Barnes, Michael P; Greer, Peter B
2017-01-01
Machine Performance Check (MPC) is an automated and integrated image-based tool for verification of beam and geometric performance of the TrueBeam linac. The aims of the study were to evaluate the MPC beam performance tests against current daily quality assurance (QA) methods, to compare MPC performance against more accurate monthly QA tests and to test the sensitivity of MPC to changes in beam performance. The MPC beam constancy checks test the beam output, uniformity, and beam center against the user defined baseline. MPC was run daily over a period of 5 months (n = 115) in parallel with the Daily QA3 device. Additionally, IC Profiler, in-house EPID tests, and ion chamber measurements were performed biweekly and results presented in a form directly comparable to MPC. The sensitivity of MPC was investigated using controlled adjustments of output, beam angle, and beam position steering. Over the period, MPC output agreed with ion chamber to within 0.6%. For an output adjustment of 1.2%, MPC was found to agree with ion chamber to within 0.17%. MPC beam center was found to agree with the in-house EPID method within 0.1 mm. A focal spot position adjustment of 0.4 mm (at isocenter) was measured with MPC beam center to within 0.01 mm. An average systematic offset of 0.5% was measured in the MPC uniformity and agreement of MPC uniformity with symmetry measurements was found to be within 0.9% for all beams. MPC uniformity detected a change in beam symmetry of 1.5% to within 0.3% and 0.9% of IC Profiler for flattened and FFF beams, respectively. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Performance of the HIMAC beam control system using multiple-energy synchrotron operation
NASA Astrophysics Data System (ADS)
Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.
2017-09-01
Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.
Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.
Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary
2018-01-10
Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.
Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test
Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary
2018-01-01
Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis. PMID:29320443
NASA Astrophysics Data System (ADS)
Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.
2016-07-01
Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.
Development of the PEFP's beam line BPM
NASA Astrophysics Data System (ADS)
Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub
2013-01-01
The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.
Sawers, Andrew; Hafner, Brian J
2018-04-01
To evaluate the feasibility of fixed-width beam walking for assessing balance in lower limb prosthesis users. Cross-sectional. Laboratory. Lower limb prosthesis users. Participants attempted 10 walking trials on three fixed-width beams (18.6, 8.60, and 4.01 wide; 5.5 m long; 3.8 cm high). Beam-walking performance was quantified using the distance walked to balance failure. Heuristic rules applied to each participant's beam-walking distance to classify each beam as "too easy," "too hard," or "appropriately challenging" and determine whether any single beam provided an appropriate challenge to all participants. The number of trials needed to achieve stable beam-walking performance was quantified for appropriately challenging beams by identifying the last inflection point in the slope of each participant's trial-by-trial cumulative performance record. In all, 30 unilateral lower limb prosthesis users participated in the study. Each of the fixed-width beams was either too easy or too hard for at least 33% of the sample. Thus, no single beam was appropriately challenging for all participants. Beam-walking performance was stable by trial 8 for all participants and by trial 6 for 90% of participants. There was no significant difference in the number of trials needed to achieve stable performance among beams ( P = 0.74). Results suggest that a clinical beam-walking test would require multiple beams to evaluate balance across a range of lower limb prosthesis users, emphasizing the need for adaptive or progressively challenging balance tests. While the administrative burden of a multiple-beam balance test may limit clinical feasibility, alternatives to ease this administrative burden are proposed.
Using the bending beam rheometer for low temperature testing of asphalt mixtures : final report.
DOT National Transportation Integrated Search
2016-07-01
This work showed that the bending beam rheometer is a viable test to determine the low temperature performance of : asphalt mixtures; it balances the rigor required of any mechanical test and the relation to field performance with the : practicality ...
Sawers, Andrew; Hafner, Brian J
2018-05-08
Challenging clinical balance tests are needed to expose balance deficits in lower-limb prost-hesis users. This study examined whether narrowing beam-walking could overcome conceptual and practical limitations identified in fixed-width beam-walking. Cross-sectional. Unilateral lower-limb prosthesis users. Participants walked 10 times along a low, narrowing beam. Performance was quantified using the normalized distance walked. Heuristic rules were applied to determine whether the narrowing beam task was "too easy," "too hard," or "appropriately challenging" for each participant. Linear regression and Bland-Altman plots were used to determine whether combinations of the first 5 trials could predict participants' stable beam-walking performance. Forty unilateral lower-limb prosthesis users participated. Narrowing beam-walking was appropriately challenging for 98% of participants. Performance stabilized for 93% of participants within 5 trials, while 62% were stable across all trials. The mean of trials 3-5 accurately predicted stable performance. A clinical narrowing beam-walking test is likely to challenge a range of lower-limb prosthesis users, have minimal administrative burden, and exhibit no floor or ceiling effects. Narrowing beam-walking is therefore a clinically viable method to evaluate lower-limb prosthesis users' balance ability, but requires psychometric testing before it is used to assess fall risk.
Experimental investigation of connection performance for prefabricated timber beam
NASA Astrophysics Data System (ADS)
Lesmana, C.; Suhendi, S.
2017-06-01
This paper presents an investigation of connection performance for a simple supported prefabricated timber beams using Meranti hardwood (Shorea sp.). The good connection is crucial for the proper functioning of the timber structures. The adequate connection condition should be assured to achieve the requirement capacity design and performance of the system. The property of material was tested according to [1]. The proposed design of bolted connections has been evaluated through experimental investigation and compared to the simple supported beam without connection. The results demonstrate the effectiveness of the proposed connection design although the ultimate load of the beam with connection is only half of the beam without connection. The test results obtained the purposed connection should be improved.
A proton irradiation test facility for space research in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias
2016-07-01
Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Knight, Norman F., Jr.
2002-01-01
A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.
First Performance Results of the PIP2IT MEBT 200 Ohm Kicker Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saewert, G.; Awida, M. H.; Chase, B. E.
The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbitrary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ohm characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550more » $$\\mu$$s bursts having a 45 MHz average switching rate and repeating at 20 Hz.« less
Flight-Tested Prototype of BEAM Software
NASA Technical Reports Server (NTRS)
Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David
2006-01-01
Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.
SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Farrokhkish, M; Norrlinger, B
2015-06-15
Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using amore » conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm{sup 2} field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm{sup 2} aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have financial interests with the commercialization of this QA device.« less
Performance evaluation of NCDOT w-beam guardrails under MASH TL-2 conditions.
DOT National Transportation Integrated Search
2013-11-01
This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of W-beam guardrails for different heights under MASH Test Level 2 (TL-2) and Test Level 3 (TL-3) impact conditions. A : litera...
Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems
NASA Astrophysics Data System (ADS)
De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto
2017-07-01
This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.; Ben-Zvi, I.; Degen, C.
Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test,more » including the QE and lifetimes of the photocathodes at various steps of the experiment.« less
Damage Tolerance of Sandwich Plates with Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Avery, John L., III; Sankar, Bhavani V.
1998-01-01
Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.
MASH test 3-21 on TL-3 thrie beam transition without curb.
DOT National Transportation Integrated Search
2013-01-01
This project evaluated the impact performance of a modified TxDOT thrie beam transition to rigid : concrete barrier without a curb element below the transition rail. In a previous test described in TxDOT : Research Report 0-4564, a thrie beam transit...
Characterization of the Goubau line for testing beam diagnostic instruments
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.
2017-12-01
One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.
NASA Astrophysics Data System (ADS)
Wu, Sigang; Dai, Hongzhe; Wang, Wei
2007-12-01
This paper designs an innovative reinforced concrete (RC) beam strengthened with carbon fiber reinforced concrete (CFRC) composites. Six groups of test beams, five with different degrees of strengthening, achieved by changing the location and the thickness of the CFRC layer, and one virgin RC beam, were tested in four-point bending over a span of 3000 mm. We investigate the effect of the CFRC layer on the flexural performance and the electrical properties of the designed beams. The test results indicate that the CFRC strengthened RC beam exhibits improved electrical properties as well as better mechanical performance. Also, the location and the thickness of the CFRC layer affect the initial electrical resistance and other electrical properties of the beam. Relationships between electrical resistance, loading, deflection and cracks show that the increase in the electrical resistance can be used to monitor the extent of damage to the designed beam. Based on this discovery, a new health monitoring technique for RC structures is produced by means of electrical resistance measurements.
A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster
NASA Technical Reports Server (NTRS)
Lathem, W. C.
1972-01-01
A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.
2013-03-01
on the day prior to the surgery. For the beam walk test , the mice were trained to traverse a narrow beam before the surgery and the number of hind...procedure and the TBI-induced motor and cognitive deficits were evaluated using accelerating rotarod, beam walk and novel object recognition (NOR) tests ...foot slips was observed after surgery and compared to sham operated animals. The rotarod and beam walk tests were further performed from the
NASA Technical Reports Server (NTRS)
Goldfinger, A.
1981-01-01
A full scale model was produced to verify suggested design changes. Through beam analyzer study, the correct electron beam diameter and cross sectional profile were established in conjunction with the desired confining magnetic field. Comparative data on the performance of the X-3060 klystron, design predictions for the improved klystron, and performance data taken during acceptance testing of the prototype VKS-8274 JPL are presented.
NASA Astrophysics Data System (ADS)
Hassan, Wael Mohammed
Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
NASA Astrophysics Data System (ADS)
Ketiyot, Rattapon; Hansapinyo, Chayanon
2018-04-01
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
Characterization of equipment for shaping and imaging hadron minibeams
NASA Astrophysics Data System (ADS)
Pugatch, V.; Brons, S.; Campbell, M.; Kovalchuk, O.; Llopart, X.; Martínez-Rovira, I.; Momot, Ie.; Okhrimenko, O.; Prezado, Y.; Sorokin, Yu.
2017-11-01
For the feasibility studies of spatially fractionated hadron therapy prototypes of the equipment for hadron minibeams shaping and monitoring have been designed, built and tested. The collimators design was based on Monte Carlo simulations (Gate v.6.2). Slit and matrix collimators were used for minibeams shaping. Gafchromic films, micropixel detectors Timepix in a hybrid as well as metal mode were tested for measuring hadrons intensity distribution in minibeams. An overall beam profile was measured by the metal microstrip detector. The performance of a mini-beams shaping and monitoring equipment was characterized exploring low energy protons at the KINR Tandem generator as well as high energy carbon and oxygen ion beams at HIT (Heidelberg). The results demonstrate reliable performance of the tested equipment for shaping and imaging hadron mini-beam structures.
Ion thruster system (8-cm) cyclic endurance test
NASA Technical Reports Server (NTRS)
Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.
1984-01-01
This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.
Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.
2001-05-01
The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement
NASA Astrophysics Data System (ADS)
Safavizadeh, Seyed Amirshayan
The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.
DOT National Transportation Integrated Search
1995-06-01
This study examines the transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance (high strength) concrete. Two 1067 mm (42.0 in.) deep rectangular beams, commonly called the Hoblitzell-Buckner beams, each ...
The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.
Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K
2010-02-01
The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.
Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials
NASA Technical Reports Server (NTRS)
Kessler, Jeff A.; Adams, Donald F.
1992-01-01
Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.
Behaviour of steel-concrete composite beams using bolts as shear connectors
NASA Astrophysics Data System (ADS)
Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh
2018-04-01
The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
NASA Astrophysics Data System (ADS)
Irles, A.
2018-02-01
High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.
Development Status of Ion Source at J-PARC Linac Test Stand
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.
The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.
Beam test of CSES silicon strip detector module
NASA Astrophysics Data System (ADS)
Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun
2017-05-01
The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme
NEXT Ion Engine 2000 Hour Wear Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Kamhawi, Hani; Patterson, Michael J.; Britton, Melissa A.; Frandina, Michael M.
2004-01-01
The results of the NEXT 2000 h wear test are presented. This test was conducted with a 40 cm engineering model ion engine, designated EM1, at a 3.52 A beam current and 1800 V beam power supply voltage. Performance tests, which were conducted over a throttling range of 1.1 to 6.9 kW throughout the wear test, demonstrated that EM1 satisfied all thruster performance requirements. The ion engine accumulated 2038 h of operation at a thruster input power of 6.9 kW, processing 43 kg of xenon. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The ion engine was also inspected following the test. This paper presents these findings.
Performance of concrete members subjected to large hydrocarbon pool fires
Zwiers, Renata I.; Morgan, Bruce J.
1989-01-01
The authors discuss an investigation to determine analytically if the performance of concrete beams and columns in a hydrocarbon pool test fire would differ significantly from their performance in a standard test fire. The investigation consisted of a finite element analysis to obtain temperature distributions in typical cross sections, a comparison of the resulting temperature distribution in the cross section, and a strength analysis of a beam based on temperature distribution data. Results of the investigation are reported.
The 1.06 micrometer wideband laser modulator: Fabrication and life testing
NASA Technical Reports Server (NTRS)
Teague, J. R.
1975-01-01
The design, fabrication, testing and delivery of an optical modulator which will operate with a mode-locked Nd:YAG laser at 1.06 micrometers were performed. The system transfers data at a nominal rate of 400 Mbps. This wideband laser modulator can transmit either Pulse Gated Binary Modulation (PGBM) or Pulse Polarization Binary Modulation (PPBM) formats. The laser beam enters the modulator and passes through both crystals; approximately 1% of the transmitted beam is split from the main beam and analyzed for the AEC signal; the remaining part of the beam exits the modulator. The delivered modulator when initially aligned and integrated with laser and electronics performed very well. The optical transmission was 69.5%. The static extinction ratio was 69:1. A 1000 hour life test was conducted with the delivered modulator. A 63 bit pseudorandom code signal was used as a driver input. At the conclusion of the life test the modulator optical transmission was 71.5% and the static extinction ratio 65:1.
Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility
NASA Astrophysics Data System (ADS)
Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.
2018-05-01
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.
NASA Technical Reports Server (NTRS)
1979-01-01
The detailed results of all part 3 study tasks are presented. Selected analysis was performed on the beam builder conceptual design. The functions of the beam builder and a ground test beam builder were defined. Jig and fixture concepts were developed and the developmental plans of the beam builder were expounded.
Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.
2007-01-01
Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
Systematic Studies for the Development of High-Intensity Abs
NASA Astrophysics Data System (ADS)
Barion, L.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Lenisa, P.; Statera, M.
2011-01-01
The effect of the dissociator cooling temperature has been tested in order to explain the unexpected RHIC atomic beam intensity. Studies on trumpet nozzle geometry, compared to standard sonic nozzle have been performed, both with simulation methods and test bench measurements on molecular beams, obtaining promising results.
Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.
2015-09-07
A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.
NASA Technical Reports Server (NTRS)
Adams, Donald F.
1999-01-01
The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.
Neutron measurements from beam-target reactions at the ELISE neutral beam test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.
2014-11-15
Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less
Assessment of motor balance and coordination in mice using the balance beam.
Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H
2011-03-10
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Southwell, Amber; Patterson, Paul H.
2011-01-01
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod. PMID:21445033
PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, C.-Y.; Morrison, L.; Sun, X.
The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge,more » TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.« less
First beam commissioning at BNL ERL SRF Gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Altinbas, Z.; Belomestnykh, S.
The 704 MHz SRF gun successfully generated the first photoemission beam in November of 2014. The configurations of the test and the sub-systems are described.The latest results of SRF commissioning, including the cavity performance, cathode QE measurements, beam current/energy measurements, are presented in the paper.
NASA Astrophysics Data System (ADS)
Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.
2016-10-01
The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.
Study of a high power hydrogen beam diagnostic based on secondary electron emission.
Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R
2016-11-01
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Krueger, Ronald
2001-01-01
Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.
NASA Astrophysics Data System (ADS)
Bieniek, T.; Janczyk, G.; Dobrowolski, R.; Wojciechowska, K.; Malinowska, A.; Panas, A.; Nieprzecki, M.; Kłos, H.
2016-11-01
This paper covers research results on development of the cantilevers beams test structures for interconnects reliability and robustness investigation. Presented results include design, modelling, simulation, optimization and finally fabrication stage performed on 4 inch Si wafers using the ITE microfabrication facility. This paper also covers experimental results from the test structures characterization.
Numerical analysis of beam with sinusoidally corrugated webs
NASA Astrophysics Data System (ADS)
Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna
2018-01-01
The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.
The pixel tracking telescope at the Fermilab Test Beam Facility
Kwan, Simon; Lei, CM; Menasce, Dario; ...
2016-03-01
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
Hardboard-webbed I-beams : effects of long-term loading and loading environment
Michael J. Superfesky; Terry J. Ramaker
1978-01-01
Twelve-foot and 6-foot I-beams with webs of two different hardboard materials and plywood were subjected to constant loads in three different humidity environments. After 17,000 hours of test, the performance of the hardboard-webbed I-beams appears to be at least comparable to that of I- beams with plywood webs. Results of this study will be useful to researchers,...
Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center
NASA Astrophysics Data System (ADS)
Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.
2000-02-01
Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.
Joint pathology and behavioral performance in autoimmune MRL-lpr Mice.
Sakić, B; Szechtman, H; Stead, R H; Denburg, J A
1996-09-01
Young autoimmune MRL-lpr mice perform more poorly than age-matched controls in tests of exploration, spatial learning, and emotional reactivity. Impaired behavioral performance coincides temporally with hyperproduction of autoantibodies, infiltration of lymphoid cells into the brain, and mild arthritic-like changes in hind paws. Although CNS mechanisms have been suggested to mediate behavioral deficits, it was not clear whether mild joint pathology significantly affected behavioral performance. Previously we observed that 11-week-old MRL-lpr mice showed a trend for disturbed performance when crossing a narrow beam. The first aim of the present study was to test the significance of this trend by increasing the sample size and, second, to examine the possibility that arthritis-like changes interfere with performance in brief locomotor tasks. For the purpose of the second goal, 18-week-old mice that differ widely in severity of joint disease were selectively taken from the population and tested in beam walking and swimming tasks. It was expected that the severity of joint inflammation would be positively correlated with the degree of locomotor impairment. The larger sample size revealed that young MRL-lpr mice perform significantly more poorly than controls on the beam-walking test, as evidenced by more foot slips and longer traversing time. However, significant correlation between joint pathology scores and measures of locomotion could not be detected. The lack of such relationship suggests that mild joint pathology does not significantly contribute to impaired performance in young, autoimmune MRL-lpr mice tested in short behavioral tasks.
Association between vestibular function and motor performance in hearing-impaired children.
Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg
2014-12-01
The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.
Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E
1997-12-30
Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.
The drift chamber array at the external target facility in HIRFL-CSR
NASA Astrophysics Data System (ADS)
Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.
2018-06-01
A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.
Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar
2009-12-21
The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (gamma) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% +/- 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm(2) field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm(2)) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the heterogeneous phantom. For the clinical test cases, the average dose discrepancy was 0.5% +/- 1.1%. Relative dose investigations of the transverse plane for clinical beam arrangements were performed with a 2D gamma-evaluation procedure. For 3% dose difference and 3 mm DTA criteria, the average value for gamma(>1) was 4.7% +/- 3.7%, the average gamma(1%) value was 1.19 +/- 0.16 and the mean 2D gamma-value was 0.44 +/- 0.07 in the heterogeneous phantom. The iPlan MC algorithm leads to accurate dosimetric results under clinical test conditions.
Experimental study on beam for composite CES structural system
NASA Astrophysics Data System (ADS)
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
Carbon ions beam therapy monitoring with the INSIDE in-beam PET.
Pennazio, Francesco; Battistoni, Giuseppe; Bisogni, Maria Giuseppina; Camarlinghi, Niccolò; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Morrocchi, Matteo; Sala, Paola R; Sportelli, Giancarlo; Wheadon, Richard; Cerello, Piergiorgio
2018-06-06
In-vivo range monitoring techniques are necessary in order to fully take advantage of the high dose gradients deliverable in hadrontherapy treatments. Positron Emission Tomography (PET) scanners can be used to monitor beam-induced activation in tissues and hence measure the range. The INSIDE (Innovative Solutions for In-beam DosimEtry in Hadrontherapy) in-beam PET scanner, installed at the Italian National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) synchrotron facility, has already been successfully tested in-vivo during a proton therapy treatment. We discuss here the system performance evaluation with carbon ion beams, in view of future in-vivo tests. The work is focused on the analysis of activity images obtained with therapeutic treatments delivered to polymethyl methacrylate (PMMA) phantoms, as well as on the test of an innovative and robust Monte Carlo simulation technique for the production of reliable prior activity maps. Images are reconstructed using different integration intervals, so as to monitor the activity evolution during and after the treatment. Three procedures to compare activity images are presented, namely Pearson Correlation Coefficient, Beam's Eye View and Overall View. Images of repeated irradiations of the same treatments are compared to assess the integration time necessary to provide reproducible images. The range agreement between simulated and experimental images is also evaluated, so as to validate the simulation capability to provide sound prior information. The results indicate that at treatment end, or at most 20 s afterwards, the range measurement is reliable within 1-2 mm, when comparing both different experimental sessions and data with simulations. In conclusion, this work shows that the INSIDE in-beam PET scanner performance is promising towards its in-vivo test with carbon ions. © 2018 Institute of Physics and Engineering in Medicine.
Failure of wooden sandwich beam reinforced with glass/epoxy faces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papakaliatakis, G. E.; Zacharopoulos, D. A.
2015-12-31
The mechanical properties and the failure of wooden beam strengthened with two faces from glass/epoxy composite and a wooden beam without strengthening was studied. Stresses and deflections on both beams, which are imposed in three point bending loading. On the idealized geometry of the specimens with detailed nonlinear orthotropic analysis was performed with a finite elements program. The failure study of the wooden beams was performed, applying the criterion of Tsai-Hill. The shear strength of the adhesive was taken into account. All the specimens were tested with three point bending loading and the experimental results were compared to those ofmore » the theoretical approach with the finite elements analysis. Comparing the results, the advantage of strengthened wooden beam against the simple wooden beam becomes obvious. Theoretical predictions were in good agreement with experimental results.« less
Structural performance of notch damaged steel beams repaired with composite materials
NASA Astrophysics Data System (ADS)
El-Taly, Boshra
2016-06-01
An experimental program and an analytical model using ANSYS program were employed to estimate the structural performance of repaired damaged steel beams using fiber reinforced polymer (FRP) composite materials. The beams were artificially notched in the tension flanges at mid-spans and retrofitted by FRP flexible sheets on the tension flanges and the sheets were extended to cover parts of the beams webs with different heights. Eleven box steel beams, including one intact beam, one notch damaged beam and nine notches damaged beam and retrofitted with composite materials, were tested in two-point loading up to failure. The parameters considered were the FRP type (GFRP and CFRP) and number of layers. The results indicated that bonding CFRP sheets to both of the tension steel flange and part of the webs, instead of the tension flange only, enhances the ultimate load of the retrofitted beams, avoids the occurrence of the debonding and increases the beam ductility. Also the numerical models give acceptable results in comparison with the experimental results.
Application and development of ion-source technology for radiation-effects testing of electronics
NASA Astrophysics Data System (ADS)
Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.
2017-09-01
Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.
Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray
NASA Astrophysics Data System (ADS)
Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng
2018-04-01
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.
Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Previtali, Valentina; Valishev, Alexander
Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. Themore » expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.« less
Terrain interaction with the quarter scale beam walker
NASA Technical Reports Server (NTRS)
Chun, Wendell H.; Price, S.; Spiessbach, A.
1990-01-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
Terrain Interaction With The Quarter Scale Beam Walker
NASA Astrophysics Data System (ADS)
Chun, Wendell H.; Price, R. S.; Spiessbach, Andrew J.
1990-03-01
Frame walkers are a class of mobile robots that are robust and capable mobility platforms. Variations of the frame walker robot are in commercial use today. Komatsu Ltd. of Japan developed the Remotely Controlled Underwater Surveyor (ReCUS) and Normed Shipyards of France developed the Marine Robot (RM3). Both applications of the frame walker concept satisfied robotic mobility requirements that could not be met by a wheeled or tracked design. One vehicle design concept that falls within this class of mobile robots is the walking beam. A one-quarter scale prototype of the walking beam was built by Martin Marietta to evaluate the potential merits of utilizing the vehicle as a planetary rover. The initial phase of prototype rover testing was structured to evaluate the mobility performance aspects of the vehicle. Performance parameters such as vehicle power, speed, and attitude control were evaluated as a function of the environment in which the prototype vehicle was tested. Subsequent testing phases will address the integrated performance of the vehicle and a local navigation system.
Pulsed beam tests at the SANAEM RFQ beamline
NASA Astrophysics Data System (ADS)
Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.
2017-07-01
A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.
Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi
2008-01-01
Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less
Design, test, and calibration of an electrostatic beam position monitor
NASA Astrophysics Data System (ADS)
Cohen-Solal, Maurice
2010-03-01
The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.
Study of a high power hydrogen beam diagnostic based on secondary electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza; Panasenkov, A.
2016-11-15
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, wemore » developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.« less
NASA Astrophysics Data System (ADS)
Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki
2016-02-01
The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.
Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.
Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano
2013-05-10
In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.
Shah, S N R; Sulong, N H Ramli; Shariati, Mahdi; Jumaat, M Z
2015-01-01
Steel pallet rack (SPR) beam-to-column connections (BCCs) are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ) behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods.
Verification of Orthogrid Finite Element Modeling Techniques
NASA Technical Reports Server (NTRS)
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woollard, J; Ayan, A; DiCostanzo, D
2015-06-15
Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed onmore » each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.« less
Design of an EBIS charge breeder system for rare-isotope beams
NASA Astrophysics Data System (ADS)
Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon
2016-09-01
Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.
Thermal Fatigue Study of W/cu Joint
NASA Astrophysics Data System (ADS)
Zhang, Fu; Wu, Jihong; Xu, Zengyu; Xu, Ying
2003-06-01
HHFC mock-ups with a structure of W/Cu/SS were developed by hot isostatic pressing (HIP). The performance of the W/Cu joint under high heat loads was tested using an electron beam. The size of specimens for heat load tests was 25×25 mm and the size of beam spot on the specimen surface was 22 mm in diameter. During heat load test, the specimens were water-cooled. Thermal fatigue test were conducted at power density of 8.7 MW/m2 with pulse duration of 20 seconds and interval of 20 seconds. After 1000 cycles of tests, no cracks and failure were found in the W/Cu joint. The thermal performance was also investigated in the range of 1 ~ 9 MW/m2.
Studies of beam position monitor stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenenbaum, P.
1998-05-01
The authors present the results from two studies of the time stability between the mechanical center of a beam position monitor and its electrical/electronic center. In the first study, a group of 93 BPM processors was calibrated via Test Pulse Generator once per hour in order to measure the contribution of the readout electronics to offset drifts. In the second study, a triplet of stripline BPMs in the Final Focus Test Beam, separated only by drift spaces, was read out every 6 minutes during 1 week of beam operation. In both cases offset stability was observed to be on themore » order of microns over time spans ranging from hours to days, although during the beam study much worse performance was also observed. Implications for the beam position monitor system of future linear collider systems are discussed.« less
Potts, Lisa G; Kolb, Kelly A
2014-04-01
Difficulty understanding speech in the presence of background noise is a common report among cochlear implant (CI) recipients. Several speech-processing options designed to improve speech recognition, especially in noise, are currently available in the Cochlear Nucleus CP810 speech processor. These include adaptive dynamic range optimization (ADRO), autosensitivity control (ASC), Beam, and Zoom. The purpose of this study was to evaluate CI recipients' speech-in-noise recognition to determine which currently available processing option or options resulted in best performance in a simulated restaurant environment. Experimental study with one study group. The independent variable was speech-processing option, and the dependent variable was the reception threshold for sentences score. Thirty-two adult CI recipients. Eight processing options were tested: Beam, Beam + ASC, Beam + ADRO, Beam + ASC + ADRO, Zoom, Zoom + ASC, Zoom + ADRO, and Zoom + ASC + ADRO. Participants repeated Hearing in Noise Test sentences presented at a 0° azimuth, with R-Space restaurant noise presented from a 360° eight-loudspeaker array at 70 dB sound pressure level. A one-way repeated-measures analysis of variance was used to analyze differences in Beam options, Zoom options, and Beam versus Zoom options. Among the Beam options, Beam + ADRO was significantly poorer than Beam only, Beam + ASC, and Beam + ASC + ADRO. A 1.6-dB difference was observed between the best (Beam only) and poorest (Beam + ADRO) options. Among the Zoom options, Zoom only and Zoom + ADRO were significantly poorer than Zoom + ASC. A 2.2-dB difference was observed between the best (Zoom + ASC) and poorest (Zoom only) options. The comparison between Beam and Zoom options showed one significant difference, with Zoom only significantly poorer than Beam only. No significant difference was found between the other Beam and Zoom options (Beam + ASC vs Zoom + ASC, Beam + ADRO vs Zoom + ADRO, and Beam + ASC + ADRO vs Zoom + ASC + ADRO). The best processing option varied across subjects, with an almost equal number of participants performing best with a Beam option (n = 15) compared with a Zoom option (n = 17). There were no significant demographic or audiological moderating variables for any option. The results showed no significant differences between adaptive directionality (Beam) and fixed directionality (Zoom) when ASC was active in the R-Space environment. This finding suggests that noise-reduction processing is extremely valuable in loud semidiffuse environments in which the effectiveness of directional filtering might be diminished. However, there was no significant difference between the Beam-only and Beam + ASC options, which is most likely related to the additional noise cancellation performed by the Beam option (i.e., two-stage directional filtering and noise cancellation). In addition, the processing options with ADRO resulted in the poorest performances. This could be related to how the CI recipients were programmed or the loud noise level used in this study. The best processing option varied across subjects, but the majority performed best with directional filtering (Beam or Zoom) in combination with ASC. Therefore in a loud semidiffuse environment, the use of either Beam + ASC or Zoom + ASC is recommended. American Academy of Audiology.
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice
Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.
Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.
The space telescope NINA: results of a beam test calibration
NASA Astrophysics Data System (ADS)
Bidoli, V.; Casolino, M.; Pascale, M. P. D.; Morselli, A.; Furano, G.; Picozza, P.; Scoscini, A.; Sparvoli, R.; Barbiellini, G.; Bonvicini, W.; Cirami, R.; Schiavon, P.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Castellano, M.; Circella, M.; Marzo, C. D.; Bartalucci, S.; Giuntoli, S.; Ricci, M.; Papini, P.; Piccardi, S.; Spillantini, P.; Bakaldin, A.; Batishev, A.; Galper, A. M.; Koldashov, S.; Korotkov, M.; Mikhailov, V.; Murashov, A.; Voronov, S.; Boezio, M.
1999-03-01
In June 1998 the telescope NINA will be launched in space on board of the Russian satellite Resource-01 n.4. The main scientific objective of the mission is the study of the anomalous, galactic and solar components of the cosmic rays in the energy interval 10-200MeV/n. The core of the instrument is a silicon detector whose performances have been tested with a particle beam at the GSI Laboratory in Germany in 1997; we report here on the results obtained during the beam calibration.
NASA Technical Reports Server (NTRS)
Ladbury, R.; Reed, R. A.; Marshall, P. W.; LaBel, K. A.; Anantaraman, R.; Fox, R.; Sanderson, D. P.; Stolz, A.; Yurkon, J.; Zeller, A. F.;
2004-01-01
The performance of Michigan State University's Single-Event Effects Test Facility (SEETF) during its inaugural runs is evaluated. Beam profiles and other diagnostics are presented, and prospects for future development and testing are discussed.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams
NASA Astrophysics Data System (ADS)
Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.
2018-03-01
This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.
MASH test 3-11 on the 5-inch cast in place deck barrier anchors.
DOT National Transportation Integrated Search
2011-12-01
A full-scale crash test was performed to evaluate the impact performance of a Texas T223 concrete : beam and post bridge rail anchored to a 5-inch cast-in-place deck (CIPD). The testing followed the MASH : standards for Test Level 3 (TL-3) longitudin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Simon; Lei, CM; Menasce, Dario
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
NASA Astrophysics Data System (ADS)
Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred
2015-09-01
The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.
Qi, Baoxin; Kong, Qingzhao; Qian, Hui; Patil, Devendra; Lim, Ing; Li, Mo; Liu, Dong; Song, Gangbing
2018-02-24
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests.
Qian, Hui; Li, Mo; Liu, Dong; Song, Gangbing
2018-01-01
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests. PMID:29495277
Barbisan, M; Zaniol, B; Pasqualotto, R
2014-11-01
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.
Catadioptric optics for laser Doppler velocimeter applications
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.
1989-01-01
This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
NASA Astrophysics Data System (ADS)
Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.
2011-02-01
Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.
Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.
Rowell, N L; Wang, E A
1996-06-01
We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).
Rosic, Gvozden; Joksimovic, Jovana; Selakovic, Dragica; Milovanovic, Dragan; Jakovljevic, Vladimir
2014-01-01
Nandrolone decanoate (ND) is frequently used anabolic androgenic steroid (AAS) among the athletes. Despite the health risks, there is significant increase in prevalence of AAS abuse. The aim of this study was to investigate the effects of chronic exposure to ND at supraphysiological dose (to mimic the doses for human AAS abusers) on anxiety levels in adult rats. We performed several behavioral tests (open field test, elevated plus maze test, beam-walking test, evoked beam-walking test and tail suspension test) for estimation of anxiety in rats. Adult rats received 20 mg/kg intraperitoneal injection of ND weekly for four weeks. Behavioral test were performed on the seventh day after the last dose of ND. Anxiogenic-like pattern of behavior was clearly observed in several behavioral tests, such as open field test (decrease of total distance moved and cumulative duration of moving, decrease of an average velocity of the animals, decrease of frequency and total time in centre zone); elevated plus maze (decreased total time spent in open arms and the number of entries in open arms of the elevated plus maze); evoked beam-walking test (decreased time to cross the beam) and tail suspension test (increased latency to first immobility and decreased total duration of immobility). Results of this study show that four-week treatment with the supraphysiological dose of ND produced anxiogenic effects in sedentary male rats. Our results show that rats after chronic treatment with a supraphysiological dose of ND exhibited anxiety-like behavior.
NASA Astrophysics Data System (ADS)
Sardiko, R.; Rocens, K.; Iejavs, J.; Jakovlevs, V.; Ziverts, K.
2017-10-01
In this paper a benefit of glulam pinewood beams reinforced strands is discussed. In the first phase, series of pull-out tests were performed on specimens made up of different types of glue (melamine-urea-formaldehyde, epoxy and others) to detect pull-out force and failure mode of a specimens. In the second phase, series of equal cross-section glulam beams with strand and rod reinforcement were theoretically analysed using transformed cross-section method. Additionally, series of experimental testing were made. Benefits of strand reinforcement use as glulam beams’ reinforcement were identified and examined the possibility of one glue type application in all operations of reinforced glulam beams manufacturing.
Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+
NASA Astrophysics Data System (ADS)
Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi
2018-06-01
Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.
The role of a microDiamond detector in the dosimetry of proton pencil beams.
Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan
2016-03-01
In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.
SU-E-T-660: Quantitative Fault Testing for Commissioning of Proton Therapy Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, M; Rankine, L; Grantham, K
2015-06-15
Purpose: To ensure proper fault testing for the first single room proton therapy machine by establishing a common set of acceptance testing and commissioning parameters with the manufacturer. The following work details the parameters tested and associated results. Methods: Dose rates in service mode were varied to ensure that when the threshold for maximum or minimum MU/min was met, the beam promptly shut off. The flatness parameter was tested by purposely assigning an incorrect secondary scatter, to ensure the beam shut off when detecting a heterogeneous profile. The beam symmetry parameter was tested by altering the steering coil up tomore » 3.0A, thereby forcing the beam to be asymmetric and shut off. Lastly, the quench system was tested by ramping down the magnet to 5% capacity, whereby the quench button was engaged to bring down the magnet current to a safe level. Results: A dose rate increase or decrease in excess of 10% shut the beam off within 5 seconds as observed by the current on a Matrixx ionization chamber array (IBA Dosimetry, Bartlett, TN) A 3.0A change in the beam steering coil introduced a 2% change in the flatness and symmetry profiles with respect to baseline measurements resulting in the beam shutting off within 5 seconds. An incorrect 2nd scatterer introduced a flatness of 4.1% and symmetry of 6.4% which immediately triggered a beam shut off. Finally, the quench system worked as expected during the ramp down procedure. Conclusion: A fault testing plan to check dosimetric faults and the quench system was performed for the first single room proton therapy system. All dosimetric parameters and machine conditions were met to our satisfaction. We propose that the same type of fault testing should be applied to any proton system during commissioning, including scanning beam systems.« less
McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H
2016-01-01
No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.
SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaryan, H; Nazaryan, V; Wang, F
2014-06-01
Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography.more » Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent clinical performance specifications. Hovakim Nazaryan, Vahagn Nazaryan and Fuhua Wang are employees of ProTom International, Inc. who contributed to the development and completed the technical commissioning of the Radiance 330 proton therapy delivery system manufactured by ProTom International.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.
In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid lowmore » energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.« less
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...
2016-04-11
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less
NASA Astrophysics Data System (ADS)
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.
2016-04-01
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.
Medical beam monitor—Pre-clinical evaluation and future applications
NASA Astrophysics Data System (ADS)
Frais-Kölbl, Helmut; Griesmayer, Erich; Schreiner, Thomas; Georg, Dietmar; Pernegger, Heinz
2007-10-01
Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.
Phase space manipulation in high-brightness electron beams
NASA Astrophysics Data System (ADS)
Rihaoui, Marwan M.
Electron beams have a wide range of applications, including discovery science, medicine, and industry. Electron beams can also be used to power next-generation, high-gradient electron accelerators. The performances of some of these applications could be greatly enhanced by precisely tailoring the phase space distribution of the electron beam. The goal of this dissertation is to explore some of these phase space manipulations. We especially focus on transformations capable of tailoring the beam current distribution. Specifically, we investigate a beamline exchanging phase space coordinates between the horizontal and longitudinal degrees of freedom. The key components necessary for this beamline were constructed and tested. The preliminary beamline was used as a singleshot phase space diagnostics and to produce a train of picoseconds electron bunches. We also investigate the use of multiple electron beams to control the transverse focusing. Our numerical and analytical studies are supplemented with experiments performed at the Argonne Wakefield Accelerator.
An electron cyclotron resonance ion source based low energy ion beam platform.
Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z
2008-02-01
To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.
Design and implementation of a crystal collimation test stand at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.
2017-06-01
Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.
Performance of the NIRS fast scanning system for heavy-ion radiotherapy.
Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji
2010-11-01
A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.
HiRadMat at CERN SPS - A test facility with high intensity beam pulses to material samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charitonidis, N.; Fabich, A.; Efthymiopoulos, I.
2015-07-01
HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a 10{sup 16} maximum number of protons per year, in order to limit the activation to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and showing examples of upcoming experiments scheduled in the beam period 2014/2015. (authors)« less
Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian
2015-06-01
HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in amore » dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.« less
Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer
Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano
2013-01-01
In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO2/Na2O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam. PMID:28809251
Design and application of multimegawatt X -band deflectors for femtosecond electron beam diagnostics
Dolgashev, Valery A.; Bowden, Gordon; Ding, Yuantao; ...
2014-10-02
Performance of the x-ray free electron laser Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET) is determined by the properties of their extremely short electron bunches. Multi-GeV electron bunches in both LCLS and FACET are less than 100 fs long. Optimization of beam properties and understanding of free-electron laser operation require electron beam diagnostics with time resolution of about 10 fs. We designed, built and commissioned a set of high frequency X-band deflectors which can measure the beam longitudinal space charge distribution and slice energy spread to better than 10 fs resolution at fullmore » LCLS energy (14 GeV), and with 70 fs resolution at full FACET energy (20 GeV). Use of high frequency and high gradient in these devices allows them to reach unprecedented performance. We report on the physics motivation, design considerations, operational configuration, cold tests, and typical results of the X-band deflector systems currently in use at SLAC.« less
Performance Characterization of the Production Facility Prototype Helium Flow System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen
2015-12-16
The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less
Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdu-Andres, S.; Skaritka, J.; Wu, Q.
2015-05-03
The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.
Retarding field energy analyzer for high energy pulsed electron beam measurements.
Hu, Jing; Rovey, Joshua L; Zhao, Wansheng
2017-01-01
A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.
Fluorescent screens and image processing for the APS linac test stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, W.; Ko, K.
A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.
Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring
NASA Astrophysics Data System (ADS)
Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.
2000-11-01
We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.
NASA Technical Reports Server (NTRS)
Karplus, Alan K.
1996-01-01
The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.
NASA Astrophysics Data System (ADS)
Dementjev, Aleksandr S.; Jovaisa, A.; Silko, Galina; Ciegis, Raimondas
2005-11-01
Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments.
Production Facility Prototype Blower Installation Report with 1000 Hour Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick
2016-04-01
The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less
Effects of stitching on fracture toughness of uniweave textile graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Sankar, Bhavani V.; Sharma, Suresh
1995-01-01
The effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and Mode 1 and Mode 2 fracture toughness of textile graphite/epoxy laminates were studied experimentally. Graphite/epoxy laminates were fabricated from AS4 graphite uniweave textiles and 3501-6 epoxy using Resin Transfer Molding. The cloths were stitched with Kevlar(tm) and glass yarns before resin infusion. Delamination was implanted during processing to simulate impact damage. Sublaminate buckling tests were performed in a novel fixture to measure Compression After Impact (CAI) strength of stitched laminates. The results show that CAI strength can be improved up to 400% by through-the-thickness stitching. Double Cantilever Beam tests were performed to study the effect of stitching on Mode 1 fracture toughness G(sub 1c). It was found that G(sub 1c) increased 30 times for a low stitching density of 16 stitches/sq in. Mode 2 fracture toughness was measured by testing the stitched beams in End Notch Flexure tests. Unlike in the unstitiched beams, crack propagation in the stitched beams was steady. The current formulas for ENF tests were not found suitable for determining G(sub 2C) for stitched beams. Hence two new methods were developed - one based on crack area measured from ultrasonic C-scanning and the other based on equivalent crack area measured from the residual stiffness of the specimen. The G(sub 2c) was found to be at least 5-15 times higher for the stitched laminates. The mechanisms by which stitching increases the CAI strength and fracture toughness are discussed.
BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update
NASA Astrophysics Data System (ADS)
Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.
2015-09-01
We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.
Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.
2002-01-01
The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.
Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration
NASA Technical Reports Server (NTRS)
Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.
2014-01-01
INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.; Herman, Daniel A.
2009-01-01
The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg from mission analyses conducted utilizing the NEXT propulsion system. The LDT is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. This paper presents the performance of the NEXT LDT to date with emphasis on performance variations following throttling of the thruster to the new operating condition and comparison of performance to the NSTAR extended life test.
TU-FG-201-05: Varian MPC as a Statistical Process Control Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, A; Rowbottom, C
Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less
The performance of magnetic lens for focusing VCN-SANS
NASA Astrophysics Data System (ADS)
Nop Collaboration; Yamada, M.; Iwashita, Y.; Kanaya, T.; Ichikawa, M.; Tongu, H.; Kennedy, S. J.; Shimizu, H. M.; Mishima, K.; Yamada, N. L.; Hirota, K.; Carpenter, J. M.; Lal, J.; Andersen, K.; Geltenbort, P.; Guerard, B.; Manzin, G.; Hino, M.; Kitaguchi, M.; Bleuel, M.; NOP Collaboration
2011-04-01
We have developed a prototype rotating-permanent magnet sextupole lens (named rot-PMSx) for more efficient experiments with neutron beams in time of flight (ToF) mode. This lens can modulate the focusing strength over range 1.5×104T/m2⩽g‧⩽5.9×104T/m2. Synchronization between the modulation and the beam pulse produces a focused beam without significant chromatic aberration. We anticipate that this lens could be utilized in focusing small angle neutron scattering (SANS) instruments for novel approach to high resolution SANS.We carried out experiments testing the principle of this lens at the very cold neutron (VCN) beamline (PF2) at Institut Laue-Langevin (ILL), France. The focused beam image size at the detector was kept constant at the same beam size as the source (≈3mm) over a wavelength range of 30Å⩽λ⩽48Å in focal length of ≈1.14m. The flux gain was about 12 relative to a beam without focusing, and the depth of focus was quite large. These results show the good performance of this lens and the system. Thereupon we have demonstrated the performance of this test bed for high resolution focusing of VCN-SANS for a well-studied softmatter sample; a deuterium oxide solution of Pluronic F127, an (PEO)100(PPO)65(PEO)100 tri-block copolymer in deuterium oxide. The results of the focusing experiment and the focusing VCN-SANS are presented.
NASA Astrophysics Data System (ADS)
Murakami, Yuki; Dong, Wei; Oshita, Hideki; Suzuki, Shuichi; Tsutsumi, Tomoaki
In this study, to evaluate flexural strength and shear strength with def ective anchorages due to corrosion of reinforcemen t, the bending test of the RC beams r eceived damage in the anchorage region due to corrosion was carried out. As a result, it is se ems that the residual shear strength of RC beams with defective anchorages depends on shear span ratio in addition to the anchorage performance. Furthermore, the authors propose an evaluation model for an shear strength of RC beams with defective anchorages on the basis of these experimental results and analy tical result. The value of residual shear strength calculated using this model corresponds to the test results in the past.
NASA Astrophysics Data System (ADS)
Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.
1998-02-01
Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.
Current Status of the Beam Position Monitoring System at TLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, C. H.; Hu, K. H.; Chen, Jenny
2006-11-20
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less
Current Status of the Beam Position Monitoring System at TLS
NASA Astrophysics Data System (ADS)
Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.
2006-11-01
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.
Diagnostic evaluations of a beam-shielded 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.
1978-01-01
An engineering model thruster fitted with a remotely actuated graphite fiber polyimide composite beam shield was tested in a 3- by 6.5-meter vacuum facility for in-situ assessment of beam shield effects on thruster performance. Accelerator drain current neutralizer floating potential and ion beam floating potential increased slightly when the shield was moved into position. A target exposed to the low density regions of the ion beam was used to map the boundaries of energetic fringe ions capable of sputtering. The particle efflux was evaluated by measurement of film deposits on cold, heated, bare, and enclosed glass slides.
Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System
NASA Astrophysics Data System (ADS)
Bartosewcz, Mike; Tyburski, Joe
1986-05-01
The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.
Beam Walking in Special Education
ERIC Educational Resources Information Center
Broadhead, Geoffrey D.
1974-01-01
An experimental test on beam walking (for balance), administered to 189 minimally brain injured and 226 educable mentally retarded (EMR) 8- to 13-year-old children, yielded results such as reliability estimates for the mean of three trials were high and there was greater performance reliability for EMR children. (MC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.
2014-11-15
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less
Characterizing the Performance of the Princeton Advanced Test Stand Ion Source
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2012-10-01
The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.
Undersea Laser Communications Field Test at the Naval Undersea Warfare Center (NUWC)
2016-08-30
and blue wavelength scenario suggests links in excess of 400 meters are achievable with small, low-power, narrow-beam lasercom terminals. The field...of 7.6 meters , which corresponded to between 8–12 beam extinction lengths. The PMT demonstration included real-time electronics to perform...communications link was demonstrated over 4.8 meters (5 beam extinction lengths) with an APD receiver. Communications and characterization data were
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, M; Salinas Aranda, F; Dodat, D
Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB
NASA Astrophysics Data System (ADS)
Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike
2016-06-01
The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.
Shah, S. N. R.; Sulong, N. H. Ramli; Shariati, Mahdi; Jumaat, M. Z.
2015-01-01
Steel pallet rack (SPR) beam-to-column connections (BCCs) are largely responsible to avoid the sway failure of frames in the down-aisle direction. The overall geometry of beam end connectors commercially used in SPR BCCs is different and does not allow a generalized analytic approach for all types of beam end connectors; however, identifying the effects of the configuration, profile and sizes of the connection components could be the suitable approach for the practical design engineers in order to predict the generalized behavior of any SPR BCC. This paper describes the experimental behavior of SPR BCCs tested using a double cantilever test set-up. Eight sets of specimens were identified based on the variation in column thickness, beam depth and number of tabs in the beam end connector in order to investigate the most influential factors affecting the connection performance. Four tests were repeatedly performed for each set to bring uniformity to the results taking the total number of tests to thirty-two. The moment-rotation (M-θ) behavior, load-strain relationship, major failure modes and the influence of selected parameters on connection performance were investigated. A comparative study to calculate the connection stiffness was carried out using the initial stiffness method, the slope to half-ultimate moment method and the equal area method. In order to find out the more appropriate method, the mean stiffness of all the tested connections and the variance in values of mean stiffness according to all three methods were calculated. The calculation of connection stiffness by means of the initial stiffness method is considered to overestimate the values when compared to the other two methods. The equal area method provided more consistent values of stiffness and lowest variance in the data set as compared to the other two methods. PMID:26452047
Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.A.; et al.
The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter (EMCal) prototype is composed of scintillating fibers embedded in a mixture of tungsten powder and epoxy. The hadronic calorimeter (HCal) prototype is composed of tilted steel plates alternating with plastic scintillator. Results of the test beam reveal the energy resolution for electrons in the EMCal ismore » $$2.8\\%\\oplus~15.5\\%/\\sqrt{E}$$ and the energy resolution for hadrons in the combined EMCal plus HCal system is $$13.5\\%\\oplus 64.9\\%/\\sqrt{E}$$. These results demonstrate that the performance of the proposed calorimeter system is consistent with \\geant simulations and satisfies the sPHENIX specifications.« less
A system for characterization of DEPFET silicon pixel matrices and test beam results
NASA Astrophysics Data System (ADS)
Furletov, Sergey; DEPFET Collaboration
2011-02-01
The DEPFET pixel detector offers first stage in-pixel amplification by incorporating a field effect transistor in the high resistivity silicon substrate. In this concept, a very small input capacitance can be realized thus allowing for low noise measurements. This makes DEPFET sensors a favorable technology for tracking in particle physics. Therefore a system with a DEPFET pixel matrix was developed to test DEPFET performance for an application as a vertex detector for the Belle II experiment. The system features a current based, row-wise readout of a DEPFET pixel matrix with a designated readout chip, steering chips for matrix control, a FPGA based data acquisition board, and a dedicated software package. The system was successfully operated in both test beam and lab environment. In 2009 new DEPFET matrices have been characterized in a 120 GeV pion beam at the CERN SPS. The current status of the DEPFET system and test beam results are presented.
Beam shaping for laser initiated optical primers
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2008-08-01
Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.
Performance of a reentrant cavity beam position monitor
NASA Astrophysics Data System (ADS)
Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk
2008-08-01
The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.
Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina
2009-09-01
Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.
Investigation of ion beam space charge compensation with a 4-grid analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.
2016-02-15
Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less
Studies on Beam Formation in an Atomic Beam Source
NASA Astrophysics Data System (ADS)
Nass, A.; Stancari, M.; Steffens, E.
2009-08-01
Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.
Shielding and Activation Analyses for BTF Facility at SNS
NASA Astrophysics Data System (ADS)
Popova, Irina; Gallmeier, Franz X.
2017-09-01
The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.
Cheng, L; Bartlett, C L; Erwin, J K; Mansuripur, M
1997-07-01
We discuss the optomechanical design and fabrication of a novel wideband (440-690-nm), leaky polarizing beam splitter with an adjustable leak ratio. This beam splitter is an important component of a multiwavelength dynamic testbed that we have constructed for testing optical disks. The multilayer thin-film structure of the beam splitter is essentially a stacked pair of narrow-band dielectric reflectors that have been fine tuned for optimal performance. The characteristics of the fabricated device are in good agreement with our theoretical calculations.
Silicon solar cell fabrication technology
NASA Technical Reports Server (NTRS)
Stafsudd, O. M.
1979-01-01
The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.
Status of the ion sources developments for the Spiral2 project at GANILa)
NASA Astrophysics Data System (ADS)
Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.
2012-02-01
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.
Testing Omega P’s 650 KW, 1.3 GHZ Low-Voltage Multi-Beam Klystron for the Project X Pulsed LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermi Research Alliance; Omega-P Inc.
Omega-P Inc. had developed a multi beam 1.3 GHz klystron (MBK) for the Project X pulsed linac application. Testing of the klystron require a special hardware such as a modulator, RF components, control system, power supplies, etc, as well as associated infrastructure( electricity, water, safety). This is an expensive part of klystron development for which Omega-P does not have the required equipment. Fermilab will test the MBK at Fermilab site providing contribution to the project all the necessary facilities, infrastructure and manpower for MBK test performance and analysis.
Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Shoji; Namba, Hideki; Tokunaga, Okihiro
1995-06-01
Construction of a pilot plant of the treatment capacity of 12,000 m{sup 3}N/h flue gas was completed in November, 1992 in the Shin-Nagoya Thermal Power Station, Nagoya for electron beam purification of flue-gas from coal combustion boiler and the operation had been continued during one year. The results obtained In the tests shows that the target removal efficiency for SO{sub 2} (94 %) and for NO{sub x} (80 %) was achieved with appropriate operation conditions (electron beam dose, temperature, amount of ammonia etc.). The effective collection of powdery by-products was performed by an electrostatic precipitator.
Electron beam welding passes initial test
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sirvy, B.
1979-11-01
Once the new electron-beam welding process is coupled with vertical or J-curve pipelaying techniques, Total-Compagnie Francaise des Petroles (Gestion and Recherches) will be able to offer a system capable of laying up to 36-in. pipe in deep water (1000-9900 ft) at a pace competitive with the best performance of a shallow-water barge: 8200 ft in 24 hr. Electron-beam welding provides the fast, single-station joining needed to make J-curve laying economical. Tests recently demonstrated that this welding technique can join 1.25-in.-wall, 24-in. pipe in less than 3 min; conventional processes require 1-1 1/2 hr.
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, S.; Chung, C.; Fitsos, P.
2007-04-24
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Muri, M., E-mail: michela.demuri@igi.cnr.it; Pasqualotto, R.; Dalla Palma, M.
2014-02-15
Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution givesmore » an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoy, Blake W
The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had beenmore » addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.« less
Structural aspects of cold-formed steel section designed as U-shape composite beam
NASA Astrophysics Data System (ADS)
Saggaff, Anis; Tahir, Mahmood Md.; Azimi, Mohammadamin; Alhajri, T. M.
2017-11-01
Composite beam construction usually associated with old-style Hot-Rolled Steel Section (HRSS) has proven to act much better in compare with Cold-Formed Steel Section (CFSS) sections due to thicker section. Due, it's getting popular to replace HRSS with CFSS in some aspects as a composite beam. The advantages such as lightweight, cost effective and easy to install have contributed to the apply CFSS as a preferred construction material for composite beam. There is a few technical data available regarding the application of the usage of CFSS as a composite system, despite the potentials use for residential and light-weight industrial constructions. This paper presents an experimental tests results which have been conducted using CFSS as composite beam. Composite action of CFSS arranged as double beam with Self-Compacting Concrete (SCC) slab are integrated together with bolted shear connectors were used. A full-scale test comprised of 3 proposed composite beam specimens with bolted shear connector spaced at 300 mm interval of grade 8.8 was using single nut with washer on flange of CFS, cast to the slab and loaded until failed. The test show that the bolted shear connector yielded better capacity of ultimate strength and ultimate moment for the proposed composite beam. It can be concluded that, bolted shear connectors of 16 mm in diameter performed better than the other diameter size of bolted shear connectors.
Czub, Joanna; Banaś, Dariusz; Braziewicz, Janusz; Buraczewska, Iwona; Jaskóła, Marian; Kaźmierczak, Urszula; Korman, Andrzej; Lankoff, Anna; Lisowska, Halina; Szefliński, Zygmunt; Wojewódzka, Maria; Wójcik, Andrzej
2018-05-30
Carbon and oxygen ions were accelerated simultaneously to estimate the effect of irradiation of living cells with the two different ions. This mixed ion beam was used to irradiate the CHO-K1 cells, and a survival test was performed. The type of the effect of the mixed ion beam on the cells was determined with the isobologram method, whereby survival curves for irradiations with individual ion beams were also used. An additive effect of irradiation with the two ions was found. Copyright © 2018 Elsevier Ltd. All rights reserved.
Production Facility Prototype Blower 1000 Hour Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick
2016-10-18
The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended tests of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, S.; Mimura, H.; Yumoto, H.
We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less
Anvari, Akbar; Poirier, Yannick; Sawant, Amit
2018-04-28
Although small animal image-guided radiotherapy (SA-IGRT) systems are used increasingly in preclinical research, tools for performing routine quality assurance (QA) have not been optimized and are not readily available. Robust, efficient, and reliable QA tools are needed to ensure the accuracy and reproducibility of SA-IGRT systems. Several investigators have reported custom-made phantoms and protocols for SA-IGRT systems QA. These are typically time and resource intensive and are therefore not well suited to the preclinical radiotherapy environment, in which physics support is limited and routine QA is performed by technical staff. We investigated the use of the inbuilt electronic portal imaging device (EPID) to develop and validate routine QA tests and procedures. In this work, we focus on the Xstrahl Small Animal Radiation Research Platform (SARRP) EPID. However, the methodology and tests developed here are applicable to any SA-IGRT system that incorporates an EPID. We performed a comprehensive characterization of the dosimetric properties of the camera-based EPID at kilovoltage energies over a 11-month period, including detector warm-up time, radiation dose history effect, stability and short- and long-term reproducibility, gantry angle dependency, output factor, and linearity of the EPID response. We developed a test to measure the constancy of beam quality in terms of half-value layer and tube peak potential using the EPID. We verified the SARRP daily output and beam profile constancy using the imager. We investigated the use of the imager to monitor beam-targeting accuracy at various gantry and couch angles. The EPID response was stable and reproducible, exhibiting maximum variations of ≤0.3% and ≤1.9% for short and long terms, respectively. The detector showed no dependence on response at different gantry angles, with a maximum variation ≤0.5%. We found close agreement in output factor measurement between the portal imager and reference dosimeters, with maximum differences ≤3% for ionization chamber and ≤1.7% for Gafchromic EBT3 dosimetry film, respectively. We have shown that the EPID response is linear with tube current (mA) for the entire range of tube kilovoltage peak. Notably, a close relationship was seen between the detector response vs mA slope, and the kilovoltage peak, allowing an independent verification of kilovoltage peak stability based solely on EPID response. In addition to dosimetry tests, according to the beam-targeting measurement using portal images, maximum displacement of the central axis of the x-ray beam (due to sag) was 0.76 ± 0.09 mm at gantry 135°/couch 0° and 0.89 ± 0.06 mm at gantry 0°/couch -135°. We performed the first comprehensive analysis on the dosimetric properties of an EPID operating at kilovoltage x-ray energies. We characterized the detector performance over a 11-month period. Our results indicate that the imager is a stable and convenient tool for SARRP routine QA tests. We then developed EPID-based tests to perform routine SA-IGRT systems QA tasks, such as verifying constancy of beam quality, energy, output, and profile measurements, relative output factors, and beam targeting. © 2018 American Association of Physicists in Medicine.
R&D of a High-Performance DIRC Detector for a Future Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Allison, Stacey Lee
An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fraction of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly flat focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.
R&D of a high-performance DIRC detector for a future electron-ion collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, Staceu L.
An Electron-Ion Collider (EIC) is proposed as the next big scientific facility to be built in the United States, costing over $1 billion in design and construction. Each detector concept for the electron/ion beam interaction point is integrated into a large solenoidal magnet. The necessity for excellent hadronic particle identification (pion/kaon/proton) in the barrel region of the solenoid has pushed research and development (R&D) towards a new, high-performance Detection of Internally Reflected Cherenkov light (DIRC) detector design. The passage of a high energy charged particle through a fused silica bar of the DIRC generates optical Cherenkov radiation. A large fractionmore » of this light propagates by total internal reflection to the end of the bar, where the photon trajectories expand in a large volume before reaching a highly segmented photo-detector array. The spatial and temporal distribution of the Cherenkov light at the photo-detector array allows one to reconstruct the angle of emission of the light relative to the incident charged particle track. In order to reach the desired performance of 3sigma pi/K separation at 6 GeV/c particle momentum a new 3-layer spherical lens focusing optic with a lanthanum crown glass central layer was designed to have a nearly at focal plane. In order to validate the EIC DIRC simulation package, a synergistic test beam campaign was carried out in 2015 at the CERN PS with the PANDA Barrel DIRC group using a prototype DIRC detector. Along with the analysis of the CERN test beam data, measurements of the focal plane of the 3-layer lens were performed using a custom-built laser setup at Old Dominion University. Radiation hardness of the lanthanum crown glass was tested using a 160 keV X-ray source and a monochromator at the Catholic University of America. Results of these test-bench experiments and the analysis of the 2015 CERN test beam data are presented here.« less
Beam Tests of the Balloon-Borne ATIC Experiment
NASA Technical Reports Server (NTRS)
Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.
Pre-irradiation testing of actively cooled Be-Cu divertor modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linke, J.; Duwe, R.; Kuehnlein, W.
1995-09-01
A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules,more » electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L; Chin, E; Lo, A
2016-06-15
Purpose: This work reports the results of the physics evaluation of a newly released InCise™2 Multileaf Collimator (MLC) installed in our institution. Methods: Beam property data was measured with unshielded diode and EBT2 films. The measurements included MLC leaf transmission, beam profiles, output factors and tissue-phantom ratios. MLC performance was evaluated for one month after commissioning. Weekly Garden Fence tests were performed for leaf / bank positioning in standard (A/P) and clinically relevant non-standard positions, before and after MLC driving exercises of 10+ minutes. Daily Picket Fence test and AQA test, End-to-End tests and dosimetric quality assurance were performed tomore » evaluate the overall system performance. Results: All measurements including beam energy, flatness and symmetry, were within manufacture specifications. Leaf transmission was 0.4% <0.5% specification. The values of output factors ranged from 0.825 (7.6 mm × 7.5 mm) to 1.026 (115.0 mm × 100.1 mm). Average beam penumbra at 10 cm depth ranged from 2.7mm/2.7mm(7.6 mm × 7.5 mm) to 6.0 mm/6.2mm(84.6 mm × 84.7 mm). Slight penumbra difference (<10% from average penumbra for fields >20 mm) was observed in the direction perpendicular to leaf motion due to the tilting of the leaf housing. Mean leaf position offsets was −0.08±0.07mm and −0.13 ± 0.08 for X1 and X2 leaf banks in 13 Garden Fence tests. No significant difference on average leaf positioning offsets was observed between different leaf orientations and before/after MLC driving exercises. Six End-to-End tests showed 0.43±0.23mm overall targeting accuracy. Picket-Fence and AQA showed stable performance of MLC during the test period. Dosimetric point dose measurements for test cases agreed with calculation within 3%. All film measurements on relative dose had Gamma (2%, 2mm) passing rate of >95%. Conclusion: The Incise™2 MLC for CyberKnife M6™ was proven to be accurate and reliable, and it is currently in clinical use. Stanford was one of the physics evaluation sites for the newly released InCise 2 MLC for Accuray Inc.« less
Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter
2010-06-21
Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.
Effects of physical guidance on short-term learning of walking on a narrow beam.
Domingo, Antoinette; Ferris, Daniel P
2009-11-01
Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience.
NASA Astrophysics Data System (ADS)
Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.
2018-04-01
Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.
Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Y.C.
A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetricmore » electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.« less
A prototype scintillating fibre beam profile monitor for Ion Therapy beams
NASA Astrophysics Data System (ADS)
Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.
2018-05-01
A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.
Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.
The Load-Bearing Capacity of Timber-Glass Composite I-Beams Made with Polyurethane Adhesives
NASA Astrophysics Data System (ADS)
Rodacki, Konrad
2017-12-01
This article discusses the issue of composite timber-glass I-beams, which are an interesting alternative for load-bearing beams of ceilings and roofs. The reasoning behind the use of timber-glass I-beams is the combination of the best features of both materials - this enables the creation of particularly safe beams with regard to structural stability and post-breakage load capacity. Due to the significant differences between the bonding surfaces of timber and glass, a study on the adhesion of various adhesives to both surfaces is presented at the beginning of the paper. After examination, two adhesives were selected for offering the best performance when used with composite beams. The beams were investigated using a four-point bending test under quasi-static loading.
Beam dynamics studies at DAΦNE: from ideas to experimental results
NASA Astrophysics Data System (ADS)
Zobov, M.; DAΦNE Team
2017-12-01
DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.
Characterization and Design of Spiral Frequency Steerable Acoustic Transducers
NASA Astrophysics Data System (ADS)
Repale, Rohan
Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.
Production Facility Prototype Blower Installation Report with 1000 Hr Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.
2016-09-23
The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less
NASA Astrophysics Data System (ADS)
Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.
2010-04-01
A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.
Cikirikcioglu, Mustafa; Cikirikcioglu, Y Banu; Khabiri, Ebrahim; Djebaili, M Karim; Kalangos, Afksendiyos; Walpoth, Beat H
2006-01-01
Intra-operative flow measurement during coronary or peripheral bypass operations is helpful for ruling out technical failures and for prediction of complication and patency rates. Preclinical validation of the flowmeters is required in order to rely on the intra-operatively measured results. The aim of this study is to evaluate a new "dual beam Doppler" blood flowmeter before clinical application and to compare it with the established "transit time flow measure-ment" technique in an artificial circuit. Measurements were performed in an experimental flow model using pig blood and pig arteries. Three different flowmeters were used: Quantix OR (dual beam doppler flowmeter), CardioMed (transit time flowmeter), and Transonic (transit time flowmeter). Three validation tests were performed to assess correlation, precision, and repeatability of devices. (1) Correlation and agreement analysis was performed with various flow amounts (10-350 mL/min) (n = 160). (2) Device reproducibility and measurement stability were tested with a constant flow (flow amount = 300 mL/min) (n = 30). (3) A user accuracy test (intra- and inter-observer variability) was performed by 5 different observers with a constant flow (flow amount = 205 mL/min) (n = 75). Time collected true flow was used as a reference method in all steps and all tests were performed in a blind manner. Results are shown as mean values +/- standard deviations. Pear-son's correlation and Bland-Altman plot analyses were used to compare measurements. The mean flow was 167 +/- 98 mL/min for true flow and 162 +/- 94 mL/min, 165 +/- 94 mL/min, and 166 +/- 100 mL/min for Quantix OR, CardioMed, and Transonic, respectively. Correlation coefficients between Quantix OR, Medi-Stim, Transonic, and time collected true flow were over 0.98 (P = .01). Most of the measured results ( > 90%) were between +/- 1.96 SD agreement limits in Bland and Altman plot analysis. All devices showed good results in the reproducibility test. During the user accuracy test, larger variance changes were observed between intra- and inter-observer results with the dual beam Doppler flowmeter compared to the 2 used transit time flowmeters when used for single sided vessel access without stabilization device (available from the manufacturer). All 3 tested flowmeters showed an excellent correlation to the true flow in an artificial circuit and the accuracy of the tested devices was within agreement limits. Reproducibility of all devices was good and linear. The new dual beam Doppler flow measurement technique compares favorably to the classic transit time method. Clinical use may depend on operator, location, and condition, thus more studies may be required to ensure uniform results using the currently available blood flow measurement devices.
Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam
NASA Astrophysics Data System (ADS)
Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.
2013-06-01
The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
Performance of the full size nGEM detector for the SPIDER experiment
NASA Astrophysics Data System (ADS)
Muraro, A.; Croci, G.; Albani, G.; Claps, G.; Cavenago, M.; Cazzaniga, C.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.
2016-03-01
The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF beam source, and MITICA, a full scale, 1 MeV deuterium beam injector. SPIDER will start operations in 2016 while MITICA is expected to start during 2019. Both devices feature a beam dump used to stop the produced deuteron beam. Detection of fusion neutrons produced between beam-deuterons and dump-implanted deuterons will be used as a means to resolve the horizontal beam intensity profile. The neutron detection system will be placed right behind the beam dump, as close to the neutron emitting surface as possible thus providing the map of the neutron emission on the beam dump surface. The system uses nGEM neutron detectors. These are Gas Electron Multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is designed to ensure that most of the detected neutrons at a point of the nGEM surface are emitted from the corresponding beamlet footprint (with dimensions of about 40×22 mm2) on the dump front surface. The size of the nGEM detector for SPIDER is 352 mm×200 mm. Several smaller size prototypes have been successfully made in the last years and the experience gained on these detectors has led to the production of the full size detector for SPIDER during 2014. This nGEM has a read-out board made of 256 pads (arranged in a 16×16 matrix) each with a dimension of 22 mm×13 mm. This paper describes the production of this detector and its tests (in terms of beam profile reconstruction capability, uniformity over the active area, gamma rejection capability and time stability) performed on the ROTAX beam-line at the ISIS spallation source (Didcot-UK).
Design and testing of focusing magnets for a compact electron linac
NASA Astrophysics Data System (ADS)
Chen, Qushan; Qin, Bin; Liu, Kaifeng; Liu, Xu; Fu, Qiang; Tan, Ping; Hu, Tongning; Pei, Yuanji
2015-10-01
Solenoid field errors have great influence on electron beam qualities. In this paper, design and testing of high precision solenoids for a compact electron linac is presented. We proposed an efficient and practical method to solve the peak field of the solenoid for relativistic electron beams based on the reduced envelope equation. Beam dynamics involving space charge force were performed to predict the focusing effects. Detailed optimization methods were introduced to achieve an ultra-compact configuration as well as high accuracy, with the help of the POISSON and OPERA packages. Efforts were attempted to restrain system errors in the off-line testing, which showed the short lens and the main solenoid produced a peak field of 0.13 T and 0.21 T respectively. Data analysis involving central and off axes was carried out and demonstrated that the testing results fitted well with the design.
ICESat-2 ATLAS Beam Steering Mechanism (BSM)
NASA Technical Reports Server (NTRS)
Hinkle, Matthew
2015-01-01
This work covers the design and test of a beam steering mechanism (BSM) used to accurately guide a laser on the Advanced Topographic Laser Altimeter System (ATLAS) down to Earth in order to measure elevation. It describes the main components in the BSM that allows it to perform and meet stringent requirements. Requirements of the BSM include two-axis steering of the transmitted laser beam, +-5000 uRad mechanical motion in each axis, and 1.5 uRad RMS pointing stability among many other requirements. The BSM uses four voice coil actuators in order to locate the mirror at the angle we need. There are four Differential Position Sensors that determine the position and angle of the mirror at all times. These sensors were verified through optical testing in both ambient and thermal conditions. Testing and extensive analyses were performed on the two-axis flexure throughout the program to check flexure thickness, positive margins, and infinite life. The mirror mount design has been modified to eliminate radial preload, while incorporating a titanium wave spring to provide an axial preload of 10.8N. The BSM underwent multiple tests in order to verify all components work as required under various conditions.
NASA Astrophysics Data System (ADS)
Crowe, S. B.; Kairn, T.; Middlebrook, N.; Sutherland, B.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.
2015-03-01
This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as ‘small’) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.
2015-04-08
In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less
Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams
NASA Astrophysics Data System (ADS)
Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean
2004-07-01
There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.
Full-beam performances of a PET detector with synchrotron therapeutic proton beams.
Piliero, M A; Pennazio, F; Bisogni, M G; Camarlinghi, N; Cerello, P G; Del Guerra, A; Ferrero, V; Fiorina, E; Giraudo, G; Morrocchi, M; Peroni, C; Pirrone, G; Sportelli, G; Wheadon, R
2016-12-07
Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.
The strength of Norwegian glued laminated beams
Kjell Solli; Erik Aasheim; Robert H. Falk
1992-01-01
This paper focuses on the characterization and the performance of glued laminated (glulam) timber beams manufactured from machine stress graded Norwegian spruce in comparison to developing CEN standards. Material property testing indicated that the supplied laminating timber can be represented by two CEN strength classes, C37-14E and C30-12E, with about 50% yield in...
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
Status of 30 cm mercury ion thruster development
NASA Technical Reports Server (NTRS)
Sovey, J. S.; King, H. J.
1974-01-01
Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.
Accelerator performance analysis of the Fermilab Muon Campus
Stratakis, Diktys; Convery, Mary E.; Johnstone, Carol; ...
2017-11-21
Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstreammore » beam line optics, as well as transport of muon polarization. Lastly, we finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.« less
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.
2007-01-01
This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).
A diamond active target for the PADME experiment
NASA Astrophysics Data System (ADS)
Chiodini, G.
2017-02-01
The PADME (Positron Annihilation into Dark Mediator Experiment) collaboration searches for dark photons produced in the annihilation e++e-→γ+A' of accelerated positrons with atomic electrons of a fixed target at the Beam Test Facility of Laboratori Nazionali di Frascati. The apparatus can detect dark photons decaying into visible A'→e+e- and invisible A'→χχ channels, where χ's are particles of a secluded sector weakly interacting and therefore undetected. In order to improve the missing mass resolution and to measure the beam flux, PADME has an active target able to reconstruct the beam spot position and the bunch multiplicity. In this work the active target is described, which is made of a detector grade polycrystalline synthetic diamond with strip electrodes on both surfaces. The electrodes segmentation allows to measure the beam profile along X and Y and evaluate the average beam position bunch per bunch. The results of beam tests for the first two diamond detector prototypes are shown. One of them holds innovative graphitic electrodes built with a custom process developed in the laboratory, and the other one with commercially available traditional Cr-Au electrodes. The front-end electronics used in the test beam is discussed and the performance observed is presented. Finally, the final design of the target to be realized at the beginning of 2017 to be ready for data taking in 2018 is illustrated.
Cummings, Brian J; Engesser-Cesar, Christie; Cadena, Gilbert; Anderson, Aileen J
2007-02-27
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing.
Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.
2007-01-01
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing. PMID:17197044
NASA Technical Reports Server (NTRS)
Coe, H. H.; Parker, R. J.; Scibbe, H. W.
1975-01-01
An experimental investigation was performed to determine the rolling element fatigue life of electron beam-welded hollow balls with a diameter ratio (o.d./i.d.) of 1.26 and to determine the operating characteristics of bearings using these hollow balls. Similar bearings with solid balls were also tested and the data compared. The bearings were operated at shaft speeds up to 28,000 rpm with a thrust load of 2200 N (500 lb). Ball failures during the bearing tests were due to flexure fatigue. The solid and hollow ball bearings tested showed little difference in outer race temperatures and indicated the same bearing torque. The 17.5-mm (0.6875-in.) diameter balls were also tested in the five-ball fatigue tester and showed no significant difference in life when compared with the life of a solid ball.
NASA Astrophysics Data System (ADS)
Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.
2018-05-01
The paper is devoted to study of the aerodynamic forces acting on flat cantilever beams performing flexural vibrations in a viscous fluid. Original method for the force evaluation is presented based on analysis of experimental measurements of a logarithmic decrement of vibrations and relative variation in frequency of duralumin test specimens. The theoretical core of the method is based on the classical theory of bending beam oscillations and quasi-two dimensional model of interaction between a beam and a gas. Using the proposed method, extensive series of experiments for a wide range of oscillations parameters were carried out. The processing of the experimental data allowed to establish the global influence of the aerodynamic effects on beam oscillations and the local force characteristics of each cross-section of the beam in the form of universal functions of dimensionless amplitude and dimensionless frequency of oscillation. The obtained estimates of the drag and added mass forces showed a good correspondence with the available numerical and experimental data practically in the entire range of the investigated parameters.
Commercialization of an S-band standing-wave electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
The ITER Neutral Beam Test Facility towards SPIDER operation
NASA Astrophysics Data System (ADS)
Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.
2017-08-01
SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Lee, S.; Westferro, F.
The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less
Study on transient beam loading compensation for China ADS proton linac injector II
NASA Astrophysics Data System (ADS)
Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom
2016-05-01
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)
Gymnastic judges benefit from their own motor experience as gymnasts.
Pizzera, Alexandra
2012-12-01
Gymnastic judges have the difficult task of evaluating highly complex skills. My purpose in the current study was to examine evidence that judges use their sensorimotor experiences to enhance their perceptual judgments. In a video test, 58 judges rated 31 gymnasts performing a balance beam skill. I compared decision quality between judges who could perform the skill themselves on the balance beam (specific motor experience = SME) and those who could not. Those with SME showed better performance than those without SME. These data suggest that judges use their personal experiences as information to accurately assess complex gymnastic skills. [corrected].
Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints
NASA Astrophysics Data System (ADS)
Lakshminarayanan, A. K.; Balasubramanian, V.
2012-04-01
This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.
NASA Technical Reports Server (NTRS)
Renner, Christoffer J.
2005-01-01
Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.
Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom).
Gabor, C; Faircloth, D C; Lee, D A; Lawrie, S R; Letchford, A P; Pozimski, J K
2010-02-01
A front end is currently under construction consisting of a H(-) Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.
Effects of physical guidance on short-term learning of walking on a narrow beam
Domingo, Antoinette; Ferris, Daniel P.
2009-01-01
Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience. PMID:19674900
Pink-beam focusing with a one-dimensional compound refractive lens
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...
2016-07-28
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatchyn, Roman; /SLAC
2011-09-01
Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less
Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpetti, R. D., LLNL
1997-06-30
The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less
Beam feasibility study of a collimator with in-jaw beam position monitors
NASA Astrophysics Data System (ADS)
Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana
2014-12-01
At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
The NIRIM two-stage light-gas gun: Performance test results
NASA Astrophysics Data System (ADS)
Sekine, T.; Tashiro, S.; Kobayashi, T.; Matsumura, T.
1996-05-01
A two-stage light-gun has been installed at the NIRIM in order to investigate the high pressure behavior of materials. For operation and safety test, we used helium and carried out performance test shots. Piston velocity in the pump tube and projectile velocity during free flight are measured by means of gas-pressure profile records at fixed locations and x-ray beam cutting method, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fürweger, Christoph, E-mail: christoph.fuerweger@cyber-knife.net; Prins, Paulette; Coskan, Harun
Purpose: The “InCise™ multileaf-collimator (MLC)” is the first commercial MLC to be mounted on a robotic SRS/SBRT platform (CyberKnife). The authors assessed characteristics and performance of this novel device in a preclinical five months test period. Methods: Commissioning beam data were acquired with unshielded diodes. EBT3 radiochromic films were employed for measurement of transmission, leaf/bank position accuracy (garden fence) before and after exercising the MLC, for end-to-end testing and further characterization of the beam. The robot workspace with MLC was assessed analytically by transformation to an Euler geometry (“plane,” “gantry,” and “collimator” angles) and by measuring pointing accuracy at eachmore » node. Stability over time was evaluated in picket fence and adapted Winston–Lutz tests (AQA). Results: Beam penumbrae (80%–20%, with 100% = 2 × dose at inflection point for field sizes ≥ 50 × 50 mm{sup 2}) were 2.2–3.7 mm for square fields in reference condition (source-axis-distance 800 mm, depth 15 mm) and depended on field size and off-axis position. Transmission and leakage did not exceed 0.5%. Accessible clinical workspace with MLC covered non-coplanar gantry angles of [−113°; +112°] and collimator angles of [−100°; +107°], with an average robot pointing accuracy of 0.12 ± 0.09 mm. For vertical beams, garden fence tests exhibited an average leaf positioning error of ≤0.2 mm, which increased by 0.25 and 0.30 mm (banks X1 and X2) with leaves traveling parallel to gravity. After execution of a leaf motion stress routine, garden fence tests showed slightly increased jaggedness and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.38 ± 0.05 mm in nine end-to-end tests. Picket fence and AQA tests displayed stable results over the test period. Conclusions: The InCise™ MLC for CyberKnife showed high accuracy and adequate characteristics for SRS/SBRT applications. MLC performance after exercise demands specific quality assurance measures.« less
Fürweger, Christoph; Prins, Paulette; Coskan, Harun; Heijmen, Ben J M
2016-05-01
The "InCise™ multileaf-collimator (MLC)" is the first commercial MLC to be mounted on a robotic SRS/SBRT platform (CyberKnife). The authors assessed characteristics and performance of this novel device in a preclinical five months test period. Commissioning beam data were acquired with unshielded diodes. EBT3 radiochromic films were employed for measurement of transmission, leaf/bank position accuracy (garden fence) before and after exercising the MLC, for end-to-end testing and further characterization of the beam. The robot workspace with MLC was assessed analytically by transformation to an Euler geometry ("plane," "gantry," and "collimator" angles) and by measuring pointing accuracy at each node. Stability over time was evaluated in picket fence and adapted Winston-Lutz tests (AQA). Beam penumbrae (80%-20%, with 100% = 2 × dose at inflection point for field sizes ≥ 50 × 50 mm(2)) were 2.2-3.7 mm for square fields in reference condition (source-axis-distance 800 mm, depth 15 mm) and depended on field size and off-axis position. Transmission and leakage did not exceed 0.5%. Accessible clinical workspace with MLC covered non-coplanar gantry angles of [-113°; +112°] and collimator angles of [-100°; +107°], with an average robot pointing accuracy of 0.12 ± 0.09 mm. For vertical beams, garden fence tests exhibited an average leaf positioning error of ≤0.2 mm, which increased by 0.25 and 0.30 mm (banks X1 and X2) with leaves traveling parallel to gravity. After execution of a leaf motion stress routine, garden fence tests showed slightly increased jaggedness and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.38 ± 0.05 mm in nine end-to-end tests. Picket fence and AQA tests displayed stable results over the test period. The InCise™ MLC for CyberKnife showed high accuracy and adequate characteristics for SRS/SBRT applications. MLC performance after exercise demands specific quality assurance measures.
An EUDET/AIDA Pixel Beam Telescope for Detector Development
NASA Astrophysics Data System (ADS)
Rubinskiy, I.; EUDET Consortium; AIDA Consortium
Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.
Effect of natural weathering conditions on the dynamic behavior of woven aramid composites
NASA Astrophysics Data System (ADS)
Kaya, A. I.; Kısa, M.; Özen, M.
2018-02-01
In this study, aging of woven aramid/epoxy composites under different natural conditions were studied. Composite beams were manufactured by Vacuum Assisted Resin Infusion Method (VARIM). Composites were cut into specimen according to ASTM D3039 and vibration tests. Elastic moduli of reference composites were found according to ASTM D3039 standard. Validation of methodology was performed numerically in Ansys software before aging process. An algorithm, which is predicated on FFT (Fast Fourier Transforms), was composed in Matlab to process output of vibration analysis data so as to identify natural frequencies of beams. Composites were aged for 12 months and various natural weathering aging conditions effects on woven aramid composite beams were surveyed through vibration analysis with 3 months interval. Five specimens of woven aramid beams were considered for dynamic tests and effect of aging on first three natural frequencies were determined.
Performance of a high resolution cavity beam position monitor system
NASA Astrophysics Data System (ADS)
Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen
2007-07-01
It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.
NASA Astrophysics Data System (ADS)
Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi
2018-04-01
The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.
Woodworth, K Nina; Palmateer, Julie; Swide, Joseph; Grafe, Marjorie R
2011-10-01
Until recently, supplementation with 100% oxygen was standard therapy for newborns who required resuscitation at birth or suffered later hypoxic-ischemic events. Exposure to high concentrations of oxygen, however, may worsen oxidative stress induced by ischemic injury. In this study we investigated the short- and long-term behavioral outcomes in rats that had undergone hypoxic-ischemic brain injury on postnatal day 7, followed by 2h exposure to 21%, 40%, or 100% oxygen, compared to normal controls. There were no differences in the development of walking, head lifting and righting reflexes from postnatal days 9 to 15. Cliff avoidance showed some abnormal responses in the H21 animals. From postnatal days 28 to 56, three tests of sensorimotor coordination were performed weekly: ledged tapered beam, cylinder, and bilateral tactile stimulation. The ledged tapered beam test without prior training of animals was sensitive to injury, but did not distinguish between treatment groups. The cylinder test showed a greater use of the unimpaired limb in female 21% and 40% oxygen groups compared to controls. Performance in both cylinder and the beam tests showed a correlation with the degree of brain injury. The bilateral tactile stimulation test showed that the male 21% oxygen groups had worse sensory asymmetry than male 40% or 100% oxygen groups, but was not statistically significantly different from controls. We thus found a minor benefit to post-hypoxia-ischemic treatment with 100% and 40% oxygen compared to 21% in one test of early motor skills. Our results for long-term sensorimotor behavior, however, showed conflicting results, however, as males treated with 40% or 100% oxygen had less sensory asymmetry (better performance) in the bilateral tactile stimulation test than males treated with 21% oxygen, while females had impaired motor performance in the cylinder test with both 21% and 40% oxygen. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Twin-spot laser welding of advanced high-strength multiphase microstructure steel
NASA Astrophysics Data System (ADS)
Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian
2017-07-01
The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.
Combined Space Environmental Exposure Tests of Multi-Junction GaAs/Ge Solar Array Coupons
NASA Technical Reports Server (NTRS)
Hoang, Bao; Wong, Frankie; Corey, Ron; Gardiner, George; Funderburk, Victor V.; Gahart, Richard; Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The purpose of this test program is to understand the changes and degradation of the solar array panel components, including its ESD mitigation design features in their integrated form, after multiple years (up to 15) of simulated geosynchronous space environment. These tests consist of: UV radiation, electrostatic discharge (ESD), electron/proton particle radiation, thermal cycling, and ion thruster plume exposures. The solar radiation was produced using a Mercury-Xenon lamp with wavelengths in the UV spectrum ranging from 230 to 400 nm. The ESD test was performed in the inverted-gradient mode using a low-energy electron (2.6 - 6 keV) beam exposure. The ESD test also included a simulated panel coverglass flashover for the primary arc event. The electron/proton radiation exposure included both 1.0 MeV and 100 keV electron beams simultaneous with a 40 keV proton beam. The thermal cycling included simulated transient earth eclipse for satellites in geosynchronous orbit. With the increasing use of ion thruster engines on many satellites, the combined environmental test also included ion thruster exposure to determine whether solar array surface erosion had any impact on its performance. Before and after each increment of environmental exposures, the coupons underwent visual inspection under high power magnification and electrical tests that included characterization by LAPSS, Dark I-V, and electroluminescence. This paper discusses the test objective, test methodologies, and preliminary results after 5 years of simulated exposure.
Simulation of an Impact Test of the All-Composite Lear Fan Aircraft
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)
2002-01-01
An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.
Smart Textiles for Strengthening of Structures
NASA Astrophysics Data System (ADS)
Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao
2016-11-01
This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.
Sandwich holospeckle interferometry for three-dimensional displacement determination
NASA Astrophysics Data System (ADS)
Wu, X. P.; Chiang, F. P.
1986-06-01
A sandwich holospecklegram (SH) technique with flexible sensitivity is presented for performing both in-plane and out-of-plane displacement measurements of objects. An object beam from a laser is directed onto a part-mirror onto which the object image is also directed and produces interference in the beam. The beam is redirected to fall, with a reference beam, onto photographic and speckle plates with their emulsion sides against one another, ergo, the sandwich. Reconstruction methods are delineated and illustrated with an SH of a crack in an aluminum alloy plate undergoing a three-point bending test. The crack is noted to occur in a region only 2 mm across.
NASA Astrophysics Data System (ADS)
Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara
2009-01-01
The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its center of mass (middle point), while carrying equal-weight objects on either side of it. The study utilized a two-group design, and was conducted in three phases (pre-test, treatment and post-test). The results of the study provide evidence that there was such an effect, since the children (who participated in the sensorimotor activities) could select out of a number of objects those two with the same weight regardless of their shape, size or colour, in order to balance the stick. This effect also can be seen when a comparison is made with a second group of children, which had previously participated in a hands-on activity regarding the equilibrium of a similar balance beam, and which (children), therefore, had a definite advantage over the other children who had participated in the sensorimotor activity. A Chi Square Test showed no significant differences between the two groups on both an immediate and a delayed post-test, while the McNemar Test for the Significance of Change showed a statistically significant difference (that is, a negative change in performance between the first and the second post-test) only within the hands-on group. This difference represents evidence that the children from the sensorimotor group remembered better the rule they were applying (i.e., selecting equal-weight objects) in order to balance the beam.
Confinement Effect on Material Properties of RC Beams Under Flexure
NASA Astrophysics Data System (ADS)
Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund
2017-12-01
In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.
Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam
NASA Astrophysics Data System (ADS)
Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.
2018-02-01
We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.
Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery
Du, Zhijia; Janke, C. J.; Li, Jianlin; ...
2016-10-12
We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less
Improved Ion Resistance for III-V Photocathodes in High Current Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhollan, Gregory, A.
2012-11-16
The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less
CLIC RF High Power Production Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syratchev, I.; Riddone, G.; /CERN
The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less
NASA Astrophysics Data System (ADS)
Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.
2015-10-01
The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.
Measurement and simulation for a complementary imaging with the neutron and X-ray beams
NASA Astrophysics Data System (ADS)
Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao
2017-09-01
By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less
Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha
2015-06-01
Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with themore » time-dependent Particle In Cell (PIC) code WARP.« less
Testing Instrument for Flight-Simulator Displays
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1987-01-01
Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.
The LArIAT experiment: first measurement of the inclusive total pion cross-section in Argon
NASA Astrophysics Data System (ADS)
de María Blaszczyk, Flor
2018-05-01
In light of future large neutrino experiments such as DUNE, an excellent understanding of LArTPCs is required. The Liquid Argon In A Test-beam (LArIAT) experiment, located in the Fermilab Test Beam Facility, is designed to characterize the performance of LArTPCs and improve the reconstruction algorithms but also to measure the cross-sections of charged particles in Argon. The goals and experimental layout will be presented, as well as the world’s first inclusive total pion interaction cross-section on Argon measured by LArIAT.
Laser beam propagation through a full scale aircraft turboprop engine exhaust
NASA Astrophysics Data System (ADS)
Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert
2010-10-01
The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.
Multistable wireless micro-actuator based on antagonistic pre-shaped double beams
NASA Astrophysics Data System (ADS)
Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.
2015-07-01
This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.
Full Geant4 and FLUKA simulations of an e-LINAC for its use in particle detectors performance tests
NASA Astrophysics Data System (ADS)
Alpat, B.; Pilicer, E.; Servoli, L.; Menichelli, M.; Tucceri, P.; Italiani, M.; Buono, E.; Di Capua, F.
2012-03-01
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, G
Purpose: Commissioning radiation beams requires considerable effort to obtain the beam data for beam configuration in a commercial treatment planning system. With the advances in technology, the manufacturer of accelerators now has the ability to adjust radiation beam parameters to meet pre-determined specifications with high precision. This study aims to illustrate the feasibility of making pre-configured radiation beams available in commercial treatment planning systems. Methods: In recent years, Varian has made a set of measured beam data from the TrueBeam accelerator available to users. Although the beam data are provided as “suggestive data” without warranty, the commissioned data measured bymore » users have been shown to be in excellent agreement with the data set provided when the beams from the installed Linacs were adjusted to meet the beam specifications. An unofficial survey among Varian Linac TrueBeam users shows that the suggestive data set has been used with validation by users in some clinics. This indicates that radiation beams from a specified Linac can be standardized and pre-configured in a treatment planning system. Results: Two newly installed Varian TrueBeam accelerators at two different centers were examined in which one set of commissioned beam data was obtained from measurements performed by an independent physics consulting company and the other was measured by local physicists in the department. All beams from both accelerators were tuned to meet the manufacturer’s specifications. Discrepancies of less than 1% were found between the commissioned beam data from both accelerators and the suggestive data set provided by Varian. Conclusion: It may be feasible that radiation beams can be pre-configured in commercial treatment planning systems. The radiation beam users will perform the beam validation and end-to-end tests instead of configuring beams. This framework can increase both the efficiency and the accuracy in commercial radiation treatment planning systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Basti, A.; Bedeschi, F.
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be providedmore » by the laser and the stability of the calibration system components.« less
Performance of preproduction model cesium beam frequency standards for spacecraft applications
NASA Technical Reports Server (NTRS)
Levine, M. W.
1978-01-01
A cesium beam frequency standards for spaceflight application on Navigation Development Satellites was designed and fabricated and preliminary testing was completed. The cesium standard evolved from an earlier prototype model launched aboard NTS-2 and the engineering development model to be launched aboard NTS satellites during 1979. A number of design innovations, including a hybrid analog/digital integrator and the replacement of analog filters and phase detectors by clocked digital sampling techniques are discussed. Thermal and thermal-vacuum testing was concluded and test data are presented. Stability data for 10 to 10,000 seconds averaging interval, measured under laboratory conditions, are shown.
Overview of ion source characterization diagnostics in INTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.
2016-02-15
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less
Overview of ion source characterization diagnostics in INTF
NASA Astrophysics Data System (ADS)
Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.
2016-02-01
INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.
Development of a plasma generator for a long pulse ion source for neutral beam injectors.
Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S
2011-06-01
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
1977-01-01
The microwave scanning beam landing system (MSBLS) is the primary position sensor of the Orbiter's navigation subsystem during the autoland phase of the flight. Portions of the system are discussed with special emphasis placed on potential problem areas as referenced to the Orbiter's mission. Topics discussed include system compatability, system accuracy, and expected RF signal levels. A block and flow diagram of MSBLS system operation is included with a list of special tests required to determine system performance.
Implementation of the Timepix ASIC in the Scalable Readout System
NASA Astrophysics Data System (ADS)
Lupberger, M.; Desch, K.; Kaminski, J.
2016-09-01
We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.
NASA Technical Reports Server (NTRS)
Riebe, John M.; Naeseth, Rodger L.
1951-01-01
An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
NASA Astrophysics Data System (ADS)
Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.
2016-10-01
We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.
Ultra-Fast Hadronic Calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai
2018-08-01
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
Ultra-Fast Hadronic Calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai
2017-12-18
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
Ultra-fast hadronic calorimetry
Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...
2018-05-08
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niroomand-Rad, A.; Cumberlin, R.
The purpose of this study was to determine the genetically significant dose from therapeutic radiation exposure with Hodgkin's fields by estimating the doses to ovaries and testes. Phantom measurements were performed to verify estimated doses to ovaries and testes from Hodgkin's fields. Thermoluminescent LiF dosimeters (TLD-100) of 1 x 3 x 3 mm[sup 3] dimensions were embedded in phantoms and exposed to standard mantle and paraaortic fields using Co-60, 4 MV, 6 MV, and 10 MV photon beams. The results show that measured doses to ovaries and testes are about two to five times higher than the corresponding graphically estimatedmore » doses for Co-60 and 4 MVX photon beams as depicted in ICRP publication 44. In addition, the measured doses to ovaries and testes are about 30% to 65% lower for 10 MV photon beams than for their corresponding Co-60 photon beams. The genetically significant dose from Hodgkin's treatment (less than 0.01 mSv) adds about 4% to the genetically significant dose contribution to medical procedures and adds less than 1% to the genetically significant dose from all sources. Therefore, the consequence to society is considered to be very small. The consequences for the individual patient are, likewise, small. 28 refs., 3 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Pourteau, Marie-Line; Servin, Isabelle; Lepinay, Kévin; Essomba, Cyrille; Dal'Zotto, Bernard; Pradelles, Jonathan; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2016-03-01
The emerging Massively Parallel-Electron Beam Direct Write (MP-EBDW) is an attractive high resolution high throughput lithography technology. As previously shown, Chemically Amplified Resists (CARs) meet process/integration specifications in terms of dose-to-size, resolution, contrast, and energy latitude. However, they are still limited by their line width roughness. To overcome this issue, we tested an alternative advanced non-CAR and showed it brings a substantial gain in sensitivity compared to CAR. We also implemented and assessed in-line post-lithographic treatments for roughness mitigation. For outgassing-reduction purpose, a top-coat layer is added to the total process stack. A new generation top-coat was tested and showed improved printing performances compared to the previous product, especially avoiding dark erosion: SEM cross-section showed a straight pattern profile. A spin-coatable charge dissipation layer based on conductive polyaniline has also been tested for conductivity and lithographic performances, and compatibility experiments revealed that the underlying resist type has to be carefully chosen when using this product. Finally, the Process Of Reference (POR) trilayer stack defined for 5 kV multi-e-beam lithography was successfully etched with well opened and straight patterns, and no lithography-etch bias.
IBS and Potential Luminosity Improvement for RHIC Operation Below Transition Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov,A.
There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QeD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can bemore » improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Detailed discussion of limiting beam dynamics effects and possible luminosity improvement with electron cooling can be found in Refs. [6-8]. For low-energy RHIC operation, particle losses from the RF bucket are of particular concern since the longitudinal beam size is comparable to the existing RF bucket at low energies. However, operation below transition energy allows us to exploit an Intra-beam Scattering (IBS) feature that drives the transverse and longitudinal beam temperatures towards equilibrium by minimizing the longitudinal diffusion rate using a high RF voltage. Simulation studies were performed with the goal to understand whether one can use this feature of IBS to improve luminosity of RHIC collider at low-energies. This Note presents results of simulations which show that additional luminosity improvement for low-energy RHIC project may be possible with high RF voltage from a 56 MHz superconducting RF cavity that is presently under development for RHIC.« less
Fatigue life characterization for piezoelectric macrofiber composites
NASA Astrophysics Data System (ADS)
Henslee, Isaac A.; Miller, David A.; Tempero, Tyler
2012-10-01
In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.
Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics
NASA Technical Reports Server (NTRS)
Vahrenkamp, R. P.
1976-01-01
Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.
Banks, James S; Wolfson, Aaron H; Subhawong, Ty K
2018-02-01
Electron beam therapy is a definitive radiation treatment option for superficial fibromatoses of the hands and feet. Because objective criteria for treatment response remain poorly defined, we sought to describe changes in electron beam treated lesions on MRI. The study included 1 male and 9 female patients with a total of 37 superficial fibromatoses; average age was 60.7 years. Standard 6 MeV electron beam treatment included 3 Gy per fraction for 10 or 12 treatments using split-course with 3-month halfway break. Pre- and post-treatment MRIs were evaluated to determine lesion size (cm3), T2 signal intensity and contrast enhancement (5-point ordinal scales) by a fellowship trained musculoskeletal radiologist. MRI findings were correlated with clinical response using a composite 1-5 ordinal scale, Karnofsky Performance Scale and patient-reported 10-point visual analog scale for pain. Mean volume decreased from 1.5 to 1.2 cm 3 (p = 0.01, paired t-test). Mean T2 hyperintensity score decreased from 3.0 to 2.1 (p < 0.0001, Wilcoxon signed-rank). Mean enhancement score available for 22 lesions decreased from 3.8 to 3.0 (p < 0.0001, Wilcoxon signed-rank). Performance scores improved from 78.9 ± 13.7 to 84.6 ± 6.9 (p = 0.007, paired t-test). Pain scores decreased from 3.0 ± 3.3 to 1.1 ± 2.0 (p = 0.0001, paired t-test). Post-treatment T2 signal correlated weakly with performance and pain (Spearman's ρ = -0.37 and 0.16, respectively). MRI is valuable for evaluating patients undergoing electron beam therapy for superficial fibromatoses: higher pretreatment T2 intensity may predict benefit from radiotherapy. T2 hypointensity may be a better marker than size for therapeutic effect.
Spriet, Ann; Van Deun, Lieselot; Eftaxiadis, Kyriaky; Laneau, Johan; Moonen, Marc; van Dijk, Bas; van Wieringen, Astrid; Wouters, Jan
2007-02-01
This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.
Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass
NASA Astrophysics Data System (ADS)
Garlisi, Corrado; Palmisano, Giovanni
2017-10-01
In this work, we show the unique wettability properties of TiO2 thin films deposited by e-beam evaporation on glass and treated at 500 °C. The deposited materials exhibited compact non-porous structures and their non-UV activated superwetting behavior was characterized, emphasizing the better performance compared to the bare glass substrate and to a commercial self-cleaning glass (Pilkington Activ™) even in terms of antifogging and optical properties. The results demonstrate how the superhydrophilic character arises from the used deposition technique inducing a large amount of oxygen vacancies further boosted by the annealing treatment, allowing for the fabrication of a pioneering material in the area of multifunctional coatings. The superhydrophilic character was maintained even at an extremely small thickness (20 nm), similarly to the adhesion of the film to the glass substrate, as confirmed by ultrasound stress tests and the cross-cut test performed according to ISO 2409 standard. The photocatalytic activity of the e-beam evaporated film was also assessed by degradation of methanol, 2-propanol and toluene under UV light in a gas phase reactor and the performance was found to be in most cases superior compared to Pilkington Activ™.
Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S
2005-05-01
The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.
Performance testing and results of the first Etec CORE-2564
NASA Astrophysics Data System (ADS)
Franks, C. Edward; Shikata, Asao; Baker, Catherine A.
1993-03-01
In order to be able to write 64 megabit DRAM reticles, to prepare to write 256 megabit DRAM reticles and in general to meet the current and next generation mask and reticle quality requirements, Hoya Micro Mask (HMM) installed in 1991 the first CORE-2564 Laser Reticle Writer from Etec Systems, Inc. The system was delivered as a CORE-2500XP and was subsequently upgraded to a 2564. The CORE (Custom Optical Reticle Engraver) system produces photomasks with an exposure strategy similar to that employed by an electron beam system, but it uses a laser beam to deliver the photoresist exposure energy. Since then the 2564 has been tested by Etec's standard Acceptance Test Procedure and by several supplementary HMM techniques to insure performance to all the Etec advertised specifications and certain additional HMM requirements that were more demanding and/or more thorough than the advertised specifications. The primary purpose of the HMM tests was to more closely duplicate mask usage. The performance aspects covered by the tests include registration accuracy and repeatability; linewidth accuracy, uniformity and linearity; stripe butting; stripe and scan linearity; edge quality; system cleanliness; minimum geometry resolution; minimum address size and plate loading accuracy and repeatability.
Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics
NASA Astrophysics Data System (ADS)
Kumari, A.; Patel, S. S.; Nayak, A. N.
2018-06-01
This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.
Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics
NASA Astrophysics Data System (ADS)
Kumari, A.; Patel, S. S.; Nayak, A. N.
2018-02-01
This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.
On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future
NASA Astrophysics Data System (ADS)
Cattaneo, P. W.; Rappoldi, A.
2013-06-01
On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.
NASA Astrophysics Data System (ADS)
Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.
2018-02-01
This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F. J.; Watson, G. L.; Glick, S. H.
2001-10-01
Presented at the 2001 NCPV Program Review Meeting: Study of photothermal stability of special EVA encapsulant by accelerated exposure testing and analysis of causes of performance degradation on a-Si modules.
H- beam transport experiments in a solenoid low energy beam transport.
Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P
2012-02-01
The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jermoumi, M; Cao, D; Housley, D
Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for bothmore » free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.« less
Reliability of an x-ray system for calibrating and testing personal radiation dosimeters
NASA Astrophysics Data System (ADS)
Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.
2018-03-01
Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.
Extended Performance 8-cm Mercury Ion Thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.
R&D of the CEPC scintillator-tungsten ECAL
NASA Astrophysics Data System (ADS)
Dong, M. Y.
2018-03-01
The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.
NASA Astrophysics Data System (ADS)
Fernandez-Saldivar, J.; Culfaz, F.; Angli, N.; Bhatti, I.; Lobb, D.; Baister, G.; Touzet, B.; Desserouer, F.; Guldimann, B.
2017-11-01
New immersed grating technology is needed particularly for use in imaging spectrometers that will be used in sensing the atmosphere O2A spectral band (750nm - 775 nm) at spectral resolution in the order of 0.1 nm whilst ensuring a high efficiency and maintaining low stray light. In this work, the efficiency, dispersion and stray light performance of an immersed grating are tested and compared to analytical models. The grating consists of an ion-beam etched grating in a fused-silica substrate of 120 mm x 120mm immersed on to a prism of the same material. It is designed to obtain dispersions > 0.30°/nm-1 in air and >70% efficiency. The optical performance of the immersed grating is modelled and methods to measure its wavefront, efficiency, dispersion and scattered radiance are described. The optical setup allows the measurement of an 80mm beam diameter to derive the bidirectional scatter distribution function (BSDF) from the immersed grating from a minimum angle of 0.1° from the diffracted beam with angular resolution of 0.05°. Different configurations of the setup allow the efficiency and dispersion measurements using a tuneable laser in the 750nm-775nm range. The results from the tests are discussed with the suitability of the immersed gratings in mind for future space based instruments for atmospheric monitoring.
RF conditioning and beam experiments on 400 keV RFQ accelerator at BARC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shrikrishna; Rao, S.V.L.S.; Kumar, Rajesh, E-mail: sgupta@barc.gov.in
2014-07-01
A 400 keV Radio-frequency quadrupole accelerator (RFQ) has been designed, developed and tested at BARC. This will be used as a neutron generator (via D-T reaction). The RFQ operates at a resonant frequency of 350 MHz and needs an RF power of ∼ 60 kW to accelerate the deuteron beam to 400 keV within a length of 1.03 m. Though the RFQ is designed for deuteron beam, it was tested by accelerating both the proton and deuteron beams to their designed values of 200 and 400 keV respectively. The proton and deuteron beam experiments required peak RF power of approx.more » 15 kW and 60 kW respectively at 350 MHz. The RF power from the tetrode amplifier and coaxial transmission lines is coupled to the cavity by a coaxial loop coupler. As the coupler and cavity operated at vacuum of better than 2e-6 torr, extensive RF conditioning of the cavity and coupler was performed to reach at the desired power levels. (author)« less
rf improvements for Spallation Neutron Source H- ion sourcea)
NASA Astrophysics Data System (ADS)
Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
rf improvements for Spallation Neutron Source H- ion source.
Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
NASA Astrophysics Data System (ADS)
Eversheim, P. D.; Altmeier, M.; Felden, O.
1997-02-01
For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.
An instrument for 3D x-ray nano-imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holler, M.; Raabe, J.; Diaz, A.
We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on amore » test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.« less
Quantitative high dynamic range beam profiling for fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.
2014-10-15
Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less
Performance of a Nanometer Resolution BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, V; Hayano, H; Honda, Y
2005-10-14
International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less
Magneto-Optic Kerr Effect in a Magnetized Electron Gun
NASA Astrophysics Data System (ADS)
Hardy, Benjamin; Grames, Joseph; CenterInjectors; Sources Team
2016-09-01
Magnetized electron sources have the potential to improve ion beam cooling efficiency. At the Gun Test Stand at Jefferson Lab, a solenoid magnet will be installed adjacent to the photogun to magnetize the electron beam. Due to the photocathode operating in a vacuum chamber, measuring and monitoring the magnetic field at the beam source location with conventional probes is impractical. The Magneto-Optical Kerr Effect (MOKE) describes the change on polarized light by reflection from a magnetized surface. The reflection from the surface may alter the polarization direction, ellipticity, or intensity, and depends linearly upon the surface magnetization of the sample. By replacing the photocathode with a magnetized sample and reflecting polarized light from the sample surface, the magnetic field at the beam source is inferred. A controlled MOKE system has been assembled to test the magnetic field. Calibration of the solenoid magnet is performed by comparing the MOKE signal with magnetic field measurements. The apparatus will provide a description of the field at electron beam source. The report summarizes the method and results of controlled tests and calibration of the MOKE sample with the solenoid magnet field measurements. This work is supported by the National Science Foundation, Research Experience for Undergraduates Award 1359026 and the Department of Energy, Laboratory Directed Research and Development Contract DE-AC05-06OR23177.
Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.
2016-02-15
In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observedmore » during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.« less
PAL-XFEL cavity beam position monitor pick-up design and beam test
NASA Astrophysics Data System (ADS)
Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo
2016-08-01
As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.
A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. G.
1972-01-01
A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.
Improvements on the stability and operation of a magnetron H - ion source
Sosa, A.; Bollinger, D. S.; Karns, P. R.; ...
2017-05-31
The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less
Improvements on the stability and operation of a magnetron H- ion source
NASA Astrophysics Data System (ADS)
Sosa, A.; Bollinger, D. S.; Karns, P. R.; Tan, C. Y.
2017-05-01
The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated off-line test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine-tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the past three years with the aim of improving its stability, reliability and overall performance.
Improvements on the stability and operation of a magnetron H - ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less
Daily QA of linear accelerators using only EPID and OBI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar
2015-10-15
Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI.more » The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D ion-chamber array agree within ±0.5% and ±1.2% for crossline and inline profiles, respectively. MLC position errors of 0.5 mm can be detected using a picket fence test. The field size and phantom positioning accuracy can be determined within 0.5 mm. The entire daily QA process takes ∼15 min to perform tests for 5 photon beams, MLC tests, and imaging checks. Conclusions: The exclusive use of EPID-based QA tools, including a QA phantom and simultaneous analysis software tools, has been demonstrated as a viable, efficient, and comprehensive process for daily evaluation of LINAC performance.« less
Dynamic properties of unbonded, multi-strand beams subjected to flexural loading
NASA Astrophysics Data System (ADS)
Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.
2018-02-01
Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.
NASA Astrophysics Data System (ADS)
Lima, Roberta B.; de Aguiar, Claudio Lima; Galaverna, Renan; Baptista, Antonio S.; Eberlin, Marcos N.; Arthur, Valter
2016-04-01
This work evaluated the effect of electron beam irradiation (E-beam) on sugarcane juice and compared the results with preliminary tests performed on sugarcane juice treated with gamma irradiation. The samples were irradiated at 5, 10 and 20 kGy doses and results were compared wile control samples without irradiation. The results showed a significant increase (p≤0.05) of phenolic compounds in both treatments. We also observed increased contents of reducing sugars (glucose and fructose) for the samples irradiated with gamma rays and E-beam measured by the DNS methods. However, there was no significant difference of sugars content measured by chromatographic analyses performed in the sugarcane juice treated with E-beam. Therefore reducing sugars content could be overestimated by the DNS method because salts in sugarcane juice. The treatments were able to reduce sugarcane juice ICUMSA color intensity in both treatments with irradiation. E-beam reduced sugarcane juice color by roughly 49% compared the control, while gamma irradiation reduced it by 30%.
YAP(Ce) crystal characterization with proton beam up to 60 MeV
NASA Astrophysics Data System (ADS)
Randazzo, N.; Sipala, V.; Aiello, S.; Lo Presti, D.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.
2008-02-01
A YAP(Ce) crystal was characterized with a proton beam up to 60 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. The size of the crystal was chosen so that the proton energy is totally lost inside the medium. The authors propose to use the YAP(Ce) crystal in medical applications for proton therapy. In particular, in proton computed tomography (pCT) project it is necessary as a calorimeter in order to measure the proton residual energy after the phantom. Energy resolution, linearity, and light yield were measured in the Laboratori Nazionali del Sud with the CATANA proton beam [ http://www.lns.infn.it/CATANA/CATANA] and the results are shown in this paper. The crystal shows a good resolution (3% at 60 MeV proton beam) and it shows good linearity for different proton beam energies (1% at 30-60 MeV energy range). The crystal performances confirm that the YAP(Ce) crystal represents a good solution for these kinds of application.
Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter
NASA Astrophysics Data System (ADS)
Serianni, G.; Pimazzoni, A.; Canton, A.; Palma, M. Dalla; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Tollin, M.
2017-08-01
Additional heating will be provided to the thermonuclear fusion experiment ITER by injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction at Consorzio RFX in Padova (Italy), the production of negative ions will be studied and optimised. To this purpose the STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) diagnostic will be used to characterise the SPIDER beam during short operation (several seconds) and to verify if the beam meets the ITER requirement regarding the maximum allowed beam non-uniformity (below ±10%). The most important measurements performed by STRIKE are beam uniformity, beamlet divergence and stripping losses. The major components of STRIKE are 16 1D-CFC (Carbon matrix-Carbon Fibre reinforced Composite) tiles, observed at the rear side by a thermal camera. The requirements of the 1D CFC material include a large thermal conductivity along the tile thickness (at least 10 times larger than in the other directions); low specific heat and density; uniform parameters over the tile surface; capability to withstand localised heat loads resulting in steep temperature gradients. So 1D CFC is a very anisotropic and delicate material, not commercially available, and prototypes are being specifically realised. This contribution gives an overview of the tests performed on the CFC prototype tiles, aimed at verifying their thermal behaviour. The spatial uniformity of the parameters and the ratio between the thermal conductivities are assessed by means of a power laser at Consorzio RFX. Dedicated linear and non-linear simulations are carried out to interpret the experiments and to estimate the thermal conductivities; these simulations are described and a comparison of the experimental data with the simulation results is presented.
The e-beam sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Brown, M. J.; Shaw, S. R.; Evans, M. H.; Smith, I. M.; Holman, W.
1990-01-01
The design features of an e-beam sustained CO2 amplifier are described. The amplifier is designed specifically as a catalyst test-bed to study the performance of room temperature precious metal CO-oxidation catalysts under e-beam sustained operation. The amplifier has been designed to provide pulse durations of 30 microseconds in a discharge volume of 2 litres. With a gas flow velocity of 2 metres per second, operation at repetition rates of 10 Hz is accommodated. The system is designed for sealed-off operation and a catalyst bed is housed in the gas circulation system downstream from the discharge region. CO and oxygen monitors are used for diagnosis of gas composition in the amplifier so that catalyst performance can be monitored in situ during sealed lifetests.
A Linear Accelerator for TA-FD calibration
NASA Astrophysics Data System (ADS)
Shibata, T.; Ikeda, D.; Ikeda, M.; Enomoto, A.; Ohsawa, S.; Kakiha, K.; Kakihara, K.; Sagawa, H.; Satoh, M.; Shidara, T.; Sugimura, T.; Fukushima, M.; Fukuda, S.; Furukawa, K.; Yoshida, M.
The energy of the primary cosmic ray can be calculated from fluorescence photons detected by fluorescence telescope. However, since we can not know the true energy of primary cosmic ray, it is difficult to calibrate between number of photons and energy directly. In TA project, we will create pseudo- cosmic ray events by using accelerated electron beam which is injected in the air. The injected electron beam creates an air shower and fluorescence photons are emitted. We can calibate between electron beam energy which is known exactry and detected photons. We are developping a small linear accelerator (Linac) at High Energy Accelerator Research Organization (KEK) in Japan. The maximum energy is 40MeV, the typical current is 0.16nC, and the intensity per pulse is 6.4mJ. The accuracy of beam energy is less than 1%. The Linac consists of a -100kV pulse type electron gun, a 1.5m pre-buncher and buncher tube, a 2m S-band accelerator tube, a quadrupole magnet, a 90 degree bending magnet, and a S-Band(2856MHz) 50MW high power klystron as RF source. We chekced the performance of the electron beam, energy resolution, beam spread, beam current, and beam loss by PARMELA simulation, and checked the air shower by electron beam and number of the detected photons by detector simulation which are made by GEANT4. In this Spring, we will do the full beam test in KEK. The beam operation in Utah will be started from this Autumn. In this talk, we will report about the results of the beam test and calibration method by this Linac.
Finnish spectrolite as high-dose gamma detector
NASA Astrophysics Data System (ADS)
Antonio, Patrícia L.; Caldas, Linda V. E.
2015-11-01
A natural material called spectrolite, from Finland, was studied in this work. The purpose was to test it in gamma radiation beams to verify its performance as a high-dose detector. From this material, pellets were manufactured with two different concentrations of Teflon and spectrolite, and their responses were verified using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). The TL and OSL signals were evaluated by means of characterization tests of the material response, after exposure to a nominal absorbed dose interval of 5 Gy to 10 kGy. The results obtained, for both concentrations, showed a good performance of this material in beams of high-dose gamma radiation. Both techniques were utilized in order to investigate the properties of the spectrolite+Teflon samples for different applications.
DOT National Transportation Integrated Search
2014-08-01
The Advanced Structures and Composites Center at the University of Maine (UMaine) performed live load testing : and rating adjustment factor analysis for three truss bridges. The Maine Department of Transportation (DOT) : indicated that the floor bea...
Case study of flexure and shear strengthening of RC beams by CFRP using FEA
NASA Astrophysics Data System (ADS)
Jankowiak, Iwona
2018-01-01
In the paper the preliminary results of study on strengthening RC beams by means of CFRP materials under mixed shear-flexural work condition are presented. The Finite Element Method analyses were performed using numerical models proposed and verified earlier by the results of laboratory tests [4, 5] for estimation of effectiveness of CFRP strengthening of RC beams under flexure. The currently conducted analyses deal with 3D models of RC beams under mixed shear-flexural loading conditions. The symmetry of analyzed beams was taken into account (in both directions). The application of Concrete Damage Plasticity (CDP) model of RC beam allowed to predict a layout and propagation of cracks leading to failure. Different cases of strengthening were analyzed: with the use of CFRP strip or CFRP closed hoops as well as with the combination of above mentioned. The preliminary study was carried out and the first results were presented.
Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.
2005-02-01
Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. Hbar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. Hbar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.
Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad
2008-07-08
Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less
Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6
NASA Astrophysics Data System (ADS)
Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael
2017-10-01
Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.
Laser modulator for LISA pathfinder
NASA Astrophysics Data System (ADS)
Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.
2017-11-01
LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea
2012-07-02
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less
Modematic: a fast laser beam analyzing system for high power CO2-laser beams
NASA Astrophysics Data System (ADS)
Olsen, Flemming O.; Ulrich, Dan
2003-03-01
The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.
Ng, S K; Hesser, J; Zhang, H; Gowrisanker, S; Yakushevich, S; Shulhevich, Y; Abkai, C; Wack, L; Zygmanski, P
2012-06-01
To characterize dosimetric properties of low-cost thin film organic-based photovoltaic (OPV) cells to kV and MV x-ray beams for their usage as large area dosimeter for QA and patient safety monitoring device. A series of thin film OPV cells of various areas and thicknesses were irradiated with MV beams to evaluate the stability and reproducibility of their response, linearity and sensitivity to absorbed dose. The OPV response to x-rays of various linac energies were also characterized. Furthermore the practical (clinical) sensitivity of the cells was determined using IMRT sweeping gap test generated with various gap sizes. To evaluate their potential usage in the development of low cost kV imaging device, the OPV cells were irradiated with kV beam (60-120 kVp) from a fluoroscopy unit. Photocell response to the absorbed dose was characterized as a function of the organic thin film thickness and size, beam energy and exposure for kV beams as well. In addition, photocell response was determined with and without thin plastic scintillator. Response of the OPV cells to the absorbed dose from kV and MV beams are stable and reproducible. The photocell response was linearly proportional to the size and about slightly decreasing with the thickness of the organic thin film, which agrees with the general performance of the photocells in visible light. The photocell response increases as a linear function of absorbed dose and x-ray energy. The sweeping gap tests performed showed that OPV cells have sufficient practical sensitivity to measured MV x-ray delivery with gap size as small as 1 mm. With proper calibration, the OPV cells could be used for online radiation dose measurement for quality assurance and patient safety purposes. Their response to kV beam show promising potential in development of low cost kV radiation detection devices. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.
Application of the high resolution return beam vidicon
NASA Technical Reports Server (NTRS)
Cantella, M. J.
1977-01-01
The Return Beam Vidicon (RBV) is a high-performance electronic image sensor and electrical storage component. It can accept continuous or discrete exposures. Information can be read out with a single scan or with many repetitive scans for either signal processing or display. Resolution capability is 10,000 TV lines/height, and at 100 lp/mm, performance matches or exceeds that of film, particularly with low-contrast imagery. Electronic zoom can be employed effectively for image magnification and data compression. The high performance and flexibility of the RBV permit wide application in systems for reconnaissance, scan conversion, information storage and retrieval, and automatic inspection and test. This paper summarizes the characteristics and performance parameters of the RBV and cites examples of feasible applications.
Accelerated radiation damage test facility using a 5 MV tandem ion accelerator
NASA Astrophysics Data System (ADS)
Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.
2016-01-01
We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.
Novel scintillation detector design and performance for proton radiography and computed tomography.
Bashkirov, V A; Schulte, R W; Hurley, R F; Johnson, R P; Sadrozinski, H F-W; Zatserklyaniy, A; Plautz, T; Giacometti, V
2016-02-01
Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0-260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs.
Novel scintillation detector design and performance for proton radiography and computed tomography
Schulte, R. W.; Hurley, R. F.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A.; Plautz, T.; Giacometti, V.
2016-01-01
Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. Methods: A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. Results: The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0–260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. Conclusions: The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs. PMID:26843230
Beam position monitoring system at CESR
NASA Astrophysics Data System (ADS)
Billing, M. G.; Bergan, W. F.; Forster, M. J.; Meller, R. E.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Palmer, M. A.; Holtzapple, R. L.
2017-09-01
The Cornell Electron-positron Storage Ring (CESR) has been converted from a High Energy Physics electron-positron collider to operate as a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS) and to conduct accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Some of the specific topics that were targeted for the initial phase of operation of the storage ring in this mode, labeled CESRTA (CESR as a Test Accelerator), included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CESRTA occurred over a several year period and is described elsewhere. As a part of this conversion the CESR beam position monitoring (CBPM) system was completely upgraded to provide the needed instrumental capabilities for these studies. This paper describes the new CBPM system hardware, its function and representative measurements performed by the upgraded system.
Optimization of electrostatic dual-grid beam-deflection system
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.
1972-01-01
Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.
The PADME calorimeters for missing mass dark photon searches
NASA Astrophysics Data System (ADS)
Ferrarotto, F.
2018-03-01
In this paper we will present the design and expected performance for the Electromagnetic and Small Angle Calorimeters (ECAL, SAC) of the PADME experiment. The design of the calorimeters has been optimized for the detection of the final state γ from the annihilation production (and subsequent "invisible" decay) of a "Dark Photon" produced by a positron beam on a thin, low Z target. Beam tests have been made in 2016 and 2017 at the INFN Frascati National Laboratories Linac Beam Test Facility (BTF) with positron beams of energy 100–400 MeV and results are presented. The PADME experiment will be built at the INFN Frascati National Laboratories by the end of 2017 and will be taking data in 2018 (and possibly also 2019). At the moment the collaboration is composed by the following institutions: INFN Roma and "La Sapienza" University of Roma, INFN Frascati, INFN Lecce and University of Salento, MTA Atomki Debrecen, University of Sofia, Cornell University, U.S. William and Mary College.
Code OK3 - An upgraded version of OK2 with beam wobbling function
NASA Astrophysics Data System (ADS)
Ogoyski, A. I.; Kawata, S.; Popov, P. H.
2010-07-01
For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and structure, including beam wobbling function. Reasons for new version: The code OK3 is based on OK2 [3] and uses the same algorithm with some improvements, the most important one is the beam wobbling function. Summary of revisions:In the code OK3, beams are subdivided on many bunches. The displacement of each bunch center from the initial beam direction is calculated. Code OK3 allows the beamlet number to vary from bunch to bunch. That reduces the calculation error especially in case of very complicated mesh structure with big internal holes. The target temperature rises during the time of energy deposition. Some procedures are improved to perform faster. The energy conservation is checked up on each step of calculation process and corrected if necessary. New procedures included in OK3 Procedure BeamCenterRot( ) rotates the beam axis around the impinging direction of each beam. Procedure BeamletRot( ) rotates the beamlet axes that belong to each beam. Procedure Rotation( ) sets the coordinates of rotated beams and beamlets in chamber and pellet systems. Procedure BeamletOut( ) calculates the lost energy of ions that have not impinged on the target. Procedure TargetT( ) sets the temperature of the target layer of energy deposition during the irradiation process. Procedure ECL( ) checks up the energy conservation law at each step of the energy deposition process. Procedure ECLt( ) performs the final check up of the energy conservation law at the end of deposition process. Modified procedures in OK3 Procedure InitBeam( ): This procedure initializes the beam radius and coefficients A1, A2, A3, A4 and A5 for Gauss distributed beams [2]. It is enlarged in OK3 and can set beams with radii from 1 to 20 mm. Procedure kBunch( ) is modified to allow beamlet number variation from bunch to bunch during the deposition. Procedure ijkSp( ) and procedure Hole( ) are modified to perform faster. Procedure Espl( ) and procedure ChechE( ) are modified to increase the calculation accuracy. Procedure SD( ) calculates the total relative root-mean-square (RMS) deviation and the total relative peak-to-valley (PTV) deviation in energy deposition non-uniformity. This procedure is not included in code OK2 because of its limited applications (for spherical targets only). It is taken from code OK1 and modified to perform with code OK3. Running time: The execution time depends on the pellet mesh number and the number of beams in the simulated illumination as well as on the beam characteristics (beam radius on the pellet surface, beam subdivision, projectile particle energy and so on). In almost all of the practical running tests performed, the typical running time for one beam deposition is about 30 s on a PC with a CPU of Pentium 4, 2.4 GHz. References:A.I. Ogoyski, et al., Heavy ion beam irradiation non-uniformity in inertial fusion, Phys. Lett. A 315 (2003) 372-377. A.I. Ogoyski, et al., Code OK1 - Simulation of multi-beam irradiation on a spherical target in heavy ion fusion, Comput. Phys. Comm. 157 (2004) 160-172. A.I. Ogoyski, et al., Code OK2 - A simulation code of ion-beam illumination on an arbitrary shape and structure target, Comput. Phys. Comm. 161 (2004) 143-150.
Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An
2017-11-08
A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.
Gao, Lili
2017-01-01
A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations. PMID:29117096
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Cao, Y.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.
2012-02-01
SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129Xe35+ of 64 eμA, 129Xe42+ of 3 eμA, 209Bi41+ of 50 eμA, 209Bi50+ of 4.3 eμA and 209Bi54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209Bi36+ and 209Bi41+, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.
Quality control methods for linear accelerator radiation and mechanical axes alignment.
Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A
2018-06-01
The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis and the mechanical collimator rotation axis from the impact of field size asymmetry. The test suite can be performed in a reasonable time (30-35 min) due to simple phantom setup, prescription-based beam delivery, and automated image analysis. As well, it provides a clear description of the relationship between axes. After testing the sensitivity of the test suite to beam steering and mechanical errors, the results of the test suite were used to reduce the misalignment errors of the linac to less than 0.7-mm radius for all axes. The proposed test suite offers sub-millimeter assessment of the coincidence of the radiation and mechanical isocenters and the test automation reduces complexity with improved efficiency. The test suite results can be used to optimize the linear accelerator's radiation to mechanical isocenter alignment by beam steering and mechanical adjustment of gantry and couch. © 2018 American Association of Physicists in Medicine.
Progress towards the Advanced Cryogenic Gas Stopper at NSCL
NASA Astrophysics Data System (ADS)
Lund, Kasey; Bollen, Georg; Villiari, Antonio; Lawton, Don; Morrissey, Dave; Otterson, Jack; Ringle, Ryan; Schwarz, Stefan; Sumithrarachchi, Chandana; Yurkon, John; Advanced Cryogenic Gas Stopper Design Team
2016-09-01
Beam stopping is the key to performing experiments with low-energy beams of rare isotopes produced by projectile fragmentation. Linear gas stoppers filled with helium have become reliable tools to accomplish this task. Further developments are underway to maximize efficiency and beam rate capability in order to increase scientific reach. Improvements include increasing extraction efficiency, lowering decay losses due to slow transport time, reducing molecular combination of the isotope of interest with background impurity gases, and minimizing space charge effects. The ACGS under construction at NSCL is designed to increase performance by overcoming some of the more common issues. The use of a 4-phase RF wire carpet to generate an electrical traveling wave speeds up the ion transport times. Cryogenic cooling of the helium gas chamber reduces molecular ion information. A geometry that puts the RF carpet in the mid-plane of the gas stopper alleviates space charge effects. Prototype testing of important ACGS components has been completed, specifically ion transport tests of the newly designed RF wire carpets. Transport efficiencies up to 95% were demonstrated as well as transport speeds up to 100 m/s. RC104100.7301.
NASA Astrophysics Data System (ADS)
Gabler, Markus; Tkachenko, Viktoriya; Küppers, Simon; Kuka, Georg G.; Habel, Wolfgang R.; Milwich, Markus; Knippers, Jan
2012-04-01
The main goal of the presented work was to evolve a multifunctional beam composed out of fiber reinforced plastics (FRP) and an embedded optical fiber with various fiber Bragg grating sensors (FBG). These beams are developed for the use as structural member for bridges or industrial applications. It is now possible to realize large scale cross sections, the embedding is part of a fully automated process and jumpers can be omitted in order to not negatively influence the laminate. The development includes the smart placement and layout of the optical fibers in the cross section, reliable strain transfer, and finally the coupling of the embedded fibers after production. Micromechanical tests and analysis were carried out to evaluate the performance of the sensor. The work was funded by the German ministry of economics and technology (funding scheme ZIM). Next to the authors of this contribution, Melanie Book with Röchling Engineering Plastics KG (Haren/Germany; Katharina Frey with SAERTEX GmbH & Co. KG (Saerbeck/Germany) were part of the research group.
SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusk, B; Fontenot, J
Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modesmore » using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.« less
NASA Astrophysics Data System (ADS)
Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin
2016-10-01
X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.
Study of the transverse beam motion in the DARHT Phase II accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Jiuan; Fawley, W M; Houck, T L
1998-08-20
The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) andmore » the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.« less
Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab
NASA Astrophysics Data System (ADS)
Zhu, Pengjia; Allada, Kalyan; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan
2016-02-01
Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.
A Dust Grain Photoemission Experiment
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.
2000-01-01
A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.
Test and control computer user's guide for a digital beam former test system
NASA Technical Reports Server (NTRS)
Alexovich, Robert E.; Mallasch, Paul G.
1992-01-01
A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.
In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration
NASA Astrophysics Data System (ADS)
Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.
2018-04-01
Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.
Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project
NASA Astrophysics Data System (ADS)
Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.
2014-02-01
SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.
Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA
NASA Astrophysics Data System (ADS)
Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.
2015-02-01
ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.
NASA Technical Reports Server (NTRS)
Sandifer, J. P.; Denny, A.; Wood, M. A.
1985-01-01
Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.
Lee, Hong-Shik; Kim, Haeng-In; Lee, Sang-Shin
2012-06-10
A compact laser transmitter, which takes advantage of an optical subassembly module, was proposed and demonstrated, providing precisely aligned collinear IR and visible beams. The collimated IR beam acts as a long-range projectile for simulated combat, carrying an optical pulsed signal, whereas the visible beam plays the role of tracking the IR beam. The proposed laser transmitter utilizes IR (λ(1)=905 nm) and visible (λ(2)=660 nm) light sources, a fiber-optic collimator, and a beam combiner, which includes a wavelength division multiplexing (WDM) filter in conjunction with optical fiber. The device was built via the laser welding technique and then evaluated by investigating the characteristics of the generated light beams. The IR collimated beam produced had a Gaussian profile and a divergence angle of ~1.3 mrad, and the visible monitoring beam was appropriately collimated to be readily discernible in the vicinity of the transmitter. The two beams were highly aligned within an angle of 0.004 deg as anticipated. Finally, we performed a practical outdoor field test to assess the IR beam with the help of a receiver. An effective trajectory was observed ranging up to 660 m with an overall detectable beam width of ~60 cm.
Magnetic compound refractive lens for focusing and polarizing cold neutron beams.
Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R
2007-03-01
Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.
ETS-VI multibeam satellite communications systems
NASA Astrophysics Data System (ADS)
Kawai, Makoto; Tanaka, Masayoshi; Ohtomo, Isao
1989-10-01
The fixed and mobile satellite communications systems of the Japanese Engineering Test Satellite-VI (ETS-VI) are described. The system requirements are outlined along with the system configuration. The ETS-VI multibeam system employs three frequency bands. When used for Ka-band fixed communications, it covers the Japanese main islands with thirteen 0.3-degree-wide spot beam. Four of the beams are active for ETS-VI. When used for S-band mobile communications, five beams cover the area within 200 nautical miles from the Japanese coast. The C-band beam for fixed communications covers the central area of the Japanese main islands with a single beam. The onboard antenna system is described along with the transponders and their associated onboard systems. A discussion of the system technology follows, covering the TDMA transmisssion system, the relay function, rainfall compensation, and the antenna and propagation performance.
Design and performance of vacuum system for high heat flux test facility
NASA Astrophysics Data System (ADS)
Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.
2017-04-01
High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.
NASA Astrophysics Data System (ADS)
Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan
2016-11-01
A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.
End-to-end tests using alanine dosimetry in scanned proton beams
NASA Astrophysics Data System (ADS)
Carlino, A.; Gouldstone, C.; Kragl, G.; Traneus, E.; Marrale, M.; Vatnitsky, S.; Stock, M.; Palmans, H.
2018-03-01
This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the ‘quenching’ effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.
Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.
1991-01-01
The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.
Progress toward a new beam measurement of the neutron lifetime
NASA Astrophysics Data System (ADS)
Hoogerheide, Shannon Fogwell
2016-09-01
Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosysnthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method will be performed at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement and the technical improvements will be discussed.
Atmospheric propagation of high power laser radiation at different weather conditions
NASA Astrophysics Data System (ADS)
Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen
2016-05-01
Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.
UV beam shaper alignment sensitivity: grayscale versus binary designs
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2008-08-01
What defines a good flat top beam shaper? What is more important; an ideal flat top profile or ease of alignment and stability? These are the questions designers and fabricators can not easily define, since they are a function of experience. Anyone can generate a theoretical beam shaper design and model it until it is clear that on paper the design looks good and meets the general needs of the end customer. However, the method of fabrication can add a twist that is not fully understood by either party until the beam shaper is actually tested for the first time in a system and also produced in high volume. This paper provides some insight into how grayscale and binary fabrication methods can produce the same style of beam shaper, with similar beam shaping performance; however provide a result wherein each fabricated design has separate degrees of sensitivity for alignment and stability. The paper will explain the design and fabrication approach for the two units and present alignment and testing data to provide a contrast comparison. Further data will show that over twenty sets of each fabricated design there is a consistency to the sensitivity issue. An understanding of this phenomenon is essential when considering the use of beam shapers on production equipment that is dedicated to producing micron-precision features within high value microelectronic and consumer products. We will present our findings and explore potential explanations and solutions.
SERT II thrusters - Still ticking after eleven years
NASA Technical Reports Server (NTRS)
Kerslake, W. R.
1981-01-01
The Space Electric Rocket Test II (SERT II) spacecraft was launched in 1970 with a primary objective of demonstrating long-term operation of a space electric thruster system. An overview is presented of all the SERT II testing conducted during the time from 1970 to 1981. Thruster testing and interaction results are considered, taking into account ion beam thrusting, distant neutralization, and the plasma beam thrust. In a discussion of durability testing, attention is given to the main cathodes, the neutralizer cathodes, the main keeper insulator, the H.V. grid insulators, the neutralizer propellant tanks, and the main propellant tanks. The most important result of the study is related to the confidence gained that mercury bombardment ion thruster systems can be built and operated in space on a routine basis with the same lifetime and performance as measured in ground testing.
Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Oleksiy
2006-04-01
The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates the deposited charge and introduces a systematic error of the gain measurement. Signatures of disconnected strips and pinholes defects have been observed, the response of the disconnected strips to the laser beam has been correlated with the noise measurements. Beam test of four prototype modules have been carried out at PS accelerator at CERN using 7 GeV/c pions. It was demonstrated that the modules provide an excellent signal-to-noise ratio in the range 40-75. The estimated spatial resolution for the normally incident tracks is about 18 μm using the center-of-gravity cluster reconstruction method. A non-iterative method for spatial resolution determination was developed, it was shown that in order to determine the resolution of each individual detector in the telescope, the telescope should consist of at least 5 detectors. The detectors showed high detection efficiency, in the order 99%. It was shown that the particle loss occurs mostly in the defected regions near the noisy strips or strips with a very low gain. The efficiency of the sensor area with nominal characteristics is consistent with 100%.
(Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignerey, A.C.
1988-10-01
A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less
Intercomparison of methods for image quality characterization. I. Modulation transfer function.
Samei, Ehsan; Ranger, Nicole T; Dobbins, James T; Chen, Ying
2006-05-01
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0% +/- 0.2% lower than that of Dobbins et al. and 0.7% +/- 0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2% +/- 0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7% +/- 0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0% +/- 0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.
Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier
NASA Technical Reports Server (NTRS)
Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.
1990-01-01
The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.
Sensitivity Testing of the NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Anderson, John; Brophy, John
2007-01-01
During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.
Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Panossian, H.
2008-01-01
Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.
Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices
NASA Technical Reports Server (NTRS)
Aveline, David C.; Adell, Philippe C.; Allen, Gregory R.; Guertin, Steven M.; McClure, Steven S.
2011-01-01
Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all of the sensitive regions of the studied device with fine resolution, unlike heavy ion experiments. The problematic regions can be precisely identified, and it provides a considerable amount of information about the circuit. In addition, the system allows flexibility for testing the device in different configurations in situ.
Kailer, Andreas; Stephan, Marc
2016-10-01
The fracture toughness determination of fine-grained zirconia ceramics using the chevron notched beam method (CNB) was investigated to assess the feasibility of this method for quality assurance and material characterization. CNB tests were performed using four different yttria-stabilized zirconia ceramics under various testing modes and conditions, including displacement-controlled and load-rate-controlled four point bending to assess the influence of slow crack growth and identify most suitable test parameters. For comparison, tests using single-edge V-notch beams (SEVNB) were conducted. It was observed that the CNB method yields well-reproducible results. However, slow crack growth effects significantly affect the measured KIC values, especially when slow loading rates are used. To minimize the effect of slow crack growth, the application of high loading rates is recommended. Despite a certain effort needed for setting up a sample preparation routine, the CNB method is considered to be very useful for measuring and controlling the fracture toughness of zirconia ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Raj, A Arockia Bazil; Selvi, J Arputha Vijaya; Kumar, D; Sivakumaran, N
2014-06-10
In free-space optical link (FSOL), atmospheric turbulence causes fluctuations in both intensity and phase of the received beam and impairing link performance. The beam motion is one of the main causes for major power loss. This paper presents an investigation on the performance of two types of controller designed for aiming a laser beam to be at a particular spot under dynamic disturbances. The multiple experiment observability nonlinear input-output data mapping is used as the principal components for controllers design. The first design is based on the Taguchi method while the second is artificial neural network method. These controllers process the beam location information from a static linear map of 2D plane: optoelectronic position detector, as observer, and then generate the necessary outputs to steer the beam with a microelectromechanical mirror: fast steering mirror. The beam centroid is computed using monopulse algorithm. Evidence of suitability and effectiveness of the proposed controllers are comprehensively assessed and quantitatively measured in terms of coefficient of correlation, correction speed, control exactness, centroid displacement, and stability of the receiver signal through the experimental results from the FSO link setup established for the horizontal range of 0.5 km at an altitude of 15.25 m. The test field type is open flat terrain, grass, and few isolated obstacles.
NASA Technical Reports Server (NTRS)
1989-01-01
The stress analysis/structural design of the Pressure-Fed Booster Engine Test Bed using the existing F-1 Test Facility Test Stand at Huntsville, Alabama is described. The analysis has been coded and set up for solution on NASTRAN. A separate stress program was established to take the NASTRAN output and perform stress checks on the members. Joint checks and other necessary additional checks were performed by hand. The notes include a brief description of other programs which assist in reproducing and reviewing the NASTRAN results. The redesign of the test stand members and the stress analysis was performed per the A.I.S.C. Code. Loads on the stand consist of the loaded run tanks; wind loads; seismic loads; live loads consisting of snow and ice: live and dead loads of steel; and loaded pressurant bottle. In combining loads, wind loads and seismic loads were each combined with full live loads. Wind and seismic loads were not combined. No one third increase in allowables was taken for the environmental loads except at decks 147 and 214, where the increase was used when considering the stay rods, brackets and stay beams. Wind and seismic loads were considered from each of the four coordinate directions (i.e. N,S,E,W) to give eight basic conditions. The analysis was run with the pressurant tank mounted at level 125. One seismic condition was also run with the tank mounted at levels 169 and 214. No failures were noted with mounting at level 169, but extensive deck failure with mounting at level 214 (the loadsets used are included on the tape, but no detailed results are included in the package). Decking support beams at levels 147 and 214 are not included in the model. The stress program thus does not reduce strut lengths to the length between support beams (the struts are attached to the beams at intersection points) and gives stress ratios larger than one for some of the struts. The affected members were therefore checked by hand.
Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Matthew
2015-08-20
By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performancesmore » when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.« less
An image-guided precision proton radiation platform for preclinical in vivo research
NASA Astrophysics Data System (ADS)
Ford, E.; Emery, R.; Huff, D.; Narayanan, M.; Schwartz, J.; Cao, N.; Meyer, J.; Rengan, R.; Zeng, J.; Sandison, G.; Laramore, G.; Mayr, N.
2017-01-01
There are many unknowns in the radiobiology of proton beams and other particle beams. We describe the development and testing of an image-guided low-energy proton system optimized for radiobiological research applications. A 50 MeV proton beam from an existing cyclotron was modified to produce collimated beams (as small as 2 mm in diameter). Ionization chamber and radiochromic film measurements were performed and benchmarked with Monte Carlo simulations (TOPAS). The proton beam was aligned with a commercially-available CT image-guided x-ray irradiator device (SARRP, Xstrahl Inc.). To examine the alternative possibility of adapting a clinical proton therapy system, we performed Monte Carlo simulations of a range-shifted 100 MeV clinical beam. The proton beam exhibits a pristine Bragg Peak at a depth of 21 mm in water with a dose rate of 8.4 Gy min-1 (3 mm depth). The energy of the incident beam can be modulated to lower energies while preserving the Bragg peak. The LET was: 2.0 keV µm-1 (water surface), 16 keV µm-1 (Bragg peak), 27 keV µm-1 (10% peak dose). Alignment of the proton beam with the SARRP system isocenter was measured at 0.24 mm agreement. The width of the beam changes very little with depth. Monte Carlo-based calculations of dose using the CT image data set as input demonstrate in vivo use. Monte Carlo simulations of the modulated 100 MeV clinical proton beam show a significantly reduced Bragg peak. We demonstrate the feasibility of a proton beam integrated with a commercial x-ray image-guidance system for preclinical in vivo studies. To our knowledge this is the first description of an experimental image-guided proton beam for preclinical radiobiology research. It will enable in vivo investigations of radiobiological effects in proton beams.
Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering
NASA Astrophysics Data System (ADS)
Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen
2014-09-01
Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.
FIRST BEAM TESTS OF THE APS MBA UPGRADE ORBIT FEEDBACK CONTROLLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sereno, N. S.; Arnold, N.; Brill, A.
The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns formore » arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko,V.; Yakimenko, V.
We propose undertaking a demonstration experiment on suppressing spontaneous undulator radiation from an electron beam at BNL's Accelerator Test Facility (ATF). We describe the method, the proposed layout, and a possible schedule. There are several advantages in strongly suppressing shot noise in the electron beam, and the corresponding spontaneous radiation. The self-amplified spontaneous (SASE) emission originating from shot noise in the electron beam is the main source of noise in high-gain FEL amplifiers. It may negatively affect several HG FEL applications ranging from single- to multi-stage HGHG FELs. SASE saturation also imposes a fundamental hard limit on the gain ofmore » an FEL amplifier in a coherent electron-cooling scheme. A novel active method for suppressing shot noise in relativistic electron beams by many orders-of-magnitude was recently proposed. While theoretically such strong suppression appears feasible, the performance and applicability of this novel method must be evaluated experimentally. Several practical questions about the proposed noise suppressor, such as 3D effects and/or sensitivity to the e-beam parameters also require experimental clarification. To do this, we propose here a proof-of-principle experiment using elements of the VISA FEL at BNL's Accelerator Test Facility.« less
Discrimination of ionic species from broad-beam ion sources
NASA Technical Reports Server (NTRS)
Anderson, J. R.
1993-01-01
The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.
First results of the ITER-relevant negative ion beam test facility ELISE (invited).
Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D
2014-02-01
An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.
High heat flux testing of CFC composites for the tokamak physics experiment
NASA Astrophysics Data System (ADS)
Valentine, P. G.; Nygren, R. E.; Burns, R. W.; Rocket, P. D.; Colleraine, A. P.; Lederich, R. J.; Bradley, J. T.
1996-10-01
High heat flux (HHF) testing of carbon fiber reinforced carbon composites (CFC's) was conducted under the General Atomics program to develop plasma-facing components (PFC's) for Princeton Plasma Physics Laboratory's tokamak physics experiment (TPX). As part of the process of selecting TPX CFC materials, a series of HHF tests were conducted with the 30 kW electron beam test system (EBTS) facility at Sandia National Laboratories, and with the plasma disruption simulator I (PLADIS-I) facility at the University of New Mexico. The purpose of the tests was to make assessments of the thermal performance and erosion behavior of CFC materials. Tests were conducted with 42 different CFC materials. In general, the CFC materials withstood the rapid thermal pulse environments without fracturing, delaminating, or degrading in a non-uniform manner; significant differences in thermal performance, erosion behavior, vapor evolution, etc. were observed and preliminary findings are presented below. The CFC's exposed to the hydrogen plasma pulses in PLADIS-I exhibited greater erosion rates than the CFC materials exposed to the electron-beam pulses in EBTS. The results obtained support the continued consideration of a variety of CFC composites for TPX PFC components.
NASA Astrophysics Data System (ADS)
Zinchik, Alexander A.; Muzychenko, Yana B.
2015-06-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhatre, V; Patwe, P; Dandekar, P
Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. ArcCHECK Machine QA tool is used to test geometric and delivery aspects of linear accelerator. In this study we evaluated the performance of this tool. Methods: Machine QA feature allows user to perform quality assurance tests using ArcCHECK phantom. Following tests were performed 1) Gantry Speed 2) Gantry Rotation 3) Gantry Angle 4)MLC/Collimator QA 5)Beam Profile Flatness & Symmetry. Data was collected on trueBEAM stX machine for 6 MV for a period of one year. The Gantry QA test allows to view errors in gantry angle,more » rotation & assess how accurately the gantry moves around the isocentre. The MLC/Collimator QA tool is used to analyze & locate the differences between leaf bank & jaw position of linac. The flatness & Symmetry test quantifies beam flatness & symmetry in IEC-y & x direction. The Gantry & Flatness/Symmetry test can be performed for static & dynamic delivery. Results: The Gantry speed was 3.9 deg/sec with speed maximum deviation around 0.3 deg/sec. The Gantry Isocentre for arc delivery was 0.9mm & static delivery was 0.4mm. The maximum percent positive & negative difference was found to be 1.9 % & – 0.25 % & maximum distance positive & negative diff was 0.4mm & – 0.3 mm for MLC/Collimator QA. The Flatness for Arc delivery was 1.8 % & Symmetry for Y was 0.8 % & X was 1.8 %. The Flatness for gantry 0°,270°,90° & 180° was 1.75,1.9,1.8 & 1.6% respectively & Symmetry for X & Y was 0.8,0.6% for 0°, 0.6,0.7% for 270°, 0.6,1% for 90° & 0.6,0.7% for 180°. Conclusion: ArcCHECK Machine QA is an useful tool for QA of Modern linear accelerators as it tests both geometric & delivery aspects. This is very important for VMAT, SRS & SBRT treatments.« less
NASA Astrophysics Data System (ADS)
Pattalwar, Shrikant; Jones, Thomas; Strachan, John; Bate, Robert; Davies, Phil; McIntosh, Peter
2012-06-01
Through an international cryomodule collaboration, ASTeC at Daresbury Laboratory has taken the primary responsibility in leading the development of an optimised Superconducting RF (SRF) cryomodule, operating in CW mode for energy recovery facilities and other high duty cycle accelerators. For high beam current operation, Higher Order Mode (HOM) absorbers are critical components of the SRF Cryomodule, ensuring excessive heating of the accelerating structures and beam instabilities are effectively managed. This paper describes some of the cold tests conducted on the HOM absorbers and other critical components during the construction phase, to ensure that the quality and reliable cryomodule performance is maintained.
Test of the SO(6) selection rule in 196Pt using cold-neutron capture
NASA Astrophysics Data System (ADS)
Jolie, J.; Régis, J.-M.; Wilmsen, D.; Saed-Samii, N.; Pfeiffer, M.; Warr, N.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; De France, G.; Urban, W.; Drouet, F.; Vancraeyenest, A.; Bruce, A. M.; Roberts, O. J.; Fraile, L. M.; Paziy, V.; Ignatov, A.; Kröll, Th.; Ivanova, D.; Kisyov, S.; Lalkovski, S.; Podolyak, Zs.; Regan, P. H.; Wilson, E.; Korten, W.; Ur, C. A.; Lica, R.; Marginean, N.
2015-02-01
At the PF1B cold-neutron beam line of the Institut Laue Langevin, the EXILL&FATIMA array, consisting of EXOGAM Ge detectors and fast LaBr3(Ce) scintillators, was used to perform fast electronic timing measurements after the 195Pt(n, γ) reaction using a highly collimated cold-neutron beam. An upper lifetime limit was obtained for the third 0+ state in 196Pt. As this state is the lowest state of the σ = N - 2 set of SO(6) states, the selection rule which forbids E2 transitions to the lower lying σ = N could be tested.
Electronic switching spherical array antenna
NASA Technical Reports Server (NTRS)
Stockton, R.
1978-01-01
This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.
DHCAL with minimal absorber: measurements with positrons
NASA Astrophysics Data System (ADS)
Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.
2016-05-01
In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.
Methods and apparatus for laser beam scanners with different actuating mechanisms
NASA Astrophysics Data System (ADS)
Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei
2009-07-01
In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.
Small scale mechanical characterization of thin foil materials via pin load microtesting
Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...
2015-05-06
In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less
Plasma Wake-field Acceleration in the Blow-out Regime
NASA Astrophysics Data System (ADS)
Barov, Nikolai; Rosenzweig, James
1999-11-01
Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.
Progress in tagged neutron beams for cargo inspections
NASA Astrophysics Data System (ADS)
Pesente, S.; Nebbia, G.; Viesti, G.; Daniele, F.; Fabris, D.; Lunardon, M.; Moretto, S.; Nad, K.; Sudac, D.; Valkovic, V.
2007-08-01
The use of neutron beams produced via the D + T reaction and tagged by the associated particle technique has been recently applied to cargo container inspections. In the EURITRACK project, a portable sealed-tube neutron generator has been designed and built to deliver 14 MeV neutron beams tagged by a matrix of 64 YAP:Ce alpha-particle detectors read by a multi-anode HAMAMATSU H8500 Photomultiplier Tube. The performances of this alpha-particle detector have been determined as a function of the count rate at the Rudjer Boskovic Institute, Zagreb (Croatia). Moreover, tests of the final detector operated inside the sealed-tube neutron generator are fully satisfactory.
Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas
NASA Astrophysics Data System (ADS)
Wang, Jin; Peng, Wei; Liu, Song
2017-10-01
Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.
Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun
NASA Astrophysics Data System (ADS)
Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.
2002-08-01
In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.
Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype
NASA Astrophysics Data System (ADS)
Curado da Silva, R. M.; Caroli, E.; Stephen, J. B.; Pisa, A.; Auricchio, N.; Del Sordo, S.; Frontera, F.; Honkimäki, V.; Schiavone, F.; Donati, A.; Trindade, A. M. F.; Ventura, G.
2008-10-01
A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an ~100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11×11 active pixel matrix (pixel area of 2.5×2.5 mm2). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1°) Laue diffraction inside a crystal.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
Adli, Erik; Lindstrom, C. A.; Allen, J.; ...
2016-10-12
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less
Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adli, Erik; Lindstrom, C. A.; Allen, J.
Here, we report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. Themore » attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam–plasma interactions in general and plasma wakefield accelerator technology in particular.« less
2016-09-01
required load rating (HL-93) and performance criteria for deflection and strain. Results showed the bridge met all design specifications and load...their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by...composite beams met design specifications and could deliver safe crossing of Heavy Equipment Transport System (HETS-115) vehicles. Their report
Experimental demonstration of the control of flexible structures
NASA Technical Reports Server (NTRS)
Schaechter, D. B.; Eldred, D. B.
1984-01-01
The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.
Validation of the Narrowing Beam Walking Test in Lower Limb Prosthesis Users.
Sawers, Andrew; Hafner, Brian
2018-04-11
To evaluate the content, construct, and discriminant validity of the Narrowing Beam Walking Test (NBWT), a performance-based balance test for lower limb prosthesis users. Cross-sectional study. Research laboratory and prosthetics clinic. Unilateral transtibial and transfemoral prosthesis users (N=40). Not applicable. Content validity was examined by quantifying the percentage of participants receiving maximum or minimum scores (ie, ceiling and floor effects). Convergent construct validity was examined using correlations between participants' NBWT scores and scores or times on existing clinical balance tests regularly administered to lower limb prosthesis users. Known-groups construct validity was examined by comparing NBWT scores between groups of participants with different fall histories, amputation levels, amputation etiologies, and functional levels. Discriminant validity was evaluated by analyzing the area under each test's receiver operating characteristic (ROC) curve. No minimum or maximum scores were recorded on the NBWT. NBWT scores demonstrated strong correlations (ρ=.70‒.85) with scores/times on performance-based balance tests (timed Up and Go test, Four Square Step Test, and Berg Balance Scale) and a moderate correlation (ρ=.49) with the self-report Activities-specific Balance Confidence scale. NBWT performance was significantly lower among participants with a history of falls (P=.003), transfemoral amputation (P=.011), and a lower mobility level (P<.001). The NBWT also had the largest area under the ROC curve (.81) and was the only test to exhibit an area that was statistically significantly >.50 (ie, chance). The results provide strong evidence of content, construct, and discriminant validity for the NBWT as a performance-based test of balance ability. The evidence supports its use to assess balance impairments and fall risk in unilateral transtibial and transfemoral prosthesis users. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dong, Yu-Hui; Liu, He-Shan; Luo, Zi-Ren; Li, Yu-Qiong; Jin, Gang
2014-07-01
In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differential Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yu-Hui; Liu, He-Shan; University of Chinese Academy of Sciences, Beijing 100190
In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differentialmore » Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved.« less
Beam optical design of in-flight fragment separator for high-power heavy ion beam
NASA Astrophysics Data System (ADS)
Yun, C. C.; Kim, Mi-Jung; Kim, D. G.; Song, J. S.; Kim, Myeong-Jin; Kim, J. W.; Kim, J. R.; Wan, W.
2013-12-01
An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is 238U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.
Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon
2015-03-30
The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.
Instrument performance and simulation verification of the POLAR detector
NASA Astrophysics Data System (ADS)
Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.
2017-11-01
POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.
Strengthening of defected beam-column joints using CFRP.
Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M
2014-01-01
This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
49 CFR 571.108 - Standard No. 108; Lamps, reflective devices, and associated equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the headlamp. Headlamp test fixture means a device designed to support a headlamp or headlamp assembly... to 1% of design life, or other equivalent method. Semiautomatic headlamp beam switching device is one... signal lamp must be designed to conform to the performance requirements of the vibration test, moisture...
49 CFR 571.108 - Standard No. 108; Lamps, reflective devices, and associated equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the headlamp. Headlamp test fixture means a device designed to support a headlamp or headlamp assembly... to 1% of design life, or other equivalent method. Semiautomatic headlamp beam switching device is one... signal lamp must be designed to conform to the performance requirements of the vibration test, moisture...
Ultrasonic inspection of a glued laminated timber fabricated with defects
Robert Emerson; David Pollock; David McLean; Kenneth Fridley; Robert Ross; Roy Pellerin
2001-01-01
The Federal Highway Administration (FHWA) set up a validation test to compare the effectiveness of various nondestructive inspection techniques for detecting artificial defects in glulam members. The validation test consisted of a glulam beam fabricated with artificial defects known to FHWA personnel but not originally known to the scientists performing the validation...
Temperature dependence of yields from multi-foil SPES target
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.
2011-10-01
The temperature dependence of neutron-rich isotope yields was studied within the framework of the HRIBF-SPES Radioactive Ion Beams (RIB) project. On-line release measurements of fission fragments from a uranium carbide target at ensuremath 1600 {}^{circ}C , ensuremath 1800 {}^{circ}C and ensuremath 2000 {}^{circ}C were performed at ORNL (USA). The fission reactions were induced by a 40MeV proton beam accelerated into a uranium carbide target coupled to a plasma ion source. The experiments allowed for tests of performance of the SPES multi-foil target prototype loaded with seven UC2/graphite discs (ratio C/ U = 4 with density about 4g/cm3.
H4DAQ: a modern and versatile data-acquisition package for calorimeter prototypes test-beams
NASA Astrophysics Data System (ADS)
Marini, A. C.
2018-02-01
The upgrade of the particle detectors for the HL-LHC or for future colliders requires an extensive program of tests to qualify different detector prototypes with dedicated test beams. A common data-acquisition system, H4DAQ, was developed for the H4 test beam line at the North Area of the CERN SPS in 2014 and it has since been adopted in various applications for the CMS experiment and AIDA project. Several calorimeter prototypes and precision timing detectors have used our system from 2014 to 2017. H4DAQ has proven to be a versatile application and has been ported to many other beam test environments. H4DAQ is fast, simple, modular and can be configured to support various kinds of setup. The functionalities of the DAQ core software are split into three configurable finite state machines: data readout, run control, and event builder. The distribution of information and data between the various computers is performed using ZEROMQ (0MQ) sockets. Plugins are available to read different types of hardware, including VME crates with many types of boards, PADE boards, custom front-end boards and beam instrumentation devices. The raw data are saved as ROOT files, using the CERN C++ ROOT libraries. A Graphical User Interface, based on the python gtk libraries, is used to operate the H4DAQ and an integrated data quality monitoring (DQM), written in C++, allows for fast processing of the events for quick feedback to the user. As the 0MQ libraries are also available for the National Instruments LabVIEW program, this environment can easily be integrated within H4DAQ applications.
Development of an adaptive optics test-bed for relay mirror applications
NASA Astrophysics Data System (ADS)
Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris
2005-08-01
The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.
Development of thick, long-lived carbon stripper foils for PSR of LANL
NASA Astrophysics Data System (ADS)
Sugai, I.; Oyaizu, M.; Kawakami, H.; Ohmori, C.; Hattori, T.; Kawasaki, K.; Borden, M. J.; Macek, R. J.
1995-02-01
Thick carbon stripper foils (multi-layer thickness ≈ 200 μg/cm 2) have been developed for use with 800 MeV, H + ion beam in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Foils were prepared by means of the modified controlled ACDC arc discharge method (mCADAD). The lifetime measurements of the foils made by different methods were performed using an 800 MeV proton beam of up to 85 μA in the PSR, and a 3.2 MeV Ne + ion beam of 3 μA at Tokyo Institute of Technology. The foils made by the mCADAD method showed very long lifetimes, as compared to other foils tested, for both 800 MeV p and 3.2 MeV Ne + beam bombardments.
Development of chip passivated monolithic complementary MISFET circuits with beam leads
NASA Technical Reports Server (NTRS)
Ragonese, L. J.; Kim, M. J.; Corrie, B. L.; Brouillette, J. W.; Warr, R. E.
1972-01-01
The results are presented of a program to demonstrate the processes for fabricating complementary MISFET beam-leaded circuits, which, potentially, are comparable in quality to available bipolar beam-lead chips that use silicon nitride passivation in conjunction with a platinum-titanium-gold metal system. Materials and techniques, different from the bipolar case, were used in order to be more compatible with the special requirements of fully passivated complementary MISFET devices. Two types of circuits were designed and fabricated, a D-flip-flop and a three-input NOR/NAND gate. Fifty beam-leaded chips of each type were constructed. A quality and reliability assurance program was performed to identify failure mechanisms. Sample tests and inspections (including destructive) were developed to measure the physical characteristics of the circuits.
Intercomparison of methods for image quality characterization. I. Modulation transfer function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan; Ranger, Nicole T.; Dobbins, James T. III
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge testmore » device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 {mu}m opening. The translucent edge test device was made of a laminated and polished Pt{sub 0.9}Ir{sub 0.1} alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0%{+-}0.2% lower than that of Dobbins et al. and 0.7%{+-}0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2%{+-}0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7%{+-}0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0%{+-}0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.« less
Deviation Value for Conventional X-ray in Hospitals in South Sulawesi Province from 2014 to 2016
NASA Astrophysics Data System (ADS)
Bachtiar, Ilham; Abdullah, Bualkar; Tahir, Dahlan
2018-03-01
This paper describes the conventional X-ray machine parameters tested in the region of South Sulawesi from 2014 to 2016. The objective of this research is to know deviation of every parameter of conventional X-ray machine. The testing parameters were analyzed by using quantitative methods with participatory observational approach. Data collection was performed by testing the output of conventional X-ray plane using non-invasive x-ray multimeter. The test parameters include tube voltage (kV) accuracy, radiation output linearity, reproducibility and radiation beam value (HVL) quality. The results of the analysis show four conventional X-ray test parameters have varying deviation spans, where the tube voltage (kV) accuracy has an average value of 4.12%, the average radiation output linearity is 4.47% of the average reproducibility of 0.62% and the averaged of the radiation beam (HVL) is 3.00 mm.
NASA Technical Reports Server (NTRS)
Perel, J.
1971-01-01
A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.
Angle performance on optima MDxt
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Kamenitsa, Dennis
2012-11-06
Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less
Developing the RAL front end test stand source to deliver a 60 mA, 50 Hz, 2 ms H- beam
NASA Astrophysics Data System (ADS)
Faircloth, Dan; Lawrie, Scott; Letchford, Alan; Gabor, Christoph; Perkins, Mike; Whitehead, Mark; Wood, Trevor; Tarvainen, Olli; Komppula, Jani; Kalvas, Taneli; Dudnikov, Vadim; Pereira, Hugo; Izaola, Zunbeltz; Simkin, John
2013-02-01
All the Front End Test Stand (FETS) beam requirements have been achieved, but not simultaneously [1]. At 50 Hz repetition rates beam current droop becomes unacceptable for pulse lengths longer than 1 ms. This is fundamental limitation of the present source design. Previous researchers [2] have demonstrated that using a physically larger Penning surface plasma source should overcome these limitations. The scaled source development strategy is outlined in this paper. A study of time-varying plasma behavior has been performed using a V-UV spectrometer. Initial experiments to test scaled plasma volumes are outlined. A dedicated plasma and extraction test stand (VESPA-Vessel for Extraction and Source Plasma Analysis) is being developed to allow new source and extraction designs to be appraised. The experimental work is backed up by modeling and simulations. A detailed ANSYS thermal model has been developed. IBSimu is being used to design extraction and beam transport. A novel 3D plasma modeling code using beamlets is being developed by Cobham Vector Fields using SCALA OPERA, early source modeling results are very promising. Hardware on FETS is also being developed in preparation to run the scaled source. A new 2 ms, 50 Hz, 25 kV pulsed extraction voltage power supply has been constructed and a new discharge power supply is being designed. The design of the post acceleration electrode assembly has been improved.
NASA Astrophysics Data System (ADS)
Meier, E.; Biedron, S. G.; LeBlanc, G.; Morgan, M. J.
2011-03-01
This paper reports the results of an advanced algorithm for the optimization of electron beam parameters in Free Electron Laser (FEL) Linacs. In the novel approach presented in this paper, the system uses state of the art developments in video games to mimic an operator's decisions to perform an optimization task when no prior knowledge, other than constraints on the actuators is available. The system was tested for the simultaneous optimization of the energy spread and the transmission of the Australian Synchrotron Linac. The proposed system successfully increased the transmission of the machine from 90% to 97% and decreased the energy spread of the beam from 1.04% to 0.91%. Results of a control experiment performed at the new FERMI@Elettra FEL is also reported, suggesting the adaptability of the scheme for beam-based control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
Status of the NEXT Ion Engine Wear Test
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.
2003-01-01
The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.
Beam position reconstruction for the g2p experiment in Hall A at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Pengjia; Allada, Kalyan; Allison, Trent
2015-11-03
Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. We found that before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve themore » required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. Finally, the calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.« less
Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung
2015-01-01
In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.
Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C
NASA Astrophysics Data System (ADS)
Faulkner, Adam; I&C Group Collaboration
2013-10-01
Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.
Multibeam Gpu Transient Pipeline for the Medicina BEST-2 Array
NASA Astrophysics Data System (ADS)
Magro, A.; Hickish, J.; Adami, K. Z.
2013-09-01
Radio transient discovery using next generation radio telescopes will pose several digital signal processing and data transfer challenges, requiring specialized high-performance backends. Several accelerator technologies are being considered as prototyping platforms, including Graphics Processing Units (GPUs). In this paper we present a real-time pipeline prototype capable of processing multiple beams concurrently, performing Radio Frequency Interference (RFI) rejection through thresholding, correcting for the delay in signal arrival times across the frequency band using brute-force dedispersion, event detection and clustering, and finally candidate filtering, with the capability of persisting data buffers containing interesting signals to disk. This setup was deployed at the BEST-2 SKA pathfinder in Medicina, Italy, where several benchmarks and test observations of astrophysical transients were conducted. These tests show that on the deployed hardware eight 20 MHz beams can be processed simultaneously for 640 Dispersion Measure (DM) values. Furthermore, the clustering and candidate filtering algorithms employed prove to be good candidates for online event detection techniques. The number of beams which can be processed increases proportionally to the number of servers deployed and number of GPUs, making it a viable architecture for current and future radio telescopes.
Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC
NASA Astrophysics Data System (ADS)
Pattalwar, Shrikant; Jones, Thomas; Templeton, Niklas; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom
2014-01-01
A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the "Hi-Lumi LHC", a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.
Radiation protection using Martian surface materials in human exploration of Mars
NASA Technical Reports Server (NTRS)
Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.
2001-01-01
To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
Status of ADRIANO R&D in T1015 Collaboration
Gatto, Corrado; Di Benedetto, V.; Mazzacane, A.
2015-02-13
The physics program for future High Energy and High Intensity experiments requires an energy resolution of the calorimetric component of detectors at limits of traditional techniques and an excellent particle identification. The novel ADRIANO technology (A Dualreadout Integrally Active Non-segmented Option), currently under development at Fermilab, is showing excellent performance on those respects. Results from detailed Monte Carlo studies on the performance with respect to energy resolution, linear response and transverse containment and a preliminary optimization of the layout are presented. A baseline configuration is chosen with an estimated energy resolution of σ(E)/E ≈ 30%/√E , to support an extensivemore » R&D program recently started by T1015 Collaboration at Fermilab. Furthermore, preliminary results from several test beams at the Fermilab Test Beam Facility (FTBF) of a ~ 1λI prototype are presented. Future prospects with ultra-heavy glass are, also, summarized.« less
The large-area hybrid-optics RICH detector for the CLAS12 spectrometer
Mirazita, M.; Angelini, G.; Balossino, I.; ...
2017-01-16
A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forwardmore » tracks) or after two mirror reflections (large angle tracks). Finally, the preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.« less
A gamma beam profile imager for ELI-NP Gamma Beam System
NASA Astrophysics Data System (ADS)
Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.
2018-06-01
The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.
Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C
2016-01-01
In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesler, Stefan
2002-09-19
Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code.more » The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.« less
Some Aspects on the Mechanical Analysis of Micro-Shutters
NASA Technical Reports Server (NTRS)
Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Lu, Shude
1999-01-01
An array of individually addressable micro-shutters is being designed for spectroscopic applications. Details of the design are presented in a companion paper. The mechanical design of a single shutter element has been completed. This design consists of a shutter blade suspended on a torsion beam manufactured out of single crystal silicon membranes. During operation the shutter blade will be rotated by 90 degrees out of the array plane. Thus, the stability and durability of the beams are crucial for the reliability of the devices. Structures were fabricated using focused ion beam milling in a FEI 620 dual beam machine, and subsequent testing was completed using the same platform. This allowed for short turn around times. We performed torsion and bending experiments to determine key characteristics of the membrane material. Results of measurements on prototype shutters were compared with the predictions of the numerical models. The data from these focused studies were used in conjunction with experiments and numerical models of shutter prototypes to optimize the design. In this work, we present the results of the material studies, and assess the mechanical performance of the resulting design.
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.
2010-01-01
The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.
Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate cancer surgery.
Laser Damage in Thin Film Optical Coatings
1992-07-01
10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as
Active Vibration damping of Smart composite beams based on system identification technique
NASA Astrophysics Data System (ADS)
Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed
2018-03-01
In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.
Analysis and application of a velocity command motor as a reaction mass actuator
NASA Technical Reports Server (NTRS)
Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.
1990-01-01
A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.
Accelerator Test of an Imaging Calorimeter
NASA Technical Reports Server (NTRS)
Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.;
2001-01-01
The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.
Study on load test of 100m cross-reinforced deck type concrete box arch bridge
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.
Use of a corrugated beam pipe as a passive deflector for bunch length measurements
NASA Astrophysics Data System (ADS)
Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun
2018-02-01
We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2013-12-01
Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.
Simulating laser interferometers for missions such as (E)Lisa, Lisa pathfinder and Grace follow-on
NASA Astrophysics Data System (ADS)
Wanner, Gudrun; Kochkina, Evgenia; Mahrdt, Christoph; Müller, Vitali; Schuster, Sönke; Heinzel, Gerhard; Danzmann, Karsten
2017-11-01
Sensing tiny distance variations interferometrically will be a key task in several future space missions. Interferometric detectors such as (e)LISA will observe gravitational waves from cosmic events such as for instance super novae and extreme mass ratio inspirals. The detection principle of such detectors is sensing phase variations due to tiny distance variations between two free floating test masses aboard two remote spacecraft originating from passing gravitational waves. This detection principle will be tested for the first time by LISA Pathfinder (launch 2015), where the interferometric readout of two free floating test masses aboard one single spacecraft will be demonstrated. Future geodesy missions will map Earths Gravity field, by interferometrically measuring distance variations between two spacecraft in low Earth orbit. This will be tested for the first time by the Laser Ranging Instrument (LRI) aboard GRACE Follow-On (launch 2017). The low noise laser interferometry of all these missions provides a number of challenging tasks. We will present optical simulations performed for the missions above. The interferometry of LISA Pathfinder is purely local (there do not exist any received beams from remote spacecraft), such that all beams can be approximated by fundamental Gaussian beams. We will present simulations regarding the coupling of residual test mass jitter (longitudinal and lateral as well as angular) to the phase readout, including Monte Carlo simulations to predict how misalignment affects resulting phase noise and estimate in-flight alignment of the test masses. In all of the mentioned missions, the local laser beams are delivered to the optical bench by fibers, resulting in laser beams in fiber modes. Besides local laser beams, the interferometry of missions such as (e)LISA and LRI involves also received beams from remote spacecraft. These beams have diameters in the range of tens of meters (LRI) or kilometers (LISA / eLISA and alike), before being clipped down to centimeter scale by the receiving aperture. The resulting top hat beams show strong diffraction effects and are therefore imaged on the optical benches. Key elements for simulations are therefore the propagation with diffraction of top hat beams and fiber modes in vacuum, as well as imaging optics causing aberration and astigmatism, with the central task to characterize the coupling of test mass or spacecraft jitter to optical readout noise, in presence of realistic alignment errors. A recurring and often limiting noise in the length measurement originates from the cross coupling of angular component jitter. This cross coupling will be briefly introduced with strategies for its mitigation in the various missions. To overcome the limitations of existing and commercial software, we have written and used for the simulations above as well as for general interferometer design purposes a dedicated software package called IfoCAD which is publicly available and will be presented as well.
WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC
Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case.more » Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less
NASA Technical Reports Server (NTRS)
Haines, R. F.; Bartz, A. E.; Zahn, J. R.
1972-01-01
The effects of a fixed, intense, one-foot diameter beam of simulated sunlight imaged within the field of view, upon responses to a battery of visual, body balance and stability, eye-hand coordination, and mental tests were studied. Each subject's electrocardiogram and electro-oculograms (vertical and horizontal) were recorded throughout each two-hour testing period within the space-station-like environment. It is possible to say that both subjects adapted to the brightly illuminated white panels in approximately 30 seconds after their first exposure each day and thereafter did not experience ocular fatigue, eye strain, or other kinds of disturbances as a result of these viewing conditions.
Phase-shifting point diffraction interferometer
Medecki, H.
1998-11-10
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.
Phase-shifting point diffraction interferometer
Medecki, Hector
1998-01-01
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.
Micro-strip sensors based on CVD diamond
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; RD42 Collaboration
2000-10-01
In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.
NASA Astrophysics Data System (ADS)
Jain, S.
2017-03-01
The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.
Study of residual stresses in CT test specimens welded by electron beam
NASA Astrophysics Data System (ADS)
Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.
2018-03-01
The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Lomonosov, I. V.; Shutov, A.; Udrea, S.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Jacobi, J.; Kain, V.; Kuster, M.; Ni, P.; Piriz, A. R.; Schmidt, R.; Spiller, P.; Varentsov, D.; Zioutas, K.
2006-04-01
Detailed theoretical studies have shown that intense heavy-ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) (Henning 2004 Nucl. Instrum. Methods B 214 211) at Darmstadt will be a very efficient tool to create high-energy-density (HED) states in matter including strongly coupled plasmas. In this paper we show, with the help of two-dimensional numerical simulations, the interesting physical states that can be achieved considering different beam intensities using zinc as a test material. Another very interesting experiment that can be performed using the intense heavy-ion beam at FAIR will be generation of low-entropy compression of a test material such as hydrogen that is enclosed in a cylindrical shell of a high-Z material such as lead or gold. In such an experiment, one can study the problem of hydrogen metallization and the interiors of giant planets. Moreover, we discuss an interesting method to diagnose the HED matter that is at the centre of the Sun. We have also carried out simulations to study the damage caused by the full impact of the Large Hadron Collider (LHC) beam on a superconducting magnet. An interesting outcome of this study is that the LHC beam can induce HED states in matter.
A MEMS SOI-based piezoresistive fluid flow sensor
NASA Astrophysics Data System (ADS)
Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.
2018-02-01
In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.
Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC
NASA Astrophysics Data System (ADS)
Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.
2017-07-01
The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.
Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Bolfi, Bianca; Marengo, Emilio
2015-06-01
This paper reports the study of the photodegradation reactions that tricyclazole can naturally undergo, under the action of sunlight, in aqueous solutions of standard tricyclazole and of the commercial BEAM(TM) formulation. The analyses are carried out by ultra-high performance liquid chromatography technique coupled with high-resolution tandem mass spectrometry. Analysis of both tricyclazole and BEAM(TM) water solutions undergone to hydrolysis does not evidence new chromatographic peaks with respect to the not treated solutions. On the contrary, analysis of the same samples subjected to sunlight irradiation shows a decreased intensity of tricyclazole signal and the presence of new chromatographic peaks. Two photodegradation products of tricyclazole have been identified, one of which has been also quantified, being the commercial standard available. The pattern is similar for the solutions of the standard fungicide and of the BEAM(TM) formulation. The results obtained from eco-toxicological tests show that toxicity of tricyclazole standard solutions is greater than that of the irradiated ones, whereas toxicity levels of all the BEAM(TM) solutions investigated (non-irradiated, irradiated, and hydrolyzed) are comparable and lower than those shown by tricyclazole standard solutions. Experiments performed in paddy water solution show that there is no difference in the degradation products formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, B; Vancouver Cancer Centre, Vancouver, BC; Gete, E
2016-06-15
Purpose: This work investigates the dosimetric accuracy of a trajectory based delivery technique in which an optimized radiation beam is delivered along a Couch-Gantry trajectory that is formed by simultaneous rotation of the linac gantry and the treatment couch. Methods: Nine trajectory based cranial SRS treatment plans were created using in-house optimization software. The plans were calculated for delivery on the TrueBeam STx linac with 6MV photon beam. Dose optimization was performed along a user-defined trajectory using MLC modulation, dose rate modulation and jaw tracking. The pre-defined trajectory chosen for this study is formed by a couch rotation through itsmore » full range of 180 degrees while the gantry makes four partial arc sweeps which are 170 degrees each. For final dose calculation, the trajectory based plans were exported to the Varian Eclipse Treatment Planning System. The plans were calculated on a homogeneous cube phantom measuring 18.2×18.2×18.2 cm3 with the analytical anisotropic algorithm (AAA) using a 1mm3 calculation voxel. The plans were delivered on the TrueBeam linac via the developer’s mode. Point dose measurements were performed on 9 patients with the IBA CC01 mini-chamber with a sensitive volume of 0.01 cc. Gafchromic film measurements along the sagittal and coronal planes were performed on three of the 9 treatment plans. Point dose values were compared with ion chamber measurements. Gamma analysis comparing film measurement and AAA calculations was performed using FilmQA Pro. Results: The AAA calculations and measurements were in good agreement. The point dose difference between AAA and ion chamber measurements were within 2.2%. Gamma analysis test pass rates (2%, 2mm passing criteria) for the Gafchromic film measurements were >95%. Conclusion: We have successfully tested TrueBeam’s ability to deliver accurate trajectory based treatments involving simultaneous gantry and couch rotation with MLC and dose rate modulation along the trajectory.« less
Nutating subreflector for a millimeter wave telescope
NASA Astrophysics Data System (ADS)
Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco
1990-03-01
Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.
Application of real-time digitization techniques in beam measurement for accelerators
NASA Astrophysics Data System (ADS)
Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi
2016-04-01
Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).
Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Caporaso, G C
2002-11-15
A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less
Proposal for GPD studies at COMPASS
NASA Astrophysics Data System (ADS)
Burtin, E.
2011-10-01
The study of nucleon structure through Generalised Parton Distributions (GPD) is one major part of the future COMPASS-II physics program [1] and can be performed using exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Meson Production. The high energy of the muon beam allows to measure the xB-dependence of the t-slope of the DVCS cross section. The use of positive and negative polarised muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H. The sensitivity of both measurements is examined and confronted to existing models or global fits of the data. Preliminary beam test data were analyzed and demonstrated the feasibility of the identification of the DVCS reaction using the COMPASS experimental set-up.
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1977-01-01
System tests were performed in which Integrally Regulated Solar Arrays (IRSA's) were used to directly power the beam and accelerator loads of a 30-cm-diameter, electron bombardment, mercury ion thruster. The remaining thruster loads were supplied from conventional power-processing circuits. This combination of IRSA's and conventional circuits formed a hybrid power processor. Thruster performance was evaluated at 3/4- and 1-A beam currents with both the IRSA-hybrid and conventional power processors and was found to be identical for both systems. Power processing is significantly more efficient with the hybrid system. System dynamics and IRSA response to thruster arcs are also examined.
Wang, W Y; Chang, J J
1997-08-01
In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.
Characterization of highly multiplexed monolithic PET / gamma camera detector modules.
Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R
2018-03-29
PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.
Evaluation of the 3-GeV proton beam profile at the spallation target of the JSNS
NASA Astrophysics Data System (ADS)
Meigo, Shin-ichiro; Noda, Fumiaki; Ishikura, Syuichi; Futakawa, Masatoshi; Sakamoto, Shinichi; Ikeda, Yujiro
2006-06-01
At JSNS, 3-GeV protons beam is delivered from rapid cycling synchrotron (RCS) to the spallation neutron target. In order to reduce the damage of pitting on the target container, the peak current density should be kept as small as possible. In this study, the beam profile at spallation neutron target is evaluated. The phase-space distribution, including the space-charge effect, is calculated with SIMPSONS code. The beam profile on the target is obtained with the transfer matrix from exit of RCS to the target. As for injection to RCS, two methods of correlated and anti-correlated painting are considered. By using anti-correlated painting for injection of beam at RCS, it is found the shape of beam becomes flatter than the distribution by using correlated painting. As other aspect for the study of target, in order to carry out target performance test especially for the study of pitting issue, it is better to have the beam profile variety from the beginning of facility. The adjustable range for the beam profile at the beginning is also studied. Although the beam shape is narrow and the duty is very low, the strong enough peak density is achievable equivalent as 1 MW.
Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon
2015-01-01
The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads. PMID:25831087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minucci, M. A. S.
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat fluxmore » measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.« less
NASA Astrophysics Data System (ADS)
Minucci, M. A. S.
2008-04-01
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.
Operation Status of the J-PARC Negative Hydrogen Ion Source
NASA Astrophysics Data System (ADS)
Oguri, H.; Ikegami, K.; Ohkoshi, K.; Namekawa, Y.; Ueno, A.
2011-09-01
A cesium-free negative hydrogen ion source driven with a lanthanum hexaboride (LaB6) filament is being operated without any serious trouble for approximately four years in J-PARC. Although the ion source is capable of producing an H- ion current of more than 30 mA, the current is routinely restricted to approximately 16 mA at present for the stable operation of the RFQ linac which has serious discharge problem from September 2008. The beam run is performed during 1 month cycle, which consisted of a 4-5 weeks beam operation and a few days down-period interval. At the recent beam run, approximately 700 h continuous operation was achieved. At every runs, the beam interruption time due to the ion source failure is a few hours, which correspond to the ion source availability of more than 99%. The R&D work is being performed in parallel with the operation in order to enhance the further beam current. As a result, the H- ion current of 61 mA with normalized rms emittance of 0.26 πmm.mrad was obtained by adding a cesium seeding system to a J-PARC test ion source which has the almost same structure with the present J-PARC ion source.
E-beam-pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.
1995-04-01
The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.
Design and construction of a telescope simulator for LISA optical bench testing
NASA Astrophysics Data System (ADS)
Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.
2017-11-01
LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
NASA Astrophysics Data System (ADS)
Tan, Eugene Wie Loon
1999-09-01
The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Kyle; Rong, Yi, E-mail: yrong@ucdavis.edu
2015-11-15
Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltagemore » (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.« less
Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating.
Woods, Kyle; Rong, Yi
2015-11-01
To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139±10 ms for MV beams and 92±11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6±3.1 ms for slow, 24.9±2.9 ms for intermediate, and 23.0±20.1 ms for fast speed. A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.
Recent Upgrades at the Fermilab Test Beam Facility
NASA Astrophysics Data System (ADS)
Rominsky, Mandy
2016-03-01
The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.
Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.
1974-01-01
Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.
Validation of Heavy Ion Transport Capabilities in PHITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronningen, Reginald M.
The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown formore » a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.« less
Splice performance evaluation of enamel-coated rebar for structural safety.
DOT National Transportation Integrated Search
2014-07-01
This report summarizes the findings and results from an experimental study of vitreous enamel coating effects on the bond : strength between deformed rebar and normal strength concrete. A total of 24 beam splice specimens were tested under four-point...
Negative ion beam development at Cadarache (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonin, A.; Bucalossi, J.; Desgranges, C.
1996-03-01
Neutral beam injection (NBI) is one of the candidates for plasma heating and current drive in the new generation of large magnetic fusion devices (ITER). In order to produce the required deuterium atom beams with energies of 1 MeV and powers of tens of MW, negative D{sup {minus}} ion beams are required. For this purpose, multiampere D{sup {minus}} beam production and 1 MeV electrostatic acceleration is being studied at Cadarache. The SINGAP experiment, a 1 MeV 0.1 A D{sup {minus}} multisecond beam accelerator facility, has recently started operation. It is equipped with a Pagoda ion source, a multiaperture 60 keVmore » preaccelerator and a 1 MV 120 mA power supply. The particular feature of SINGAP is that the postaccelerator merges the 60 keV beamlets, aiming at accelerating the whole beam to 1 MeV in a single gap. The 1 MV level was obtained in less than 2 weeks, the accumulated voltage on-time of being {approximately}22 min. A second test bed MANTIS, is devoted to the development of multiampere D{sup {minus}} sources. It is capable of driving discharges with current up to 2500 A at arc voltages up to 150 V. A large multicusp source has been tested in pure volume and cesiated operation. With cesium seeding, an accelerated D{sup {minus}} beam current density of up to 5.2 mA/cm{sup 2} (2 A of D{sup {minus}}) was obtained. A modification of the extractor is underway in order to improve this performance. A 3D Monte Carlo code has been developed to simulate the negative ion transport in magnetized plasma sources and optimize magnetic field configuration of the large area D{sup {minus}} sources. {copyright} {ital 1996 American Institute of Physics.}« less
Sawers, Andrew; Ting, Lena H
2015-02-01
The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.
1986-01-01
The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
Rowbottoma, Carl G; Jaffray, David A
2004-03-01
The performance and characteristics of a miniature metal oxide semiconductor field effect transistor (micro-MOSFET) detector was investigated for its potential application to integral system tests for image-guided radiotherapy. In particular, the position of peak response to a slit of radiation was determined for the three principal axes to define the co-ordinates for the center of the active volume of the detector. This was compared to the radiographically determined center of the micro-MOSFET visible using cone-beam CT. Additionally, the angular sensitivity of the micro-MOSFET was measured. The micro-MOSFETs are clearly visible on the cone-beam CT images, and produce no artifacts. The center of the active volume of the micro-MOSFET aligned with the center of the visible micro-MOSFET on the cone-beam CT images for the x and y axes to within 0.20 mm and 0.15 mm, respectively. In z, the long axis of the detector, the peak response was found to be 0.79 mm from the tip of the visible micro-MOSFET. Repeat experiments verified that the position of the peak response of the micro-MOSFET was reproducible. The micro-MOSFET response for 360 degrees of rotation in the axial plane to the micro-MOSFET was +/-2%, consistent with values quoted by the manufacturer. The location of the active volume of the micro-MOSFETs under investigation can be determined from the centroid of the visible micro-MOSFET on cone-beam CT images. The CT centroid position corresponds closely to the center of the detector response to radiation. The ability to use the cone-beam CT to locate the active volume to within 0.20 mm allows their use in an integral system test for the imaging of and dose delivery to a phantom containing an array of micro-MOSFETs. The small angular sensitivity allows the investigation of noncoplanar beams.
ELIMED: a new hadron therapy concept based on laser driven ion beams
NASA Astrophysics Data System (ADS)
Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy
2013-05-01
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility.
Airborne Laser Systems Testing and Analysis (essals et analyse des systemes laser embarques)
2010-04-01
of Surface/ Paints Reflection Properties (PILASTER targets); • PILASTER Sensors Testing and Calibration; • LOAS Laser System Testing; and • Test...PILASTER targets candidate paints and materials), a Laser Scatter-meter (LSM) was built. To briefly summarise the fundamental concepts involved...Green Painted Target. 7.6.3 Laser Beam Misalignment with Respect to the Beam-Expander Support For measuring the beam misalignment, the beam expander
NASA Astrophysics Data System (ADS)
Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.
2016-10-01
A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.
Multiple scattering theory for total skin electron beam design.
Antolak, J A; Hogstrom, K R
1998-06-01
The purpose of this manuscript is to describe a method for designing a broad beam of electrons suitable for total skin electron irradiation (TSEI). A theoretical model of a TSEI beam from a linear accelerator with a dual scattering system has been developed. The model uses Fermi-Eyges theory to predict the planar fluence of the electron beam after it has passed through various materials between the source and the treatment plane, which includes scattering foils, monitor chamber, air, and a plastic diffusing plate. Unique to this model is its accounting for removal of the tails of the electron beam profile as it passes through the primary x-ray jaws. A method for calculating the planar fluence profile for an obliquely incident beam is also described. Off-axis beam profiles and percentage depth doses are measured with ion chambers, film, and thermoluminescent dosimeters (TLD). The measured data show that the theoretical model can accurately predict beam energy and planar fluence of the electron beam at normal and oblique incidence. The agreement at oblique angles is not quite as good but is sufficiently accurate to be of predictive value when deciding on the optimal angles for the clinical TSEI beams. The advantage of our calculational approach for designing a TSEI beam is that many different beam configurations can be tested without having to perform time-consuming measurements. Suboptimal configurations can be quickly dismissed, and the predicted optimal solution should be very close to satisfying the clinical specifications.
Proof of concept demonstration for coherent beam pattern measurements of KID detectors
NASA Astrophysics Data System (ADS)
Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.
2016-07-01
Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.
Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications
NASA Technical Reports Server (NTRS)
Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.
2007-01-01
Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent
2017-04-01
We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.
High current density sheet-like electron beam generator
NASA Astrophysics Data System (ADS)
Chow-Miller, Cora; Korevaar, Eric; Schuster, John
Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.
Experimental test of an online ion-optics optimizer
NASA Astrophysics Data System (ADS)
Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.
2018-07-01
A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Xu, A; Jozsef, G
Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibratedmore » with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.« less