investigation.

    PubMed

    Guenoun, Daphne; Fouré, Alexandre; Pithioux, Martine; Guis, Sandrine; Le Corroller, Thomas; Mattei, Jean-Pierre; Pauly, Vanessa; Guye, Maxime; Bernard, Monique; Chabrand, Patrick; Champsaur, Pierre; Bendahan, David

    2017-10-15

    High-resolution imaging and biomechanical investigation of ex-vivo vertebrae. The aim of this study was to assess bone microarchitecture of cadaveric vertebrae using ultra-high field (UHF) 7 Tesla magnetic resonance imaging (MRI) and to determine whether the corresponding microarchitecture parameters were related to bone mineral density (BMD) and bone strength assessed by dual-energy x-ray absorptiometry (DXA) and mechanical compression tests. Limitations of DXA for the assessment of bone fragility and osteoporosis have been recognized and criteria of microarchitecture alteration have been included in the definition of osteoporosis. Although vertebral fracture is the most common osteoporotic fracture, no study has assessed directly vertebral trabecular bone microarchitecture. BMD of 24 vertebrae (L2, L3, L4) from eight cadavers was investigated using DXA. The bone volume fraction (BVF), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) of each vertebra were quantified using UHF MRI. Measurements were performed by two operators to characterize the inter-rater reliability. The whole set of specimens underwent mechanical compression tests to failure and the corresponding failure stress was calculated. The inter-rater reliability for bone microarchitecture parameters was good with intraclass correlation coefficients ranging from 0.82 to 0.94. Failure load and stress were significantly correlated with BVF, Tb.Sp, and BMD (P < 0.05). Tb.Th was only correlated with the failure stress (P < 0.05). Multiple regression analysis demonstrated that the combination of BVF and BMD improved the prediction of the failure stress from an adjusted R = 0.384 for BMD alone to an adjusted R = 0.414. We demonstrated for the first time that the vertebral bone microarchitecture assessed with UHF MRI was significantly correlated with biomechanical parameters. Our data suggest that the multimodal assessment of BMD and trabecular bone microarchitecture with UHF MRI

  8. Creating a strategic management plan for magnetic resonance imaging (MRI) provision.

    PubMed

    Szczepura, A; Clark, M

    2000-09-01

    We were commissioned by the West Midlands NHS Regional Specialized Services Group (RSSG) to formulate a strategic plan for the management of Magnetic Resonance Imaging (MRI) within the West Midlands, UK. We needed to establish whether an increase in MRI provision was required, and if so to develop criteria to shape both the nature and location of MRI provision. We found that the UK had relatively low MRI provision per capita by international standards, and that the West Midlands region of the UK had less than the UK average level of MRI provision per capita. Within the region there was a 'mixed economy' of MRI provision involving fixed site scanners owned by the NHS and private companies, and private sector mobile MRI provision. There was little evidence of inappropriate MRI use, but considerable evidence of under-provision. Most MRI scanners in the region were heavily utilized, and average waiting times for MRI frequently exceeded guidelines (of a maximum 13-week wait for non-urgent MRI scans). Projections from NHS Trusts, MRI suppliers, and experts in the MRI field, led us to the conclusion that demand for MRI was likely to grow by between 12.5 and 18.5% per annum. This implies that 8-14 additional MRI scanners might be required within the West Midlands over the next 5 years, to meet existing, and rising demand for MRI. We therefore developed criteria (outlined in the paper) to enhance the productive and allocative efficiency of the deployment of MRI provision, whilst improving the configuration of MRI with reference to geographical equality of access to MRI.

  9. Split gradient coils for simultaneous PET-MRI

    PubMed Central

    Poole, Michael; Bowtell, Richard; Green, Dan; Pittard, Simon; Lucas, Alun; Hawkes, Rob; Carpenter, Adrian

    2015-01-01

    Combining positron emission tomography (PET) and MRI necessarily involves an engineering tradeoff as the equipment needed for the two modalities vies for the space closest to the region where the signals originate. In one recently described scanner configuration for simultaneous positron emission tomography–MRI, the positron emission tomography detection scintillating crystals reside in an 80-mm gap between the 2 halves of a 1-T split-magnet cryostat. A novel set of gradient and shim coils has been specially designed for this split MRI scanner to include an 110-mm gap from which wires are excluded so as not to interfere with positron detection. An inverse boundary element method was necessarily employed to design the three orthogonal, shielded gradient coils and shielded Z0 shim coil. The coils have been constructed and tested in the hybrid positron emission tomography-MRI system and successfully used in simultaneous positron emission tomography-MRI experiments. PMID:19780167

  10. 3 Tesla MRI detects deterioration in proximal femur microarchitecture and strength in long-term glucocorticoid users compared with controls.

    PubMed

    Chang, Gregory; Rajapakse, Chamith S; Regatte, Ravinder R; Babb, James; Saxena, Amit; Belmont, H Michael; Honig, Stephen

    2015-12-01

    Glucocorticoid-induced osteoporosis (GIO) is the most common secondary form of osteoporosis, and glucocorticoid users are at increased risk for fracture compared with nonusers. There is no established relationship between bone mineral density (BMD) and fracture risk in GIO. We used 3 Tesla (T) MRI to investigate how proximal femur microarchitecture is altered in subjects with GIO. This study had institutional review board approval. We recruited 6 subjects with long-term (> 1 year) glucocorticoid use (median age = 52.5 (39.2-58.7) years) and 6 controls (median age = 65.5 [62-75.5] years). For the nondominant hip, all subjects underwent dual-energy x-ray absorptiometry (DXA) to assess BMD and 3T magnetic resonance imaging (MRI, 3D FLASH) to assess metrics of bone microarchitecture and strength. Compared with controls, glucocorticoid users demonstrated lower femoral neck trabecular number (-50.3%, 1.12 [0.84-1.54] mm(-1) versus 2.27 [1.88-2.73] mm(-1) , P = 0.02), plate-to-rod ratio (-20.1%, 1.48 [1.39-1.71] versus 1.86 [1.76-2.20], P = 0.03), and elastic modulus (-64.8% to -74.8%, 1.54 [1.22-3.19] GPa to 2.31 [1.87-4.44] GPa versus 6.15 [5.00-7.09] GPa to 6.59 [5.58-7.31] GPa, P < 0.05), and higher femoral neck trabecular separation (+192%, 0.705 [0.462-1.00] mm versus 0.241 [0.194-0.327] mm, P = 0.02). There were no differences in femoral neck trabecular thickness (-2.7%, 0.193 [0.184-0.217] mm versus 0.199 [0.179-0.210] mm, P = 0.94) or femoral neck BMD T-scores (+20.7%, -2.1 [-2.8 to -1.4] versus -2.6 [-3.3 to -2.5], P = 0.24) between groups. The 3T MRI can potentially detect detrimental changes in proximal femur microarchitecture and strength in long-term glucocorticoid users. © 2015 Wiley Periodicals, Inc.

  11. 1.5-Tesla Multiparametric-Magnetic Resonance Imaging for the detection of clinically significant prostate cancer

    PubMed Central

    POPITA, CRISTIAN; POPITA, ANCA RALUCA; SITAR-TAUT, ADELA; PETRUT, BOGDAN; FETICA, BOGDAN; COMAN, IOAN

    2017-01-01

    Background and aim Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer. Methods In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography–guided biopsy. Results The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively. Conclusion Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease. PMID:28246496

  12. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    PubMed Central

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  13. k-t SENSE-accelerated Myocardial Perfusion MR Imaging at 3.0 Tesla - comparison with 1.5 Tesla

    PubMed Central

    Plein, Sven; Schwitter, Juerg; Suerder, Daniel; Greenwood, John P.; Boesiger, Peter; Kozerke, Sebastian

    2008-01-01

    Purpose To determine the feasibility and diagnostic accuracy of high spatial resolution myocardial perfusion MR at 3.0 Tesla using k-space and time domain undersampling with sensitivity encoding (k-t SENSE). Materials and Methods The study was reviewed and approved by the local ethic review board. k-t SENSE perfusion MR was performed at 1.5 Tesla and 3.0 Tesla (saturation recovery gradient echo pulse sequence, repetition time/echo time 3.0ms/1.0ms, flip angle 15°, 5x k-t SENSE acceleration, spatial resolution 1.3×1.3×10mm3). Fourteen volunteers were studied at rest and 37 patients during adenosine stress. In volunteers, comparison was also made with standard-resolution (2.5×2.5×10mm3) 2x SENSE perfusion MR at 3.0 Tesla. Image quality, artifact scores, signal-to-noise ratios (SNR) and contrast-enhancement ratios (CER) were derived. In patients, diagnostic accuracy of visual analysis to detect >50% diameter stenosis on quantitative coronary angiography was determined by receiver-operator-characteristics (ROC). Results In volunteers, image quality and artifact scores were similar for 3.0 Tesla and 1.5 Tesla, while SNR was higher (11.6 vs. 5.6) and CER lower (1.1 vs. 1.5, p=0.012) at 3.0 Tesla. Compared with standard-resolution perfusion MR, image quality was higher for k-t SENSE (3.6 vs. 3.1, p=0.04), endocardial dark rim artifacts were reduced (artifact thickness 1.6mm vs. 2.4mm, p<0.001) and CER similar. In patients, area under the ROC curve for detection of coronary stenosis was 0.89 and 0.80, p=0.21 for 3.0 Tesla and 1.5 Tesla, respectively. Conclusions k-t SENSE accelerated high-resolution perfusion MR at 3.0 Tesla is feasible with similar artifacts and diagnostic accuracy as at 1.5 Tesla. Compared with standard-resolution perfusion MR, image quality is improved and artifacts are reduced. PMID:18936311

  14. The Function Biomedical Informatics Research Network Data Repository

    PubMed Central

    Keator, David B.; van Erp, Theo G.M.; Turner, Jessica A.; Glover, Gary H.; Mueller, Bryon A.; Liu, Thomas T.; Voyvodic, James T.; Rasmussen, Jerod; Calhoun, Vince D.; Lee, Hyo Jong; Toga, Arthur W.; McEwen, Sarah; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Bockholt, H. Jeremy; Gadde, Syam; Preda, Adrian; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2015-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  15. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report.

    PubMed

    Steinmeier, R; Fahlbusch, R; Ganslandt, O; Nimsky, C; Buchfelder, M; Kaus, M; Heigl, T; Lenz, G; Kuth, R; Huk, W

    1998-10-01

    Intraoperative magnetic resonance imaging (MRI) is now available with the General Electric MRI system for dedicated intraoperative use. Alternatively, non-dedicated MRI systems require fewer specific adaptations of instrumentation and surgical techniques. In this report, clinical experiences with such a system are presented. All patients were surgically treated in a "twin operating theater," consisting of a conventional operating theater with complete neuronavigation equipment (StealthStation and MKM), which allowed surgery with magnetically incompatible instruments, conventional instrumentation and operating microscope, and a radiofrequency-shielded operating room designed for use with an intraoperative MRI scanner (Magnetom Open; Siemens AG, Erlangen, Germany). The Magnetom Open is a 0.2-T MRI scanner with a resistive magnet and specific adaptations that are necessary to integrate the scanner into the surgical environment. The operating theaters lie close together, and patients can be intraoperatively transported from one room to the other. This retrospective analysis includes 55 patients with cerebral lesions, all of whom were surgically treated between March 1996 and September 1997. Thirty-one patients with supratentorial tumors were surgically treated (with navigational guidance) in the conventional operating room, with intraoperative MRI for resection control. For 5 of these 31 patients, intraoperative resection control revealed significant tumor remnants, which led to further tumor resection guided by the information provided by intraoperative MRI. Intraoperative MRI resection control was performed in 18 transsphenoidal operations. In cases with suspected tumor remnants, the surgeon reexplored the sellar region; additional tumor tissue was removed in three of five cases. Follow-up scans were obtained for all patients 1 week and 2 to 3 months after surgery. For 14 of the 18 patients, the images obtained intraoperatively were comparable to those obtained after

  16. Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.

    PubMed

    Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H

    2009-01-01

    Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.

  17. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI.

    PubMed

    Chan, Kevin C; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X

    2014-12-09

    Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  18. Long-Term Effects of Neonatal Hypoxia-Ischemia on Structural and Physiological Integrity of the Eye and Visual Pathway by Multimodal MRI

    PubMed Central

    Chan, Kevin C.; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X.

    2015-01-01

    Purpose. Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Methods. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Results. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. Conclusions. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. PMID:25491295

  19. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooley, R.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  20. Tesla - A Flash of a Genius

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2005-10-01

    This book, which is entirely dedicated to the inventions of scientist Nikola Tesla, is divided into three parts: a) all the most important innovative technological creations from the alternate current to the death ray, Tesla research in fundamental physics with a particular attention to the concept of "ether", ball lightning physics; b) the life and the bright mind of Nikola Tesla and the reasons why some of his most recent findings were not accepted by the establishment; c) a critical discussion of the most important work by Tesla followers.

  1. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla.

    PubMed

    Shajan, G; Mirkes, Christian; Buckenmaier, Kai; Hoffmann, Jens; Pohmann, Rolf; Scheffler, Klaus

    2016-02-01

    A multinuclei imaging setup with the capability to acquire both sodium ((23) Na) and proton ((1) H) signals at 9.4 Tesla is presented. The main objective was to optimize coil performance at the (23) Na frequency while still having the ability to acquire satisfactory (1) H images. The setup consisted of a combination of three radio frequency (RF) coils arranged in three layers: the innermost layer was a 27-channel (23) Na receive helmet which was surrounded by a four-channel (23) Na transceiver array. The outer layer consisted of a four-channel (1) H dipole array for B0 shimming and anatomical localization. Transmit and receive performance of the (23) Na arrays was compared to a single-tuned (23) Na birdcage resonator. While the transmit efficiency of the (23) Na transceiver array was comparable to the birdcage, the (23) Na receive array provided substantial signal-to-noise ratio (SNR) gain near the surface and comparable SNR in the center. The utility of this customized setup was demonstrated by (23) Na images of excellent quality. High SNR, efficient transmit excitation and B0 shimming capability can be achieved for (23) Na MRI at 9.4T using novel coil combination. This RF configuration is easily adaptable to other multinuclei applications at ultra high field (≥ 7T). © 2015 Wiley Periodicals, Inc.

  2. An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos

    2012-04-15

    Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; andmore » (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.« less

  3. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    Imaging (EP-JRESI); Citrate, Choline, Creatine , Spermine, 3Tesla MRI scanner, Endo-rectal MR coil, WET Water Suppression, prostate cancer (PCa...spectroscopic imaging are due to the overlap of metabolite resonances, quantifying few metabolites only (citrate (Cit), choline (Ch), creatine (Cr...concentrations of citrate (Cit), creatine (Cr), choline (Ch) and polyamines that are used to detect and diagnose PCa (2). The challenging task in 1D MRS

  4. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 Tesla.

    PubMed

    Laistler, Elmar; Poirier-Quinot, Marie; Lambert, Simon A; Dubuisson, Rose-Marie; Girard, Olivier M; Moser, Ewald; Darrasse, Luc; Ginefri, Jean-Christophe

    2015-02-01

    To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. In vivo skin images with isotropic 80 μm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting. © 2013 Wiley Periodicals, Inc.

  5. An Open-Source Hardware and Software System for Acquisition and Real-Time Processing of Electrophysiology during High Field MRI

    PubMed Central

    Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio

    2008-01-01

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038

  6. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    PubMed

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  7. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  8. Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 Tesla.

    PubMed

    Yao, Xiu-Zhong; Kuang, Tiantao; Wu, Li; Feng, Hao; Liu, Hao; Cheng, Wei-Zhong; Rao, Sheng-Xiang; Wang, He; Zeng, Meng-Su

    2014-01-01

    We aimed to optimize diffusion-weighted imaging (DWI) acquisitions for normal pancreas at 3.0 Tesla. Thirty healthy volunteers were examined using four DWI acquisition techniques with b values of 0 and 600 s/mm2 at 3.0 Tesla, including breath-hold DWI, respiratory-triggered DWI, respiratory-triggered DWI with inversion recovery (IR), and free-breathing DWI with IR. Artifacts, signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) of normal pancreas were statistically evaluated among different DWI acquisitions. Statistical differences were noticed in artifacts, SNR, and ADC values of normal pancreas among different DWI acquisitions by ANOVA (P <0.001). Normal pancreas imaging had the lowest artifact in respiratory-triggered DWI with IR, the highest SNR in respiratory-triggered DWI, and the highest ADC value in free-breathing DWI with IR. The head, body, and tail of normal pancreas had statistically different ADC values on each DWI acquisition by ANOVA (P < 0.05). The highest image quality for normal pancreas was obtained using respiratory-triggered DWI with IR. Normal pancreas displayed inhomogeneous ADC values along the head, body, and tail structures.

  9. Demystifying liver iron concentration measurements with MRI.

    PubMed

    Henninger, B

    2018-06-01

    This Editorial comment refers to the article: Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy. D'Assignies G, et al. Eur Radiol Nov 2017. • MRI is a widely accepted reliable tool to determine liver iron concentration. • MRI cannot measure iron directly, it needs calibration. • Calibration curves for 3.0T are rare in the literature. • The study by d'Assignies et al. provides valuable information on this topic. • Evaluation of liver iron overload should no longer be restricted to experts.

  10. Using MRI to detect and differentiate calcium oxalate and calcium hydroxyapatite crystals in air-bubble-free phantom

    PubMed Central

    Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M.

    2015-01-01

    Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 Tesla scanner. Calcium micro-crystals sizes ranged from 200 – 500 microns were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystals areas were determined by setting the threshold relative to agarose signal. The ratio of crystals areas were calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystals ratios obtained between gradient echo and T2W images. PMID:26392170

  11. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  12. Design and assembly of an 8 tesla whole-body MR scanner.

    PubMed

    Robitaille, P M; Warner, R; Jagadeesh, J; Abduljalil, A M; Kangarlu, A; Burgess, R E; Yu, Y; Yang, L; Zhu, H; Jiang, Z; Bailey, R E; Chung, W; Somawiharja, Y; Feynan, P; Rayner, D L

    1999-01-01

    The purpose of this report is to describe the design and construction of an 8 T/80 cm whole-body MRI system operating at 340 MHz. The 8 T/80 cm magnet was constructed from 414 km of niobium titanium superconducting wire. The winding of this wire on four aluminum formers resulted in a total inductance of 4,155 H. Gradient subsystems included either a body gradient or a head gradient along with a removable shim insert. The magnet and gradient subsystems were interfaced to two spectrometers. These provided the control of the gradient amplifiers and the two sets of four RF power amplifiers. The latter provide in excess of 8 kW of RF power from 10 to 140 MHz and 10 kW of RF power from 245 to 345 MHz. A dedicated computer-controlled patient table was designed and assembled. The entire system is located in a clinical setting, facilitating patient-based studies. The 8 T/80 cm magnet was energized without complication and achieved persistent operation using 198.9 A of current, thereby storing 81.5 MJ of magnetic energy. Exceptional performance was observed for nearly all components both in isolation and when combined within the complete system. An 8 T/80 cm MRI system has been assembled. The magnet subsystem is extremely stable and is characterized by good homogeneity and acceptable boil-off rates.

  13. Design analysis of an MPI human functional brain scanner

    PubMed Central

    Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.

    2017-01-01

    MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130

  14. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  15. Decreased Retinal-Choroidal Blood Flow in Retinitis Pigmentosa as measured by MRI

    PubMed Central

    Zhang, Yi; Harrison, Joseph M; Nateras, Oscar San Emeterio; Chalfin, Steven; Duong, Timothy Q

    2013-01-01

    Purpose To evaluate retinal and choroidal blood flow (BF) using high-resolution magnetic resonance imaging (MRI) as well as visual function measured by the electroretinogram (ERG) in patients with retinitis pigmentosa (RP). Methods MRI studies were performed in 6 RP patients (29-67 years) and 5 healthy volunteers (29-64 years) on a 3-Tesla scanner with a custom-made surface coil. Quantitative BF was measured using the pseudo-continuous arterial-spin-labeling technique at 0.5x0.8x6.0mm. Full-field ERGs of all patients were recorded. Amplitudes and implicit times of standard ERGs were analyzed. Results Basal BF in the posterior retinal-choroid was 142±16 ml/100ml/min (or 1.14±0.13 μl/mm2/min) in the control group and was 70±19 ml/100ml/min (or 0.56±0.15 μl/mm2/min) in the RP group. Retinal-choroidal BF was significantly reduced by 52±8% in RP patients compared to controls (P<0.05). ERG a- and b-wave amplitudes of RP patients were reduced and b-wave implicit times were delayed. There were statistically significant correlations between a-wave amplitude and BF value (r=0.9, P<0.05) but not between b-wave amplitude and BF value (r =0.7, P=0.2). Conclusions This study demonstrates a novel non-invasive MRI approach to measure quantitative retinal and choroidal BF in RP patients. We found that retinal-choroidal BF was markedly reduced and significantly correlated with reduced amplitudes of the a-wave of the standard combined ERG. PMID:23408312

  16. 3 Tesla MRI Detects Deterioration in Proximal Femur Microarchitecture and Strength in Long-term Glucocorticoid Users Compared With Controls

    PubMed Central

    Chang, Gregory; Rajapakse, Chamith S.; Regatte, Ravinder R.; Babb, James; Saxena, Amit; Belmont, H. Michael; Honig, Stephen

    2015-01-01

    Background Glucocorticoid-induced osteoporosis (GIO) is the most common secondary form of osteoporosis, and glucocorticoid users are at increased risk for fracture compared with nonusers. There is no established relationship between bone mineral density (BMD) and fracture risk in GIO. We used 3 Tesla (T) MRI to investigate how proximal femur microarchitecture is altered in subjects with GIO. Methods This study had institutional review board approval. We recruited 6 subjects with long-term (> 1 year) glucocorticoid use (median age = 52.5 (39.2–58.7) years) and 6 controls (median age = 65.5 [62–75.5] years). For the nondominant hip, all subjects underwent dual-energy x-ray absorptiometry (DXA) to assess BMD and 3T magnetic resonance imaging (MRI, 3D FLASH) to assess metrics of bone microarchitecture and strength. Results Compared with controls, glucocorticoid users demonstrated lower femoral neck trabecular number (−50.3%, 1.12 [0.84–1.54] mm−1 versus 2.27 [1.88–2.73] mm−1, P = 0.02), plate-to-rod ratio (−20.1%, 1.48 [1.39–1.71] versus 1.86 [1.76–2.20], P = 0.03), and elastic modulus (−64.8% to −74.8%, 1.54 [1.22–3.19] GPa to 2.31 [1.87–4.44] GPa versus 6.15 [5.00–7.09] GPa to 6.59 [5.58–7.31] GPa, P < 0.05), and higher femoral neck trabecular separation (+192%, 0.705 [0.462–1.00] mm versus 0.241 [0.194–0.327] mm, P = 0.02). There were no differences in femoral neck trabecular thickness (−2.7%, 0.193 [0.184–0.217] mm versus 0.199 [0.179–0.210] mm, P = 0.94) or femoral neck BMD T-scores (+20.7%, −2.1 [−2.8 to −1.4] versus −2.6 [−3.3 to −2.5], P = 0.24) between groups. Conclusion The 3T MRI can potentially detect detrimental changes in proximal femur microarchitecture and strength in long-term glucocorticoid users. PMID:26073878

  17. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  18. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  19. MRI compatibility of robot actuation techniques--a comparative study.

    PubMed

    Fischer, Gregory S; Krieger, Axel; Iordachita, Iulian; Csoma, Csaba; Whitcomb, Louis L; Gabor, Fichtinger

    2008-01-01

    This paper reports an experimental evaluation of the following three different MRI-compatible actuators: a Shinsei ultrasonic motor a Nanomotion ultrasonic motor and a pneumatic cylinder actuator. We report the results of a study comparing the effect of these actuators on the signal to noise ratio (SNR) of MRJ images under a variety of experimental conditions. Evaluation was performed with the controller inside and outside the scanner room and with both 1.5T and 3T MRI scanners. Pneumatic cylinders function with no loss of SNR with controller both inside and outside of the scanner room. The Nanomotion motor performs with moderate loss of SNR when moving during imaging. The Shinsei is unsuitable for motion during imaging. All may be used when motion is appropriately interleaved with imaging cycles.

  20. Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet.

    PubMed

    Terada, Yasuhiko; Kono, Saki; Uchiumi, Tomomi; Kose, Katsumi; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Yoshioka, Hiroshi

    2014-01-01

    The purpose of this study was to improve the reliability and validity of skeletal age assessment using an open and compact pediatric hand magnetic resonance (MR) imaging scanner. We used such a scanner with 0.3-tesla permanent magnet to image the left hands of 88 healthy children (aged 3.4 to 15.7 years, mean 8.8 years), and 3 raters (2 orthopedic specialists and a radiologist) assessed skeletal age using those images. We measured the strength of agreement in ratings by values of weighted Cohen's κ and the proportion of cases excluded from rating because of motion artifact and inappropriate positioning. We compared the current results with those of a previous study in which 93 healthy children (aged 4.1 to 16.4 years, mean 9.7 years) were examined with an adult hand scanner. The κ values between raters exceeded 0.80, which indicates almost perfect agreement, and most were higher than those of the previous study. The proportion of cases excluded from rating because of motion artifact or inappropriate positioning was also reduced. The results indicate that use of the compact pediatric hand scanner improved the reliability and validity of skeletal age assessments.

  1. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  2. WE-DE-206-01: MRI Signal in Biological Tissues - Proton, Spin, T1, T2, T2*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorny, K.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  3. Artefacts induced by coiled intracranial aneurysms on 3.0-Tesla versus 1.5-Tesla MR angiography--An in vivo and in vitro study.

    PubMed

    Schaafsma, Joanna D; Velthuis, Birgitta K; Vincken, Koen L; de Kort, Gerard A P; Rinkel, Gabriel J E; Bartels, Lambertus W

    2014-05-01

    To compare metal-induced artefacts from coiled intracranial aneurysms on 3.0-Tesla and 1.5-Tesla magnetic resonance angiography (MRA), since concerns persist on artefact enlargement at 3.0Tesla. We scanned 19 patients (mean age 53; 16 women) with 20 saccular aneurysms treated with coils only, at 1.5 and 3.0Tesla according to standard clinical 3D TOF-MRA protocols containing a shorter echo-time but weaker read-out gradient at 3.0Tesla in addition to intra-arterial digital subtraction angiography (IA-DSA). Per modality two neuro-radiologists assessed the occlusion status, measured residual flow, and indicated whether coil artefacts disturbed this assessment on MRA. We assessed relative risks for disturbance by coil artefacts, weighted kappa's for agreement on occlusion levels, and we compared remnant sizes. For artefact measurements, a coil model was created and scanned with the same protocols followed by 2D MR scans with variation of echo-time and read-out gradient strength. Coil artefacts disturbed assessments less frequently at 3.0Tesla than at 1.5Tesla (RR: 0.3; 95%CI: 0.1-0.8). On 3.0-Tesla MRA, remnants were larger than on 1.5-Tesla MRA (difference: 0.7mm; 95%CI: 0.3-1.1) and larger than on IA-DSA (difference: 1.0mm; 95%CI: 0.6-1.5) with similar agreement on occlusion levels with IA-DSA for both field strengths (κ 0.53; 95%CI: 0.23-0.84 for 1.5-Tesla MRA and IA-DSA; κ 0.47; 95%CI: 0.19-0.76 for 3.0-Tesla MRA and IA-DSA). Coil model artefacts were smaller at 3.0Tesla than at 1.5Tesla. The echo-time influenced artefact size more than the read-out gradient. Artefacts were not larger, but smaller at 3.0Tesla because a shorter echo-time at 3.0Tesla negated artefact enlargement. Despite smaller artefacts and larger remnants at 3.0Tesla, occlusion levels were similar for both field strengths. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Amide proton transfer magnetic resonance imaging of Alzheimer's disease at 3.0 Tesla: a preliminary study.

    PubMed

    Wang, Rui; Li, Sa-Ying; Chen, Min; Zhou, Jin-Yuan; Peng, Dan-Tao; Zhang, Chen; Dai, Yong-Ming

    2015-03-05

    Amide proton transfer (APT) imaging has recently emerged as an important contrast mechanism for magnetic resonance imaging (MRI) in the field of molecular and cellular imaging. The aim of this study was to evaluate the feasibility of APT imaging to detect cerebral abnormality in patients with Alzheimer's disease (AD) at 3.0 Tesla. Twenty AD patients (9 men and 11 women; age range, 67-83 years) and 20 age-matched normal controls (11 men and 9 women; age range, 63-82 years) underwent APT and traditional MRI examination on a 3.0 Tesla MRI system. The magnetic resonance ratio asymmetry (MTR asym ) values at 3.5 ppm of bilateral hippocampi (Hc), temporal white matter regions, occipital white matter regions, and cerebral peduncles were measured on oblique axial APT images. MTR asym (3.5 ppm) values of the cerebral structures between AD patients and control subjects were compared with independent samples t-test. Controlling for age, partial correlation analysis was used to investigate the associations between mini-mental state examination (MMSE) and the various MRI measures among AD patients. Compared with normal controls, MTR asym (3.5 ppm) values of bilateral Hc were significantly increased in AD patients (right 1.24% ± 0.21% vs. 0.83% ± 0.19%, left 1.18% ± 0.18% vs. 0.80%± 0.17%, t = 3.039, 3.328, P = 0.004, 0.002, respectively). MTR asym (3.5 ppm) values of bilateral Hc were significantly negatively correlated with MMSE (right r = -0.559, P = 0.013; left r = -0.461, P = 0.047). Increased MTR asym (3.5 ppm) values of bilateral Hc in AD patients and its strong correlations with MMSE suggest that APT imaging could potentially provide imaging biomarkers for the noninvasive molecular diagnosis of AD.

  5. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results

    PubMed Central

    Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo

    2013-01-01

    In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760

  6. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  7. Exposure to MRI-related magnetic fields and vertigo in MRI workers.

    PubMed

    Schaap, Kristel; Portengen, Lützen; Kromhout, Hans

    2016-03-01

    Vertigo has been reported by people working around magnetic resonance imaging (MRI) scanners and was found to increase with increasing strength of scanner magnets. This suggests an association with exposure to static magnetic fields (SMF) and/or motion-induced time-varying magnetic fields (TVMF). This study assessed the association between various metrics of shift-long exposure to SMF and TVMF and self-reported vertigo among MRI workers. We analysed 358 shifts from 234 employees at 14 MRI facilities in the Netherlands. Participants used logbooks to report vertigo experienced during the work day at the MRI facility. In addition, personal exposure to SMF and TVMF was measured during the same shifts, using portable magnetic field dosimeters. Vertigo was reported during 22 shifts by 20 participants and was significantly associated with peak and time-weighted average (TWA) metrics of SMF as well as TVMF exposure. Associations were most evident with full-shift TWA TVMF exposure. The probability of vertigo occurrence during a work shift exceeded 5% at peak exposure levels of 409 mT and 477 mT/s and at full-shift TWA levels of 3 mT and 0.6 mT/s. These results confirm the hypothesis that vertigo is associated with exposure to MRI-related SMF and TVMF. Strong correlations between various metrics of shift-long exposure make it difficult to disentangle the effects of SMF and TVMF exposure, or identify the most relevant exposure metric. On the other hand, this also implies that several metrics of shift-long exposure to SMF and TVMF should perform similarly in epidemiological studies on MRI-related vertigo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  9. Ubiquitous remote operation collaborative interface for MRI scanners

    NASA Astrophysics Data System (ADS)

    Morris, H. Douglas

    2001-05-01

    We have developed a remote control interface for research class magnetic resonance imaging (MRI) spectrometers. The goal of the interface is to provide a better collaborative environment for geographically dispersed researchers and a tool that can teach students of medical imaging in a network-based laboratory using state-of-the-art MR instrumentation that would not otherwise be available. The interface for the remote operator(s) is now ubiquitous web browser, which was chosen for the ease of controlling the operator interface, the display of both image and text information, and the wide availability on many computer platforms. The remote operator is presented with an active display in which they may select and control most of the parameters in the MRI experiment. The MR parameters are relayed via web browser to a CGI program running in a standard web server, which passes said parameters to the MRI manufacturers control software. The data returned to the operator(s) consists of the parameters used in acquiring that image, a flat 8-bit grayscale GIF representation of the image, and a 16-bit grayscale image that can be viewed by an appropriate application. It is obvious that the utility of this interface would be helpful for researchers of regional and national facilities to more closely collaborate with colleagues across their region, the nation, or the world. And medical imaging students can put much of their classroom discussions into practice on machinery that would not normally be available to them.

  10. Developments of sulcal pattern and subcortical structures of the forebrain in cynomolgus monkey fetuses: 7-tesla magnetic resonance imaging provides high reproducibility of gross structural changes.

    PubMed

    Sawada, Kazuhiko; Sun, Xue-Zhi; Fukunishi, Katsuhiro; Kashima, Masatoshi; Sakata-Haga, Hiromi; Tokado, Hiroshi; Aoki, Ichio; Fukui, Yoshihiro

    2009-09-01

    The aim of this study was to spatio-temporally clarify gross structural changes in the forebrain of cynomolgus monkey fetuses using 7-tesla magnetic resonance imaging (MRI). T(1)-weighted coronal, horizontal, and sagittal MR slices of fixed left cerebral hemispheres were obtained from one male fetus at embryonic days (EDs) 70-150. The timetable for fetal sulcation by MRI was in good agreement with that by gross observations, with a lag time of 10-30 days. A difference in detectability of some sulci seemed to be associated with the length, depth, width, and location of the sulci. Furthermore, MRI clarified the embryonic days of the emergence of the callosal (ED 70) and circular (ED 90) sulci, which remained unpredictable under gross observations. Also made visible by the present MRI were subcortical structures of the forebrain such as the caudate nucleus, globus pallidus, putamen, major subdivisions of the thalamus, and hippocampal formation. Their adult-like features were formed by ED 100, corresponding to the onset of a signal enhancement in the gray matter, which reflects neuronal maturation. The results reveal a highly reproducible level of gross structural changes in the forebrain using a high spatial 7-tesla MRI. The present MRI study clarified some changes that are difficult to demonstrate nondestructively using only gross observations, for example, the development of cerebral sulci located on the deep portions of the cortex, as well as cortical and subcortical neuronal maturation.

  11. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  12. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes

    PubMed Central

    Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768

  13. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    PubMed

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  14. Cross-vendor harmonization of T2 -relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation.

    PubMed

    Jiang, Dengrong; Liu, Peiying; Li, Yang; Mao, Deng; Xu, Cuimei; Lu, Hanzhang

    2018-09-01

    Cerebral venous oxygenation (Y v ) is an important physiological parameter and has potential clinical application in many brain diseases. T 2 -relaxation-under-spin-tagging (TRUST) is a commonly used MRI method to measure Y v . Harmonization of this technique across MRI vendors is important for dissemination and multicenter studies of brain oxygenation and metabolism as a disease biomarker. TRUST pulse sequence components and imaging parameters were carefully matched between two major MRI vendors, Philips and Siemens. Each subject (N = 10) was scanned on both scanners within a 2.5-h period. On each scanner, the subject was scanned in two sessions to assess intersession reproducibility. A hyperoxia challenge was also included in both sessions and on both scanners to evaluate the sensitivity of the technique to Y v changes. Measured Y v values, confidence interval of Y v estimates ( εYv), as well as intrasession and intersession coefficient of variation (CoV) of Y v , were compared between the two scanners. Y v measured on the two vendors were highly compatible and strongly correlated (R 2  = 0.957). Y v changes associated with hyperoxia challenge were significant on both scanners (P < 0.001) and were also correlated across scanners (P = 0.007). Intrasession and intersession CoV of measured Y v were less than 3% and showed no difference between scanners. εYv were less than 1% on both scanners and showed no difference between scanners when echo times were matched on the two scanners. This work suggests that harmonized TRUST MRI can yield highly compatible Y v measurements across different vendors. Magn Reson Med 80:1125-1131, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  15. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    PubMed

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  17. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status

  18. Measurement of the permeability, perfusion, and histogram characteristics in relapsing-remitting multiple sclerosis using dynamic contrast-enhanced MRI with extended Tofts linear model.

    PubMed

    Yin, Ping; Xiong, Hua; Liu, Yi; Sah, Shambhu K; Zeng, Chun; Wang, Jingjie; Li, Yongmei; Hong, Nan

    2018-01-01

    To investigate the application value of using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with extended Tofts linear model for relapsing-remitting multiple sclerosis (RRMS) and its correlation with expanded disability status scale (EDSS) scores and disease duration. Thirty patients with multiple sclerosis (MS) underwent conventional magnetic resonance imaging (MRI) and DCE-MRI with a 3.0 Tesla MR scanner. An extended Tofts linear model was used to quantitatively measure MR imaging biomarkers. The histogram parameters and correlation among imaging biomarkers, EDSS scores, and disease duration were also analyzed. The MR imaging biomarkers volume transfer constant (K trans ), volume of the extravascular extracellular space per unit volume of tissue (Ve), fractional plasma volume (V p ), cerebral blood flow (CBF), and cerebral blood volume (CBV) of contrast-enhancing (CE) lesions were significantly higher (P < 0.05) than those of nonenhancing (NE) lesions and normal-appearing white matter (NAWM) regions. The skewness of Ve value in CE lesions was more close to normal distribution. There was no significant correlation among the biomarkers with the EDSS scores and disease duration (P > 0.05). Our study demonstrates that the DCE-MRI with the extended Tofts linear model can measure the permeability and perfusion characteristic in MS lesions and in NAWM regions. The K trans , Ve, Vp, CBF, and CBV of CE lesions were significantly higher than that of NE lesions. The skewness of Ve value in CE lesions was more close to normal distribution, indicating that the histogram can be helpful to distinguish the pathology of MS lesions.

  19. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management.

    PubMed

    Sinnecker, Tim; Kuchling, Joseph; Dusek, Petr; Dörr, Jan; Niendorf, Thoralf; Paul, Friedemann; Wuerfel, Jens

    2015-01-01

    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management.

  20. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using (31) P gradient-Echo MRI at 7 Tesla.

    PubMed

    Schmid, Albrecht Ingo; Meyerspeer, Martin; Robinson, Simon Daniel; Goluch, Sigrun; Wolzt, Michael; Fiedler, Georg Bernd; Bogner, Wolfgang; Laistler, Elmar; Krššák, Martin; Moser, Ewald; Trattnig, Siegfried; Valkovič, Ladislav

    2016-06-01

    Simultaneous acquisition of spatially resolved (31) P-MRI data for evaluation of muscle specific energy metabolism, i.e., PCr and pH kinetics. A three-dimensional (3D) gradient-echo sequence for multiple frequency-selective excitations of the PCr and Pi signals in an interleaved sampling scheme was developed and tested at 7 Tesla (T). The pH values were derived from the chemical shift-induced phase difference between the resonances. The achieved spatial resolution was ∼2 mL with image acquisition time below 6 s. Ten healthy volunteers were studied performing plantar flexions during the delay between (31) P-MRI acquisitions, yielding a temporal resolution of 9-10 s. Signal from anatomically matched regions of interest had sufficient signal-to-noise ratio to allow single-acquisition PCr and pH quantification. The Pi signal was clearly detected in voxels of actively exercising muscles. The PCr depletions were in gastrocnemius 42 ± 14% (medialis), 48 ± 17% (lateralis) and in soleus 20 ± 11%. The end exercise pH values were 6.74 ± 0.18 and 6.65 ± 0.27 for gastrocnemius medialis and lateralis, respectively, and 6.96 ± 0.12 for soleus muscle. Simultaneous acquisition of PCr and Pi images with high temporal resolution, suitable for measuring PCr and pH kinetics in exercise-recovery experiments, was demonstrated at 7T. This study presents a fast alternative to MRS for quantifying energy metabolism of posterior muscle groups of the lower leg. Magn Reson Med 75:2324-2331, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation.

    PubMed

    Kim, Kyung Ah; Park, Mi-Suk; Kim, In-Seong; Kiefer, Berthold; Chung, Woo-Suk; Kim, Myeong-Jin; Kim, Ki Whang

    2012-08-01

    To quantify liver T1 relaxation times before and after oxygen inhalation in patients with and without liver cirrhosis using a 3 Tesla (T) MRI. Institutional Review Board approval and written informed consent were obtained. Ninety-two noncirrhotic patients and 87 patients with hepatitis B viral liver cirrhosis (72 Child-Pugh class A and 15 Child-Pugh class B or C) underwent MRI with a 3.0T system before and after the supply of 100% oxygen at a rate of 15 L/min by means of a nonrebreather ventilation mask for 3 min. T1 maps were acquired using three-dimensional spoiled gradient echo sequences with two different flip angles (2° and 14°) and a fixed TR/TE (2.54 ms/0.95 ms). Liver T1 values were obtained using a T1 processing tool (MapIT software). The mean baseline T1 values of three groups (control, Child-Pugh class A, and Child-Pugh class B/C) were compared using an analysis of variance test. Liver T1 value before and after oxygenation was compared using a paired t-test for each group. The baseline liver T1 value was significantly higher in the control group (941 ± 136 ms) than in Child-Pugh A (858 ± 143 ms) and Child-Pugh B/C (783 ± 164 ms) group (P < 0.001 and P < 0.0001). The reduction in the liver T1 value after oxygen inhalation was significant in the control group (P = 0.012) but not significant in Child-Pugh class A (P = 0.079) and Child-Pugh class B/C (P = 0.752). The baseline liver T1 relaxation time was significantly different between the patients with and without liver cirrhosis. The shortening effect of oxygen on the liver T1 value was significant in the control group but not in the cirrhotic patients. Copyright © 2012 Wiley Periodicals, Inc.

  2. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  3. Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions

    PubMed Central

    Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor

    2013-01-01

    Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480

  4. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.

    PubMed

    Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L

    2007-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.

  5. High resolution pituitary gland MRI at 7.0 tesla: a clinical evaluation in Cushing's disease.

    PubMed

    de Rotte, Alexandra A J; Groenewegen, Amy; Rutgers, Dik R; Witkamp, Theo; Zelissen, Pierre M J; Meijer, F J Anton; van Lindert, Erik J; Hermus, Ad; Luijten, Peter R; Hendrikse, Jeroen

    2016-01-01

    To evaluate the detection of pituitary lesions at 7.0 T compared to 1.5 T MRI in 16 patients with clinically and biochemically proven Cushing's disease. In seven patients, no lesion was detected on the initial 1.5 T MRI, and in nine patients it was uncertain whether there was a lesion. Firstly, two readers assessed both 1.5 T and 7.0 T MRI examinations unpaired in a random order for the presence of lesions. Consensus reading with a third neuroradiologist was used to define final lesions in all MRIs. Secondly, surgical outcome was evaluated. A comparison was made between the lesions visualized with MRI and the lesions found during surgery in 9/16 patients. The interobserver agreement for lesion detection was good at 1.5 T MRI (κ = 0.69) and 7.0 T MRI (κ = 0.62). In five patients, both the 1.5 T and 7.0 T MRI enabled visualization of a lesion on the correct side of the pituitary gland. In three patients, 7.0 T MRI detected a lesion on the correct side of the pituitary gland, while no lesion was visible at 1.5 T MRI. The interobserver agreement of image assessment for 7.0 T MRI in patients with Cushing's disease was good, and lesions were detected more accurately with 7.0 T MRI. Interobserver agreement for lesion detection on 1.5 T MRI was good; Interobserver agreement for lesion detection on 7.0 T MRI was good; 7.0 T enabled confirmation of unclear lesions at 1.5 T; 7.0 T enabled visualization of lesions not visible at 1.5 T.

  6. [Clinical MR at 3 Tesla: current status].

    PubMed

    Baudendistel, K T; Heverhagen, J T; Knopp, M V

    2004-01-01

    Clinical MRI is mostly performed at field strengths up to 1.5 Tesla (T). Recently, approved clinical whole-body MR-systems with a field strength of 3 T became available. Its installation base is more rapidly growing than anticipated. While site requirements and operation of these systems do not differ substantially from systems with lower field strength, there are differences in practical applications. Imaging applications can use the gain in signal-to-noise for increased spatial resolution or gain in speed. This comes at a trade off in increased sensitivity to field inhomogeneities and changes in relaxation times, which lead to changes in image contrast. The benefit of high field for spectroscopy consists in increased signal-to-noise-ratio and improvement in frequency resolution. The increase in energy deposition necessitates the use of special strategies to reduce the specific absorption rate (SAR). This paper summarizes the current state of MR at 3 T.

  7. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  8. [Nikola Tesla in medicine, too].

    PubMed

    Hanzek, Branko; Jakobović, Zvonimir

    2007-12-01

    Using primary and secondary sources we have shown in this paper the influence of Nikola Tesla's work on the field of medicine. The description of his experiments conduced within secondary-school education programs aimed to present the popularization of his work in Croatia. Although Tesla was dedicated primarily to physics and was not directly involved in biomedical research, his work significantly contributed to paving the way of medical physics particularly radiology and high-frequency electrotherapy.

  9. Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: comparison at 1.5 Tesla and 3 Tesla

    PubMed Central

    Isoda, Hiroyoshi; Furuta, Akihiro; Togashi, Kaori

    2015-01-01

    Background A 3 Tesla (3 T) magnetic resonance (MR) scanner is a promising tool for upper abdominal MR angiography. However, there is no report focused on the image quality of non-contrast-enhanced MR portography and hepatic venography at 3 T. Purpose To compare and evaluate images of non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses (Time-SLIP) at 1.5 Tesla (1.5 T) and 3 T. Material and Methods Twenty-five healthy volunteers were examined using respiratory-triggered three-dimensional balanced steady-state free-precession (bSSFP) with Time-SLIP. For portography, we used one tagging pulse (selective inversion recovery) and one non-selective inversion recovery pulse; for venography, two tagging pulses were used. The relative signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified, and the quality of visualization was evaluated. Results The CNRs of the main portal vein, right portal vein, and left portal vein at 3 T were better than at 1.5 T. The image quality scores for the portal branches of segment 4, 5, and 8 were significantly higher at 3 T than at 1.5 T. The CNR of the right hepatic vein (RHV) at 3 T was significantly lower than at 1.5 T. The image quality scores of RHV and the middle hepatic vein were higher at 1.5 T than at 3 T. For RHV visualization, the difference was statistically significant. Conclusion Non-contrast-enhanced MR portography with Time-SLIP at 3 T significantly improved visualization of the peripheral branch in healthy volunteers compared with1.5 T. Non-contrast-enhanced MR hepatic venography at 1.5 T was better than at 3 T. PMID:26019890

  10. Reliable identification of deep sulcal pits: the effects of scan session, scanner, and surface extraction tool.

    PubMed

    Im, Kiho; Lee, Jong-Min; Jeon, Seun; Kim, Jong-Heon; Seo, Sang Won; Na, Duk L; Grant, P Ellen

    2013-01-01

    Sulcal pit analysis has been providing novel insights into brain function and development. The purpose of this study was to evaluate the reliability of sulcal pit extraction with respect to the effects of scan session, scanner, and surface extraction tool. Five subjects were scanned 4 times at 3 MRI centers and other 5 subjects were scanned 3 times at 2 MRI centers, including 1 test-retest session. Sulcal pits were extracted on the white matter surfaces reconstructed with both Montreal Neurological Institute and Freesurfer pipelines. We estimated similarity of the presence of sulcal pits having a maximum value of 1 and their spatial difference within the same subject. The tests showed high similarity of the sulcal pit presence and low spatial difference. The similarity was more than 0.90 and the spatial difference was less than 1.7 mm in most cases according to different scan sessions or scanners, and more than 0.85 and about 2.0 mm across surface extraction tools. The reliability of sulcal pit extraction was more affected by the image processing-related factors than the scan session or scanner factors. Moreover, the similarity of sulcal pit distribution appeared to be largely influenced by the presence or absence of the sulcal pits on the shallow and small folds. We suggest that our sulcal pit extraction from MRI is highly reliable and could be useful for clinical applications as an imaging biomarker.

  11. Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.

    1987-10-01

    Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronousmore » mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.« less

  12. Real-time motion analytics during brain MRI improve data quality and reduce costs.

    PubMed

    Dosenbach, Nico U F; Koller, Jonathan M; Earl, Eric A; Miranda-Dominguez, Oscar; Klein, Rachel L; Van, Andrew N; Snyder, Abraham Z; Nagel, Bonnie J; Nigg, Joel T; Nguyen, Annie L; Wesevich, Victoria; Greene, Deanna J; Fair, Damien A

    2017-11-01

    Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    PubMed Central

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  14. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 7Tesla MRA for the differentiation between intracranial aneurysms and infundibula.

    PubMed

    Wermer, Marieke J H; van Walderveen, Marianne A A; Garpebring, Anders; van Osch, Matthias J P; Versluis, Maarten J

    2017-04-01

    The differentiation between an aneurysm and an infundibulum with time-of-flight MRA is often difficult. However, this distinction is important because it affects further patient follow-up. The purpose of this study was to assess the added value of high resolution 7Tesla MRA for investigating small vascular lesions suspect for an aneurysm or an infundibulum. We included patients in whom an intracranial vascular lesion was detected in our University Hospital and in whom the discrimination between a true aneurysms or an infundibulum could not be made on conventional 1.5 or 3T MRI were included in the study. All patients underwent an additional 7T time-of-flight MRA at higher spatial resolution. We included 6 patients. The age range of the patients was 35-65years and 5 of them were women. 1 out of 6 had a 1.5T MRI, the other 5 patients had a 3T MRI previous to the 7T MRI. The lesion size varied between 0.9mm and 2.0mm. In 5 of the 6 patients the presence of an infundibulum could be proven using the high resolution of the 7T MRA. All patients tolerated the 7T MRI well. Our results suggest that high resolution and contrast of 7T MRA provides added diagnostic value in discriminating between intracranial aneurysms and infundibula. This finding may have important consequences for patient follow-up and comfort because it might reduce unnecessary follow-up exams and decrease uncertainty about the diagnosis. Larger studies, however, are needed to confirm our findings. Copyright © 2016. Published by Elsevier Inc.

  16. Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington's disease provides in vivo evidence for impaired energy metabolism.

    PubMed

    van den Bogaard, Simon J A; Dumas, Eve M; Teeuwisse, Wouter M; Kan, Hermien E; Webb, Andrew; Roos, Raymund A C; van der Grond, Jeroen

    2011-12-01

    Huntington's disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes.

  17. [Recent advances in newborn MRI].

    PubMed

    Morel, B; Hornoy, P; Husson, B; Bloch, I; Adamsbaum, C

    2014-07-01

    The accurate morphological exploration of the brain is a major challenge in neonatology that advances in magnetic resonance imaging (MRI) can now provide. MRI is the gold standard if an hypoxic ischemic pathology is suspected in a full term neonate. In prematures, the specific role of MRI remains to be defined, secondary to US in any case. We present a state of the art of hardware and software technical developments in MRI. The increase in magnetic field strength (3 tesla) and the emergence of new MRI sequences provide access to new information. They both have positive and negative consequences on the daily clinical data acquisition use. The semiology of brain imaging in full term newborns and prematures is more extensive and complex and thereby more difficult to interpret. The segmentation of different brain structures in the newborn, even very premature, is now available. It is now possible to dissociate the cortex and basal ganglia from the cerebral white matter, to calculate the volume of anatomical structures, which improves the morphometric quantification and the understanding of the normal and abnormal brain development. MRI is a powerful tool to analyze the neonatal brain. The relevance of the diagnostic contribution requires an adaptation of the parameters of the sequences to acquire and of the image processing methods. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    PubMed Central

    Gatenby, J. Christopher; Gore, John C.; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646

  19. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    PubMed

    Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  20. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    PubMed

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p < 0.01 for ACL and PCL; p = 0.07 for MEN). Compared to 2 D images, the OIQ was rated higher in 3D-PDwFS images (p < 0.01) due to fewer artifacts and HFS despite the lower IS (p < 0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0 T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS. • 3D-PDwFS of the knee is acquired with high image quality• 3D-PDwFS can be achieved in only one measurement with a reasonable scan time• 3D-PDwFS with the advantage of multiplanar reformation may replace 2D-PD-weighted knee MRI Citation Format: • Homsi R, Gieseke

  1. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  2. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model

    PubMed Central

    Hall, Sarah; Xia, Xin-Rui; Schwarz, Tobias

    2017-01-01

    Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could

  3. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  4. Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla.

    PubMed

    Wrede, Karsten H; Dammann, Philipp; Johst, Sören; Mönninghoff, Christoph; Schlamann, Marc; Maderwald, Stefan; Sandalcioglu, I Erol; Ladd, Mark E; Forsting, Michael; Sure, Ulrich; Umutlu, Lale

    2016-03-01

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. • Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction. • Image quality at 7 Tesla was comparable with DSA considering both sequences. • Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.

  5. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    PubMed

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  6. Comparison between target magnetic resonance imaging (MRI) in-gantry and cognitively directed transperineal or transrectal-guided prostate biopsies for Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 MRI lesions.

    PubMed

    Yaxley, Anna J; Yaxley, John W; Thangasamy, Isaac A; Ballard, Emma; Pokorny, Morgan R

    2017-11-01

    To compare the detection rates of prostate cancer (PCa) in men with Prostate Imaging-Reporting and Data System (PI-RADS) 3-5 abnormalities on 3-Tesla multiparametric (mp) magnetic resonance imaging (MRI) using in-bore MRI-guided biopsy compared with cognitively directed transperineal (cTP) biopsy and transrectal ultrasonography (cTRUS) biopsy. This was a retrospective single-centre study of consecutive men attending the private practice clinic of an experienced urologist performing MRI-guided biopsy and an experienced urologist performing cTP and cTRUS biopsy techniques for PI-RADS 3-5 lesions identified on 3-Tesla mpMRI. There were 595 target mpMRI lesions from 482 men with PI-RADS 3-5 regions of interest during 483 episodes of biopsy. The abnormal mpMRI target lesion was biopsied using the MRI-guided method for 298 biopsies, the cTP method for 248 biopsies and the cTRUS method for 49 biopsies. There were no significant differences in PCa detection among the three biopsy methods in PI-RADS 3 (48.9%, 40.0% and 44.4%, respectively), PI-RADS 4 (73.2%, 81.0% and 85.0%, respectively) or PI-RADS 5 (95.2, 92.0% and 95.0%, respectively) lesions, and there was no significant difference in detection of significant PCa among the biopsy methods in PI-RADS 3 (42.2%, 30.0% and 33.3%, respectively), PI-RADS 4 (66.8%, 66.0% and 80.0%, respectively) or PI-RADS 5 (90.5%, 89.8% and 90.0%, respectively) lesions. There were also no differences in PCa or significant PCa detection based on lesion location or size among the methods. We found no significant difference in the ability to detect PCa or significant PCa using targeted MRI-guided, cTP or cTRUS biopsy methods. Identification of an abnormal area on mpMRI appears to be more important in increasing the detection of PCa than the technique used to biopsy an MRI abnormality. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  7. Nikola Tesla: the man behind the magnetic field unit.

    PubMed

    Roguin, Ariel

    2004-03-01

    The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. Copyright 2004 Wiley-Liss, Inc.

  8. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

    PubMed

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Miyati, Tosiaki; Takao, Hidemasa; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2013-07-01

    This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: "Frontal Lobe," "Hippocampus," "Occipital Lobe," "Orbital Gyrus," "Parietal Lobe," "Putamen," and "Temporal Lobe." Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies.

  9. Rectal cancer confined to the bowel wall: the role of 3 Tesla phased-array MR imaging in T categorization.

    PubMed

    Çolakoğlu Er, Hale; Peker, Elif; Erden, Ayşe; Erden, İlhan; Geçim, Ethem; Savaş, Berna

    2018-02-01

    To determine the diagnostic value of 3 Tesla MR imaging in detection of mucosal (Tis), submucosal (T 1 ) and muscularis propria (T 2 ) invasion in patients with early rectal cancer. A total of 50 consecutive patients who underwent 3 Tesla MR imaging and curative-intent intervention for MRI-staged Tis/T 1 /T 2 rectal cancer from March 2012 to December 2016 were included. The radiological T category of each rectal tumour was compared retrospectively with histopathological results assessed according to the tumor, node, metastasis (TNM) classification. The sensitivities, specificities, and overall accuracy rates of 3 Tesla MR imaging for Tis, T 1 , and T 2 cases were calculated using MedCalc statistical software v. 16. The sensitivity, specificity, PPV, NPV of 3 Tesla MR imaging in T categorization for T 2 were: 93.7% [95% CI (0.79-0.99)], 77.7% [95% CI (0.52-0.93)], 88.2% [95% CI (0.75-0.94)] and 87.5% [95% CI (0.64-0.96)]; for T 1 were 92% [95% CI (0.63-0.99)], 91.8% [95% CI (0.78-0.98)], 80% [95% CI (0.57-0.92)] and 97.1% [95% CI (0.83-0.99)]; for Tis were: 20% [95% CI (0.51-0.71)], 100% [95% CI (0.92-1)], 100%, 91.8% [95% CI (0.87-0.94)], respectively. MR categorization accuracy rates for T 2 , T 1 and Tis were calculated as 88, 92 and 92%, respectively. 3 Tesla MR imaging seems to be useful for accurate categorization of T-stage in early rectal cancer, especially for T 1 cancers. The method is not a reliable tool to detect Tis cases. The potential for overstaging and understaging of the technique should be realized and taken into consideration when tailoring the treatment protocol for each patient. Advances in knowledge: High-resolution MR with phased-array coil is being increasingly used in the pre-operative assessment of rectal cancer. 3 Tesla high-resolution MR imaging allows improved definition of bowel wall and tumour infiltration.

  10. Journal Club: Shoulder MRI utilization: relationship of physician MRI equipment ownership to negative study frequency.

    PubMed

    Amrhein, Timothy J; Lungren, Matthew P; Paxton, Ben E; Srinivasan, Ramesh; Jung, Sin-Ho; Yu, Miao; Eastwood, James D; Kilani, Ramsey K

    2013-09-01

    The purpose of this article is to determine whether ownership of MRI equipment by ordering physicians influences the frequency of negative shoulder MRI scans. A retrospective review was performed of 1140 consecutive shoulder MRI scans ordered by two separate referring physician groups serving the same geographic community. The first group (financially incentivized) owned the scanners used and received technical fees for their use. The second group (non-financially incentivized) did not own the scanners used and had no direct financial interest. All examinations were performed with identical protocols and were interpreted by a single radiologist group without financial interest in the imaging equipment used. The frequency of negative examinations and the number of abnormalities in each positive study was tabulated for each group. A total of 1140 shoulder MRI scans met inclusion criteria; 255 were negative (142 for the financially incentivized group and 113 for the non-financially incentivized group). There were 25.6% more negative scans in the financially incentivized group (p=0.047). There was no statistically significant difference in the average number of lesions per positive scan (1.67 for the financially incentivized group and 1.71 for the non-financially incentivized group; p=0.34). No statistically significant difference was found in the frequency of 19 of 20 examined lesions. Shoulder MRI examinations referred by physicians with a financial interest in the imaging equipment used were significantly more likely to be negative. Positive examinations exhibited no statistically significant difference in the number of lesions per scan or in the frequency of 19 of 20 lesion subtypes. This finding suggests a highly similar distribution and severity of disease among the two patient groups.

  11. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.

    PubMed

    Neu, C P; Hull, M L

    2003-04-01

    Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach

  12. Diagnostic problems in case of twin pregnancies: US vs. MRI study.

    PubMed

    Bekiesinska-Figatowska, Monika; Herman-Sucharska, Izabela; Romaniuk-Doroszewska, Anna; Jaczynska, Renata; Furmanek, Mariusz; Bragoszewska, Hanna

    2013-09-01

    To present an experience with twin pregnancies underlining the impact of magnetic resonance imaging (MRI) on diagnosis and management. There were 17 cases of twin pregnancies: nine monochorionic [including four monochorionic diamniotic and five monochorionic monoamniotic (conjoined twins)] and eight dichorionic. The MRI examinations were performed between 19 and 39 weeks of gestational age in two centers using 1.5 T scanners (GE Signa Excite and GE Signa HDxt; GE Healthcare, Waukesha, WI, USA), always after ultrasound (US). In the first period of our activity, SSFSE sequence in T2-weighted images (SSFSE/T2WI) was the main diagnostic tool supported by TSE or GRE T1-weighted images (T1WI). After upgrading the scanners, diffusion-weighted imaging (DWI), steady-state free precession (FIESTA), and echoplanar GRE imaging (EPIGRE) became available. In 11 cases (64.7%), MRI was superior to US and supplied additional information, including two cases in which pathology of the second twin suspected on US was ruled out on the basis of MRI. In six cases (35.3%) MRI confirmed US diagnosis and brought no new data. MRI offers more detailed assessment of fetal pathology in cases of twin pregnancies, including conjoined twins, in which sonographic evaluation is more difficult than in single cases.

  13. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  14. 7 Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy

    PubMed Central

    Ratai, Eva; Kok, Trina; Wiggins, Christopher; Wiggins, Graham; Grant, Ellen; Gagoski, Borjan; O'Neill, Gilmore; Adalsteinsson, Elfar; Eichler, Florian

    2010-01-01

    Background Adult patients with X-linked adrenoleukodystrophy (X-ALD) remain at risk for progressive neurological deterioration. Phenotypes vary in their pathology, ranging from axonal degeneration to inflammatory demyelination. The severity of symptoms is poorly explained by conventional imaging. Objective To test the hypothesis that neurochemistry in normal appearing brain differs among adult phenotypes of X-ALD, and that neurochemical changes correlate with the severity of symptoms. Patients and Methods Using a 7 Tesla scanner we performed structural and proton MRSI in 13 adult patients with X-ALD, including 4 patients with adult cerebral ALD (ACALD), 5 with adrenomyeloneuropathy (AMN) and 4 female heterozygotes. Studies were also performed in nine healthy controls. Results Among adult X-ALD phenotypes, MI/Cr was 46% higher and Cho/Cr 21% higher in normal appearing white matter of ACALD compared to AMN (p < 0.05). Both NAA/Cr and Glu/Cr ratios were lower in AMN patients (p = 0.028 and p = 0.036, respectively) than in controls. There were no significant differences between AMN and female heterozygotes. In cortex, ACALD patients had lower values of NAA/Cr compared to female heterozygotes and controls (p = 0.022). The global MI/Cr ratio demonstrated a significant association with the EDSS (Spearman ρ = 0.66, p = 0.039). Conclusion 7 Tesla proton MRSI reveals differences in the neurochemistry of ACALD but is unable to distinguish AMN from female heterozygotes. MI/Cr correlates with the severity of the symptoms and may be a meaningful biomarker in adult X-ALD. PMID:19001168

  15. PET and MRI: The Odd Couple or a Match Made in Heaven?

    PubMed Central

    Catana, Ciprian; Guimaraes, Alexander R.; Rosen, Bruce R.

    2013-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MRI data in the same imaging session, sequentially or simultaneously, have recently become available for human use. In this manuscript, we describe some of the technical advances that allowed the development of human PET/MR scanners, briefly discuss methodological challenges and opportunities provided by this novel technology and present potential oncologic, cardiac, and neuro-psychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications where future development might have an even broader impact. PMID:23492887

  16. White matter hyperintensities on MRI in high-altitude U-2 pilots.

    PubMed

    McGuire, Stephen; Sherman, Paul; Profenna, Leonardo; Grogan, Patrick; Sladky, John; Brown, Anthony; Robinson, Andrew; Rowland, Laura; Hong, Elliot; Patel, Beenish; Tate, David; Kawano, Elaine S; Fox, Peter; Kochunov, Peter

    2013-08-20

    To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible.

  17. White matter hyperintensities on MRI in high-altitude U-2 pilots

    PubMed Central

    Sherman, Paul; Profenna, Leonardo; Grogan, Patrick; Sladky, John; Brown, Anthony; Robinson, Andrew; Rowland, Laura; Hong, Elliot; Patel, Beenish; Tate, David; Kawano, Elaine S.; Fox, Peter; Kochunov, Peter

    2013-01-01

    Objective: To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. Methods: We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. Results: U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Conclusion: Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible. PMID:23960192

  18. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    PubMed

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR

  19. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training.

    PubMed

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-Ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.

  20. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training

    PubMed Central

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements. PMID:25068106

  1. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.

    PubMed

    Kleinloog, Rachel; Korkmaz, Emine; Zwanenburg, Jaco J M; Kuijf, Hugo J; Visser, Fredy; Blankena, Roos; Post, Jan A; Ruigrok, Ynte M; Luijten, Peter R; Regli, Luca; Rinkel, Gabriel J E; Verweij, Bon H

    2014-12-01

    Risk prediction of rupture of intracranial aneurysms is poor and is based mainly on lumen characteristics. However, characteristics of the aneurysm wall may be more informative predictors. The limited resolution of currently available imaging techniques and the thin aneurysm wall make imaging of wall thickness challenging. To introduce a novel protocol for imaging wall thickness variation using ultra--high-resolution 7.0-Tesla (7.0-T) magnetic resonance imaging (MRI). We studied 33 unruptured intracranial aneurysms in 24 patients with a T1-weighted 3-dimensional magnetization-prepared inversion-recovery turbo-spin-echo whole-brain sequence with a resolution of 0.8 × 0.8 × 0.8 mm. We performed a validation study with a wedge phantom and with 2 aneurysm wall biopsies obtained during aneurysm treatment using ex vivo MRI and histological examination and correlating variations in MRI signal intensity with variations in actual thickness of the aneurysm wall. In vivo, the aneurysm wall was visible in 28 of the 33 aneurysms. Variation in signal intensity was observed in all visible aneurysm walls. Ex vivo MRI showed variation in signal intensity across the wall of the biopsies, similar to that observed on the in vivo images. Signal intensity and actual thickness in both biopsies had a linear correlation, with Pearson correlation coefficients of 0.85 and 0.86. Unruptured intracranial aneurysm wall and its variation in thickness can be visualized with 7.0-T MRI. Aneurysm wall thickness variation can now be further studied as a risk factor for rupture in prospective studies.

  2. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  3. New shielding configurations for a simultaneous PET/MRI scanner at 7T

    PubMed Central

    Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.

    2014-01-01

    Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI

  4. Nikola Tesla, the Ether and his Telautomaton

    NASA Astrophysics Data System (ADS)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  5. Human brain MRI at 500 MHz, scientific perspectives and technological challenges

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis; Schild, Thierry

    2017-03-01

    The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Alternative Energies and Atomic Energy Commission launched a program to conceive and build a ‘human brain explorer’, the first human MRI scanner operating at 11.7 T. This scanner was envisioned to be part of the ambitious French-German project Iseult, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using ultra-high field MRI. In this article we provide a summary of the main neuroscience and medical targets of the Iseult project, mainly to acquire within timescales compatible with human tolerances images at a scale of 100 μm at which everything remains to discover, and to create new approaches to develop new imaging biomarkers for specific neurological and psychiatric disorders. The system specifications, the technological challenges, in terms of magnet design, winding technology, cryogenics, quench protection, stability control, and the solutions which have been chosen to overcome them and build this outstanding instrument are provided. Lines of the research and development which will be necessary to fully exploit the potential of this and other UHF MRI scanners are also outlined.

  6. Implementation of time-efficient adaptive sampling function design for improved undersampled MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeok; Kim, Hyeonjin

    2016-12-01

    To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.

  7. fMRI-Compatible Electromagnetic Haptic Interface.

    PubMed

    Riener, R; Villgrattner, T; Kleiser, R; Nef, T; Kollias, S

    2005-01-01

    A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the implementation of different control architectures for haptic interactions. The challenge was to provide a large torque, and not to affect image quality by the currents applied in the device. The haptic device was tested in a 3T MR scanner. With a current of up to 1A and a distance of 1m to the focal point of the MR-scanner it was possible to generate torques of up to 4 Nm. Within these boundaries image quality was not affected.

  8. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  9. A fast screening protocol for carotid plaques imaging using 3D multi-contrast MRI without contrast agent.

    PubMed

    Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin

    2017-06-01

    To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.

  10. Frequency and topography of small cerebrovascular lesions in vascular and in mixed dementia: a post-mortem 7-tesla magnetic resonance imaging study with neuropathological correlates.

    PubMed

    De Reuck, Jacques; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Maurage, Claude-Alain; Cordonnier, Charlotte; Pasquier, Florence; Leys, Didier; Bordet, Regis

    2017-01-01

    Introduction: Mixed dementia (MixD) refers to a combination of definite Alzheimer's disease (AD) and vascular encephalopathy. The existence of a "pure" type of vascular dementia (VaD) is controversial. There is a need to find magnetic resonance imaging (MRI) characteristics allowing the distinction between VaD and MixD. The present post-mortem 7.0-tesla MRI compares the frequency or severity and the topography of the small cerebrovascular lesions in brains of patients with VaD and with MixD. Material and methods: Based on neuropathological criteria, 14 brains were classified as VaD, 24 as MixD and 11 as controls. Three coronal sections of a cerebral hemisphere and a horizontal section of a cerebellar hemisphere underwent T2 and T2* 7.0-tesla MRI examination. The mean values and topographic distribution of white matter changes (WMCs), lacunar infarcts (LIs), cortical microbleeds (CoMBs) and cortical microinfarcts (CoMIs) were determined and compared between the different groups. Results: Compared to the controls, both VaD and MixD brains had significantly more severe WMCs and increased numbers of CoMBs and CoMIs. Lacunar infarcts predominated only in the VaD cases. On mutual comparison of VaD and MixD brains, CoMBs and CoMIs predominated in the frontal lobe and the cerebellum of VaD, while were mainly present in the occipital lobe of MixD. White matter changes predominated in the temporal lobe of MixD cases. Lacunar infarcts were significantly increased in the corona radiata and putamen of VaD patients. Conclusions: The present post-mortem MRI study shows clear differences in the distribution and the types of cerebrovascular lesions on high-field MRI, confirming that VaD and MixD are different diseases. .

  11. The TT-PET project: a thin TOF-PET scanner based on fast novel silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Bandi, Y.; Benoit, M.; Cadoux, F. R.; Forshaw, D. C.; Hänni, R.; Hayakawa, D.; Iacobucci, G.; Michal, S.; Miucci, A.; Paolozzi, L.; Ratib, O.; Ripiccini, E.; Tognina, C.; Valerio, P.; Weber, M.

    2018-01-01

    The TT-PET project aims at developing a compact Time-of-flight PET scanner with 30ps time resolution, capable of withstanding high magnetic fields and allowing for integration in a traditional MRI scanner, providing complimentary real-time PET images. The very high timing resolution of the TT-PET scanner is achieved thanks to a new generation of Silicon-Germanium (Si-Ge) amplifiers, which are embedded in monolithic pixel sensors. The scanner is composed of 16 detection towers as well as cooling blocks, arranged in a ring structure. The towers are composed of multiple ultra-thin pixel modules stacked on top of each other. Making it possible to perform depth of interaction measurements and maximize the spatial resolution along the line of flight of the two photons emitted within a patient. This will result in improved image quality, contrast, and uniformity while drastically reducing backgrounds within the scanner. Allowing for a reduction in the amount of radioactivity delivered to the patient. Due to an expected data rate of about 250 MB/s a custom readout system for high data throughput has been developed, which includes noise filtering and reduced data pressure. The realisation of a first scanner prototype for small animals is foreseen by 2019. A general overview of the scanner will be given including, technical details concerning the detection elements, mechanics, DAQ readout, simulation and results.

  12. Prosepective Study to Evaluate Rate and Frequency of Perturbations of Implanted Programmable Hakim Codman Valve After 1.5-Tesla Magnetic Resonance Imaging.

    PubMed

    Capitanio, Jody Filippo; Venier, Alice; Mazzeo, Lucio Aniello; Barzaghi, Lina Raffaella; Acerno, Stefania; Mortini, Pietro

    2016-04-01

    Exposure to magnetic fields may alter the settings of programmable ventriculoperitoneal shunt valves or even cause permanent damages to these devices. There is little information about this topic, none on live patients. To investigate the effects of 1.5-tesla magnetic resonance imaging (MRI) on Hakim-Codman (HC) pressure programmable valves implanted in our hospital. A single-center prospective study to assess the rate of perturbations of HC programmable valve implanted. One hundred consecutive patients implanted for different clinical reasons between 2008 and 2012 were examined. A conventional skull x-ray before and after a standard MRI on 1.5 tesla. We evaluated before and after results, analyzed modification rate, and verified eventual damages to the implanted devices. Implanted HC valves are extremely handy and durable, even if they are likely to change often due to the exposure to magnetic fields. None of the patients complained of heating effects. Oscillations range from 10-30 mm H2O with a patient who reached 50 mm H2O and 1 who reached 60 mm H2O. Global alteration rate was 40%: 10 patients (10%) experienced a 10 mm H2O change; 14 patients (14%) had a 20 mm H2O change; 6 patients (6%) had a 30 mm H2O change; 8 patients (8%) had a 40 mm H2O change; 1 patient had a 50 mm H2O change; and 1 patient had a 60 mm H2O change. HC valves presented a variable perturbation rate, with an alteration rate of 40% with 1.5-telsa MRI. We have not observed malfunctioning hardware as a result of magnetic influence. We claim ​ a cranial x-ray immediately after the MRI because of a high risk (40%) of decalibration, especially in patients with low ventricles compliance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Assessment of Safety and Interference Issues of Radio Frequency Identification Devices in 0.3 Tesla Magnetic Resonance Imaging and Computed Tomography

    PubMed Central

    Periyasamy, M.; Dhanasekaran, R.

    2014-01-01

    The objective of this study was to evaluate two issues regarding magnetic resonance imaging (MRI) including device functionality and image artifacts for the presence of radio frequency identification devices (RFID) in association with 0.3 Tesla at 12.7 MHz MRI and computed tomography (CT) scanning. Fifteen samples of RFID tags with two different sizes (wristband and ID card types) were tested. The tags were exposed to several MR-imaging conditions during MRI examination and X-rays of CT scan. Throughout the test, the tags were oriented in three different directions (axial, coronal, and sagittal) relative to MRI system in order to cover all possible situations with respect to the patient undergoing MRI and CT scanning, wearing a RFID tag on wrist. We observed that the tags did not sustain physical damage with their functionality remaining unaffected even after MRI and CT scanning, and there was no alternation in previously stored data as well. In addition, no evidence of either signal loss or artifact was seen in the acquired MR and CT images. Therefore, we can conclude that the use of this passive RFID tag is safe for a patient undergoing MRI at 0.3 T/12.7 MHz and CT Scanning. PMID:24701187

  14. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment.

    PubMed

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C; Poizner, Howard; Liu, Thomas T

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects' brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as "theory of mind." However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners' operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording.

  15. 7 T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.

  16. Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI.

    PubMed

    Carr, Sarah J; Borreggine, Kristin; Heilman, Jeremiah; Griswold, Mark; Walter, Benjamin L

    2013-11-01

    Functional MRI (fMRI) can provide insights into the functioning of the sensorimotor system, which is of particular interest in studying people with movement disorders or chronic pain conditions. This creates a demand for manipulanda that can fit and operate within the environment of a MRI scanner. Here, the authors present a magnetomechanical device that delivers a vibrotactile sensation to the skin with a force of approximately 9 N. MRI compatibility of the device was tested in a 3 T scanner using a phantom to simulate the head. Preliminary investigation into the effectiveness of the device at producing cortical and subcortical activity was also conducted with a group of seven healthy subjects. The vibration was applied to the right extensor carpi ulnaris tendon to induce a kinesthetic illusion of flexion and extension of the wrist. The MRI compatibility tests showed the device did not produce image artifacts and the generated electromagnetic field did not disrupt the static magnetic field of the scanner or its operation. The subject group results showed activity in the contralateral putamen, premotor cortex, and dorsal lateral prefrontal cortex. Ipsilaterally, there was increased activity in the superior and inferior parietal lobules. Areas that activated bilaterally included the thalamus, anterior cingulate, secondary somatosensory areas (S2), temporal lobes, and visual association areas. This device offers an effective tool with precise control over the vibratory stimulus, delivering higher forces than some other types of devices (e.g., piezoelectric actuators). It can be useful for investigating sensory systems and sensorimotor integration.

  17. Thermal ablation system using high intensity focused ultrasound (HIFU) and guided by MRI

    NASA Astrophysics Data System (ADS)

    Damianou, C.; Ioannides, K.; HadjiSavas, V.; Milonas, N.; Couppis, A.; Iosif, D.; Komodromos, M.; Vrionides, F.

    2009-04-01

    In this paper magnetic resonance imaging (MRI) is investigated for monitoring lesions created by high intensity focused ultrasound (HIFU) in kidney, liver and brain in vitro and in vivo. Spherically focused transducers of 4 cm diameter, focusing at 10 cm and operating at 1 and 4 MHz were used. An MRI compatible positioning device was developed in order to scan the HIFU transducer. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the positioning device to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Both T1-w FSE and T2-w FSE imaged successfully lesions in kidney and liver. T1-w FSE and T2-w FSE and FLAIR shows better anatomical details in brain than T1-w FSE, but with T1-w FSE the contrast between lesion and brain is higher for both thermal and bubbly lesion. With this system we were able to create large lesions (by producing overlapping lesions). The length of the lesions in vivo brain was much higher than the length in vitro, proving that the penetration in the in vitro brain is limited by reflection due to trapped bubbles in the blood vessels.

  18. Constructing Carbon Fiber Motion-Detection Loops for Simultaneous EEG–fMRI

    PubMed Central

    Abbott, David F.; Masterton, Richard A. J.; Archer, John S.; Fleming, Steven W.; Warren, Aaron E. L.; Jackson, Graeme D.

    2015-01-01

    One of the most significant impediments to high-quality EEG recorded in an MRI scanner is subject motion. Availability of motion artifact sensors can substantially improve the quality of the recorded EEG. In the study of epilepsy, it can also dramatically increase the confidence that one has in discriminating true epileptiform activity from artifact. This is due both to the reduction in artifact and the ability to visually inspect the motion sensor signals when reading the EEG, revealing whether or not head motion is present. We have previously described the use of carbon fiber loops for detecting and correcting artifact in EEG acquired simultaneously with MRI. The loops, attached to the subject’s head, are electrically insulated from the scalp. They provide a simple and direct measure of specific artifact that is contaminating the EEG, including both subject motion and residual artifact arising from magnetic field gradients applied during MRI. Our previous implementation was used together with a custom-built EEG–fMRI system that differs substantially from current commercially available EEG–fMRI systems. The present technical note extends this work, describing in more detail how to construct the carbon fiber motion-detection loops, and how to interface them with a commercially available simultaneous EEG–fMRI system. We hope that the information provided may help those wishing to utilize a motion-detection/correction solution to improve the quality of EEG recorded within an MRI scanner. PMID:25601852

  19. Using Large Signal Code TESLA for Wide Band Klystron Simulations

    DTIC Science & Technology

    2006-04-01

    tuning procedure TESLA simulates of high power klystron [3]. accurately actual eigenmodes of the structure as a solution Wide band klystrons very often...on band klystrons with two-gap two-mode resonators. The decomposition of simulation region into an external results of TESLA simulations for NRL S ...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP022454 TITLE: Using Large Signal Code TESLA for Wide Band Klystron

  20. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    PubMed

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  1. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  2. Magnetic Field Interactions of Military and Law Enforcement Bullets at 1.5 and 3 Tesla.

    PubMed

    Diallo, Idris; Auffret, Mathieu; Attar, Lakdar; Bouvard, Elise; Rousset, Jean; Ben Salem, Douraied

    2016-07-01

    There are significant numbers of military and law enforcement bullets containing ferromagnetic materials. This study aimed to assess the magnetic field interactions for a representative sample of military and law enforcement ballistic objects at 1.5 and 3 tesla (T) to create a magnetic resonance imaging (MRI) compatibility database. Twenty-nine different bullets underwent MRI evaluation. The deflection angle method and a qualitative torque scale were used. The samples were representative of those commonly used in the North Atlantic Treaty Organization (NATO) military forces (e.g., 5.56 mm NATO), law enforcement agencies (e.g., 9 mm Parabellum), and encountered in war injuries and crime-related trauma (e.g., 7.62 mm Kalashnikov). At all static magnetic field strengths, all non-nickel- and nonsteel-containing bullets exhibited no movement (deflection angle = 0°; torque = 0), whereas eight bullets containing steel core, steel jacket, or nickel jacket exhibited substantial magnetic field interactions over and above what might be regarded as safe in vivo (deflection angle = 90°; torque = 4+). Military and law enforcement non-nickel- or nonsteel-containing bullets appear to be safe for patients in MRI system at 1.5 and 3 T. On the other hand, nickel- and steel-containing bullets exhibit movements that are considered potentially unsafe for patients in an MRI environment. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  3. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi-Ardekani, A; Wronski, M; Kim, A

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less

  4. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study.

    PubMed

    Erdélyi-Bótor, Szilvia; Aradi, Mihály; Kamson, David Olayinka; Kovács, Norbert; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Schwarcz, Attila; Dóczi, Tamás; Komoly, Sámuel; Deli, Gabriella; Trauninger, Anita; Pfund, Zoltán

    2015-01-01

    The aim of this longitudinal study was to investigate changes of migraine-related brain white matter hyperintensities 3 years after an initial study. Baseline quantitative magnetic resonance imaging (MRI) studies of migraine patients with hemispheric white matter hyperintensities performed in 2009 demonstrated signs of tissue damage within the hyperintensities. The hyperintensities appeared most frequently in the deep white matter of the frontal lobe with a similar average hyperintensity size in all hemispheric lobes. Since in this patient group the repeated migraine attacks were the only known risk factors for the development of white matter hyperintensities, the remeasurements of migraineurs after a 3-year long follow-up may show changes in the status of these structural abnormalities as the effects of the repeated headaches. The same patient group was reinvestigated in 2012 using the same MRI scanner and acquisition protocol. MR measurements were performed on a 3.0-Tesla clinical MRI scanner. Beyond the routine T1-, T2-weighted, and fluid-attenuated inversion recovery imaging, diffusion and perfusion-weighted imaging, proton magnetic resonance spectroscopy, and T1 and T2 relaxation time measurements were also performed. Findings of the baseline and follow-up studies were compared with each other. The follow-up proton magnetic resonance spectroscopy studies of white matter hyperintensities showed significantly decreased N-acetyl-aspartate (median values 8.133 vs 7.153 mmol/L, P=.009) and creatine/phosphocreatine (median values 4.970 vs 4.641 mmol/L, P=.015) concentrations compared to the baseline, indicating a more severe axonal loss and glial hypocellularity with decreased intracellular energy production. The diffusion values, the T1 and T2 relaxation times, and the cerebral blood flow and volume measurements presented only mild changes between the studies. The number (median values 21 vs 25, P<.001) and volume (median values 0.896 vs 1.140 mL, P<.001) of

  5. SU-F-I-27: Measurement of SAR and Temperature Elevation During MRI Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Y

    Purpose: The poor reliability and repeatability of the manufacturer-reported SAR values on clinical MRI systems have been acknowledged. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation at 1.5 and 3T MRI systems. Methods: SAR measurement experiment was performed at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T1w inversion recovery, and T2w TSE) with imaging parameters were selected. A hydroxyl-ethylcelluose (HEC) gelled saline phantom mimicking human body tissue was made. Human torso phantom were constructed, based on Korean adult standard anthropometric reference data (Fig.1). FDTD method was utilized to calculatemore » the SAR distribution using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located inside the phantom. 55 Fiber Bragg Grating (FBG) temperature sensors (27 sensors in upper and lower cover lids, and one sensor located in the center as a reference) were located inside the phantom to measure temperature change during MRI scan (Fig.2). Results: Simulation shows that SAR value is 0.4 W/kg in the periphery and 0.001 W/kg in the center (Fig.2). One 1.5T and one of two 3T MRI systems represent that the measured SAR values were lower than MRI scanner-reported SAR values. However, the other 3T MRI scanner shows that the averaged SAR values measured by probe 2, 3, and 4 are 6.83, 7.59, and 6.01 W/kg, compared to MRI scanner-reported whole body SAR value (<1.5 W/kg) for T2w TSE (Table 1). The temperature elevation measured by FBG sensors is 5.2°C in the lateral shoulder, 5.1°C in the underarm, 4.7°C in the anterior axilla, 4.8°C in the posterior axilla, and 4.8°C in the lateral waist for T2w TSE (Fig.3). Conclusion: It is essential to assess the safety of MRI system for patient by measuring accurate SAR deposited in the body during clinical MRI.« less

  6. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  7. [The diagnostic value of dual-energy CT and 3 Tesla MRI in the diagnosis of German Mardi Gras donuts--where is the mustard, where is the custard and where is the jam?].

    PubMed

    Morhard, D; Dietrich, O; Reiser, M; Ertl-Wagner, B

    2008-04-01

    As a Mardi Gras joke, the original jam or custard fillings of German Mardi Gras donuts are frequently replaced with mustard which cannot be identified on the outside of the donut. The aim of our study was to evaluate the impact of modern CT and MRI techniques on the diagnostic evaluation of donuts filled with mustard, jam or custard. 4 commercially available donuts were included in the study. One was filled with custard (PK) and one with jam (MK). Two donuts were specifically prepared and filled with Bavarian mustard (SK1) or extra-hot (SK2) mustard. 3 Tesla MRI was performed with T 2- and T 1-weighted STIR, diffusion and susceptibility-weighted (SWI) sequences. In addition, the donuts underwent dual-energy CT. PK was able to be easily differentiated from the other donuts due to its hyperintensity in the STIR sequences and hypointensity in the T 1-weighted sequences. MK was able to be differentiated from S 1K and S 2K on the basis of its diffusion properties. S 1K demonstrated a pronounced heterogeneity of its matrix, especially in SWI. In CT, PK showed a pronounced hypoattenuation with negative Hounsfield units in contrast to the strongly hyperdense MK, S 1K and S 2K. S 1K and S 2K demonstrated X-ray attenuation considerably dependent on the X-ray energy. Donuts filled with jam, custard or mustard can be readily differentiated by modern MRI and CT techniques. Therefore, eating a mustard-filled donut can be reliably avoided.

  8. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  9. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. The robustness of T2 value as a trabecular structural index at multiple spatial resolutions of 7 Tesla MRI.

    PubMed

    Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H

    2018-04-15

    To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.

  11. The Effect of Magnetic Field on Positron Range and Spatial Resolution in an Integrated Whole-Body Time-Of-Flight PET/MRI System.

    PubMed

    Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho

    2014-11-01

    Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18 F, 124 I, and 68 Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18 F and 68 Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.

  12. Dental MRI using a dedicated RF-coil at 3 Tesla.

    PubMed

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Stereotactic radiosurgery planning of vestibular schwannomas: Is MRI at 3 Tesla geometrically accurate?

    PubMed

    Schmidt, M A; Wells, E J; Davison, K; Riddell, A M; Welsh, L; Saran, F

    2017-02-01

    MRI is a mandatory requirement to accurately plan Stereotactic Radiosurgery (SRS) for Vestibular Schwannomas. However, MRI may be distorted due not only to inhomogeneity of the static magnetic field and gradients but also due to susceptibility-induced effects, which are more prominent at higher magnetic fields. We assess geometrical distortions around air spaces and consider MRI protocol requirements for SRS planning at 3 T. Hardware-related distortion and the effect of incorrect shimming were investigated with structured test objects. The magnetic field was mapped over the head on five volunteers to assess susceptibility-related distortion in the naso-oro-pharyngeal cavities (NOPC) and around the internal ear canal (IAC). Hardware-related geometric displacements were found to be less than 0.45 mm within the head volume, after distortion correction. Shimming errors can lead to displacements of up to 4 mm, but errors of this magnitude are unlikely to arise in practice. Susceptibility-related field inhomogeneity was under 3.4 ppm, 2.8 ppm, and 2.7 ppm for the head, NOPC region and IAC region, respectively. For the SRS planning protocol (890 Hz/pixel, approximately 1 mm 3 isotropic), susceptibility-related displacements were less than 0.5 mm (head), and 0.4 mm (IAC and NOPC). Large displacements are possible in MRI examinations undertaken with lower receiver bandwidth values, commonly used in clinical MRI. Higher receiver bandwidth makes the protocol less vulnerable to sub-optimal shimming. The shimming volume and the CT-MR co-registration must be considered jointly. Geometric displacements can be kept under 1 mm in the vicinity of air spaces within the head at 3 T with appropriate setting of the receiver bandwidth, correct shimming and employing distortion correction. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years.

    PubMed

    Tyndall, Anthony J; Reinhardt, Julia; Tronnier, Volker; Mariani, Luigi; Stippich, Christoph

    2017-01-01

    To analyse the long-term feasibility and limitations of presurgical fMRI in a cohort of tumour and epilepsy patients with different MR-scanners at 1.5 and 3.0 T. Four hundred and ninety-one consecutive patients undergoing presurgical fMRI between 2000 and 2012 on five different MR-scanners using established paradigms and semi-automated data processing were included. Success rates of task performance and BOLD-activation were determined for motor and somatosensory somatotopic mapping and language localisation. Procedural success, failures and imaging artifacts were analysed. MR-field strengths were compared. Two thousand three hundred fifteen of 2348 (98.6 %) attempted paradigms (1033 motor, 1220 speech, 95 somatosensory) were successfully performed. 100 paradigms (4.3 %) were repetition runs. 23 speech, 6 motor and 2 sensory paradigms failed for non-compliance and technical issues. Most language paradigm failures were noted in overt sentence generation. Average significant BOLD-activation was higher for motor than language paradigms (95.8 vs. 81.6 %). Most language paradigms showed significantly higher activation rates at 3 T compared to 1.5 T, whereas no significant difference was found for motor paradigms. fMRI proved very robust for the presurgical localisation of the different motor and somatosensory body representations, as well as Broca's and Wernicke's language areas across different MR-scanners at 1.5 and 3.0 T over 13 years. • Standardised presurgical motor and language fMRI is robust across various MRI platforms. • Motor fMRI is less dependent on field strength than language fMRI. • fMRI task failures are relatively low and are reduced by paradigm repetition.

  15. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences.

    PubMed

    Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida

    2015-01-01

    We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.

  16. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  17. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  18. Early Identification of Aortic Valve Sclerosis Using Iron Oxide Enhanced MRI

    PubMed Central

    Hamilton, Amanda M.; Rogers, Kem A.; Belisle, Andre J.L.; Ronald, John A.; Rutt, Brian K.; Weissleder, Ralph; Boughner, Derek R.

    2017-01-01

    Purpose To test the ability of MION-47 enhanced MRI to identify tissue macrophage infiltration in a rabbit model of aortic valve sclerosis (AVS). Materials and Methods The aortic valves of control and cholesterol-fed New Zealand White rabbits were imaged in vivo pre- and 48 h post-intravenous administration of MION-47 using a 1.5 Tesla (T) MR clinical scanner and a CINE fSPGR sequence. MION-47 aortic valve cusps were imaged ex vivo on a 3.0T whole-body MR system with a custom gradient insert coil and a three-dimensional (3D) FIESTA sequence and compared with aortic valve cusps from control and cholesterol-fed contrast-free rabbits. Histopathological analysis was performed to determine the site of iron oxide uptake. Results MION-47 enhanced the visibility of both control and cholesterol-fed rabbit valves in in vivo images. Ex vivo image analysis confirmed the presence of significant signal voids in contrast-administered aortic valves. Signal voids were not observed in contrast-free valve cusps. In MION-47 administered rabbits, histopathological analysis revealed iron staining not only in fibrosal macrophages of cholesterol-fed valves but also in myofibroblasts from control and cholesterol-fed valves. Conclusion Although iron oxide labeling of macrophage infiltration in AVS has the potential to detect the disease process early, a macrophage-specific iron compound rather than passive targeting may be required. PMID:20027578

  19. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    PubMed

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  20. Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI.

    PubMed

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-07-01

    This study aimed to compare the uniformity of fat suppression and image quality between liver acquisition with volume acceleration flex (LAVA-Flex) and LAVA on 60-cm conventional-bore and 70-cm wide-bore 3.0-T magnetic resonance imaging (MRI). The uniformity of fat suppression by LAVA-Flex and LAVA was assessed as the efficiency of suppression of superficial fat at the levels of the liver dome, porta, and renal hilum. Percentage standard deviation (%SD) was calculated using the following equation: %SD (%) = 100 × SD of the regions of interest (ROIs)/mean value of the signal intensity (SI) in the ROIs. Signal-to-noise ratio (SNR) and contrast ratio (CR) were calculated. In the LAVA sequence, the %SD in all slices on wide-bore 3.0-T MRI was significantly higher than that on conventional-bore 3.0-T MRI (P < 0.01). However, there was no significant difference in fat signal uniformity between the conventional and wide-bore scanners when LAVA-Flex was used. In the liver, there were no significant differences in SNR between the two sequences. However, the SNR in the pancreas was lower for the wide-bore scanner than for the conventional-bore scanner for both sequences (P < 0.05). There were no significant differences in CR for the liver and fat between LAVA-Flex and LAVA in both scanners. The CR in the LAVA-Flex images obtained by wide-bore MRI was significantly higher than that in the LAVA-Flex images recorded by conventional-bore MRI (P < 0.001). LAVA-Flex offers more homogenous fat suppression in the upper abdomen than LAVA for both conventional and wide-bore 3.0-T MRI.

  1. SU-E-QI-19: Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Chen, L; Hensley, H

    2014-06-15

    Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on themore » tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.« less

  2. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.

    PubMed Central

    van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T

    1995-01-01

    Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. Images Fig. 2 Fig. 3 PMID:7624341

  3. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Sati, Pascal

    2018-06-01

    The long-standing relationship between ultra-high-field (7 T) MRI and multiple sclerosis (MS) has brought new insights to our understanding of lesion evolution and its associated pathology. With the recent FDA approval of a commercially available scanner, 7 T MRI is finally entering the clinic with great expectations about its potential added value. By looking through the prism of MS diagnosis, this perspective article discusses current limitations and prospects of 7 T MRI techniques relevant to helping clinicians diagnose patients encountered in daily practice.

  4. Studying brain organization via spontaneous fMRI signal.

    PubMed

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-11-19

    In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.

    PubMed

    Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C

    2018-02-01

    Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.

  6. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.

    PubMed

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham

    2017-11-01

    The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume

  7. Laser guiding of Tesla coil high voltage discharges.

    PubMed

    Henriksson, Markus; Daigle, Jean-Francois; Théberge, Francis; Châteauneuf, Marc; Dubois, Jacques

    2012-06-04

    We have investigated the guiding and triggering of discharges from a Tesla coil type 280 kHz AC high voltage source using filaments created by a femtosecond Terawatt laser pulse. Without the laser the discharges were maximum 30 cm long. With the laser straight, guided discharges up to 110 cm length were detected. The discharge length was limited by the voltage amplitude of the Tesla coil.

  8. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging.

    PubMed

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-02-28

    To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects' hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.

  9. Speech Disfluency-dependent Amygdala Activity in Adults Who Stutter: Neuroimaging of Interpersonal Communication in MRI Scanner Environment.

    PubMed

    Toyomura, Akira; Fujii, Tetsunoshin; Yokosawa, Koichi; Kuriki, Shinya

    2018-03-15

    Affective states, such as anticipatory anxiety, critically influence speech communication behavior in adults who stutter. However, there is currently little evidence regarding the involvement of the limbic system in speech disfluency during interpersonal communication. We designed this neuroimaging study and experimental procedure to sample neural activity during interpersonal communication between human participants, and to investigate the relationship between the amygdala activity and speech disfluency. Participants were required to engage in live communication with a stranger of the opposite sex in the MRI scanner environment. In the gaze condition, the stranger gazed at the participant without speaking, while in the live conversation condition, the stranger asked questions that the participant was required to answer. The stranger continued to gaze silently at the participant while the participant answered. Adults who stutter reported significantly higher discomfort than fluent controls during the experiment. Activity in the right amygdala, a key anatomical region in the limbic system involved in emotion, was significantly correlated with stuttering occurrences in adults who stutter. Right amygdala activity from pooled data of all participants also showed a significant correlation with discomfort level during the experiment. Activity in the prefrontal cortex, which forms emotion regulation neural circuitry with the amygdala, was decreased in adults who stutter than in fluent controls. This is the first study to demonstrate that amygdala activity during interpersonal communication is involved in disfluent speech in adults who stutter. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  11. Arterial Spin Labeling - Fast Imaging with Steady-State Free Precession (ASL-FISP): A Rapid and Quantitative Perfusion Technique for High Field MRI

    PubMed Central

    Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.

    2014-01-01

    Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124

  12. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  13. MRI and PET Compatible Bed for Direct Co-Registration in Small Animals

    NASA Astrophysics Data System (ADS)

    Bartoli, Antonietta; Esposito, Giovanna; D'Angeli, Luca; Chaabane, Linda; Terreno, Enzo

    2013-06-01

    To obtain an accurate co-registration with stand-alone PET and MRI scanners, we developed a compatible bed system for mice and rats that enables both images to be acquired without repositioning the animals. MRI acquisitions were performed on a preclinical 7T scanner (Pharmascan, Bruker), whereas PET scans were acquired on a YAP-(S)PET (ISE s.r.l.). The bed performance was tested both on a phantom (NEMA Image Quality phantom) and in vivo (healthy rats and mice brain). Fiducial markers filled up with a drop of 18 F were visible in both modalities. Co-registration process was performed using the point-based registration technique. The reproducibility and accuracy of the co-registration were assessed using the phantom. The reproducibility of the translation distances was 0.2 mm along the z axis. On the other hand, the accuracy depended on the physical size of the phantom structures under investigation but was always lower than 4%. Regions of Interest (ROIs) drawn on the fused images were used for quantification purposes. PET and MRI intensity profiles on small structures of the phantom showed that the underestimation in activity concentration reached 90% in regions that were smaller than the PET spatial resolution, while the MRI allowed a good visualization of the 1 mm 0 rod. PET/MRI images of healthy mice and rats highlighted the expected superior capability of MRI to define brain structures. The simplicity of our developed MRI/PET compatible bed and the quality of the fused images obtained offers a promising opportunity for a future preclinical translation, particularly for neuroimaging studies.

  14. Nikola Tesla: the Moon's rotation.

    NASA Astrophysics Data System (ADS)

    Tomić, A.; Jovanović, B. S.

    1993-09-01

    The review of three articles by N. Tesla, published in the year 1919 in the journal "Electrical experimenter" is given, with special reference to the astronomical contents and to circumstances in which they appeared.

  15. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  16. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  17. T2-weighted prostate MRI at 7 Tesla using a simplified external transmit-receive coil array: correlation with radical prostatectomy findings in two prostate cancer patients.

    PubMed

    Rosenkrantz, Andrew B; Zhang, Bei; Ben-Eliezer, Noam; Le Nobin, Julien; Melamed, Jonathan; Deng, Fang-Ming; Taneja, Samir S; Wiggins, Graham C

    2015-01-01

    To report design of a simplified external transmit-receive coil array for 7 Tesla (T) prostate MRI, including demonstration of the array for tumor localization using T2-weighted imaging (T2WI) at 7T before prostatectomy. Following simulations of transmitter designs not requiring parallel transmission or radiofrequency-shimming, a coil array was constructed using loop elements, with anterior and posterior rows comprising one transmit-receive element and three receive-only elements. This coil structure was optimized using a whole-body phantom. In vivo sequence optimization was performed to optimize achieved flip angle (FA) and signal to noise ratio (SNR) in prostate. The system was evaluated in a healthy volunteer at 3T and 7T. The 7T T2WI was performed in two prostate cancer patients before prostatectomy, and localization of dominant tumors was subjectively compared with histopathological findings. Image quality was compared between 3T and 7T in these patients. Simulations of the B1(+) field in prostate using two-loop design showed good magnitude (B1(+) of 0.245 A/m/w(1/2)) and uniformity (nonuniformity [SD/mean] of 10.4%). In the volunteer, 90° FA was achieved in prostate using 225 v 1 ms hard-pulse (indicating good efficiency), FA maps confirmed good uniformity (14.1% nonuniformity), and SNR maps showed SNR gain of 2.1 at 7T versus 3T. In patients, 7T T2WI showed excellent visual correspondence with prostatectomy findings. 7T images demonstrated higher estimated SNR (eSNR) in benign peripheral zone (PZ) and tumor compared with 3T, but lower eSNR in fat and slight decreases in tumor-to-PZ contrast and PZ-homogeneity. We have demonstrated feasibility of a simplified external coil array for high-resolution T2-weighted prostate MRI at 7T. © 2013 Wiley Periodicals, Inc.

  18. Pelvimetry in nulliparous and primiparous women using 3 Tesla magnetic resonance imaging.

    PubMed

    Hampel, Franziska; Hallscheidt, Peter; Sohn, Christof; Schlehe, Bettina; Brocker, Kerstin A

    2018-02-21

    To perform pelvimetry in nulliparous and primiparous women using 3 Tesla magnetic resonance imaging (3T MRI). Twenty-five nulliparous volunteers and 25 primiparous women underwent pelvic 3T MRI within one week after vaginal childbirth in a prospective clinical single-center trial. The pelvimetric parameters interspinous distance (ISD), intertuberous distance (ITD), sagittal outlet (SO), obstetric conjugate (OC), and coccygeal curved length (CCL) were adapted from anthropometric measurements as well as from sonographic and computed tomography-based pelvimetry performed on high-resolution T2-weighted images. We compared the results of the two study groups to one another, recent literature and postpartum-diagnosed levator ani muscle (LAM) injuries. The mean values for primipara/nullipara were ISD 107 ± 8.3/105 ± 8.4 mm, ITD 119.8 ± 10.2/118.4 ± 13.1 mm, OC 129.4 ± 10/130.8 ± 6.9 mm, SO 114.3 ± 7.8/112.5 ± 8.9 mm, and CCL 37.3 ± 7.4/39 ± 8 mm. Significant differences (P < 0.05) were found between the results for OC, SO, and CCL (primipara) and ISD, ITD and OC (nullipara) and the values in the literature. No significant difference in pelvimetric values was found between the groups. A significant correlation was found between the pelvimetric parameters and five types of LAM injuries. Two-dimensional 3T MRI combines high-resolution images with objective pelvimetric measurements applicable in a postpartum setting. Our results provide a good foundation for further MRI-based studies evaluating the bony pelvis and its relation to LAM injuries during vaginal childbirth. © 2018 Wiley Periodicals, Inc.

  19. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry

    PubMed Central

    Parker, Brent C.; Neck, Daniel W.; Henkelmann, Greg; Rosen, Isaac I.

    2010-01-01

    The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges. PACS number: 87.55.Qr

  20. Sensing the effects of mouth breathing by using 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  1. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators.

    PubMed

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Salomon, Andre; Kiessling, Fabian; Schulz, Volkmar

    2015-09-21

    We evaluate the MR compatibility of the Hyperion-II(D) positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five (22)Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and

  2. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators

    NASA Astrophysics Data System (ADS)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Salomon, Andre; Kiessling, Fabian; Schulz, Volkmar

    2015-09-01

    We evaluate the MR compatibility of the Hyperion-IID positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five 22Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and the

  3. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  4. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-03-31

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.

  5. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  6. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. MRI-guided procedures in various regions of the body using a robotic assistance system in a closed-bore scanner: preliminary clinical experience and limitations.

    PubMed

    Moche, Michael; Zajonz, Dirk; Kahn, Thomas; Busse, Harald

    2010-04-01

    To present the clinical setup and workflow of a robotic assistance system for image-guided interventions in a conventional magnetic resonance imaging (MRI) environment and to report our preliminary clinical experience with percutaneous biopsies in various body regions. The MR-compatible, servo-pneumatically driven, robotic device (Innomotion) fits into the 60-cm bore of a standard MR scanner. The needle placement (n = 25) accuracy was estimated by measuring the 3D deviation between needle tip and prescribed target point in a phantom. Percutaneous biopsies in six patients and different body regions were planned by graphically selecting entry and target points on intraoperatively acquired roadmap MR data. For insertion depths between 29 and 95 mm, the average 3D needle deviation was 2.2 +/- 0.7 mm (range 0.9-3.8 mm). Patients with a body mass index of up to approximately 30 kg/m(2) fitted into the bore with the device. Clinical work steps and limitations are reported for the various applications. All biopsies were diagnostic and could be completed without any major complications. Median planning and intervention times were 25 (range 20-36) and 44 (36-68) minutes, respectively. Preliminary clinical results in a standard MRI environment suggest that the presented robotic device provides accurate guidance for percutaneous procedures in various body regions. Shorter procedure times may be achievable by optimizing technical and workflow aspects. (c) 2010 Wiley-Liss, Inc.

  8. Recovery of chemical estimates by field inhomogeneity neighborhood error detection (REFINED): fat/water separation at 7 tesla.

    PubMed

    Narayan, Sreenath; Kalhan, Satish C; Wilson, David L

    2013-05-01

    To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.

  9. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children.

    PubMed

    Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan

    2016-01-01

    Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.

  10. A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Xuandong

    Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.

  11. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  12. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small

  13. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  14. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  16. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction.

    PubMed

    de Munck, Jan C; van Houdt, Petra J; Gonçalves, Sónia I; van Wegen, Erwin; Ossenblok, Pauly P W

    2013-01-01

    Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of EEG/fMRI for localization of epileptic sources is hampered by large artefacts in the EEG, caused by switching of scanner gradients and heartbeat effects. Residuals of the ballistocardiogram (BCG) artefacts are similarly shaped as epileptic spikes, and may therefore cause false identification of spikes. In this study, new ideas and methods are presented to remove gradient artefacts and to reduce BCG artefacts of different shapes that mutually overlap in time. Gradient artefacts can be removed efficiently by subtracting an average artefact template when the EEG sampling frequency and EEG low-pass filtering are sufficient in relation to MR gradient switching (Gonçalves et al., 2007). When this is not the case, the gradient artefacts repeat themselves at time intervals that depend on the remainder between the fMRI repetition time and the closest multiple of the EEG acquisition time. These repetitions are deterministic, but difficult to predict due to the limited precision by which these timings are known. Therefore, we propose to estimate gradient artefact repetitions using a clustering algorithm, combined with selective averaging. Clustering of the gradient artefacts yields cleaner EEG for data recorded during scanning of a 3T scanner when using a sampling frequency of 2048 Hz. It even gives clean EEG when the EEG is sampled with only 256 Hz. Current BCG artefacts-reduction algorithms based on average template subtraction have the intrinsic limitation that they fail to deal properly with artefacts that overlap in time. To eliminate this constraint, the precise timings of artefact overlaps were modelled and represented in a sparse matrix. Next, the artefacts were disentangled with

  17. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment.

    PubMed

    Oblak, Ethan F; Lewis-Peacock, Jarrod A; Sulzer, James S

    2017-07-01

    Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different

  18. Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment

    PubMed Central

    Sulzer, James S.

    2017-01-01

    Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different

  19. Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 Tesla MRI: a feasibility study.

    PubMed

    Apprich, S; Mamisch, T C; Welsch, G H; Bonel, H; Siebenrock, K A; Kim, Y-J; Trattnig, S; Dudda, M

    2012-08-01

    To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time. Twenty-two patients (13 females and 9 males; mean age 28.1 years) with clinical signs of FAI and Tönnis grade ≤ 1 on anterior-posterior x-ray and 35 healthy age-matched volunteers were examined at a 3 T MRI using a flexible body coil. T2* maps were calculated from sagittal- and coronal-oriented gradient-multi-echo sequences using six echoes (TR 125, TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min), both measured at beginning and end of the scan (45 min time span between measurements). Region of interest analysis was manually performed on four consecutive slices for superior and anterior cartilage. Mean T2* values were compared among patients and volunteers, as well as over time using analysis of variance and Student's t-test. Whereas quantitative T2* values for the first measurement did not reveal significant differences between patients and volunteers, either for sagittal (p = 0.644) or coronal images (p = 0.987), at the first measurement, a highly significant difference (p ≤ 0.004) was found for both measurements with time after unloading of the joint. Over time we found decreasing mean T2* values for patients, in contrast to increasing mean T2* relaxation times in volunteers. The study proved the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration in the hip joint in FAI patients at 3 Tesla to predict possible success of joint-preserving surgery. However, we suggest the time point for measuring T2* as an MR biomarker for cartilage and the changes in T2* over time to be of crucial importance for designing an MR protocol in patients with FAI.

  20. Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.

    PubMed

    Breyer, Tobias; Wanke, Isabel; Maderwald, Stefan; Woermann, Friedrich G; Kraff, Oliver; Theysohn, Jens M; Ebner, Alois; Forsting, Michael; Ladd, Mark E; Schlamann, Marc

    2010-04-01

    Focal epilepsies potentially can be cured by neurosurgery; other treatment options usually remain symptomatic. High-resolution magnetic resonance (MR) imaging is the central imaging strategy in the evaluation of focal epilepsy. The most common substrate of temporal epilepsies is hippocampal sclerosis (HS), which cannot always be sufficiently characterized with current MR field strengths. Therefore, the purpose of our study was to demonstrate the feasibility of high-resolution MR imaging at 7 Tesla in patients with focal epilepsy resulting from a HS and to improve image resolution at 7 Tesla in patients with HS. Six patients with known HS were investigated with T1-, T2-, T2(*)-, and fluid-attenuated inversion recovery-weighted sequences at 7 Tesla with an eight-channel transmit-receive head coil. Total imaging time did not exceed 90 minutes per patient. High-resolution imaging at 7 Tesla is feasible and reveals high resolution of intrahippocampal structures in vivo. HS was confirmed in all patients. The maximum non-interpolated in-plane resolution reached 0.2 x 0.2 mm(2) in T2(*)-weighted images. The increased susceptibility effects at 7 Tesla revealed identification of intrahippocampal structures in more detail than at 1.5 Tesla, but otherwise led to stronger artifacts. Imaging revealed regional differences in hippocampal atrophy between patients. The scan volume was limited because of specific absorption rate restrictions, scanning time was reasonable. High-resolution imaging at 7 Tesla is promising in presurgical epilepsy imaging. "New" contrasts may further improve detection of even very small intrahippocampal structural changes. Therefore, further investigations will be necessary to demonstrate the potential benefit for presurgical selection of patients with various lesion patterns in mesial temporal epilepsies resulting from a unilateral HS. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  1. Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.

    PubMed

    Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques

    2017-12-01

    Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

  2. Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density.

    PubMed

    Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R

    2015-05-01

    Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be

  3. Effect of disease progression on liver apparent diffusion coefficient values in a murine model of NASH at 11.7 Tesla MRI.

    PubMed

    Anderson, Stephan W; Soto, Jorge A; Milch, Holly N; Ozonoff, Al; O'Brien, Michael; Hamilton, James A; Jara, Hernan J

    2011-04-01

    To evaluate the apparent diffusion coefficient (ADC) values of liver in a murine model of non-alcoholic steatohepatitis using 11.7 Tesla (T) MRI. This animal study was IACUC approved. Seventeen male C57BL/6 mice were divided into control (n = 3) and experimental groups (n = 14) fed a methionine-deficient choline-deficient (MCD) diet to induce steatohepatitis. Livers underwent ex vivo diffusion-weighted MR imaging and ADC maps were calculated. A pathologist determined subjective scores of steatosis, classified from 0 to 3. Digital image analysis was used to determine percentage areas of steatosis. Graphs comparing ADC to subjective and digital image analysis (DIA) determinations of steatosis were plotted. Subjective assessments of steatosis ranged up to values of 3 and DIA determined areas of steatosis to range up to approximately 16%. ADC values approximated 800 × 10(-6) mm(2) /s (range, 749-811 × 10(-6) mm(2) /s, mean 786 × 10(-6) mm(2) /s) in controls and 500 × 10(-6) mm(2) /s (range, 478-733 × 10(-6) mm(2) /s, mean 625 × 10(-6) mm(2) /s) in experimental mice. Moderate correlation between ADC and subjective scores of steatosis (R = -0.56) was observed. Strong correlation between ADC values and percentage areas of steatosis was between ADC values and percentage areas of steatosis was observed greater (R = -0.81) and very strong correlation was observed with the exclusion of a single outlying data point (R = -0.91). Based on the comparison of ADC values and steatosis determinations by DIA, increasing degrees of steatosis are seen to result in decreased hepatic ADC values. Copyright © 2011 Wiley-Liss, Inc.

  4. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  5. Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.

    PubMed

    Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G

    2014-06-01

    The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.

  6. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    PubMed

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  8. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement.

    PubMed

    Crespo-Rodríguez, Ana M; De Lucas-Villarrubia, Jose C; Pastrana-Ledesma, Miguel; Hualde-Juvera, Ana; Méndez-Alonso, Santiago; Padron, Mario

    2017-03-01

    The aim of this study was to evaluate the diagnostic accuracy of 3-T non-contrast MRI versus 1.5-T MRA for assessing labrum and articular cartilage lesions in patients with clinical suspicion of femoro-acetabular impingement (FAI). Fifty patients (thirty men and twenty women, mean age 42.5 years) underwent 1.5-T MRA, 3-T MRI and arthroscopy on the same hip. An optimized high-resolution proton density spin echo pulse sequence was included in the 3-T non-contrast MRI protocol. The 3-T non-contrast MRI identified forty-two of the forty-three arthroscopically proven tears at the labral-chondral transitional zone (sensitivity, 97.7%; specificity, 100%; positive predictive value (PPV), 100%; negative predictive value (NPV), 87.5%; accuracy 98%). With 1.5-T MRA, forty-four tears were diagnosed. However, there was one false positive (sensitivity, 100%; specificity, 85.7%; PPV, 97.7%; NPV, 100%; accuracy 98%). Agreement between arthroscopy and MRI, whether 3-T non-contrast MRI or 1.5-T MRA, as to the degree of chondral lesion in the acetabulum was reached in half of the patients and in the femur in 76% of patients. Non-invasive assessment of the hip is possible with 3-T MR magnet. 3-T non-contrast MRI could replace MRA as the workhorse technique for assessing hip internal damage. MRA would then be reserved for young adults with a strong clinical suspicion of FAI but normal findings on 3-T non-contrast MRI. When compared with 1.5-T MRA, optimized sequences with 3-T non-contrast MRI help in detecting normal variants and in diagnosing articular cartilage lesions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. [Comparison of Quantification of Myocardial Infarct Size by One Breath Hold Single Shot PSIR Sequence and Segmented FLASH-PSIR Sequence at 3. 0 Tesla MR].

    PubMed

    Cheng, Wei; Cai, Shu; Sun, Jia-yu; Xia, Chun-chao; Li, Zhen-lin; Chen, Yu-cheng; Zhong, Yao-zu

    2015-05-01

    To compare the two sequences [single shot true-FISP-PSIR (single shot-PSIR) and segmented-turbo-FLASH-PSIR (segmented-PSIR)] in the value of quantification for myocardial infarct size at 3. 0 tesla MRI. 38 patients with clinical confirmed myocardial infarction were served a comprehensive gadonilium cardiac MRI at 3. 0 tesla MRI system (Trio, Siemens). Myocardial delayed enhancement (MDE) were performed by single shot-PSIR and segmented-PSIR sequences separatedly in 12-20 min followed gadopentetate dimeglumine injection (0. 15 mmol/kg). The quality of MDE images were analysed by experienced physicians. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) between the two techniques were compared. Myocardial infarct size was quantified by a dedicated software automatically (Q-mass, Medis). All objectives were scanned on the 3. 0T MR successfully. No significant difference was found in SNR and CNR of the image quality between the two sequences (P>0. 05), as well as the total myocardial volume, between two sequences (P>0. 05). Furthermore, there were still no difference in the infarct size [single shot-PSIR (30. 87 ± 15. 72) mL, segmented-PSIR (29. 26±14. 07) ml], ratio [single shot-PSIR (22. 94%±10. 94%), segmented-PSIR (20. 75% ± 8. 78%)] between the two sequences (P>0. 05). However, the average aquisition time of single shot-PSIR (21. 4 s) was less than that of the latter (380 s). Single shot-PSIR is equal to segmented-PSIR in detecting the myocardial infarct size with less acquisition time, which is valuable in the clinic application and further research.

  10. Measurements of the ripple effect and geometric distribution of switched gradient fields inside a magnetic resonance scanner.

    PubMed

    Sundström, Henrik; Mild, Kjell Hansson; Wilén, Jonna

    2015-02-01

    Knowledge of patient exposure during magnetic resonance imaging (MRI) procedures is limited, and the need for such knowledge has been demonstrated in recent in vitro and in vivo studies of the genotoxic effects of MRI. This study focuses on the dB/dt of the switched gradient field (SGF) and its geometric distribution. These values were characterized by measuring the peak dB/dt generated by a programmed gradient current of alternating triangles inside a 1.5T MR scanner. The maximum dB/dt exposure to the gradient field was 6-14 T/s, and this occurred at the edges of the field of view (FOV) 20-25 cm from the isocenter in the longitudinal direction. The dB/dt exposure dropped off to roughly half the maximum (3-7 T/s) at the edge of the bore. It was found that the dB/dt of the SGF was distorted by a 200 kHz ripple arising from the amplifier. The ripple is small in terms of B-field, but the high frequency content contributes to a peak dB/dt up to 18 times larger than that predicted by the slew rate (4 T/s m) and the distance from the isocenter. Measurements on a 3 T MRI scanner, however, revealed a much smaller filtered ripple of 100 kHz in dB/dt. These findings suggest that the gradient current to each coil together with information on the geometrical distribution of the gradient field and ripple effects could be used to assess the SGF exposure within an MRI bore. © 2014 Wiley Periodicals, Inc.

  11. Nikola Tesla Educational Opportunity School.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Describes the architectural design, costs, general description, and square footage data for the Nikola Tesla Educational Opportunity School in Colorado Springs, Colorado. A floor plan and photos are included along with a list of manufacturers and suppliers used for the project. (GR)

  12. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Brinker, Spencer T.; Coviello, Christian M.; Livingstone, Margaret S.; McDannold, Nathan J.

    2018-03-01

    Previous work has demonstrated that passive acoustic imaging may be used alongside MRI for monitoring of focused ultrasound therapy. However, past implementations have generally made use of either linear arrays originally designed for diagnostic imaging or custom narrowband arrays specific to in-house therapeutic transducer designs, neither of which is fully compatible with clinical MR-guided focused ultrasound (MRgFUS) devices. Here we have designed an array which is suitable for use within an FDA-approved MR-guided transcranial focused ultrasound device, within the bore of a 3 Tesla clinical MRI scanner. The array is constructed from 5  ×  0.4 mm piezoceramic disc elements arranged in pseudorandom fashion on a low-profile laser-cut acrylic frame designed to fit between the therapeutic elements of a 230 kHz InSightec ExAblate 4000 transducer. By exploiting thickness and radial resonance modes of the piezo discs the array is capable of both B-mode imaging at 5 MHz for skull localization, as well as passive reception at the second harmonic of the therapy array for detection of cavitation and 3D passive acoustic imaging. In active mode, the array was able to perform B-mode imaging of a human skull, showing the outer skull surface with good qualitative agreement with MR imaging. Extension to 3D showed the array was able to locate the skull within  ±2 mm/2° of reference points derived from MRI, which could potentially allow registration of a patient to the therapy system without the expense of real-time MRI. In passive mode, the array was able to resolve a point source in 3D within a  ±10 mm region about each axis from the focus, detect cavitation (SNR ~ 12 dB) at burst lengths from 10 cycles to continuous wave, and produce 3D acoustic maps in a flow phantom. Finally, the array was used to detect and map cavitation associated with microbubble activity in the brain in nonhuman primates.

  13. Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres.

    PubMed

    Jogiya, Roy; Makowski, Markus; Phinikaridou, Alkystsis; Patel, Ashish S; Jansen, Christian; Zarinabad, Niloufar; Chiribiri, Amedeo; Botnar, Rene; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2013-07-21

    Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84). First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.

  14. Optimising EEG-fMRI for Localisation of Focal Epilepsy in Children.

    PubMed

    Centeno, Maria; Tierney, Tim M; Perani, Suejen; Shamshiri, Elhum A; StPier, Kelly; Wilkinson, Charlotte; Konn, Daniel; Banks, Tina; Vulliemoz, Serge; Lemieux, Louis; Pressler, Ronit M; Clark, Christopher A; Cross, J Helen; Carmichael, David W

    2016-01-01

    Early surgical intervention in children with drug resistant epilepsy has benefits but requires using tolerable and minimally invasive tests. EEG-fMRI studies have demonstrated good sensitivity for the localization of epileptic focus but a poor yield although the reasons for this have not been systematically addressed. While adults EEG-fMRI studies are performed in the "resting state"; children are commonly sedated however, this has associated risks and potential confounds. In this study, we assessed the impact of the following factors on the tolerability and results of EEG-fMRI in children: viewing a movie inside the scanner; movement; occurrence of interictal epileptiform discharges (IED); scan duration and design efficiency. This work's motivation is to optimize EEG-fMRI parameters to make this test widely available to paediatric population. Forty-six children with focal epilepsy and 20 controls (6-18) underwent EEG-fMRI. For two 10 minutes sessions subjects were told to lie still with eyes closed, as it is classically performed in adult studies ("rest sessions"), for another two sessions, subjects watched a child friendly stimulation i.e. movie ("movie sessions"). IED were mapped with EEG-fMRI for each session and across sessions. The resulting maps were classified as concordant/discordant with the presumed epileptogenic focus for each subject. Movement increased with scan duration, but the movie reduced movement by ~40% when played within the first 20 minutes. There was no effect of movie on the occurrence of IED, nor in the concordance of the test. Ability of EEG-fMRI to map the epileptogenic region was similar for the 20 and 40 minute scan durations. Design efficiency was predictive of concordance. A child friendly natural stimulus improves the tolerability of EEG-fMRI and reduces in-scanner movement without having an effect on IED occurrence and quality of EEG-fMRI maps. This allowed us to scan children as young as 6 and obtain localising information without

  15. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.

    2015-06-01

    The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.

  16. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    PubMed Central

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  17. Complete-arch accuracy of intraoral scanners.

    PubMed

    Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling

    2018-04-30

    Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners

  18. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  19. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López Terrones, Marcos Alonso, E-mail: malt.marcos@gmail.com; Solís-Nájera, Sergio Enrique, E-mail: solisnajera@ciencias.unam.mx

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. Inmore » this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.« less

  20. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  1. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype.

    PubMed

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory

    2010-09-01

    Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e., MRI- and CT-based AC methods compare favorably in most of

  2. Test-retest and between-site reliability in a multicenter fMRI study.

    PubMed

    Friedman, Lee; Stern, Hal; Brown, Gregory G; Mathalon, Daniel H; Turner, Jessica; Glover, Gary H; Gollub, Randy L; Lauriello, John; Lim, Kelvin O; Cannon, Tyrone; Greve, Douglas N; Bockholt, Henry Jeremy; Belger, Aysenil; Mueller, Bryon; Doty, Michael J; He, Jianchun; Wells, William; Smyth, Padhraic; Pieper, Steve; Kim, Seyoung; Kubicki, Marek; Vangel, Mark; Potkin, Steven G

    2008-08-01

    In the present report, estimates of test-retest and between-site reliability of fMRI assessments were produced in the context of a multicenter fMRI reliability study (FBIRN Phase 1, www.nbirn.net). Five subjects were scanned on 10 MRI scanners on two occasions. The fMRI task was a simple block design sensorimotor task. The impulse response functions to the stimulation block were derived using an FIR-deconvolution analysis with FMRISTAT. Six functionally-derived ROIs covering the visual, auditory and motor cortices, created from a prior analysis, were used. Two dependent variables were compared: percent signal change and contrast-to-noise-ratio. Reliability was assessed with intraclass correlation coefficients derived from a variance components analysis. Test-retest reliability was high, but initially, between-site reliability was low, indicating a strong contribution from site and site-by-subject variance. However, a number of factors that can markedly improve between-site reliability were uncovered, including increasing the size of the ROIs, adjusting for smoothness differences, and inclusion of additional runs. By employing multiple steps, between-site reliability for 3T scanners was increased by 123%. Dropping one site at a time and assessing reliability can be a useful method of assessing the sensitivity of the results to particular sites. These findings should provide guidance toothers on the best practices for future multicenter studies.

  3. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  4. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  5. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    PubMed Central

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2017-01-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI. PMID:28164083

  6. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  7. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla

    PubMed Central

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-01-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (~30%) and 0.28±0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (~5%) and 0.19±0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  8. Neurodegenerative changes in Alzheimer's disease: a comparative study of manual, semi-automated, and fully automated assessment using MRI

    NASA Astrophysics Data System (ADS)

    Fritzsche, Klaus H.; Giesel, Frederik L.; Heimann, Tobias; Thomann, Philipp A.; Hahn, Horst K.; Pantel, Johannes; Schröder, Johannes; Essig, Marco; Meinzer, Hans-Peter

    2008-03-01

    Objective quantification of disease specific neurodegenerative changes can facilitate diagnosis and therapeutic monitoring in several neuropsychiatric disorders. Reproducibility and easy-to-perform assessment are essential to ensure applicability in clinical environments. Aim of this comparative study is the evaluation of a fully automated approach that assesses atrophic changes in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). 21 healthy volunteers (mean age 66.2), 21 patients with MCI (66.6), and 10 patients with AD (65.1) were enrolled. Subjects underwent extensive neuropsychological testing and MRI was conducted on a 1.5 Tesla clinical scanner. Atrophic changes were measured automatically by a series of image processing steps including state of the art brain mapping techniques. Results were compared with two reference approaches: a manual segmentation of the hippocampal formation and a semi-automated estimation of temporal horn volume, which is based upon interactive selection of two to six landmarks in the ventricular system. All approaches separated controls and AD patients significantly (10 -5 < p < 10 -4) and showed a slight but not significant increase of neurodegeneration for subjects with MCI compared to volunteers. The automated approach correlated significantly with the manual (r = -0.65, p < 10 -6) and semi automated (r = -0.83, p < 10 -13) measurements. It proved high accuracy and at the same time maximized observer independency, time reduction and thus usefulness for clinical routine.

  9. Two-Layer 16 Tesla Cosθ Dipole Design for the FCC

    DOE PAGES

    Holik, Eddie Frank; Ambrosio, Giorgio; Apollinari, G.

    2018-02-13

    The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible withmore » conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.« less

  10. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    PubMed

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  11. DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning.

    PubMed

    Hao, Yongfu; Khoo, Hui Ming; von Ellenrieder, Nicolas; Zazubovits, Natalja; Gotman, Jean

    2018-01-01

    Presurgical evaluation that can precisely delineate the epileptogenic zone (EZ) is one important step for successful surgical resection treatment of refractory epilepsy patients. The noninvasive EEG-fMRI recording technique combined with general linear model (GLM) analysis is considered an important tool for estimating the EZ. However, the manual marking of interictal epileptic discharges (IEDs) needed in this analysis is challenging and time-consuming because the quality of the EEG recorded inside the scanner is greatly deteriorated compared to the usual EEG obtained outside the scanner. This is one of main impediments to the widespread use of EEG-fMRI in epilepsy. We propose a deep learning based semi-automatic IED detector that can find the candidate IEDs in the EEG recorded inside the scanner which resemble sample IEDs marked in the EEG recorded outside the scanner. The manual marking burden is greatly reduced as the expert need only edit candidate IEDs. The model is trained on data from 30 patients. Validation of IEDs detection accuracy on another 37 consecutive patients shows our method can improve the median sensitivity from 50.0% for the previously proposed template-based method to 84.2%, with false positive rate as 5 events/min. Reproducibility validation on 15 patients is applied to evaluate if our method can produce similar hemodynamic response maps compared with the manual marking ground truth results. We explore the concordance between the maximum hemodynamic response and the intracerebral EEG defined EZ and find that both methods produce similar percentage of concordance (76.9%, 10 out of 13 patients, electrode was absent in the maximum hemodynamic response in two patients). This tool will make EEG-fMRI analysis more practical for clinical usage.

  12. Biomedical Applications of Sodium MRI In Vivo

    PubMed Central

    Madelin, Guillaume; Regatte, Ravinder R.

    2013-01-01

    In this article, we present an up-to-date overview of the potential biomedical applications of sodium MRI in vivo. Sodium MRI is a subject of increasing interest in translational imaging research as it can give some direct and quantitative biochemical information on the tissue viability, cell integrity and function, and therefore not only help the diagnosis but also the prognosis of diseases and treatment outcomes. It has already been applied in vivo in most of human tissues, such as brain for stroke or tumor detection and therapeutic response, in breast cancer, in articular cartilage, in muscle and in kidney, and it was shown in some studies that it could provide very useful new information not available through standard proton MRI. However, this technique is still very challenging due to the low detectable sodium signal in biological tissue with MRI and hardware/software limitations of the clinical scanners. The article is divided in three parts: (1) the role of sodium in biological tissues, (2) a short review on sodium magnetic resonance, and (3) a review of some studies on sodium MRI on different organs/diseases to date. PMID:23722972

  13. Improved Cerebral Time-of-Flight Magnetic Resonance Angiography at 7 Tesla – Feasibility Study and Preliminary Results Using Optimized Venous Saturation Pulses

    PubMed Central

    Wrede, Karsten H.; Johst, Sören; Dammann, Philipp; Özkan, Neriman; Mönninghoff, Christoph; Kraemer, Markus; Maderwald, Stefan; Ladd, Mark E.; Sure, Ulrich; Umutlu, Lale; Schlamann, Marc

    2014-01-01

    Purpose Conventional saturation pulses cannot be used for 7 Tesla ultra-high-resolution time-of-flight magnetic resonance angiography (TOF MRA) due to specific absorption rate (SAR) limitations. We overcome these limitations by utilizing low flip angle, variable rate selective excitation (VERSE) algorithm saturation pulses. Material and Methods Twenty-five neurosurgical patients (male n = 8, female n = 17; average age 49.64 years; range 26–70 years) with different intracranial vascular pathologies were enrolled in this trial. All patients were examined with a 7 Tesla (Magnetom 7 T, Siemens) whole body scanner system utilizing a dedicated 32-channel head coil. For venous saturation pulses a 35° flip angle was applied. Two neuroradiologists evaluated the delineation of arterial vessels in the Circle of Willis, delineation of vascular pathologies, presence of artifacts, vessel-tissue contrast and overall image quality of TOF MRA scans in consensus on a five-point scale. Normalized signal intensities in the confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter were measured and vessel-tissue contrasts were calculated. Results Ratings for the majority of patients ranged between good and excellent for most of the evaluated features. Venous saturation was sufficient for all cases with minor artifacts in arteriovenous malformations and arteriovenous fistulas. Quantitative signal intensity measurements showed high vessel-tissue contrast for confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter. Conclusion The use of novel low flip angle VERSE algorithm pulses for saturation of venous vessels can overcome SAR limitations in 7 Tesla ultra-high-resolution TOF MRA. Our protocol is suitable for clinical application with excellent image quality for delineation of various intracranial vascular pathologies. PMID:25232868

  14. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  15. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures.

    PubMed

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability.

  16. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    PubMed Central

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability. PMID:21922017

  17. Synthesis of cytocompatible Fe3O4@ZSM-5 nanocomposite as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Atashi, Zahra; Divband, Baharak; Keshtkar, Ahmad; Khatamian, Maasoumeh; Farahmand-Zahed, Farzane; Nazarlo, Ali Kiani; Gharehaghaji, Nahideh

    2017-09-01

    In this study, ZSM-5 nano zeolite was used as a support material for iron oxide nanoparticles and the potential ability of the nanocomposite for magnetic resonance imaging (MRI) contrast agent was investigated. The nanocomposite was synthesized by hydrothermal method and characterized using X-ray diffraction and scanning electron microscopy. MRI was carried out by use of a 1.5 Tesla clinical scanner. The T2 weighted images were prepared and the r2 relaxivity was calculated. The sizes of Fe3O4 nanoparticles and related nanocomposite were 13-24 nm and 80-150 nm, respectively. Results of MTT assay confirmed that the prepared nanocomposite is cytocompatible. The r2 relaxivity of the Fe3O4@ZSM-5 nanocomposite was 457.1 mM-1 s-1. This study suggests that the Fe3O4@ZSM-5 nanocomposite has potential to use as an MRI T2 contrast agent.

  18. Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue.

    PubMed

    Kaye, Elena A; Josan, Sonal; Lu, Aiming; Rosenberg, Jarrett; Daniel, Bruce L; Pauly, Kim Butts

    2010-03-01

    To investigate tissue dependence of the MRI-based thermometry in frozen tissue by quantification and comparison of signal intensity and T2* of ex vivo frozen tissue of three different types: heart muscle, kidney, and liver. Tissue samples were frozen and imaged on a 0.5 Tesla MRI scanner with ultrashort echo time (UTE) sequence. Signal intensity and T2* were determined as the temperature of the tissue samples was decreased from room temperature to approximately -40 degrees C. Statistical analysis was performed for (-20 degrees C, -5 degrees C) temperature interval. The findings of this study demonstrate that signal intensity and T2* are consistent across three types of tissue for (-20 degrees C, -5 degrees C) temperature interval. Both parameters can be used to calculate a single temperature calibration curve for all three types of tissue and potentially in the future serve as a foundation for tissue-independent MRI-based thermometry.

  19. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP)

    PubMed Central

    Xia, Hongjing; Ruan, Dan; Cohen, Mark S.

    2014-01-01

    Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalographic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI) data acquisition. Here, we propose an integrated learning and inference approach that takes advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG artifacts, a near-optimal subset (20 out of 256) of channels first was identified using a modified recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts via inference, from which the intended EEG signal was recovered. The reconstruction of the EEG was performed with both a direct subtraction and an optimization scheme. We evaluated the performance on both synthetic and real contaminated recordings, and compared it to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold improvement in reducing the normalized RMS error of EEG signals, compared to OBS. PMID:25120421

  20. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI.

    PubMed

    Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas

    2012-11-01

    Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.

  1. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control

    PubMed Central

    Vigaru, Bogdan; Sulzer, James; Gassert, Roger

    2016-01-01

    Our hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control. The interface, located at the scanner bore, is controlled remotely through a shielded electromagnetic actuation system positioned at the end of the scanner bed and then through a high stiffness, low inertia cable transmission. We present the system design, taking into account requirements defined by the biomechanics and dynamics of the human hand, as well as the fMRI environment. Performance evaluation revealed a structural stiffness of 3.3 N/mm, renderable forces up to 94 N, and a position control bandwidth of at least 19 Hz. MRI-compatibility tests showed no degradation in the operation of the haptic interface or the image quality. A preliminary fMRI experiment during a pilot study validated the usability of the haptic interface, illustrating the possibilities offered by this device. PMID:26441454

  2. [Studies on renal damages after extracorporeal shock wave lithotripsy using Gd-DTPA-enhanced dynamic MRI].

    PubMed

    Umekawa, T; Kohri, K; Iguchi, M; Kurita, T

    1991-11-01

    Renal damages after ESWL treatment were examined by Gd-DTPA enhanced dynamic MRI. Gd-DTPA was used as the contrast medium and fast magnetic resonance imaging with suspended respiration using the flip angle of 20 degrees and gradient echo technique at 0.5 Tesla was used for photographing. In normal kidneys, a low intensity band was observed with the passage of Gd-DTPA through the kidney from 1 to 2 minutes after the injection. In patients who underwent ESWL treatment, however, the low intensity band which was observed before ESWL treatment became partly obscure after ESWL treatment. Furthermore, these find changes in the renal parenchyma could not be fully detected by usual MRI which does not use Gd-DTPA. Gd-DTPA enhanced dynamic MRI was considered to be effective for finding the limited dose of shock waves for ESWL treatment.

  3. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers.

    PubMed

    White, Mark J; Thornton, John S; Hawkes, David J; Hill, Derek L G; Kitchen, Neil; Mancini, Laura; McEvoy, Andrew W; Razavi, Reza; Wilson, Sally; Yousry, Tarek; Keevil, Stephen F

    2015-01-01

    The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation. © 2014 Wiley Periodicals, Inc.

  4. A scalable method to improve gray matter segmentation at ultra high field MRI.

    PubMed

    Gulban, Omer Faruk; Schneider, Marian; Marquardt, Ingo; Haast, Roy A M; De Martino, Federico

    2018-01-01

    High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.

  5. A scalable method to improve gray matter segmentation at ultra high field MRI

    PubMed Central

    De Martino, Federico

    2018-01-01

    High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data. PMID:29874295

  6. Combination of MRI hippocampal volumetry and arterial spin labeling MR perfusion at 3-Tesla improves the efficacy in discriminating Alzheimer's disease from cognitively normal elderly adults.

    PubMed

    Mak, Henry Ka-Fung; Qian, Wenshu; Ng, Kwok Sing; Chan, Queenie; Song, You-Qiang; Chu, Leung Wing; Yau, Kelvin Kai-Wing

    2014-01-01

    Structural magnetic resonance imaging has been employed for evaluation of medial temporal atrophy in patients with Alzheimer's disease (AD). Arterial spin labeling (ASL) technique could detect cerebral perfusion abnormalities in AD. We hypothesized that combination of hippocampal volumetry and cerebral blood flow yield higher accuracy than either method alone in discriminating AD patients from cognitively normal elderly adults. 13 AD patients and 15 healthy controls were studied using a 3-tesla scanner. Standardized T1W 3D volumetric Fast Field Echo and QUASAR ASL sequences were employed for cerebral volumetry and perfusion respectively. Manual Right and left hippocampal volumetry was performed manually by ANALYZE software, with total intracranial volume normalization. ASL data were analyzed by institutional specially-design software to calculate cerebral blood flow of region-of-interests placed at the middle and posterior cingulate gyri. Right and left hippocampal volumes and middle and posterior cingulate gyri cerebral blood flows were significantly lower in the patients than in the controls (independent-samples t-tests, p < 0.05), and prediction accuracies of 89.3%, 82.1%, 75.0% and 71.4% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using corresponding optimized cut-off values, various combinations of these parameters were used to create the Receiver Operating Characteristic curves. The highest area under curve value was 0.944, by combining cerebral blood flow at the middle cingulate gyrus, normalized right and left hippocampal volumes. A 'one-stop-shop' magnetic resonance study of combined hippocampal volumetry and cerebral perfusion has improved efficacy in discriminating AD patients from cognitively normal elderly adults.

  7. Usefulness of 3-Tesla cardiac magnetic resonance imaging in the assessment of aortic stenosis severity in routine clinical practice.

    PubMed

    Levy, Franck; Iacuzio, Laura; Civaia, Filippo; Rusek, Stephane; Dommerc, Carine; Hugues, Nicolas; Alexandrescu, Clara; Dor, Vincent; Tribouilloy, Christophe; Dreyfus, Gilles

    2016-11-01

    Recently, 1.5-Tesla cardiac magnetic resonance imaging (CMR) was reported to provide a reliable alternative to transthoracic echocardiography (TTE) for the quantification of aortic stenosis (AS) severity. Few data are available using higher magnetic field strength MRI systems in this context. To evaluate the feasibility and reproducibility of the assessment of aortic valve area (AVA) using 3-Tesla CMR in routine clinical practice, and to assess concordance between TTE and CMR for the estimation of AS severity. Ninety-one consecutive patients (60 men; mean age 74±10years) with known AS documented by TTE were included prospectively in the study. All patients underwent comprehensive TTE and CMR examination, including AVA estimation using the TTE continuity equation (0.81±0.18cm 2 ), direct CMR planimetry (CMRp) (0.90±0.22cm 2 ) and CMR using Hakki's formula (CMRhk), a simplified Gorlin formula (0.70±0.19cm 2 ). Although significant agreement with TTE was found for CMRp (r=0.72) and CMRhk (r=0.66), CMRp slightly overestimated (bias=0.11±0.18cm 2 ) and CMRhk slightly underestimated (bias=-0.11±0.17cm 2 ) AVA compared with TTE. Inter- and intraobserver reproducibilities of CMR measurements were excellent (r=0.72 and r=0.74 for CMRp and r=0.88 and r=0.92 for peak aortic velocity, respectively). 3-Tesla CMR is a feasible, radiation-free, reproducible imaging modality for the estimation of severity of AS in routine practice, knowing that CMRp tends to overestimate AVA and CMRhk to underestimate AVA compared with TTE. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  9. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method.

    PubMed

    Chen, Xinyuan; Dai, Jianrong

    2018-05-01

    Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    PubMed

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  11. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    PubMed Central

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  12. MRI: update on technology diffusion and acquisition.

    PubMed

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    -site MRI providers have been constantly upgrading their MRI capability while planning on adding more units. The technology itself has continued to improve, primarily through the implementation of new software that permits new techniques such as MR angiography (MRA) to be performed. Units are available in a wide price range, price usually reflecting both the field strength (0.5 tesla units cost less) as well as the additional capabilities beyond routine imaging (MRA, spectroscopy).(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Three-dimensional flow measurements in a tesla turbine rotor

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian

    2015-11-01

    Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.

  14. Phosphorus-31 MRI of bones using quadratic echo line-narrowing

    NASA Astrophysics Data System (ADS)

    Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua

    2012-02-01

    There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.

  15. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    PubMed

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium.

    PubMed

    DeMartini, Wendy B; Ichikawa, Laura; Yankaskas, Bonnie C; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D; Lehman, Constance D

    2010-11-01

    MRI is increasingly used for the detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. The aim of this study was to evaluate equipment and acquisition techniques used by community facilities across the United States, including compliance with minimum standards by the ACRIN® 6667 Trial and the European Society of Breast Imaging. Breast Cancer Surveillance Consortium facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness, and the timing of the initial postcontrast sequence. Results were tallied and percentages of facilities meeting ACRIN® and European Society of Breast Imaging standards were calculated. From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5-T field strength was 94% and of a dedicated breast coil was 100%. Eighty-three percent of acquisitions used bilateral postcontrast techniques, and 78% used slice thickness≤3 mm. The timing of initial postcontrast sequences ranged from 58 seconds to 8 minutes 30 seconds, with 63% meeting recommendations for completion within 4 minutes. Nearly all surveyed facilities met ACRIN and European Society of Breast Imaging standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for the timing of initial postcontrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high-quality breast MRI. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. An MRI-compatible patient rotation system - design, construction, and first organ deformation results.

    PubMed

    Whelan, Brendan; Liney, Gary P; Dowling, Jason A; Rai, Robba; Holloway, Lois; McGarvie, Leigh; Feain, Ilana; Barton, Michael; Berry, Megan; Wilkins, Rob; Keall, Paul

    2017-02-01

    Conventionally in radiotherapy, a very heavy beam forming apparatus (gantry) is rotated around a patient. From a mechanical perspective, a more elegant approach is to rotate the patient within a stationary beam. Key obstacles to this approach are patient tolerance and anatomical deformation. Very little information on either aspect is available in the literature. The purpose of this work was therefore to design and test an MRI-compatible patient rotation system such that the feasibility of a patient rotation workflow could be tested. A patient rotation system (PRS) was designed to fit inside the bore of a 3T MRI scanner (Skyra, Siemens) such that 3D images could be acquired at different rotation angles. Once constructed, a pelvic imaging study was carried out on a healthy volunteer. T2-weighted MRI images were taken every 45° between 0° and 360°, (with 0° equivalent to supine). The prostate, bladder, and rectum were segmented using atlas-based auto contouring. The images from each angle were registered back to the 0° image in three steps: (a) Rigid registration was based on MRI visible markers on the couch. (b) Rigid registration based on the prostate contour (equivalent to a rigid shift to the prostate). (c) Nonrigid registration. The Dice similarity coefficient (DSC) and mean average surface distance (MASD) were calculated for each organ at each step. The PRS met all design constraints and was successfully integrated with the MRI scanner. Phantom images showed minimal difference in signal or noise with or without the PRS in the MRI scanner. For the MRI images, the DSC (mean ± standard deviation) over all angles in the prostate, rectum, and bladder was 0.60 ± 0.11, 0.56 ± 0.15, and 0.76 ± 0.06 after rigid couch registration, 0.88 ± 0.03, 0.81 ± 0.08, and 0.86 ± 0.03 after rigid prostate guided registration, and 0.85 ± 0.03, 0.88 ± 0.02, 0.87 ± 0.02 after nonrigid registration. An MRI-compatible patient rotation system has been

  18. Simultaneous CT-MRI Reconstruction for Constrained Imaging Geometries using Structural Coupling and Compressive Sensing

    PubMed Central

    Xi, Yan; Zhao, Jun; Bennett, James R.; Stacy, Mitchel R.; Sinusas, Albert J.; Wang, Ge

    2016-01-01

    Objective A unified reconstruction framework is presented for simultaneous CT-MRI reconstruction. Significance Combined CT-MRI imaging has the potential for improved results in existing preclinical and clinical applications, as well as opening novel research directions for future applications. Methods In an ideal CT-MRI scanner, CT and MRI acquisitions would occur simultaneously, and hence would be inherently registered in space and time. Alternatively, separately acquired CT and MRI scans can be fused to simulate an instantaneous acquisition. In this study, structural coupling and compressive sensing techniques are combined to unify CT and MRI reconstructions. A bidirectional image estimation method was proposed to connect images from different modalities. Hence, CT and MRI data serve as prior knowledge to each other for better CT and MRI image reconstruction than what could be achieved with separate reconstruction. Results Our integrated reconstruction methodology is demonstrated with numerical phantom and real-dataset based experiments, and has yielded promising results. PMID:26672028

  19. 3 Tesla magnetic resonance imaging with and without corticotropin releasing hormone stimulation for the detection of microadenomas in Cushing's syndrome.

    PubMed

    Erickson, Dana; Erickson, Bradley; Watson, Robert; Patton, Alice; Atkinson, John; Meyer, Fredric; Nippoldt, Todd; Carpenter, Paul; Natt, Neena; Vella, Adrian; Thapa, Prabin

    2010-06-01

    We sought to determine if higher resolution 3 Tesla (T) magnetic resonance imaging (MRI) with or without ovine corticotropin releasing hormone (o-CRH) stimulation would increase the sensitivity for detection of pituitary microadenomas in ACTH-dependent Cushing's syndrome (CS). We prospectively identified 23 patients over a 2-year period with clinical and biochemical evidence of ACTH-dependent CS with no lesion (n = 11) or equivocal lesion (n = 10) on 1.5T MRI. Subsequently, two additional MRIs were performed in random order: 3T nonstimulated MRI or 3T MRI with o-CRH in all patients. Three neuroradiologists reviewed all examinations in a randomized blinded fashion. Patients were divided into four groups, depending on the outcome of their evaluation and treatment for CS. Two patients had to be excluded, and so we report on 21 subjects. Both 3T MRI without (P < 0.016) and with o-CRH stimulation (P < 0.013) was significantly more sensitive for detection of pituitary microadenomas than 1.5T MRI for Group 1 (definitive proof of Cushing's disease, n = 10). Group 2 (those in group 1, plus three patients where dynamic/invasive testing suggested pituitary source) also showed a significant (P < 0.012) advantage for 3T. There was no difference between the 3T and the 3T o-CRH examinations for any of the pulse sequences. We did not observe a statistically significant difference in other patient groups [patients with recurrent CD (n = 6) and patients with ectopic CS (n = 2)]. The results of our prospective blinded studies suggest that 3T MRI of pituitary gland should be considered in evaluation of patients with ACTH-dependent CD when 1.5T imaging is negative or equivocal.

  20. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm²) and standard high b-value (1000 s/mm²).

    PubMed

    Kitajima, Kazuhiro; Takahashi, Satoru; Ueno, Yoshiko; Yoshikawa, Takeshi; Ohno, Yoshiharu; Obara, Makoto; Miyake, Hideaki; Fujisawa, Masato; Sugimura, Kazuro

    2012-07-01

    To determine whether the apparent diffusion coefficient (ADC) obtained using b = 2000 s/mm(2) upon 3 Tesla (T) diffusion-weighted MRI is superior to b = 1000 s/mm(2) for discriminating malignant from normal prostate tissue and predicting the aggressiveness of prostate cancer, using histopathological findings of radical prostatectomy as a reference. Eighty prostate cancer patients underwent preoperative 3T MRI including diffusion weighted imaging with b-values of 0, 1000, and 2000 s/mm(2) . ADCs were measured for malignant lesions and normal sites on three sets of ADC maps calculated with monoexponential fitting between b = 0 and 1000, 0 and 2000, and 1000 and 2000, respectively. The relationship between the ADC and Gleason score was evaluated. The areas under the ROC curves for b = 0,1000, b = 0,2000, and b = 1000,2000 were 0.896, 0.937, and 0.857, respectively, in the peripheral zone (PZ) and 0.877, 0.889, and 0.731, respectively, in the transition zone (TZ). The difference between b = 0,1000 and b = 0,2000 was significant in PZ (P = 0.033), but not in TZ (P = 0.84). Weak but significant negative correlations were identified between ADCs and Gleason score in both PZ and TZ cancer at b = 0,1000 and b = 0,2000 (r = -0.323 to -0.341). For 3T MRI, ADCs using b = 0,2000 are more accurate than b = 0,1000 for diagnosing PZ cancer, and as accurate for TZ cancer. Copyright © 2012 Wiley Periodicals, Inc.

  1. Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner.

    PubMed

    Muthuraman, M; Galka, A; Hong, V N; Heute, U; Deuschl, G; Raethjen, J

    2013-01-01

    Simultaneous recording of electroencephalogram (EEG) and electromyogram (EMG) with magnetic resonance imaging (MRI) provides great potential for studying human brain activity with high temporal and spatial resolution. But, due to the MRI, the recorded signals are contaminated with artifacts. The correction of these artifacts is important to use these signals for further spectral analysis. The coherence can reveal the cortical representation of peripheral muscle signal in particular motor tasks, e.g. finger movements. The artifact correction of these signals was done by two different algorithms the Brain vision analyzer (BVA) and the Matlab FMRIB plug-in for EEGLAB. The Welch periodogram method was used for estimating the cortico-muscular coherence. Our analysis revealed coherence with a frequency of 5Hz in the contralateral side of the brain. The entropy is estimated for the calculated coherence to get the distribution of coherence in the scalp. The significance of the paper is to identify the optimal algorithm to rectify the MR artifacts and as a first step to use both these signals EEG and EMG in conjunction with MRI for further studies.

  2. Preliminary experience using dynamic MRI at 3.0 Tesla for evaluation of soft tissue tumors.

    PubMed

    Park, Michael Yong; Jee, Won-Hee; Kim, Sun Ki; Lee, So-Yeon; Jung, Joon-Yong

    2013-01-01

    We aimed to evaluate the use of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) at 3.0 T for differentiating the benign from malignant soft tissue tumors. Also we aimed to assess whether the shorter length of DCE-MRI protocols are adequate, and to evaluate the effect of temporal resolution. Dynamic contrast-enhanced magnetic resonance imaging, at 3.0 T with a 1 second temporal resolution in 13 patients with pathologically confirmed soft tissue tumors, was analyzed. Visual assessment of time-signal curves, subtraction images, maximal relative enhancement at the first (maximal peak enhancement [Emax]/1) and second (Emax/2) minutes, Emax, steepest slope calculated by using various time intervals (5, 30, 60 seconds), and the start of dynamic enhancement were analyzed. The 13 tumors were comprised of seven benign and six malignant soft tissue neoplasms. Washout on time-signal curves was seen on three (50%) malignant tumors and one (14%) benign one. The most discriminating DCE-MRI parameter was the steepest slope calculated, by using at 5-second intervals, followed by Emax/1 and Emax/2. All of the steepest slope values occurred within 2 minutes of the dynamic study. Start of dynamic enhancement did not show a significant difference, but no malignant tumor rendered a value greater than 14 seconds. The steepest slope and early relative enhancement have the potential for differentiating benign from malignant soft tissue tumors. Short-length rather than long-length DCE-MRI protocol may be adequate for our purpose. The steepest slope parameters require a short temporal resolution, while maximal peak enhancement parameter may be more optimal for a longer temporal resolution.

  3. A Forced-Attention Dichotic Listening fMRI Study on 113 Subjects

    ERIC Educational Resources Information Center

    Kompus, Kristiina; Specht, Karsten; Ersland, Lars; Juvodden, Hilde T.; van Wageningen, Heidi; Hugdahl, Kenneth; Westerhausen, Rene

    2012-01-01

    We report fMRI and behavioral data from 113 subjects on attention and cognitive control using a variant of the classic dichotic listening paradigm with pairwise presentations of consonant-vowel syllables. The syllable stimuli were presented in a block-design while subjects were in the MR scanner. The subjects were instructed to pay attention to…

  4. Safety of magnetic resonance imaging of stapes prostheses.

    PubMed

    Syms, Mark James

    2005-03-01

    Assess the safety of performing magnetic resonance imaging (MRI) on patients with stapes prostheses. Survey and animal model. A survey regarding implant usage, MRI procedures, and adverse outcomes after MRI in patients previously undergoing stapes procedures. Guinea pigs implanted with ferromagnetic 17 to 4 stainless steel, 316L nonferromagnetic stainless steel, titanium, and fluoroplastic stapes prostheses underwent a MRI in a 4.7 Tesla MR system. : Three adverse outcomes were reported on the clinical survey. One adverse event occurred during an MRI performed on a recalled ferromagnetic prosthesis. The other two adverse events were probably not secondary to MRI exposure. No damage or inflammation was observed in the region of the oval window or vestibule of implanted guinea pigs exposed to a 4.7 Tesla MR system. The combination of prior studies, the clinical survey, and the absence of histopathologic evidence of damage in the guinea pigs is compelling evidence that MRI for patients with stapes prostheses is safe. Implanting physicians should feel comfortable clearing a patient for a MRI in a 1.5 Tesla or 3.0 Tesla MRI. It is imperative for the physician to qualify the field strength when clearing a patient to undergo a MRI.

  5. Diverse patterns of perilymphatic space enhancement in the rat inner ear after intratympanic injection of two different types of gadolinium: a 9.4-tesla magnetic resonance study.

    PubMed

    Park, Mina; Lee, Ho Sun; Choi, Jun-Jae; Kim, Hyeonjin; Lee, Jun Ho; Oh, Seung Ha; Suh, Myung-Whan

    2015-01-01

    To compare the quality of perilymphatic enhancement in the rat inner ear after intratympanic injection of two types of gadolinium with a 9.4-tesla micro-MRI. Gadolinium was injected into the middle ear in 6 Sprague-Dawley rats via the transtympanic route. The left ear was injected with Gd-DO3A-butrol first, and then the right ear was injected with Gd-DOTA. MR images of the inner ear were acquired 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4 h after intratympanic (IT) injection using an Agilent MRI system 9.4T/160/AS. The normalized signal intensity was quantitatively analyzed at the scala vestibuli (SV), scala media, and scala tympani (ST) using a Marosis M-view system. Then the normalized signal intensities (SIs) were compared between the two contrast agents. For Gd-DO3A-butrol, the SI was as low as 1.0-1.5 throughout 1-4 h at the SV and ST of the basal turn. The maximum SI was 1.5 ± 0.5 at the SV (2 h) and 1.3 ± 0.5 at the ST (2 h). For Gd-DOTA, the 1-hour postinjection SI at the basal turn was 2.5 ± 0.5 at the SV, 1.6 ± 0.3 at the ST, and 1.2 ± 0.3 at the scala media. In the apical turn, the maximum SI was reached after 2.5 h. The maximum SI in the apical turn was 1.8 ± 0.4 at the SV (3.5 h), 1.8 ± 0.4 at the ST (4 h), and 1.4 ± 0.3 at the scala media (4 h). We were able to clearly visualize and separate the ST and SV using IT Gd and 9.4-tesla micro-MRI. We recommend using Gd-DO3A-butrol over Gd-DOTA and to perform the MRI 2.5 h after using IT Gd in the rat inner ear. © 2015 S. Karger AG, Basel.

  6. Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI

    NASA Astrophysics Data System (ADS)

    Hannecart, Adeline; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N.; Lecommandoux, Sébastien; Thévenot, Julie; Bonduelle, Colin; Trotier, Aurélien; Massot, Philippe; Miraux, Sylvain; Sandre, Olivier; Laurent, Sophie

    2015-02-01

    Two commercial statistical copolymers of ethylene oxide and propylene oxide, Jeffamine® M-2005 (PEO5-st-PPO37) and M-2070 (PEO46-st-PPO13), exhibiting lower critical solution temperature (LCST) in water, were grafted onto the surface of ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) using silanization and amide-bond coupling reactions. The LCSTs of the polymers in solution were measured by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). In accordance with the compositions of EO vs. PO, the transition temperature was measured to be 22 +/- 2 °C for M-2005 by both DLS and NMR, while the LCST was much higher, 52 +/- 2 °C, for M-2070 (a second transition was also detected above 80 °C by NMR in that case, ascribed to the full dehydration of chains at the molecular level). The resulting polymer-grafted USPIOs exhibit a temperature-responsive colloidal behaviour, their surface reversibly changing from hydrophilic below LCST to hydrophobic above it. This phenomenon was utilised to design thermo-sensitive contrast agents for MRI. Transverse relaxivities (r2) of the USPIO@PEO5-st-PPO37 core-shell nanoparticles were measured at 8.25, 20, 60, and 300 MHz. Nuclear magnetic resonance dispersion (NMRD) profiles, giving longitudinal relaxivities (r1) between 0.01 and 60 MHz, were acquired at temperatures ranging from 15 to 50 °C. For all tested frequencies except 300 MHz, both r1 and r2 decrease with temperature and show an inflection point at 25 °C, near the LCST. To illustrate the interest of such polymer-coated USPIOs for MRI thermometry, sample tubes were imaged on both low-field (8.25 MHz/0.194 Tesla) and high-field (300 MHz/7.05 Tesla) MRI scanners with either T1- or T2*-weighted spin echo sequences. The positive contrast on low-field MR images and the perfect linearity of the signal with a T2*-weighted sequence over the entire temperature range 15-50 °C render these LCST polymer coated USPIOs interesting positive contrast agents

  7. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    PubMed

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p < 0.0001) and 0.81 (p < 0.0001) for direct and reconstructed measurements, respectively. For magnetic resonance imaging, direct measures of tumour thickness (mean ± standard deviation, 18.2 ± 7.3 mm) did not significantly differ from the reconstructed measures (mean ± standard deviation, 17.9 ± 7.2 mm; r = 0.879). Moreover, 3 Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  8. MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI.

    PubMed

    Alizai, Hamza; Chang, Gregory; Regatte, Ravinder R

    2015-09-01

    In vivo MRI has revolutionized the diagnosis and treatment of musculoskeletal disorders over the past 3 decades. Traditionally performed at 1.5 T, MRI at higher field strengths offers several advantages over lower field strengths including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. However, the physics of imaging at higher field strengths also presents technical challenges. These include B0 and B1+ field inhomogeneity, design and construction of dedicated radiofrequency (RF) coils for use at high field, increased chemical shift and susceptibility artifacts, increased RF energy deposition (specific absorption rate), increased metal artifacts, and changes in relaxation times compared with the lower field scanners. These challenges were overcome in optimizing high-field (HF) (3 T) MRI over a decade ago. HF MRI systems have since gained universal acceptance for clinical musculoskeletal imaging and have also been widely utilized for the study of musculoskeletal anatomy and physiology. Recently there has been an increasing interest in exploring musculoskeletal applications of ultrahigh field (UHF) (7 T) systems. However, technical challenges similar to those encountered when moving from 1.5 T to 3 T have to be overcome to optimize 7 T musculoskeletal imaging. In this narrative review, we discuss the many potential opportunities and technical challenges presented by the HF and UHF MRI systems. We highlight recent developments in in vivo imaging of musculoskeletal tissues that benefit most from HF imaging including cartilage, skeletal muscle, and bone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  10. Comparison of 7T and 3T MRI in patients with moyamoya disease.

    PubMed

    Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok

    2017-04-01

    Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.

  11. A Fully Integrated Dual-Channel On-Coil CMOS Receiver for Array Coils in 1.5-10.5 T MRI.

    PubMed

    Sporrer, Benjamin; Wu, Lianbo; Bettini, Luca; Vogt, Christian; Reber, Jonas; Marjanovic, Josip; Burger, Thomas; Brunner, David O; Pruessmann, Klaas P; Troster, Gerhard; Huang, Qiuting

    2017-12-01

    Magnetic resonance imaging (MRI) is among the most important medical imaging modalities. Coil arrays and receivers with high channel counts (16 and more) have to be deployed to obtain the image quality and acquisition speed required by modern clinical protocols. In this paper, we report the theoretical analysis, the system-level design, and the circuit implementation of the first receiver IC (RXIC) for clinical MRI fully integrated in a modern CMOS technology. The dual-channel RXIC sits directly on the sensor coil, thus eliminating any RF cable otherwise required to transport the information out of the magnetic field. The first stage LNA was implemented using a noise-canceling architecture providing a highly reflective input used to decouple the individual channels of the array. Digitization is performed directly on-chip at base-band by means of a delta-sigma modulator, allowing the subsequent optical transmission of data. The presented receiver, implemented in a CMOS technology, is compatible with MRI scanners up to . It reaches sub- noise figure for MRI units and features a dynamic range up to at a power consumption below per channel, with an area occupation of . Mounted on a small-sized printed circuit board (PCB), the receiver IC has been employed in a commercial MRI scanner to acquire in-vivo images matching the quality of traditional systems, demonstrating the first step toward multichannel wearable MRI array coils.

  12. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    NASA Astrophysics Data System (ADS)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  13. Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study.

    PubMed

    Tavazzi, Eleonora; Laganà, Maria Marcella; Bergsland, Niels; Tortorella, Paola; Pinardi, Giovanna; Lunetta, Christian; Corbo, Massimo; Rovaris, Marco

    2015-03-01

    Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.

  14. In Vitro Magnetic Resonance Imaging Evaluation of Fragmented, Open-Coil, Percutaneous Peripheral Nerve Stimulation Leads.

    PubMed

    Shellock, Frank G; Zare, Armaan; Ilfeld, Brian M; Chae, John; Strother, Robert B

    2018-04-01

    Percutaneous peripheral nerve stimulation (PNS) is an FDA-cleared pain treatment. Occasionally, fragments of the lead (MicroLead, SPR Therapeutics, LLC, Cleveland, OH, USA) may be retained following lead removal. Since the lead is metallic, there are associated magnetic resonance imaging (MRI) risks. Therefore, the objective of this investigation was to evaluate MRI-related issues (i.e., magnetic field interactions, heating, and artifacts) for various lead fragments. Testing was conducted using standardized techniques on lead fragments of different lengths (i.e., 50, 75, and 100% of maximum possible fragment length of 12.7 cm) to determine MRI-related problems. Magnetic field interactions (i.e., translational attraction and torque) and artifacts were tested for the longest lead fragment at 3 Tesla. MRI-related heating was evaluated at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz with each lead fragment placed in a gelled-saline filled phantom. Temperatures were recorded on the lead fragments while using relatively high RF power levels. Artifacts were evaluated using T1-weighted, spin echo, and gradient echo (GRE) pulse sequences. The longest lead fragment produced only minor magnetic field interactions. For the lead fragments evaluated, physiologically inconsequential MRI-related heating occurred at 1.5 Tesla/64 MHz while under certain 3 Tesla/128 MHz conditions, excessive temperature elevations may occur. Artifacts extended approximately 7 mm from the lead fragment on the GRE pulse sequence, suggesting that anatomy located at a position greater than this distance may be visualized on MRI. MRI may be performed safely in patients with retained lead fragments at 1.5 Tesla using the specific conditions of this study (i.e., MR Conditional). Due to possible excessive temperature rises at 3 Tesla, performing MRI at that field strength is currently inadvisable. © 2017 International Neuromodulation Society.

  15. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  16. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    PubMed

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  17. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  18. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  19. Safety of MRI with metallic middle ear implants.

    PubMed

    Tohme, Souheil M; Karkas, Alexandre A; Romanos, Bassam H

    2003-01-01

    Investigation of the effects of magnetic resonance fields on commonly used metallic middle ear implants. Nine middle ear prostheses (seven containing stainless steel and two made of pure gold used as control) were tested in vitro and one stainless steel stapedectomy prosthesis was tested on a cadaveric temporal bone. Each metallic prosthesis was placed in an empty Petri dish and introduced into a 1.5-tesla (T) magnetic resonance imaging (MRI) unit. Most of the prostheses were then placed in a water-filled Petri dish and reintroduced into the MRI unit. Eventual in vitro displacement was assessed visually by two means. In situ testing was done by implanting a piston in a cadaveric temporal bone and performing MR sequences ; any possible displacement was then assessed by CT scan and under microscopic vision. None of the prostheses was displaced in the empty Petri dish. However, while in the water-filled Petri dish, three of these moved with the flux. The implanted piston in the temporal bone did not move. The displacement of three of the prostheses in water is not relevant in real clinical situations. MRI can thus be considered safe in usual clinical settings, as far as our studied implants are concerned.

  20. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.