Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Pulse Detonation Engine Test Bed Developed
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.
2002-01-01
A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.
High-Flux, High Performance H2O2 Catalyst Bed for ISTAR
NASA Technical Reports Server (NTRS)
Ponzo, J.
2005-01-01
On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)
1983-01-01
Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.
NASA Technical Reports Server (NTRS)
Allan, R. D.
1978-01-01
The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)
1983-01-01
Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.
NASA Technical Reports Server (NTRS)
Ray, Charles D.; Perry, Jay L.; Callahan, David M.
2000-01-01
As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.
NASA Technical Reports Server (NTRS)
Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.
1990-01-01
A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
2014-04-03
synthetic environment allows engineers to test and evaluate material solutions Robert DeMarco, MSBME; Gordon Cooke, MEME ; John Riedener, MSSE...ROBERT DEMARCO, MSBME, is a Project Lead Engineer and Certified LabVIEW Associate Developer. GORDON COOKE, MEME , is a Principal Investigator at the
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Advanced diesel engine component development program, tasks 4-14
NASA Astrophysics Data System (ADS)
Kaushal, Tony S.; Weber, Karen E.
1994-11-01
This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.
Advanced diesel engine component development program, tasks 4-14
NASA Technical Reports Server (NTRS)
Kaushal, Tony S.; Weber, Karen E.
1994-01-01
This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.
NASA Technical Reports Server (NTRS)
Mcconnaughey, H. V.
1992-01-01
The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.
Performance Evaluation of a Data Validation System
NASA Technical Reports Server (NTRS)
Wong, Edmond (Technical Monitor); Sowers, T. Shane; Santi, L. Michael; Bickford, Randall L.
2005-01-01
Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed.
The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research
NASA Technical Reports Server (NTRS)
Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan
2000-01-01
The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †
Frank, Jared A.; Brill, Anthony; Kapila, Vikram
2016-01-01
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.
Frank, Jared A; Brill, Anthony; Kapila, Vikram
2016-08-20
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.
2006-12-01
NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Upper Stage Flight Experiment 10K Engine Design and Test Results
NASA Technical Reports Server (NTRS)
Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.
2000-01-01
A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.
Catalyst Bed Instability Within the USFE H2O2/JP-8 Rocket Engine
NASA Technical Reports Server (NTRS)
Johnson, Curtis W.; Anderson, William; Ross, Robert; Lyles, G. (Technical Monitor)
2000-01-01
Orbital Sciences Corporation has been awarded a contract by NASA's Marshall Space Flight Center, in cooperation with the U.S. Air Force Research Laboratory's Military Space Plane Technology Program Office, for the Upper Stage Flight Experiment (USFE) program. Orbital is designing, developing, and will flight test a new low-cost, 10,000 lbf hydrogen peroxide/ JP-8 pressure fed liquid rocket. During combustion chamber tests at NASA Stennis Space Center (SSC) of the USFE engine, the catalyst bed showed a low frequency instability occurring as the H202 flow reached about 1/3 its design rate. This paper reviews the USFE catalyst bed and combustion chamber and its operation, then discusses the dynamics of the instability. Next the paper describes the dynamic computer model used to recreate the instability. The model was correlated to the SSC test data, and used to investigate possible solutions to the problem. The combustion chamber configuration which solved the instability is shown, and the subsequent stable operation presented.
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.
2014-01-01
Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2001-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2002-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Catalyst Development for Hydrogen Peroxide Rocket Engines
NASA Technical Reports Server (NTRS)
Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.
1999-01-01
The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.
Automotive Stirling engine development program
NASA Technical Reports Server (NTRS)
Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.
1986-01-01
This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.
25. Historic view of Building 202 from bed of Abram ...
25. Historic view of Building 202 from bed of Abram Creek with detention tank in foreground, April 26, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-1957-44838. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Garrett solar Brayton engine/generator status
NASA Astrophysics Data System (ADS)
Anson, B.
1982-07-01
The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.
CORBASec Used to Secure Distributed Aerospace Propulsion Simulations
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test bed is expected to demonstrate NPSS CORBASec-specific policy functionality, confirm adequate performance, and validate the required Internet configuration in a distributed collaborative aerospace propulsion environment.
Over compression influence to the performances of the spark ignition engines
NASA Astrophysics Data System (ADS)
Rakosi, E.; Talif, S. G.; Manolache, G.
2016-08-01
This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.
CERTS Microgrid Laboratory Test Bed - PIER Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert
2008-07-25
The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less
Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW
NASA Technical Reports Server (NTRS)
SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.
2001-01-01
A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.
Experimental Studies in a Reconfigurable C4 Test-bed for Network Enabled Capability
2006-06-01
Cross1, Dr R. Houghton1, and Mr R. McMaster1 Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of Engineering and Design...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of...studies into NEC by the Human Factors Integration Defence Technology Centre ( HFI -DTC). DEVELOPMENT OF THE TESTBED In brief, the C4 test-bed
Development and Testing of a High Stability Engine Control (HISTEC) System
NASA Technical Reports Server (NTRS)
Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.
1998-01-01
Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Application of real-time engine simulations to the development of propulsion system controls
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1975-01-01
The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed.
Test bed ion engine development
NASA Technical Reports Server (NTRS)
Aston, G.; Deininger, W. D.
1984-01-01
A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian
2009-01-01
This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.
1994-07-20
On the 25th Anniversary of the Apollo-11 space launch, Marshall celebrated with a test firing of the Space Shuttle Main Engine at the Technology Test Bed (SSME-TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.
Journal of Engineering Thermophysics (Selected Articles),
1983-05-20
A SURGE TEST OF A TWIN-SHAFT TURBOJET ENGINE ON GROUND TEST BED* Chiang Feng (Shengyang Aeroengine Company) ABSTRACT Instrument technique for...oscillogram for the static pressure behind the two compressors. This noise was analyzed and believed to have arisen from the vibrations of the rotating blades...booms are heard. The vibrational energy of the surge is enormous, especially in the range of 85-90% of rotational speed. One can feel the vibrations
2013-09-01
Halls Ferry Road; Bldg 3270; RM 1810 Vicksburg, MS 39180 Raymond S. Chapman Coastal and Hydraulics Laboratory U.S. Army Engineer Research and...11 Figure 6. Olmsted 1:5 scale hydraulic flume, Phase 2 test bed...Bailey, Environmental Engineering Branch (EEB) of EPED; Andy Martin, EEB; Dr. Ray Chapman, ERDC Coastal and Hydraulics Laboratory (CHL); and Pam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.; Williams, M.; Restivo, M.
All prior testing with SuperLig® 639 has been done with the aqueous concentration of LAW at ~5 M [Na+], where the resin sinks, and can be used in a conventional down-flow column orientation. However, the aqueous LAW stream from the Waste Treatment Plant is expected to be ~8 M [Na+]. The resin would float in this higher density liquid, potentially disrupting the ability to achieve a good decontamination due to poor packing of the resin that leads to channeling. Testing was completed with a higher salt concentration in the feed simulant (7.8 M [Na+]) in an engineering-scale apparatus with twomore » columns, each containing ~0.9 L of resin. Testing of this system used a simulant of the LAW solution, and substituted ReO4 - as a surrogate for TcO4 -. Results were then compared using computer modeling. Bench-scale testing was also performed, and examined an unconstrained resin bed, while engineering-scale tests used both constrained and unconstrained beds in a two-column, lead and lag sequential arrangement.« less
1991-08-01
specifications are taken primarily from the 1983 version of the ASME Boiler and Pressure Vessel Code . Other design requirements were developea from standard safe...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to provide a safe and reliable system
NASA Technical Reports Server (NTRS)
Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini
2006-01-01
Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.
Space Shuttle main engine product improvement
NASA Technical Reports Server (NTRS)
Lucci, A. D.; Klatt, F. P.
1985-01-01
The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.
Experimental Assessment of the Reciprocating Feed System
NASA Technical Reports Server (NTRS)
Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.
2006-01-01
The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.
A Living Laboratory for Building-Grid Integration
Shankle, Steve; Goyal, Siddharth
2018-01-16
At PNNL weâre developing a test bed for control of how buildings interact with the gridâan important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nationâs power systems. The test bed works by allowing researchers to conduct experiments on PNNLâs specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Lee.Fingersh@nrel.gov | 303-384-6929 Lee Jay joined NREL in 1993. For seven years, he was the test engineer on the Unsteady Aerodynamics Experiment turbine, which culminated in the NASA Ames wind tunnel test. Lee has worked on the design and controls for the variable-speed test bed and administered many
13. Building 202 exhaust scrubber water detention tank, looking southeast ...
13. Building 202 exhaust scrubber water detention tank, looking southeast from bed of Abram Creek. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, A. G.; Barker, S. N.; Phillips, R. N.
1981-09-01
Volume IV of the report on the 1000 hour programme consists of three appendices giving details of the enginmering/construction aspects of the plant and reports from Stal-Laval Turbin A.B. Appendix N has been entered individually. (LTN)
Study on the Modifications Required to Re-Engine the Lockheed D-21 Drone
NASA Technical Reports Server (NTRS)
1999-01-01
This report was prepared by Lockheed Martin (LM). The purpose of this 45 day study contract was to investigate the feasibility of using the D-21 as a Rocket Based Combined Cycle engine test-bed. The new NASA engine is entitled "Demonstration of Rocket Combined Cycle Operations (DRACO)". Four objectives were defined and modification study provide an estimation of the: (1) mudified vehicle performance; (2) required engine performance; (3) required vehicle modification; and (4) modification cost and schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, L.R.; Praeg, W.F.
1982-03-01
The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.
Vehicle-to-Grid Integration | Energy Systems Integration Facility | NREL
energy sources. We work with automakers, charging station manufacturers, and utilities to test control powertrain engineering, and [I] have the ability to do that. But I don't necessarily want to test the hose on . Capabilities Electrolyzer stack test bed (up to 1 megawatt) Multiple hydrogen compression and storage stages
AHP based Anthropometric Analysis of University Hall Bed Design in Bangladesh
NASA Astrophysics Data System (ADS)
Halder, Pobitra; Sarker, Eity; Karmaker, Chitralekha
2018-05-01
In university hall, different types of bed are used for providing sleeping environment to the students. Although there are wide variations in the design of students' bed in Bangladeshi university hall, none of them are designed properly considering the anthropometric data. In this study, four anthropometric measurements related to normal students' bed dimensions were measured from 300 students from a public university hall in Bangladesh. The feedbacks regarding different health problems and their reasons were collected from considering practical situations of the students and gathering experts' opinions. Chi-square test showed that back pain, blood circulation problem, fatigue, comfort, and sleeping problem are related to students' anthropometric measurements. The analytic hierarchy process (AHP) analysis identified students' bed length as the most responsible attribute for ergonomic problems of the students. Finally, the linear regression and correlation analysis suggested the bed dimensions based on stature of the students. This study can be a helpful guideline for industrial engineers and manufacturers in designing more comfortable students' bed.
SSME Key Operations Demonstration
NASA Technical Reports Server (NTRS)
Anderson, Brian; Bradley, Michael; Ives, Janet
1997-01-01
A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.
Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy
NASA Technical Reports Server (NTRS)
Madzsar, George C.; Bickford, Randall L.; Duncan, David B.
1994-01-01
This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.
OPAD status report - Investigation of SSME component erosion
NASA Astrophysics Data System (ADS)
Powers, W. T.; Cooper, A. E.; Wallace, T. L.
1992-04-01
Significant erosion of preburner faceplates was observed during recent SSME test firings at the NASA Technology Test Bed (TTB). The OPAD instrumentation acquired exhaust-plume spectral data during each test which indicate the occurrence of metallic species consistent with faceplate component composition. A qualitative analysis of the spectral data was conducted to evaluate the state of the engine versus time for each test according to the nominal conditions of TTB firing number 17 and number 18. In general the analyses indicate abnormal erosion levels at or near startup. Subsequent to the initial erosion event, signal levels tend to decrease towards nominal baseline values. These findings, in conjunction with post-test engine inspections, suggest that in cases under study, the erosion may not have been catastrophic to the immediate operation of the engine.
To advance the science and engineering of decontaminating pipe systems and safely disposing of high-volumes of contaminated water, Agency homeland security researchers are developing a Water Security Test Bed (WSTB).
Roland: A Case for or Against NATO Standardization?
1980-05-01
with often competing, even opposing, objectives in testing, financial auditing , cost estimating, reliability, value engineering, maintenance, training...supposedly mature system. Multilocation tests, early in the program when test beds and spare parts availability would be at a minimum, would require...Similar institutionalized conflicts resided in the audit community, which, under the Armed Services Procurement Regulation, was required to audit and
Technical problems encountered with the LALA-1 flying laboratory
NASA Technical Reports Server (NTRS)
Swidzinski, J.
1978-01-01
A description is given of structural design changes necessitated by the conversion of the An-2R agricultural support aircraft into a flying test bed to be used in feasibility studies evaluating jet engines in agricultural support aircraft. The entire rear of the fuselage was radically modified to permit mounting of the Al-25 jet engine directly behind the trailing edge of the upper wing. The standard piston engine was retained to permit comparison between the two types of power plants in typical agricultural support operations.
Advanced Expander Test Bed Program
1991-04-01
CHAMBER COOLANT DP 503. CHAMBER COOLANT DT 896. ETA C* 0.993 CHAMBER Q 12371. ENGINE STATION CONDITIONS FUEL SYSTEM CONDITIONS STATION PRESS TEMP FLOW...1597.3 452.5 7.44 1507.1 0.62 CHAMBER 1500.0 * OXYGEN SYSTEM CONDITIONS STATION PRESS TEMP FLOW ENTHALPY DENSITY ENGINE INLET 70.0 163.0- 44.64 61.2...FUEL SYSTEM CONOITIONS PRESS TEMP FLOM ENTHALPY OENSITY STATION (PSIA) (DEG R) (LB/SEC) [(BTU/LB) (LB/FT31 ENGINE INLET 73.0 38.0 7.440 -104.8 4.389
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Technology Transfer Office (TTO) at Stennis Space Center worked with a small tire recycling company, Cryopolymers, Inc. in St. Francisville, La., to improve its process for recycling used tires. Stennis helped Cryopolymers make better use of the cryogens, or super-cold fluids, used in its recycling process. First, the tires are frozen, then broken down and made into a material called 'crumb,' which can be used in asphalt road beds, agricultural hoses, and truck bed liners. TTO based this assistance on NASA's experience using cryogens in the testing of Space Shuttle Main Engines.
NASA Technical Reports Server (NTRS)
Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank
2005-01-01
Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
The 1-kW solar Stirling experiment
NASA Technical Reports Server (NTRS)
Giandomenico, A.
1981-01-01
The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Educating next-generation civil engineers about smart structures technology
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng
2005-05-01
The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.
1989-11-01
other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training
Advanced Expander Test Bed Program. Preliminary Design Review Report
1991-05-01
Engines & Space Propulsion P.O. Box 109600 West Palm Beach. Florida 33410-9600 May 1991 T :. ’ 3 J i, Prepared for: Lewis Research Center ! Under...IINTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . I 11 SUMMARY...................................................... 3 A. Design Approach... 3 B. Operating Cycles............................................... 4 C. Oxygen Turbopump
Earth Sensor Assembly for the Tropical Rainfall Measuring Mission Observatory
NASA Technical Reports Server (NTRS)
Prince, Steven S.; Hoover, James M.
1995-01-01
EDO Corporation/Barnes Engineering Division (BED) has provided the Tropical Rainfall Measurement Mission (TRMM) Earth Sensor Assembly (ESA), a key element in the TRMM spacecraft's attitude control system. This report documents the history, design, fabrication, assembly, and test of the ESA.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Sparn Photo of Bethany Sparn Bethany Sparn Researcher IV-Systems Engineering Bethany.Sparn@nrel.gov , residential HVAC equipment, heat pump water heaters, automated home energy management devices, and whole-house Energy Systems Integration Facility which provides a test bed for evaluating home energy management
Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Developing Avionics Hardware and Software for Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Aberg, Bryce Robert
2014-01-01
My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.
U.S. Army Research Laboratory Image Enhancement Test Bed User’s Manual
2013-07-01
Web Services; ARL-TR- 6393; U.S. Army Research Laboratory: Adelphi, MD, March 2013. 2. Young, S. Susan; Driggers, Ronald G. Superresolution Image...Young, S. Susan; Theilke, Matthew.; Schuler, Jonathan M. Superresolution Performance for Undersampled Imagers. Optical Engineering 2005, 44 (01). 4
Free-piston Stirling technology for space power
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1989-01-01
An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleland, J.; Purvis, C.R.
1998-06-01
The paper discusses a biomass energy conversion project being sponsored by EPA to demonstrate an enviromentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple economical operation for units < 10 MW, and (3) the option of a clean cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving-bed gasifier utilizing hogged waste wood from the Marine Corps Base atmore » Camp Lejeune, NC. A moving-bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are described briefly, relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined.« less
Integrated Evaluation of Closed Loop Air Revitalization System Components
NASA Technical Reports Server (NTRS)
Murdock, K.
2010-01-01
NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.
Vice President Pence Tours Jet Propulsion Laboratory
2018-04-28
U.S. Vice President Mike Pence, 5th from left, joined by his wife Karen Pence, left, and daughter Charlotte Pence. 2nd from left, view the Vehicle System Test Bed (VSTB) rover in the Mars Yard during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. NASA Mars Exploration Manager Li Fuk, 2nd from left, JPL Director Michael Watkins, Mars Curiosity Engineering Operations Team Chief Megan Lin, and MSL Engineer Sean McGill, right, helped explain to the Vice President and his family how they use these test rovers. Photo Credit: (NASA/Bill Ingalls)
Steeply dipping heaving bedrock, Colorado: Part 2 - Mineralogical and engineering properties
Noe, D.C.; Higgins, J.D.; Olsen, H.W.
2007-01-01
This paper describes the mineralogical and engineering properties of steeply dipping, differentially heaving bedrock, which has caused severe damage near the Denver area. Several field sites in heave-prone areas have been characterized using high sample densities, numerous testing methodologies, and thousands of sample tests. Hydrometer testing shows that the strata range from siltstone to claystone (33 to 66 percent clay) with occasional bentonite seams (53 to 98 percent clay mixed with calcite). From X-ray diffraction analyses, the claystone contains varying proportions of illite-smectite and discrete (pure) smectite, and the bentonite contains discrete smectite. Accessory minerals include pyrite, gypsum, calcite, and oxidized iron compounds. The dominant exchangeable cation is Ca2+, except where gypsum is prevalent, and Mg2+ and Na1+ are elevated. Scanning electron microscope analyses show that the clay fabric is deformed and porous and that pyrite is absent within the weathered zone. Unified Soil Classification for the claystone varies from CL to CH, and the bentonite is CH to MH. Average moisture content values are 17 percent for claystone and 32 percent for bentonite, and these are typically 0 to 5 percent lower than the plastic limit. Swell-consolidation and suction testing shows a full range of swelling potentials from low to very high. These findings confirm that type I (bed-parallel, symmetrical to asymmetrical) heave features are strongly associated with changes in bedrock composition and mineralogy. Composition changes are not necessarily a factor for type II (bed-parallel to bed-oblique, strongly asymmetrical) heave features, which are associated with movements along subsurface shear zones.
Engine Validation of Noise and Emission Reduction Technology Phase I
NASA Technical Reports Server (NTRS)
Weir, Don (Editor)
2008-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.
NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine
NASA Technical Reports Server (NTRS)
Weaver, Harold F.
2003-01-01
In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.
Simulating the Use of Alternative Fuels in a Turbofan Engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan
2013-01-01
The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.
Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Tranter; R.D. Tillotson; T.A. Todd
2005-04-01
Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Zhou, Z.; Gong, Z.; Zhou, J. J.; Tao, J. F.; Paterson, D. M.; Feng, Q.
2017-12-01
Biofilms, consisting of microorganisms and their secreted extracellular polymeric substances (EPSs), serve as "ecosystem engineers" stabilizing sedimentary environments. Natural sediment bed provides an excellent substratum for biofilm growth. The porous structure and rich nutrients allow the EPS matrix to spread deeper into the bed. A series of laboratory-controlled experiments were conducted to investigate sediment colonization of Bacillus subtilis and the penetration of EPS into the sediment bed with incubation time. In addition to EPS accumulation on the bed surface, EPS also penetrated downward. However, EPS distribution developed strong vertical heterogeneity with a much higher content in the surface layer than in the bottom layer. Scanning electron microscope images of vertical layers also displayed different micromorphological properties of sediment-EPS matrix. In addition, colloidal and bound EPSs exhibited distinctive distribution patterns. After the full incubation, the biosedimentary beds were eroded to test the variation of bed stability induced by biological effects. This research provides an important reference for the prediction of sediment transport and hence deepens the understanding of the biologically mediated sediment system and broadens the scope of the burgeoning research field of "biomorphodynamics."
Experimental Replication of an Aeroengine Combustion Instability
NASA Technical Reports Server (NTRS)
Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.
2000-01-01
Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterbone, D.E.; Richards, P.
A microprocessor controlled test bed was built for steady state mapping of petrol engines using a sweep mapping technique. The addition of an electric motor to the fast acting dynamometer allowed rapid load changes to be applied at nominally constant speed. This made it possible to consider the dynamic behaviour of the power generation sub-system of the engine. The engine was initially subjected to ramp changes of torque but these did not give consistent results. PRBS signals were then used for the same variable and a mathematical transfer function model developed for the engine power system. The engine was consideredmore » both as a continuous and sample data system. Results will be presented which show fuel management has an appreciable effect on the engine dynamic response.« less
Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element
1989-05-25
Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are
SPRITE: A TPS Test Bed for Ground and Flight
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj
2012-01-01
Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.
2000-hour cyclic endurance test of a laboratory model multipropellant resistojet
NASA Technical Reports Server (NTRS)
Morren, W. Earl; Sovey, James S.
1987-01-01
The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.
A 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet
NASA Technical Reports Server (NTRS)
Morren, W. Earl; Sovey, James S.
1987-01-01
The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.
NASA Technical Reports Server (NTRS)
Lindsey, Tony; Pecheur, Charles
2004-01-01
Livingstone PathFinder (LPF) is a simulation-based computer program for verifying autonomous diagnostic software. LPF is designed especially to be applied to NASA s Livingstone computer program, which implements a qualitative-model-based algorithm that diagnoses faults in a complex automated system (e.g., an exploratory robot, spacecraft, or aircraft). LPF forms a software test bed containing a Livingstone diagnosis engine, embedded in a simulated operating environment consisting of a simulator of the system to be diagnosed by Livingstone and a driver program that issues commands and faults according to a nondeterministic scenario provided by the user. LPF runs the test bed through all executions allowed by the scenario, checking for various selectable error conditions after each step. All components of the test bed are instrumented, so that execution can be single-stepped both backward and forward. The architecture of LPF is modular and includes generic interfaces to facilitate substitution of alternative versions of its different parts. Altogether, LPF provides a flexible, extensible framework for simulation-based analysis of diagnostic software; these characteristics also render it amenable to application to diagnostic programs other than Livingstone.
Free-jet testing at Mach 3.44 in GASL's aero/thermo test facility
NASA Technical Reports Server (NTRS)
Cresci, D.; Koontz, S.; Tsai, C. Y.
1993-01-01
A supersonic blow-down tunnel has been used to conduct tests of a hydrogen burning ramjet engine at simulated Mach 3.44 conditions. A pebble-bed type storage heater, a free standing test cabin, and a 48 foot diameter vacuum sphere are used to simulate the flight conditions at nearly matched enthalpy and dynamic pressure. A two dimensional nozzle with a nominal 13.26 inch square exit provides a free-jet test environment. The facility used for these tests is described as are the results of a flow calibration performed on the M = 3.44 nozzle. Some facility/model interactions are discussed as are the eventual hardware modifications and operational procedures required to alleviate the interactions. Some engine test results are discussed briefly to document the success of the test program.
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1988-01-01
The completion of the Space Power Demonstrator Engine (SPDE) testing is discussed, terminating with the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was greater than 22 percent. The SPDE recently was divided into 2 separate single cylinder engines, Space Power Research Engine (SPRE), that serves as test beds for the evaluation of key technology disciplines, which include hydrodynamic gas bearings, high efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor, the design, fabrication, test, and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE) to operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal. The first two phases of this program, the 650 K SPDE and the 1050 K SSE are emphasized.
Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools
2012-05-03
Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which
The optimal design of the bed structure of bedstand based on ABAQUS
NASA Astrophysics Data System (ADS)
Yang, Xudong; Dong, Yu; Ge, Qingkuan; Wang, Song
2017-12-01
Hydraulic transmission bedstand is one kind of the most commonly used in engineering machinery companies, and the bed structure is the most important part. Based on the original hydraulic transmission bedstand bed structure and the CAE technology, the original bed structure is improved. The optimized bed greatly saves the material of the production bed and improves the seismic performance of the bed. In the end, the performance of the optimized bed was compared with the original bed.
Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds
Li, Tingwen
2015-09-25
The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less
Diesel NO{sub x} reduction by plasma-regenerated absorbent beds
Wallman, P.H.; Vogtlin, G.E.
1998-02-10
Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.
Diesel NO.sub.x reduction by plasma-regenerated absorbend beds
Wallman, P. Henrik; Vogtlin, George E.
1998-01-01
Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.
Hydroentangled High Quality (HQ) Cotton Developments: Cosmetic Pads and Greige Cotton Bed Sheets
USDA-ARS?s Scientific Manuscript database
The hydroentagled development work (at a plant-scale) was carried out in year 2004 in collaboration with Hollingsworth on Wheels, Greenville, SC, and Fleissener, Germany. This work was published as two papers in Journal of Engineered Fibers and Fabrics in 2006 and 2007. Early this year physical test...
Combustor concepts for aircraft gas turbine low-power emissions reduction
NASA Technical Reports Server (NTRS)
Mularz, E. J.; Gleason, C. C.; Dodds, W. J.
1978-01-01
Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.
JPL Counterfeit Parts Avoidance
NASA Technical Reports Server (NTRS)
Risse, Lori
2012-01-01
SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.
2007-01-01
T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.
Demonstration of a Non-Toxic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Turpin, Alicia A.
2006-01-01
Three non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration s (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE s were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA
Nacelle Aerodynamic and Inertial Loads (NAIL) project. Appendix B
NASA Technical Reports Server (NTRS)
1981-01-01
The testing was conducted on the Boeing-owned 747 RA001 test bed airplane during the concurrent 767/JT9D-7R4 engine development program. Following a functional check flight conducted from Boeing Field International (BFI) on 3 October 1980, the airplane and test personnel were ferried to Valley Industrial Park (GSG) near Glasgow, Montana, on 7 October 1980. The combined NAL and 7670JT9D-7R4 test flights were conducted at the Glasgow remote test site, and the airplane was returned to Seattle on 26 October 1980.
Feasibility of rotating fluidized bed reactor for rocket propulsion
NASA Technical Reports Server (NTRS)
Ludewig, H.; Manning, A. J.; Raseman, C. J.
1974-01-01
The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.
Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting
Chan, Juliana M.; Zervantonakis, Ioannis K.; Rimchala, Tharathorn; Polacheck, William J.; Whisler, Jordan; Kamm, Roger D.
2012-01-01
In recent years, microfluidic systems have been used to study fundamental aspects of angiogenesis through the patterning of single-layered, linear or geometric vascular channels. In vivo, however, capillaries exist in complex, three-dimensional (3D) networks, and angiogenic sprouting occurs with a degree of unpredictability in all x,y,z planes. The ability to generate capillary beds in vitro that can support thick, biological tissues remains a key challenge to the regeneration of vital organs. Here, we report the engineering of 3D capillary beds in an in vitro microfluidic platform that is comprised of a biocompatible collagen I gel supported by a mechanical framework of alginate beads. The engineered vessels have patent lumens, form robust ∼1.5 mm capillary networks across the devices, and support the perfusion of 1 µm fluorescent beads through them. In addition, the alginate beads offer a modular method to encapsulate and co-culture cells that either promote angiogenesis or require perfusion for cell viability in engineered tissue constructs. This laboratory-constructed vascular supply may be clinically significant for the engineering of capillary beds and higher order biological tissues in a scalable and modular manner. PMID:23226527
Design and evaluation of fluidized bed heat recovery for diesel engine systems
NASA Technical Reports Server (NTRS)
Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.
1985-01-01
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.
F-OWL: An Inference Engine for Semantic Web
NASA Technical Reports Server (NTRS)
Zou, Youyong; Finin, Tim; Chen, Harry
2004-01-01
Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.
Security-Enhanced Autonomous Network Management
NASA Technical Reports Server (NTRS)
Zeng, Hui
2015-01-01
Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.
Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing
NASA Technical Reports Server (NTRS)
Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.
1994-01-01
A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine located at MSFC. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at ten percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65% of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.
ERIC Educational Resources Information Center
Hahn, H. A.; And Others
The purposes of this research were to evaluate the cost effectiveness of using Asynchronous Computer Conferencing (ACC) and to develop guidelines for effectively conducting high quality military training using ACC. The evaluation used a portion of the Engineer Officer Advanced Course (EOAC) as a test bed. Course materials which taught the same…
Responses of experimental river corridors to engineered log jams
USDA-ARS?s Scientific Manuscript database
Physical models of the Big Sioux River, SD, were constructed to assess the impact on flow, drag, and bed erosion and deposition in response to the installation of two different types of engineered log jams (ELJs). A fixed-bed model focused on flow velocity and forces acting on an instrumented ELJ, a...
Impact of uncertainty on modeling and testing
NASA Technical Reports Server (NTRS)
Coleman, Hugh W.; Brown, Kendall K.
1995-01-01
A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. This report will describe the determination of the uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentations, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.
NASA Astrophysics Data System (ADS)
Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.
2011-01-01
Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications report
NASA Technical Reports Server (NTRS)
1984-01-01
This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.
NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.
1992-01-01
Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.
1999-02-17
Various materials are ready for testing in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
1999-02-17
Materials are being tested in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
Porous filtering media comparison through wet and dry sampling of fixed bed gasification products
NASA Astrophysics Data System (ADS)
Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.
2014-11-01
The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.
Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel
USDA-ARS?s Scientific Manuscript database
Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...
Intelligent transient transitions detection of LRE test bed
NASA Astrophysics Data System (ADS)
Zhu, Fengyu; Shen, Zhengguang; Wang, Qi
2013-01-01
Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Boardman; B. H. O'Brien; N. R. Soelberg
About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in themore » New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.« less
Automated Test Environment for a Real-Time Control System
NASA Technical Reports Server (NTRS)
Hall, Ronald O.
1994-01-01
An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.
Surfactant selection for a liquid foam-bed photobioreactor.
Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos
2018-02-01
A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
In-situ resource utilization activities at the NASA Space Engineering Research Center
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1992-01-01
The paper describes theoretical and experimental research activities at the NASA Space Engineering Research Center aimed at realizing significant cost savings in space missions through the use of locally available resources. The fundamental strategy involves idea generation, scientific screening, feasibility demonstrations, small-scale process plant design, extensive testing, scale-up to realistic production rates, associated controls, and 'packaging', while maintaining sufficient flexibility to respond to national needs in terms of specific applications. Aside from training, the principal activities at the Center include development of a quantitative figure-of-merit to quickly assess the overall mission impact of individual components that constantly change with advancing technologies, extensive tests on a single-cell test bed to produce oxygen from carbon dioxide, and the use of this spent stream to produce methane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutaleb, T.; Pluschkell, T. P.
The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.
Data Management System (DMS) testbed user's manual development, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Mcbride, John G.; Cohen, Norman
1986-01-01
A critical review of the network communication services contained in the Tinman User's Manual for Data Management System Test Bed (Tinman DMS User's Manual) is presented. The review is from the perspective of applying modern software engineering principles and using the Ada language effectively to ensure the test bed network communication services provide a robust capability. Overall the material on network communication services reflects a reasonably good grasp of the Ada language. Language features are appropriately used for most services. Design alternatives are offered to provide improved system performance and a basis for better application software development. Section two contains a review and suggests clarifications of the Statement of Policies and Services contained in Appendix B of the Tinman DMS User's Manual. Section three contains a review of the Network Communication Services and section four contains concluding comments.
Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA
Remo, Jonathan; Heine, Ruben A.; Ickes, Brian
2016-01-01
In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.; Allison, M.L.
The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
This report is the fifth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP), sponsored by the U.S. Department of Energy (DOE). The report was prepared by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, a unit of Allied Signal, Inc. The report includes information provided by Garrett Ceramic Components, and the Norton Advanced Ceramics Company, (formerly Norton/TRW Ceramics), subcontractors to GAPD on the ATTAP. This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. through 31 Dec. 1992. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990's. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fifth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs, and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride materials and processes.
Space station environmental control and life support systems test bed program - an overview
NASA Astrophysics Data System (ADS)
Behrend, Albert F.
As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space Station ECLSS Test Bed Program. The Space Station ECLSS Test Bed Program, which is managed by the NASA, is designed to parallel and to provide continuing support to the Space Station Program. The prime objective of this multiphase test bed program is to provide viable, mature, and enhancing technical options in time for Space Station implementation. To accomplish this objective, NASA is actively continuing the development and testing of critical components and engineering preprototype subsystems for urine processing, washwater recovery, water quality monitoring, carbon dioxide removal and reduction, and oxygen generation. As part of the ECLSS Test Bed Program, these regenerative subsystems and critical components are tested in a development laboratory to characterize subsystem performance and to identify areas in which further technical development is required. Proven concepts are then selected for development into prototype subsystems in which flight issues such as packaging and maintenance are addressed. These subsystems then are to be assembled as an integrated system and installed in an integrated systems test bed facility for extensive unmanned and manned testing.
Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.
1976-01-01
A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)
2014-06-01
motion capture data used to determine position and orientation of a Soldier’s head, turret and the M2 machine gun • Controlling and acquiring user/weapon...data from the M2 simulation machine gun • Controlling paintball guns used to fire at the GPK during an experimental run • Sending and receiving TCP...Mounted, Armor/Cavalry, Combat Engineers, Field Artillery Cannon Crewmember, or MP duty assignment – Currently M2 .50 Caliber Machine Gun qualified
Activity and accomplishments of dish/Stirling electric power system development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1985-01-01
The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
Human impacts on fluvial systems - A small-catchment case study
NASA Astrophysics Data System (ADS)
Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth
2010-05-01
Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.
Heat flux measurement in SSME turbine blade tester
NASA Astrophysics Data System (ADS)
Liebert, Curt H.
1990-11-01
Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.
Heat flux measurement in SSME turbine blade tester
NASA Astrophysics Data System (ADS)
Liebert, Curt H.
Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.
Application of advanced coating techniques to rocket engine components
NASA Technical Reports Server (NTRS)
Verma, S. K.
1988-01-01
The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.
Knock detection system to improve petrol engine performance, using microphone sensor
NASA Astrophysics Data System (ADS)
Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra
2017-01-01
An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
1983-10-05
battle damage. Others are local electrical power and cooling disruptions. Again, a highly critical function is lost if its computer site is destroyed. A...formalized design of the test bed to meet the requirements of the functional description and goals of the program. AMTEC --Z3IT TASKS: 610, 710, 810
Improved Testing Capability and Adaptability Through the Use of Wireless Sensors
NASA Technical Reports Server (NTRS)
Solano, Wanda M.
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms.
Effect of first and second generation biodiesel blends on engine performance and emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au
The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. Themore » study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.« less
Grooved Fuel Rings for Nuclear Thermal Rocket Engines
NASA Technical Reports Server (NTRS)
Emrich, William
2009-01-01
An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Astrophysics Data System (ADS)
Kobak, J. A.; Rollbuhler, R. J.
1981-10-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Technical Reports Server (NTRS)
Kobak, J. A.; Rollbuhler, R. J.
1981-01-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
NASA Technical Reports Server (NTRS)
Rabelo, Luis C.
2002-01-01
This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.
NASA Astrophysics Data System (ADS)
Borja, P.; Vanacker, V.; Alvarado, D.; Govers, G.
2012-04-01
A better insight in the processes controlling sediment generation, transport and deposition in badlands is necessary to enhance restoration of degraded soils through eco-engineering techniques. In this study, we evaluate the effect of different bio-engineering measures on soil and slope stability. Five micro-catchments (of 0.2 to 5 ha) were selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The micro-catchments differ only by land cover and degree of implementation of soil and water conservation measures. Bio-engineering techniques were used to construct dikes made of fascines of wooden sticks and earth-filled tires in active gully beds, where they are most efficient to reduce water and sediment transport. The experimental design consists of three micro-catchments within highly degraded lands: (DI) micro-catchment with bio-engineering measures concentrated in the active gully beds, (DF) with reforestation of Eucalyptus trees, and (DT) reference situation without any conservation measures. Two micro-catchments were monitored in agricultural lands with (AI) and without (AT) bio-engineering measures in the active gully beds. All catchments were equipped with San Dimas flumes to measure water flow, and sediment traps to monitor sediment export. In the (active) gully beds, various parameters related to gully stability (soil water content, bed elevation, vegetation cover, sedimentation/erosion) were monitored at weekly intervals. First results show that bio-engineering techniques are efficient to stabilize active gully beds through a reduction of the rapid concentration of excess rainfall and the sediment production and transfer. Fascines made of wooden sticks are far more efficient than earth-filled tires. Sediment deposition behind dikes is strongly dependent on precedent rainfall events, and the slope and vegetation cover of the gully floor. The sediment deposited facilitates colonization of the gully floor by native grass and shrub species. Analyses of soil samples indicates that the soil moisture is significantly higher (and the bulk density lower) in the deposition zones within restored gullies compared to the reference situation. During rainfall events, the infiltration in the deposition zones becomes important. The increase in water availability in the gully floor permits grass seeds to germinate and shoot rapidly, which strongly enhances gully stabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1989-01-01
Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.
NASA Astrophysics Data System (ADS)
Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian
2014-12-01
This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.
Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian
2014-12-01
This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.
Comparison of Structural and Functional Ocular Outcomes Between 14- and 70 Day Bed Rest
NASA Technical Reports Server (NTRS)
Cromwell, R. L.; Taibbi, G.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, R. J.; Vizzeri, G.
2016-01-01
Purpose: To compare structural and functional ocular outcomes in healthy human subjects undergoing 14- and/or 70-day head-down-tilt bed rest (HDTBR). We hypothesized the amount of HDTBR-induced ocular changes be affected by the HDTBR duration. Methods: The studies were conducted at the NASA Flight Analogs Research Unit, The University of Texas Medical Branch at Galveston, Galveston, TX. Participants were selected using NASA standard screening procedures. Standardized NASA screening procedures and bed rest conditions (e.g., strict sleep-wake cycle, standardized diet, continuous video monitoring) were implemented in both studies. Participants maintained a 6deg HDTBR position for 14 and/or 70 consecutive days and did not engage in exercise. Weekly ophthalmological examinations were conducted in the sitting (pre/post-bed rest only) and HDT positions. Ocular outcomes of interest included: near best-corrected visual acuity (BCVA); spherical equivalent, as determined by cycloplegic autorefraction; Goldmann applanation tonometry and iCare (Icare Finland Oy, Espoo, Finland) intraocular pressure (IOP) measurement; color vision; red dot test; modified Amsler grid test; confrontational visual field; stereoscopic color fundus photography; Spectralis OCT (Heidelberg Engineering, GmbH, Heidelberg, Germany) retinal nerve fiber layer thickness (RNFLT), peripapillary and macular retinal thicknesses. Mixed-effects linear models were used to compare pre- and post-HDTBR observations between 14- and 70-day HDTBR for our continuously scaled outcomes.
77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
.... 120322212-2212-01] Spectrum Sharing Innovation Test-Bed Pilot Program AGENCY: National Telecommunications... Innovation Test-Bed pilot program to assess whether devices employing Dynamic Spectrum Access techniques can... Spectrum Sharing Innovation Test-Bed (Test-Bed) pilot program to examine the feasibility of increased...
NASA Astrophysics Data System (ADS)
Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio
2017-06-01
The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.
A&M. Grading and drainage plan. Shows natural ground elevation of ...
A&M. Grading and drainage plan. Shows natural ground elevation of the (presumed) dry lake-bed shore and berm shielding the administrative area from the hot shop area. Ralph M. Parsons 902-2&3-ANP-U 4. Date: December 1953. Approved by INEEL Classification Office for public release. INEEL code no. 032-0000-00-693-106691 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
2004-04-15
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Propulsion Ground Testing with High Test Peroxide: Lessons Learned
NASA Technical Reports Server (NTRS)
Bruce, Robert; Taylor, Gary; Taliancich, Paula
2002-01-01
Propulsion Ground Testing with High Test Peroxide (85 to 98% concentration) began at the NASA John C. Stennis Space Center in calendar year 1998, when the E3 Test Facility was modified to accomodate hydrogen peroxide (H2O2) in order to suport the research and development testing of the USAF Upper Stage Flight Experiment rocket engine. Since that time, efforts have continued to provide actual and planned test services to various customers, both U.S. Government and Commercial, in the ground test of many test articles, ranging from gas generators, to catalyst beds, to turbomachinery, to main injectors, to combustion chambers, to integrated rocket engines, to integrated stages. Along this path, and over the past 4 years, there has been both the rediscovery of previously learned lessons, through literature search, archive review, and personal interviews, as well as the learning of many new lessons as new areas are explored and new endeavors are tried. This paper will summarize those lessons learned in an effort to broaden the knowledge base as High Test Peroxide is considered more widely for use in rocket propulsion applications.
Space transportation propulsion application - A development challenge
NASA Astrophysics Data System (ADS)
Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.
1989-10-01
This paper presents an approach to achieving a cost-effective vertical takeoff, horizontal landing earth-to-orbit vehicle. The key propulsion system problems are addressed. The approach leads to a near-term rocket-powered single-stage-to-orbit system. A flying test-bed vehicle development program is described which allows the orderly development of vital advanced propulsion system and vehicle structural technology within a reasonable cost. The experimental (X-n) vehicle approach also allows the development of operational procedures that result in airline-type costs to space, and permits concepts, such as heavy-lift flight configurations, to be tested in a stepwise manner. Thrust modulation, instead of gimballed engines, allows a significant weight reduction in the propulsion system. Air-breathing airturborocket engines are used for loiter and landing to ensure safe return to earth.
NASA Technical Reports Server (NTRS)
Glasgow, J. C.; Birchenough, A. G.
1978-01-01
The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.
Demonstration of Advanced C/SiC Cooled Ramp
NASA Technical Reports Server (NTRS)
Bouquet, Clement; Laithier, Frederic; Lawrence, Timothy; Eckel, Andrew; Munafo, Paul M. (Technical Monitor)
2002-01-01
Under a NASA contract, SPS is evaluating its C/SiC to metal brazing technique for the development of light, composite, actively cooled panels. The program first consisted of defining a system applicable to the X-33 nozzle ramp. SPS then performed evaluation tests for tube, composite, and braze material selection, and for the adaptation of braze process parameters to the parts geometry. SPS is presently manufacturing a 250x60 millimeter squared specimen, including 10 metallic tubes, which will be cycled in the NASA/GRC-CELL-22 test bed under engine representative conditions.
A gene network simulator to assess reverse engineering algorithms.
Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2009-03-01
In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.
Exhaust gas treatment in testing nuclear rocket engines
NASA Astrophysics Data System (ADS)
Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.
1993-01-01
With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.
Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis
NASA Astrophysics Data System (ADS)
Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus
2011-05-01
The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
NASA Astrophysics Data System (ADS)
Bera, P.; Wędrychowicz, D.
2016-09-01
The article presents the influence of number and values of ratios in stepped gearbox on mileage fuel consumption in a city passenger car. The simulations were conducted for a particular vehicle characterized by its mass, body shape, size of tires and equipped with a combustion engine for which the characteristic of fuel consumption in dynamic states was already designated on the basis of engine test bed measurements. Several designs of transmission with different number of gears and their ratios were used in virtual simulations of road traffic, particularly in the NEDC test, to calculate mileage fuel consumption. This allows for a quantitative assessment of transmission parameters in terms of both vehicle economy and dynamic properties. Also, based on obtained results, recommendations for the selection of a particular vehicle for a specific type of exploitation have been formulated.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
West Virginia Geological Survey's role in siting fluidized bed combustion facilities
Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.
1989-01-01
A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop test beds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC Test Bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in operation and evolution of the SSF are addressed.
1993-02-04
be done by using the corps’ organic construction management assets at contaminated military sites in a test bed or incubator fashion to hedge high ...wastes at military sites is introduced to highlight its efficacy in developing high risk, high payoff remediation techrhologies. A number of...investment. Exposure to potential litigation makes such ventures nearly impossible. Small contractors attempting to penetrate the market with innovative
Avionics Simulation, Development and Software Engineering
NASA Technical Reports Server (NTRS)
2002-01-01
During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, John S.
2015-03-01
Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. R. Mann; T. A. Todd; K. N. Brewer
1999-04-01
Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
A unique nuclear thermal rocket engine using a particle bed reactor
NASA Astrophysics Data System (ADS)
Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.
1992-01-01
Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.
Summary of Technical Meeting To Compare US/French Approaches for Physical Protection Test Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, Thomas Kimball; Martinez, Ruben; Thomas, Gerald
In September 2015, representatives of the US Department of Energy/National Nuclear Security Administration, including test bed professionals from Sandia National Laboratories, and representatives of the French Alternative Energies and Atomic Energy Commission participated in a one-week workshop to share best practices in design, organization, operations, utilization, improvement, and performance testing of physical protection test beds. The intended workshop outcomes were to (1) share methods of improving respective test bed methodologies and programs and (2) prepare recommendations for standards regarding creating and operating testing facilities for nations new to nuclear operations. At the workshop, the French and American subject matter expertsmore » compared best practices as developed at their respective test bed sites; discussed access delay test bed considerations; and presented the limitations/ constraints of physical protection test beds.« less
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Emissions and performance of catalysts for gas turbine catalytic combustors. [automobile engines
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1977-01-01
Three noble-metal monolithic catalysts were tested in a 12-cm-dia. combustion test rig to obtain emissions and performance data at conditions simulating the operation of a catalytic combustor for an automotive gas turbine engine. Tests with one of the catalysts at 800 K inlet mixture temperature, 3 x 10 to the 5th Pa pressure, and a reference velocity (catalyst bed inlet velocity) of 10 m/sec demonstrated greater than 99 percent combustion efficiency for reaction temperatures higher than 1300 K. With a reference velocity of 25 m/sec the reaction temperature required to achieve the same combustion-efficiency increased to 1380 K. The exit temperature pattern factors for all three catalysts were below 0.1 when adiabatic reaction temperatures were higher than 1400 K. The highest pressure drop was 4.5 percent at 25 m/sec reference velocity. Nitrogen oxides emissions were less than 0.1 g NO2/kg fuel for all test conditions.
Reverse Engineering Crosswind Limits - A New Flight Test Technique?
NASA Technical Reports Server (NTRS)
Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.
2013-01-01
During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.
28. Main engine air pump located to port side of ...
28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design
NASA Technical Reports Server (NTRS)
White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald
1988-01-01
The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.
2012-09-20
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Using ceremonial shovels to mark the site, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser
2012-09-20
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Holding ceremonial shovels, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser
Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L
2003-01-01
In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.
COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED
COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED. Jacky A. Rosati, Dept. of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Chong S. Kim, USEPA National Health and Environmental Effects Research Laboratory...
NASA Technical Reports Server (NTRS)
Walter, Patrick L.
1992-01-01
A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.
Flow Simulation of N2B Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2012-01-01
The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.
Convair F-106B Delta Dart with Research Engines
1969-08-21
A Convair F-106B Delta Dart rolls to the right to reveal the two research engines installed under its wings by the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis acquired the aircraft in October of 1966 to study inlet and nozzle designs for the supersonic transport engine program. Two General Electric J85 engines were mounted beneath the F-106B’s wings and operated from Mach 1 to 1.5. The right wing always carried reference nozzle for which the performance was known. Six supersonic nozzle variations and two inlets were tested on the left engine. The designs had already been studied in the Lewis wind tunnels, but those tests were limited by shock waves in the tunnels. Most F-106B flights were flown in a 200-mile path over the lake between Buffalo and Sandusky, known as the Lake Erie Corridor. The 1100-mile-per-hour flight took only 11 minutes at an altitude of 30,000 feet. The aircraft almost always returned with a depleted fuel supply so a Visual Flight Rules operation was required. Following the crash of another jet fighter at Lewis in July 1969, the F-106s were stationed at Selfridge Air Force Base in Michigan. NASA pilots flew transport planes each morning to the base before commencing the F-106B missions. After the supersonic transport program was cancelled, the F-106B was used as a test bed for additional engine exhaust nozzle configurations. The F-106B was also used to test inlet configurations for the noise reduction program.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.
Engineering central metabolism - a grand challenge for plant biologists.
Sweetlove, Lee J; Nielsen, Jens; Fernie, Alisdair R
2017-05-01
The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S ...
18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S CABIN. THE AFTER BULKHEAD OF THE ENGINE ROOM WAS REMOVED WHEN THE ENGINE WAS SALVAGED. ENGINE BED AND GEARBOX ARE REMNANTS OF THE ENGINE INSTALLATION. CABLES AND CHAINS ARE IN PLACE TO HELP STABILIZE THE HULL AND TRANSOM. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA
Propulsion Research and Technology: Overview
NASA Technical Reports Server (NTRS)
Cole, John; Schmidt, George
1999-01-01
Propulsion is unique in being the main delimiter on how far and how fast one can travel in space. It is the lack of truly economical high-performance propulsion systems that continues to limit and restrict the extent of human endeavors in space. Therefore the goal of propulsion research is to conceive and investigate new, revolutionary propulsion concepts. This presentation reviews the development of new propulsion concepts. Some of these concepts are: (1) Rocket-based Combined Cycle (RBCC) propulsion, (2) Alternative combined Cycle engines suc2 as the methanol ramjet , and the liquid air cycle engines, (3) Laser propulsion, (4) Maglifter, (5) pulse detonation engines, (6) solar thermal propulsion, (7) multipurpose hydrogen test bed (MHTB) and other low-G cryogenic fluids, (8) Electric propulsion, (9) nuclear propulsion, (10) Fusion Propulsion, and (11) Antimatter technology. The efforts of the NASA centers in this research is also spotlighted.
Test bed design for evaluating the Space Station ECLSS Water Recovery System
NASA Technical Reports Server (NTRS)
Ezell, Timothy G.; Long, David A.
1990-01-01
The design of the Phase III Environmental Control and Life Support System (ECLSS) Water Recovery System (WRS) test bed is in progress at the Marshall Space Flight Center (MSFC), building 4755, in Huntsville, Alabama. The overall design for the ECLSS WRS test bed will be discussed. Described within this paper are the design, fabrication, placement, and testing of the supporting facility which will provide the test bed for the ECLSS subsystems. Topics to be included are sterilization system design, component selection, microbial design considerations, and verification of test bed design prior to initiating WRS testing.
Thin film thermocouples for high temperature turbine application
NASA Technical Reports Server (NTRS)
Martin, Lisa C.
1991-01-01
The objective is to develop thin film thermocouples (TFTC) for Space Shuttle Main Engine (SSME) components such as the high pressure fuel turbopump (HPFTP) blades and to test TFTC survivability and durability in the SSME environment. The purpose for developing TFTC's for SSME components is to obtain blade temperatures for computational models developed for fluid mechanics and structures. The TFTC must be able to withstand the presence of high temperature, high pressure hydrogen as well as a severe thermal transient due to a cryogenic to combustion temperature change. The TFTC's will eventually be installed and tested on SSME propulsion system components in the SSME test bed engine. The TFTC's were successfully fabricated on flat coupons of MAR-M 246 (Hf+), which is the superalloy material used for HPFTP turbine blades. The TFTC's fabricated on flat coupons survived thermal shock cycling as well as testing in a heat flux measurement facility which provided a rapid thermal transient. The same fabrication procedure was used to deposit TFTC's on HPFTP first stage rotor blades. Other results from the experiments are presented, and future testing plans are discussed.
Materials Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.
Material Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Using Diffusion Bonding in Making Piezoelectric Actuators; Wireless Temperature-Monitoring System; Analog Binaural Circuits for Detecting and Locating Leaks; Mirrors Containing Biomimetic Shape-Control Actuators; Surface-Micromachined Planar Arrays of Thermopiles; Cascade Back-Propagation Learning in Neural Networks; Perovskite Superlattices as Tunable Microwave Devices; Rollable Thin-Shell Nanolaminate Mirrors; Flight Tests of a Ministick Controller in an F/A-18 Airplane; Piezoelectrically Actuated Shutter for High Vacuum; Bio-Inspired Engineering of Exploration Systems; Microscope Cells Containing Multiple Micromachined Wells; Electrophoretic Deposition for Fabricating Microbatteries; Integrated Arrays of Ion-Sensitive Electrodes; Model of Fluidized Bed Containing Reacting Solids and Gases; Membrane Mirrors With Bimorph Shape Actuators; Using Fractional Clock-Period Delays in Telemetry Arraying; Developing Generic Software for Spacecraft Avionics; Numerical Study of Pyrolysis of Biomass in Fluidized Beds; and Assessment of Models of Chemically Reacting Granular Flows.
Blanchard, Robert A.; Wagner, Daniel M.; Evans, Dennis A.
2010-01-01
In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.
NASA Technical Reports Server (NTRS)
Knox, James C.; Howard, David F.; Perry, Jay L.
2007-01-01
In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Greene, Sandy; Protz, Chris
2017-01-01
NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.
Module Measurements | Photovoltaic Research | NREL
prototype concentrator evaluation test bed, and the Daystar DS-10/125 portable I-V curve tracer. Standard Evaluation Test Bed. We developed this test bed to be able to evaluate I-V characteristics throughout the day a function of time, temperature, and light level. This test bed data set is also used to evaluate
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta
2006-01-01
The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.
1993-05-01
further examination or disposal. 2.2.2.3 Non -Nucleer Engine Integration Tests. EITs would be designed to demonstrate proper function of the propellant...located 42 miles southwest of the CTF, is designated as a Class I air quality region. The nearest non -attainment area is Pocatello, Idaho, 75 miles south of...accelerate. combustiomn. Nintrogen and helnee are Staple CEnergy suggestsa design eail ofAt a em-le 500 aenIIirons 1 aoph,,,,ants ad non -reastive. ?annual
1991-07-01
predicted by equation using actual chart response obtained from each calibration gas response. (Concentration of cal. gas,l Calibration error, % span • ppm...Analyzer predicted by cali- Col. gas Chart divisions equation* bration Cylinder conc., error,** Drift,***INo. ppm or % Pretest Posttest Pretest Posttest...2m ~J * Correlation coef. * qgq’jq **Analyzer ca.error, % spn (Cal. gas conc. conc. predicted ) x 1003 cal spanSpan value Acceptable limit x ɚ% of
Web-Based Distributed Simulation of Aeronautical Propulsion System
NASA Technical Reports Server (NTRS)
Zheng, Desheng; Follen, Gregory J.; Pavlik, William R.; Kim, Chan M.; Liu, Xianyou; Blaser, Tammy M.; Lopez, Isaac
2001-01-01
An application was developed to allow users to run and view the Numerical Propulsion System Simulation (NPSS) engine simulations from web browsers. Simulations were performed on multiple INFORMATION POWER GRID (IPG) test beds. The Common Object Request Broker Architecture (CORBA) was used for brokering data exchange among machines and IPG/Globus for job scheduling and remote process invocation. Web server scripting was performed by JavaServer Pages (JSP). This application has proven to be an effective and efficient way to couple heterogeneous distributed components.
An online spacecraft environment interactions information system
NASA Technical Reports Server (NTRS)
Lauriente, Michael
1990-01-01
This paper reviews the role that EnviroNET assumes as a contemporary system that scientists and engineers can use to share information on networks that are connected globally. Advantage is being taken to use this powerful communication tool for the space community to articulate the various anomalies that our space systems are experiencing. EnviroNET is being considered as a test bed for developing an expert system for diagnosing environmentally induced anomalies for spacecraft. The various offline activities in progress toward this objective are described.
Improve SSME power balance model
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1992-01-01
Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.
CryoCart Restoration and Vacuum Pipe Construction
NASA Technical Reports Server (NTRS)
Chaidez, Mariana
2016-01-01
Propulsion systems that utilize hypergolic propellants have been used to power space vehicles since the beginning of the space program. Liquid methane and oxygen propulsion systems have emerged as an alternative and have proven to be more environmentally friendly. The incorporation of liquid methane/liquid oxygen (LOX) into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the system. Consequently, reducing the total mass of the vehicle which is a crucial aspect that is considered when planning space missions to both the Moon and Mars [1]. Project Morpheus has made significant advancements in liquid oxygen/liquid methane propulsion system technologies by incorporating a LOX/methane propulsion system to a vertical test bed. The vehicle consisted of a 5,000 lb main engine and four 20 lb remote control system (RCS) engines that utilize liquid methane/LOX as its propellant [1]. The vehicle completed successful flight testing at Kennedy Space Center in 2014 which marked the completion of the Morpheus project. Subsequent projects utilizing Morpheus' vertical test bed have been developed to make further advancements. One of the subsequent projects consisted of the addition of a smaller 2,000 lb main engine and a cold helium heat exchanger which would make it possible for a pressurant tank systems to be send to Mars or the Moon by significantly decreasing the overall mass and volume of the pressurant tank. The hot fire tests of the integrated system with the smaller main engine and cold helium heat exchanger were successful at sea level, but further studies are being conducted to better understand how the vertical test bed will behave under thermal-vacuum conditions. For this reason, the integrated vehicle will be taken to Plum Brook to be tested in a chamber capable of simulating these conditions. To ensure that the vehicle will function properly under vacuum conditions, testing will be first completed at the component level. During this process, the igniter of the main engine and the RCS thrusters will be tested under a vacuum. To complete the testing of the components, the test setup first needed to be finalized. The CryoCart is being used to feed the propellants to the test article. The CryoCart is a movable test set-up that was developed in 2009 to provide a mobile platform for testing oxygen/methane systems with hot-fire capability up to 100 lbf. The CryoCart consists of three different systems: Oxygen, Methane, and liquid Nitrogen. The Oxygen and Methane systems are placed into two different carts while the liquid nitrogen system is mainly located in the methane cart. Over the years, the CryoCart has been utilized for different projects and has undergone deterioration. For this reason, a new phase has been developed to rebuild it to working conditions once again. During my internship, I was aiding in the construction and restoration of the CryoCart. In the initial stages of the process, I updated the fluid and electrical schematics for the oxygen, methane, and test article systems. The original CryoCart consisted of an electrical panel that utilized electromechanical relays and a terminal to drive the igniter power and signal, as well as the main fuel and oxygen valves. This electrical panel connected to the CryoCart through various wire harnesses that could be found exiting from the CryoCart. First, it was determined how these harnesses connected to the electromechanical relays so that they worked correctly. Once the electrical system was understood, an alternative for the electromechanical relays and the Molex connectors used throughout the system was sought since these components can often prove to be unreliable. Solid State relays and MIL connectors were purchased to serve as replacements. Upon arrival of the parts, crimping and wiring was completed to install the new solid state relays and MIL connectors. During the replacement of the relays and connectors, system checks of the electrical system were ran to ensure that the system was working correctly. While completing system checks, the pressure transducers that were not functioning properly were also replaced and any issue with the wiring or signal was addressed. Once the electrical components were replaced, the restoration of the fluid system began. Parts of the tubing in the CryoCart had to be rebuild and often consisted of sizing, cutting, bending, filing, and sanding the tubing to prepare it to be flared. Many components had to be proof-tested to bring their certifications up to date, and several components had to be replaced. Various flex hoses, valves, and fittings were send to the Clean Lab because they were new, dirty, or had gone through proof-testing. Once they arrived from the cleaning lab they had to be put back to the system and leak checks and functional tests were conducted. In the Nitrogen system, the copper tubing located in the Oxygen cart was rebuild and Aerogel insulation was added to this section. A new gaseous nitrogen system was added to the CryoCart to purge the vacuum tube which will serve as the test chamber. Once the CryoCart was completed, construction of parts of the vacuum tube began. A flange was manufactured with welded fittings to hold the line of the vacuum pump as well as some extra fittings which will serve as extra inlets used to introduce fluid lines to the vacuum tube. Stress analysis was ran in this flange to ensure that it would not fail under vacuum conditions. The fluid lines leading from the air side of the vacuum to the test article were also constructed and added to the mount that had already been manufactured. Three different sets of tubing were constructed to accommodate the seven different RCS thruster and the main engine igniter that are going to be tested. Full electrical system checks were completed to ensure that all the wire harnesses and valves were functioning. Upon the completion of the CryoCart and the vacuum tube, hot fire testing for the RCS thrusters and the main engine igniter are going to begin. During this time any issues encountered with the engines or igniter will be addressed to ensure that the components function under vacuum conditions. After successful completion of testing, the vertical test bed, Morpheus, will be rebuilt and prepared to be sent to Plum Brook. In Plum Brook, the vehicle will be tested in the thermal-vacuum chamber to demonstrate that integrated lox-methane propulsion system operation in space-like conditions. This internship has allowed me the opportunity to gain valuable hands on experience and to develop skills that will aid in my education as well as in the workforce, while at the same time helping me determine that I would like to further pursue a career in propulsion engineering.
The Space Station Module Power Management and Distribution automation test bed
NASA Technical Reports Server (NTRS)
Lollar, Louis F.
1991-01-01
The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
An EMTP system level model of the PMAD DC test bed
NASA Technical Reports Server (NTRS)
Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur
1991-01-01
A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.
An Airborne Parachute Compartment Test Bed for the Orion Parachute Test Program
NASA Technical Reports Server (NTRS)
Moore, James W.; Romero, Leah M.
2013-01-01
The test program developing parachutes for the Orion/MPCV includes drop tests with parachutes deployed from an Orion-like parachute compartment at a wide range of dynamic pressures. Aircraft and altitude constraints precluded the use of an Orion boilerplate capsule for several test points. Therefore, a dart-shaped test vehicle with a hi-fidelity mock-up of the Orion parachute compartment has been developed. The available aircraft options imposed constraints on the test vehicle development and concept of operations. Delivery of this test vehicle to the desired velocity, altitude, and orientation required for the test is a di cult problem involving multiple engineering disciplines. This paper describes the development of the test technique. The engineering challenges include extraction from an aircraft, reposition of the extraction parachute, and mid-air separation of two vehicles, neither of which has an active attitude control system. The desired separation behavior is achieved by precisely controlling the release point using on-board monitoring of the motion. The design of the test vehicle is also described. The trajectory simulations and other analyses used to develop this technique and predict the behavior of the test vehicle are reviewed in detail. The application of the technique on several successful drop tests is summarized.
International Space Station: Transitional Platform for Moon and Mars
NASA Technical Reports Server (NTRS)
Greeniesen, Michael C.
2006-01-01
Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The space station data management system involves networks of computing resources that must work cooperatively and reliably over an indefinite life span. This program requires a long schedule of modular growth and an even longer period of maintenance and operation. The development and operation of space station computing resources will involve a spectrum of systems and software life cycle activities distributed across a variety of hosts, an integration, verification, and validation host with test bed, and distributed targets. The requirement for the early establishment and use of an apporopriate Computer Systems and Software Engineering Support Environment is identified. This environment will support the Research and Development Productivity challenges presented by the space station computing system.
Optimizing spacecraft design - optimization engine development : progress and plans
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim
2003-01-01
At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.
Flow resistance and suspended load in sand-bed rivers: Simplified stratification model
Wright, S.; Parker, G.
2004-01-01
New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.
Test Results from a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
Test Results From a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.
Authoring Immersive Mixed Reality Experiences
NASA Astrophysics Data System (ADS)
Misker, Jan M. V.; van der Ster, Jelle
Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.
1996-11-19
The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.
17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS ...
17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS EXAMINING MODEL PUMPS, VIEW FROM MODEL BED. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS
In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels
Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications. PMID:23360990
NASA Technical Reports Server (NTRS)
Marmolejo, Jose; Ewert, Michael
2016-01-01
The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.
Brayton cycle solarized advanced gas turbine
NASA Technical Reports Server (NTRS)
1986-01-01
Described is the development of a Brayton Engine/Generator Set for solar thermal to electrical power conversion, authorized under DOE/NASA Contract DEN3-181. The objective was to design, fabricate, assemble, and test a small, hybrid, 20-kW Brayton-engine-powered generator set. The latter, called a power conversion assembly (PCA), is designed to operate with solar energy obtained from a parobolic dish concentrator, 11 meters in diameter, or with fossil energy supplied by burning fuels in a combustor, or by a combination of both (hybrid model). The CPA consists of the Brayton cycle engine, a solar collector, a belt-driven 20-kW generator, and the necessary control systems for automatic operation in solar-only, fuel-only, and hybrid modes to supply electrical power to a utility grid. The original configuration of the generator set used the GTEC Model GTP36-51 gas turbine engine for the PCA prime mover. However, subsequent development of the GTEC Model AGT101 led to its selection as the powersource for the PCA. Performance characteristics of the latter, thermally coupled to a solar collector for operation in the solar mode, are presented. The PCA was successfully demonstrated in the fuel-only mode at the GTEC Phoenix, Arizona, facilities prior to its shipment to Sandia National Laboratory in Albuquerque, New Mexico, for installation and testing on a test bed concentractor (parabolic dish). Considerations relative to Brayton-engine development using the all-ceramic AGT101 when it becomes available, which would satisfy the DOE heat engine efficiency goal of 35 to 41 percent, are also discussed in the report.
The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...
Research on preventive technologies for bed-separation water hazard in China coal mines
NASA Astrophysics Data System (ADS)
Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli
2018-03-01
Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.
CDRA-4EU Testing in Support of ISS
NASA Technical Reports Server (NTRS)
Peters, Warren; Stanley, Christine; Knox, Jim
2016-01-01
NASA's Marshall Space Flight Center (MSFC) recently conducted tests on two desiccant beds of the four-bed molecular sieve carbon dioxide removal assembly (CDRA) returned from the International Space Station (ISS). MSFC had previously characterized the relationship between CDRA-4EU inlet conditions and the dewpoint at the desiccant bed exit and between the compressor and accumulator that make up the Carbon Dioxide Management Assembly (CDMA). MSFC installed the flight desiccant beds into the existing Exploration Test Chamber (E-chamber) using a suite of instrumentation not available on orbit to investigate the orbital performance of the desiccant beds. Test objectives, facility design and test results are presented.
Design, fabrication and test of the RL10 derivative II chamber/primary nozzle
NASA Technical Reports Server (NTRS)
Marable, R. W.
1989-01-01
The design, fabrication and test of the RL10-II chamber/primary nozzle was accomplished as part of the RL10 Product Improvement Program (PIP). The overall goal of the RL10 PIP was to gain the knowledge and experience necessary to develop new cryogenic upper stage engines to fulfill future NASA requirements. The goal would be reached by producing an RL10 engine designed to be reusable, operate at several thrust levels, and have increased performance. The goals for the chamber/primary nozzle task were: (1) to design a reusable assembly capable of operation at increased mixture ratio and low thrust; (2) to fabricate three assemblies using new or updated techniques where possible; and (3) to test one assembly to verify the design and construction. The design and fabrication phases produced an assembly having improved features such as single piece reinforcing band segments (i.e., Mae West segments) and relocated tube exit braze joints (i.e., hooked tube exit). In addition, a computer program was developed to design the chamber tubes to meet both performance and heat transfer requirements. The test phase showed the specific impulse of the test bed engine system to be as predicted. These results, along with the heat transfer data obtained, sufficiently proved the overall design of the RL10-II recontoured and shortened chamber/primary nozzle assembly.
Kinetics of bed fracturing around mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veksler, Yu.A.
1988-03-01
A failure of the bed near the walls of the workings of a mine away from the face occurs gradually over time and in this paper the authors take a kinetic approach to evaluating its development. The influence of certain mine engineering factors on the pattern of bed fracturing is discussed. The effect of the depth of mining is shown. Cracking occurs in the portion of the seam at the face near the ground at some distance from it on the interface between soft and hard coal. The density of the fractured rocks and their response affect the bed fracturingmore » near the stope face.« less
Magnetic Resonance Imaging and Velocity Mapping in Chemical Engineering Applications.
Gladden, Lynn F; Sederman, Andrew J
2017-06-07
This review aims to illustrate the diversity of measurements that can be made using magnetic resonance techniques, which have the potential to provide insights into chemical engineering systems that cannot readily be achieved using any other method. Perhaps the most notable advantage in using magnetic resonance methods is that both chemistry and transport can be followed in three dimensions, in optically opaque systems, and without the need for tracers to be introduced into the system. Here we focus on hydrodynamics and, in particular, applications to rheology, pipe flow, and fixed-bed and gas-solid fluidized bed reactors. With increasing development of industrially relevant sample environments and undersampling data acquisition strategies that can reduce acquisition times to <1 s, magnetic resonance is finding increasing application in chemical engineering research.
NASA Technical Reports Server (NTRS)
Day, Arthur C.; Griess, Kenneth H.
2013-01-01
This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.
Wash load and bed-material load transport in the Yellow River
Yang, C.T.; Simoes, F.J.M.
2005-01-01
It has been the conventional assumption that wash load is supply limited and is only indirectly related to the hydraulics of a river. Hydraulic engineers also assumed that bed-material load concentration is independent of wash load concentration. This paper provides a detailed analysis of the Yellow River sediment transport data to determine whether the above assumptions are true and whether wash load concentration can be computed from the original unit stream power formula and the modified unit stream power formula for sediment-laden flows. A systematic and thorough analysis of 1,160 sets of data collected from 9 gauging stations along the Middle and Lower Yellow River confirmed that the method suggested by the conjunctive use of the two formulas can be used to compute wash load, bed-material load, and total load in the Yellow River with accuracy. Journal of Hydraulic Engineering ?? ASCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor.more » The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.« less
Zero-G life support for Space Station Freedom
NASA Technical Reports Server (NTRS)
Kolodney, Matthew; Dall-Bauman, L.
1992-01-01
Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status
NASA Technical Reports Server (NTRS)
Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.
Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu
2018-03-01
Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
4BMS-X Design and Test Activation
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.
Wind, sand, and Mars - The 1990 tests of the Mars balloon and SNAKE
NASA Astrophysics Data System (ADS)
Anderson, C. M.
1991-02-01
The observations of one member of the international team of Planetary Society members responsible for testing the Mars balloon and SNAKE are presented. The tests were held in the fall of 1990 in Indio, California, and concluded successfully. The test team was made up of scientists and technicians from CNES; observers from the Babakin Center; scientists from the Space Research Institute of the Soviet Academy of Sciences; engineers from the Jet Propulsion Laboratory; students from the University of Arizona, Utah State University, UCLA, and Caltech; and Planetary Society volunteers. The chosen sites of study in this desert area were selected to simulate as neary as possible Mars-like conditions and included smooth ancient lake beds, jagged frozen lava flows and gently rolling sand dunes.
Space station propulsion test bed
NASA Technical Reports Server (NTRS)
Briley, G. L.; Evans, S. A.
1989-01-01
A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.
NASA Technical Reports Server (NTRS)
Hall, Edward; Magner, James
2011-01-01
This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II (this document) describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.
Real-time sensor data validation
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.
1994-01-01
This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance test, you must monitor and record the temperature at the inlet to the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test... temperature at the inlet to the catalyst bed and the average temperature difference across the catalyst bed...
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.
2010-03-01
In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.
FY16 Summary Report: Participation in the KOSINA Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteo, Edward N.; Hansen, Francis D.
Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groupsmore » have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.« less
Romanok, Kristin M.; Reilly, Timothy J.; Lopez, Anthony R.; Trainor, John J.; Hladik, Michelle; Stanley, Jacob K.; Farrar, Daniel
2014-01-01
A study of bed-sediment toxicity and organic and inorganic contaminants was conducted by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). Bed-sediment samples were collected once from 22 sites in Barnegat Bay and selected major tributaries during August–September 2012 and analyzed for toxicity and a suite of organic and inorganic contaminants by the USGS and the U.S. Army Corps of Engineers. Sampling sites were selected to coincide with an existing water-quality monitoring network used by the NJDEP and others in order to evaluate water-quality conditions in Barnegat Bay and the surrounding watershed. Two of the 22 sites are reference sites and are within or adjacent to the study area; bed-sediment samples from reference sites allow for comparisons of results for the Barnegat Bay watershed to results from less affected settings within the region. Toxicity testing was conducted by exposing the estuarine amphipod Leptocheirus plumulosus and the freshwater amphipod Hyalella azteca to sediments for 28 days, and the percent survival, difference in biomass, and individual dry weights were measured. Reproductive effects also were evaluated for estuarine samples. Bed-sediment samples from four sites within Barnegat Bay were subjected to a toxicity identification evaluation to determine probable causes of toxicity. Samples were analyzed for a suite of 94 currently-used pesticides, 21 legacy pesticides, 24 trace elements, 40 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls (PCBs) as Arochlor mixtures, and 145 individual PCB congeners. Concentrations of detected compounds were compared to sediment-quality guidelines, where appropriate.
Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)
NASA Astrophysics Data System (ADS)
Knott, M. J.
1982-08-01
As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.
Avionics test bed development plan
NASA Technical Reports Server (NTRS)
Harris, L. H.; Parks, J. M.; Murdock, C. R.
1981-01-01
A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.
NASA Technical Reports Server (NTRS)
1994-01-01
Acceptance data package - engineering drawings and associated lists for fabrication, assembly and maintenance (cleaning, fluidized bed coating, bounding and staking) motor/encoded solar x-ray imager (SXI) (Aeroflex p/n 16187) were given.
Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor
NASA Technical Reports Server (NTRS)
1972-01-01
The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.
Real time test bed development for power system operation, control and cyber security
NASA Astrophysics Data System (ADS)
Reddi, Ram Mohan
The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.
Effect of bed rest and exercise on body balance
NASA Technical Reports Server (NTRS)
Haines, R. F.
1974-01-01
A battery of 11 body balance tests was administered to 7 men before and after 14 days of bedrest. Seven men who had not undergone bed rest served as controls. During bed rest, each subject underwent daily either isotonic, isometric, or no leg exercise. The results showed that, for the bed-rested no exercise, isotonic exercise, and isometric exercise groups, 2 weeks of bed rest produces significant body balance decrements on 3, 4, and 5 of the 11 tests, respectively. Daily leg exercise did not prevent the debilitating effects of bed rest on body balance. After bed rest, balance skill was relearned rapidly so that in most tests, performance had reached prebed-rest levels by the third recovery day. These data suggest that balance impairment is not due to loss of muscular strength in the legs but, perhaps, to a bed-rest-related change in the neurally coded information to postural control centers.
Overview and evolution of the LeRC PMAD DC test bed
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.
1992-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been developed electrical power system test beds to support the overall design effort. Through this time, the SSFP has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baseline and an all DC system, a test bed was developed to support the design baseline. The LeRC power measurement and distribution (PMAD) DC test bed and the changes in the restructure are described. The changes included the size reduction of primary power channel and various power processing elements. A substantial reduction was also made in the amount of flight software with the subsequent migration of these functions to ground control centers. The impact of these changes on the design of the power hardware, the controller algorithms, the control software, and a description of their current status is presented. An overview of the testing using the test bed is described, which includes investigation of stability and source impedance, primary and secondary fault protection, and performance of a rotary utility transfer device. Finally, information is presented on the evolution of the test bed to support the verification and operational phases of the SSFP in light of these restructure scrubs.
2016-01-20
Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect the MarCO test bed, which contains components that are identical to those built for a flight to Mars. Cody Colley, left, MarCO integration and test deputy, and Shannon Statham, MarCO integration and test lead, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20341
System Engineering Strategy for Distributed Multi-Purpose Simulation Architectures
NASA Technical Reports Server (NTRS)
Bhula, Dlilpkumar; Kurt, Cindy Marie; Luty, Roger
2007-01-01
This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.
Preliminary test results from the CELSS Test Facility Engineering Development Unit
NASA Technical Reports Server (NTRS)
Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.
1994-01-01
As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.
NASA Astrophysics Data System (ADS)
Yin, Peng-Fei; Yang, Sheng-Qi
2018-05-01
As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.
2011-01-01
This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.
Preferences of group-housed female mice regarding structure of softwood bedding.
Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P
2012-04-01
Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.
ERIC Educational Resources Information Center
Smith, York R.; Fuchs, Alan; Meyyappan, M.
2010-01-01
Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…
A business process modeling experience in a complex information system re-engineering.
Bernonville, Stéphanie; Vantourout, Corinne; Fendeler, Geneviève; Beuscart, Régis
2013-01-01
This article aims to share a business process modeling experience in a re-engineering project of a medical records department in a 2,965-bed hospital. It presents the modeling strategy, an extract of the results and the feedback experience.
Development of a flexible test-bed for robotics, telemanipulation and servicing research
NASA Technical Reports Server (NTRS)
Davies, Barry F.
1989-01-01
The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space.
Tubular copper thrust chamber design study
NASA Technical Reports Server (NTRS)
Masters, A. I.; Galler, D. E.
1992-01-01
The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.
Modeling Primary Atomization Processes
1999-02-01
consumable , catalytic igniter has shown to provide reliable, reproducible ignition in hydrogen peroxide/polyethylene hybrid engines. Currently, a...verified in a hybrid rocket using hydrogen peroxide as oxidizer and polyethylene as fuel. The engine made use of a unique Consumable Catalytic Bed (CCB...interest to the liquid and hybrid rocket engine community. TECHNOLOGY TRANSFER Performer Customer Result Application 1 S. D. Heister Purdue University
NTRE extended life feasibility assessment
NASA Technical Reports Server (NTRS)
1993-01-01
Results of a feasibility analysis of a long life, reusable nuclear thermal rocket engine are presented in text and graph form. Two engine/reactor concepts are addressed: the Particle Bed Reactor (PBR) design and the Commonwealth of Independent States (CIS) concept. Engine design, integration, reliability, and safety are addressed by various members of the NTRE team from Aerojet Propulsion Division, Energopool (Russia), and Babcock & Wilcox.
Reusable Solid Rocket Motor Nozzle Joint 5 Redesign
NASA Technical Reports Server (NTRS)
Lui, R. C.; Stratton, T. C.; LaMont, D. T.
2003-01-01
Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.
Design and Test Plan for an Integrated Iodine Scrubber and Polishing Bed System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert Thomas
The capture and subsequent immobilization of four regulated volatile radionuclides ( 3H, 14C, 85Kr, and 129I) and relevant semivolatile species from the off-gas streams of a used nuclear fuel (UNF) reprocessing facility has been a topic of significant research interest on the part of the US Department of Energy and other international organizations. Significant research and development has been conducted over the past decade. In 2016 an initial engineering evaluation and design of the off-gas abatement systems required for a hypothetical 1000 t/yr UNF reprocessing facility treating 5 yr–cooled, 60 GWd/tIHM UNF was completed. One of the key findings ofmore » that report was that the consumption rate of silver-based iodine sorbents in the dissolver off-gas primary iodine capture bed is very high and may warrant the evaluation of alternative methods to capture the bulk of the iodine that could significantly reduce the associated frequent remote handing of the iodine filter beds. This report is intended to describe the design of an experimental system that can be used to examine the use of aqueous scrubbing to remove the bulk of the iodine from the dissolver off-gas stream prior to a silver-based solid sorbent that would be used to provide the final iodine capture or polishing step. This report also provides a description of the initial series of tests that are proposed for this system.« less
Development and testing of a source subsystem for the supporting development PMAD DC test bed
NASA Technical Reports Server (NTRS)
Button, Robert M.
1991-01-01
The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.
A wave model test bed study for wave energy resource characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping
This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, technicians monitor readings during a test exposing Time Domain Reflectometry, or TDR, instrumentation to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Towards an autonomous telescope system: the Test-Bed Telescope project
NASA Astrophysics Data System (ADS)
Racero, E.; Ocaña, F.; Ponz, D.; the TBT Consortium
2015-05-01
In the context of the Space Situational Awareness (SSA) programme of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. It is foreseen that this test-bed environment will be used to validate future prototype software systems as well as to evaluate remote monitoring and control techniques. The test-bed system will be capable to deliver astrometric and photometric data of the observed objects in near real-time. This contribution describes the current status of the project.
NASA Astrophysics Data System (ADS)
Simon, Miguel
In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)
Tsai, Ling-Ling; Liu, Hau-Min
2008-03-01
In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.
APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, C; Weber, P; Thornton,M
2003-08-24
The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)« less
PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites.
Gerwin, Philip M; Ricart Arbona, Rodolfo J; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S
2017-11-01
We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.
PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites
Gerwin, Philip M; Arbona, Rodolfo J Ricart; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S
2017-01-01
We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite- infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method. PMID:29256370
Experimental Investigation and Analysis of HEC-6 River Morphological Model
NASA Astrophysics Data System (ADS)
Tingsanchali, Tawatchai; Supharatid, Seree
1996-05-01
Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.
NASA Technical Reports Server (NTRS)
Palopo, Kee
2016-01-01
These slides presents an overview of SMART NAS Test Bed. The test bed is envisioned to be connected to operational systems and to allow a new concept and technology to be evaluated in its realistic environment. Its role as an accelerator of concepts and technologies development, its use-case-driven development approach, and its state are presented.
Experimentation and evaluation of advanced integrated system concepts
NASA Astrophysics Data System (ADS)
Ross, M.; Garrigus, K.; Gottschalck, J.; Rinearson, L.; Longee, E.
1980-09-01
This final report examines the implementation of a time-phased test bed for experimentation and evaluation of advanced system concepts relative to the future Defense Switched Network (DSN). After identifying issues pertinent to the DSN, a set of experiments which address these issues are developed. Experiments are ordered based on their immediacy and relative importance to DSN development. The set of experiments thus defined allows requirements for a time phased implementation of a test bed to be identified, and several generic test bed architectures which meet these requirements are examined. Specific architecture implementations are costed and cost/schedule profiles are generated as a function of experimental capability. The final recommended system consists of two separate test beds: a circuit switch test bed, configured around an off-the-shelf commercial switch, and directed toward the examination of nearer term and transitional issues raised by the evolving DSN; and a packet/hybrid test bed, featuring a discrete buildup of new hardware and software modules, and directed toward examination of the more advanced integrated voice and data telecommunications issues and concepts.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1989-01-01
The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.
A portable platform for accelerated PIC codes and its application to GPUs using OpenACC
NASA Astrophysics Data System (ADS)
Hariri, F.; Tran, T. M.; Jocksch, A.; Lanti, E.; Progsch, J.; Messmer, P.; Brunner, S.; Gheller, C.; Villard, L.
2016-10-01
We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this development is efficient simulations on future exascale systems by allowing different parallelization strategies depending on the application problem and the specific architecture. To this end, this platform contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic options and data structures. Among the architectures that this engine can explore, particular attention is given here to systems equipped with GPUs. The study demonstrates that our portable PIC implementation based on the OpenACC programming model can achieve performance closely matching theoretical predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS), we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel Sandy bridge 8-core CPU by a factor of 3.4.
Thermal Cracking of Tars in a Continuously Fed Reactor with Steam
2011-05-01
Fluidized Bed using biomass 8 Tars Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and
Advanced space solar dynamic receivers
NASA Technical Reports Server (NTRS)
Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.
1988-01-01
A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.
Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems
NASA Astrophysics Data System (ADS)
Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan
2016-03-01
A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.E.
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence levelmore » were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEIN, JAMES
A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percentmore » confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Reeves, Kirk Patrick
2015-02-24
Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2more » QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .« less
Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed
NASA Technical Reports Server (NTRS)
Coleman, Anthony S.
2004-01-01
The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.
MPEG-7 audio-visual indexing test-bed for video retrieval
NASA Astrophysics Data System (ADS)
Gagnon, Langis; Foucher, Samuel; Gouaillier, Valerie; Brun, Christelle; Brousseau, Julie; Boulianne, Gilles; Osterrath, Frederic; Chapdelaine, Claude; Dutrisac, Julie; St-Onge, Francis; Champagne, Benoit; Lu, Xiaojian
2003-12-01
This paper reports on the development status of a Multimedia Asset Management (MAM) test-bed for content-based indexing and retrieval of audio-visual documents within the MPEG-7 standard. The project, called "MPEG-7 Audio-Visual Document Indexing System" (MADIS), specifically targets the indexing and retrieval of video shots and key frames from documentary film archives, based on audio-visual content like face recognition, motion activity, speech recognition and semantic clustering. The MPEG-7/XML encoding of the film database is done off-line. The description decomposition is based on a temporal decomposition into visual segments (shots), key frames and audio/speech sub-segments. The visible outcome will be a web site that allows video retrieval using a proprietary XQuery-based search engine and accessible to members at the Canadian National Film Board (NFB) Cineroute site. For example, end-user will be able to ask to point on movie shots in the database that have been produced in a specific year, that contain the face of a specific actor who tells a specific word and in which there is no motion activity. Video streaming is performed over the high bandwidth CA*net network deployed by CANARIE, a public Canadian Internet development organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ege, J R; Danilchik, W; Feazel, C T
1980-05-01
Mining of the Ul2n.02 drift for the Midi Mist event started on December 31, 1965, in Rainier Mesa, Nevada Test Site, and was completed on December 30, 1966. The drift was mined along a bearing of S. 65/sup 0/ W. at an altitude of 1,850.2 m (6,070.2 ft) to a length of 643 m (2,109 ft). The drift lies in tunnel bed 4 and penetrates stratigraphically up the section through sub-units 4AB, 4CD, 4E, 4F, 4G, 4H, and 4J, all of Tertiary age. Two faults mapped at the surface of the mesa were identified as having cut the complex atmore » drift level. No engineering construction or support problems greater than minor rock slabbing, ravelly ground, or water inflow along fractures were uncountered. Visual inspection showed that shot-induced effects in the rock medium at drift level extended for 237.7 m (780 ft) from the working point in the form of fractures and small shear displacements along bedding planes.« less
A 34-meter VAWT (Vertical Axis Wind Turbine) point design
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.
The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.
Free-Piston Stirling Convertor Controller Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Regan, Timothy
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at NASA Glenn Research Center (GRC) has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor - the Stirling cycle engine, linear alternator, controller, and load. This paper is concerned with controllers. It discusses three controllers that have been studied using this model. Case motion has been added to the model recently so that effects of differences between convertor components can be simulated and ameliorative control engineering techniques can be developed. One concern when applying a system comprised of interconnected mass-spring-damper components is to prevent operation in any but the intended mode. The design mode is the only desired mode of operation, but all other modes are considered in controller design.
Evaluation of the ride quality of a light twin engine airplane using a ride quality meter
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
1989-01-01
A ride quality meter was used to establish the baseline ride quality of a light twin-engine airplane planned for use as a test bed for an experimental gust alleviation system. The ride quality meter provides estimates of passenger ride discomfort as a function of cabin noise and vibration (acceleration) in five axes (yaw axis omitted). According to the ride quality meter, in smooth air the cabin noise was the dominant source of passenger discomfort, but the total discomfort was approximately the same as that for the smooth-air condition. The researcher's subjective opinion, however, is that the total ride discomfort was much worse in the moderate turbulence than it was in the smooth air. The discrepancy is explained by the lack of measurement of the low-frequency accelerations by the ride quality meter.
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
Mbuligwe, Stephen E
2005-01-01
A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/ EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.
Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris
2016-02-01
In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge exchange and knowledge transfer within the basin to reach the goal of integrated basin management. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance Evaluation of the ISS Water Processor Multifiltration Beds
NASA Technical Reports Server (NTRS)
Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug
2012-01-01
The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Peters, B. T.; Phillips, T.; Platts, S. H.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. We are currently conducting studies on both International Space Station (ISS) astronauts experiencing up to 6 months of microgravity and subjects experiencing 70 days of 6??head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading somatosensory component on functional performance. Both ISS crewmembers and bed-rest subjects were tested using a protocol that evaluated functional performance along with tests of postural and locomotor control before and after space flight and bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Astronauts were tested three times before flight, and on 1, 6, and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6, and 12 days after re-ambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability showed less reduction in performance. Results indicate that body unloading resulting from prolonged bed-rest impacts functional performance particularly for tests with a greater requirement for postural equilibrium control. These changes in functional performance were paralleled by similar decrement in tests designed to specifically assess postural equilibrium and dynamic gait control. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions.
Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Crawford, C. L.; Burket, P. R.
Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS)more » feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.« less
NASA Astrophysics Data System (ADS)
Cea, Luis; Bladé, Ernest; Corestein, Georgina; Fraga, Ignacio; Espinal, Marc; Puertas, Jerónimo
2014-05-01
Transitory flows generated by dam failures have a great sediment transport capacity, which induces important morphological changes on the river topography. Several studies have been published regarding the coupling between the sediment transport and hydrodynamic equations in dam-break applications, in order to correctly model their mutual interaction. Most of these models solve the depth-averaged shallow water equations to compute the water depth and velocity. On the other hand, a wide variety of sediment transport formulations have been arbitrarily used to compute the topography evolution. These are based on semi-empirical equations which have been calibrated under stationary and uniform conditions very different from those achieved in dam-break flows. Soares-Frazao et al. (2012) proposed a Benchmark test consisting of a dam-break over a mobile bed, in which several teams of modellers participated using different numerical models, and concluded that the key issue which still needs to be investigated in morphological modelling of dam-break flows is the link between the solid transport and the hydrodynamic variables. This paper presents a comparative analysis of different sediment transport formulations applied to dam-break flows over mobile beds. All the formulations analysed are commonly used in morphological studies in rivers, and include the formulas of Meyer-Peter & Müller (1948), Wong-Parker (2003), Einstein-Brown (1950), van Rijn (1984), Engelund-Hansen (1967), Ackers-White (1973), Yang (1973), and a Meyer-Peter & Müller type formula but with ad-hoc coefficients. The relevance of corrections on the sediment flux direction and magnitude due to the bed slope and the non-equilibrium hypothesis is also analysed. All the formulations have been implemented in the numerical model Iber (Bladé et al. (2014)), which solves the depth-averaged shallow water equations coupled to the Exner equation to evaluate the bed evolution. Two different test cases have been studied. The first one is the benchmark case presented in Soares-Frazao et al. (2012), and consists in an instanteneous dam-break flow over a sand bed. The second one corresponds to the experimental studies performed at the Engineering Faculty of the UNAM (Fuentes-Mariles et al. (2010)) and consists in the erosion of a volcanic sand dike by an overtopping flow. In both cases experimental measurements of water depth and bed evolution are available to evaluate the performance of different sediment transport formulations. A sensitivity analysis to the physical properties of the bed material (grain density and size) is also presented for each formulation, in order to analyse to which degree the properties of the bed material need to be defined in the numerical model. References Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, M.E., Dolz, J., Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.30(1), pp.1-10 Fuentes-Mariles, Ó. A., Cruz-Gerón, J. A., Rivera-Díaz, C., Luna-Cruz, F., and González-Prado, J. (2010). "Caracterización Experimental de Ruptura de Diques." XXIV Congreso Latinoamericano de Hidráulica Soares-Frazão et al. (2012). Dambreak flows over mobile beds: experiments and benchmark tests for numerical models. Journal of Hydraulic Research, Vol.50(4), pp.364-375
NASA Technical Reports Server (NTRS)
Barbeau, Zack
2011-01-01
The Habitat Demonstration Unit, or HDU, is a multi-purpose test bed that allows NASA scientists and engineers to design, develop, and test new living quarters, laboratories, and workspaces for the next generation space mission. Previous testing and integration has occurred during 2010 at the annual Desert Research and Technology Studies (Desert RATS) field testing campaign in the Arizona desert. There the HDU team tests the configuration developed for the fiscal year, or FY configuration. For FY2011, the NASA mission calls for simulating a deep space condition. The HDU-DSH, or Deep Space Habitat, will be configured with new systems and modules that will outfit the test bed with new deep space capabilities. One such addition is the new X-HAB (eXploration Habitat) Inflatable Loft. With any deep space mission there is the need for safe, suitable living quarters. The current HDU configuration does not allow for any living space at all. In fact, Desert RATS 2010 saw the crew sleeping in the Space Exploration Vehicles (SEV) instead of the HDU. The X-HAB Challenge pitted three universities against each other: Oklahoma State University, University of Maryland, and the University of Wisconsin. The winning team will have their design implemented by NASA for field testing at DRATS 2011. This paper will highlight the primary objective of getting the X-HAB field ready which involves the implementation of an elevator/handrail system along with smaller logistical and integration tasks associated with getting the HDU-DSH ready for shipment to DRATS.
MDI Exposure for Spray-On Truck Bed Lining.
Lofgren, Don J; Walley, Terry L; Peters, Phillip M; Weis, Marty L
2003-10-01
Worker exposure to MDI (methylenediphenyl isocyanate) in the sprayed-on truck bed lining industry was assessed by examining Washington State OSHA inspection files and industrial insurance records. The industry uses MDI to form a protective urethane coating on pick-up truck beds. The lining is applied by a worker using a handheld spray gun with application equipment at temperatures and pressures specified by the urethane supplier. Inspections with MDI sampling were initially identified by searching the agency's laboratory database and were further screened for the targeted process. Data for 13 employers was found and extracted from the inspection records. All were small companies with only 1 to 2 workers exposed to MDI; 10 of the 13 employers had started the bed lining service within the last 4 years. The process was found in truck bed lining specialty shops as well as in other truck-related businesses. Six different urethane products were used with reported MDI monomer concentrations of up to 75 percent along with varying concentrations of MDI pre-polymers and other reactants and solvents. Sampling for MDI by inspectors found 7 worksites with worker exposure in excess of the state and OSHA ceiling limit of 0.200 mg/M(3). Deficiencies in respirator programs and engineering controls for MDI were cited. A review of the industrial insurance records found a total of five MDI-related claims at 4 inspected worksites, two for new-onset asthma. It was concluded that workers in the urethane sprayed-on truck bed lining industry are at an increased risk of developing illnesses associated with isocyanate exposure. Interventions are needed to further assess the hazard as well as motivate and assist franchisers, distributors, and retailers to implement effective engineering controls and respiratory protection programs in this nationally emerging small employer industry.
Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.
Wasantha, P L P; Ranjith, P G; Shao, S S
2014-01-01
This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of energy dissipation before the ultimate failure was observed for specimens with bedding layers oriented in shallow angles under both dry and saturated conditions. These results confirm that when rock having bedding layers inclined in shallow angles the failures could be more violent and devastative than the failures of rock with steeply oriented bedding layers. Copyright © 2013 Elsevier B.V. All rights reserved.
A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard;
2015-01-01
Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
Resistance to airflow through bedding materials used in infancy.
Hatch, D J; Helms, P; Matthew, D J; Skinner, D
1982-01-01
Various bedding materials used in infancy, including duvets (or continental quilts), were tested for airflow using the British Standards Institution tests for pillows or fabrics. Resistance was also measured when the items were placed on a dummy infant face. Measurements were made on washed and unwashed garments, which were tested both dry and wet. Results suggest that all the bedding materials tested are safe for use even in the newborn period. The duvets produced slightly lower resistance to breathing than conventional blankets and sheets. In view of the wide variety of infant bedding fabrics it seems desirable for standard airflow performance requirements to be introduced. PMID:7092309
Application of native prick test in diagnosis of bed bug allergy.
Ukleja-Sokołowska, Natalia; Sokołowski, Lukasz; Gawrońska-Ukleja, Ewa; Bartuzi, Zbigniew
2013-02-01
The aim of the study was case report of the patient with systemic reaction after a bed bug (Cimex lectularius) bite. A 23-year-old female, previously healthy, reports systemic reaction, including rash on her corpus and limbs, itching, nausea, conciseness disorder, forcing her to call the ambulance. The interview revealed that the bed bug occurs in the patient's apartment. A prick-by-prick test with bed bug excretion was made. The skin test with native allergen was strongly positive (histamine 5 mm/5 mm, prick-by-prick 12 mm/8 mm). The prick-by-prick test was useful in objective confirmation of the source of symptoms.
Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H
2013-01-01
Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.
Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.
2013-01-01
Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836
Reduction of FeO contents in sinter under high bed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K.; Hazama, K.; Hoshikuma, Y.
1996-12-31
High-bed operation (bed height more than 700 mm) is currently being carried out at the Kure No. 1 sintering plant. Before initiating this high-bed operation, the authors conducted sinter pot tests at various bed heights to investigate the effect of bed height on sintering. The following results were obtained from these pot tests: Heightening of the sinter bed increased yield at the upper layer, but at the lower layer, the yield reached a maximum value at a certain bed height. From observation of the sinter cakes, the reduction in yield is attributed to uneven burn caused by surplus heat atmore » the lower layers. Therefore, when high-bed operation is carried out, reduction of the burning energy (reduction of the FeO content in the sinter) is required. This high-bed operation with lower FeO content has enabled the company to reduce fuel consumption and SiO{sub 2} content, while maintaining high yield and high sinter quality.« less
Stress-induced laboratory eating behavior in obese women with binge eating disorder.
Laessle, Reinhold G; Schulz, Simone
2009-09-01
To compare the microstructural eating behavior of obese patients with and without binge eating disorder (BED) after stress induction in laboratory. Forty-eight obese women were investigated. Seventeen were assigned to the group of BED. Group (BED vs. non-BED) by condition (stress vs. no stress) interaction effect on feeding variables, measured by a universal eating monitor, was tested. Stress was induced by the trier social stress test (TSST) and chocolate pudding served as laboratory food. From the nonstress to the stress condition, patients with BED, when compared with non-BED had a greater increase in average eating rate (p < .01) and a corresponding greater increase in the frequency of spoonfuls (p < .02). The BED group also showed a different change in acceleration/deceleration from the nonstress to the stress condition compared to the non-BED group (p < .04). Obese individuals with BED appear to exhibit a different response to stress than obese non-BED individuals and individuals with bulimia nervosa.
A general power equation for predicting bed load transport rates in gravel bed rivers
Jeffrey J. Barry; John M. Buffington; John G. King
2004-01-01
A variety of formulae has been developed to predict bed load transport in gravel bed rivers, ranging from simple regressions to complex multiparameter formulations. The ability to test these formulae across numerous field sites has, until recently, been hampered by a paucity of bed load transport data for gravel bed rivers. We use 2104 bed load transport observations...
Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber
NASA Technical Reports Server (NTRS)
Klenhenz, Julie; Linne, Diane
2013-01-01
In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
NASA Astrophysics Data System (ADS)
Horn, F. L.; Powell, J. R.; Savino, J. M.
Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.
Coal Technology Program progress report, March 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less
Overview and evolution of the LeRC PMAD DC Testbed
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.
1992-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been developed electrical power system test beds to support the overall design effort. Through this time, the SSFP has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baseline and an all DC system, a test bed was developed to support the design baseline. The LeRC power measurement and distribution (PMAD) DC test bed and the changes in the restructure are described. The changes includeed the size reduction of primary power channel and various power processing elements. A substantial reduction was also made in the amount of flight software with the subsequent migration of these functions to ground control centers. The impact of these changes on the design of the power hardware, the controller algorithms, the control software, and a description of their current status is presented. An overview of the testing using the test bed is described, which includes investigation of stability and source impedance, primary and secondary fault protection, and performance of a rotary utility transfer device. Finally, information is presented on the evolution of the test bed to support the verification and operational phases of the SSFP in light of these restructure scrubs.
NASA Technical Reports Server (NTRS)
Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.
1994-01-01
A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.
Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process
NASA Technical Reports Server (NTRS)
Cooper, Beth A.; Young, Judith A.
2004-01-01
The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Stability testing and analysis of a PMAD dc test bed for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Button, Robert M.; Brush, Andrew S.
1992-01-01
The Power Management and Distribution (PMAD) dc Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power dc to dc converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD dc Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.
Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Button, Robert M.; Brush, Andrew S.
1992-01-01
The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.
NOx results from two combustors tested on medium BTU coal gas
NASA Technical Reports Server (NTRS)
Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.
1982-01-01
The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.
Description of the PMAD systems test bed facility and data system
NASA Technical Reports Server (NTRS)
Trase, Larry; Fong, Don; Adkins, Vicki; Birchenough, Arthur
1992-01-01
The power management and distribution (PMAD) systems test bed facility, including the power sources and loads available, is discussed, and the PMAD data system (PDS) is described. The PDS controls the test-bed facility hardware, and monitors and records the electric power system control data bus and external data. The PDS architecture is discussed, and each of the subsystems is described.
Executive functions in adolescents with binge-eating disorder and obesity.
Kittel, Rebekka; Schmidt, Ricarda; Hilbert, Anja
2017-08-01
Binge-eating disorder (BED) in adults is associated with alterations in executive functions (EF) and obesity. Much less is known about these relationships in adolescents, including whether poor EF are associated with eating disorder psychopathology and/or elevated body mass index. This study examined EF in response to neutral stimuli in youth with BED. Adolescents with BED and obesity (n = 22), individually matched adolescents with obesity (n = 22), and normal weight (n = 22) completed neuropsychological tests targeting inhibition (Color-Word Interference Test), sustained attention (D2 Concentration Endurance Test), cognitive flexibility (Comprehensive Trail Making Test), and decision-making (Iowa Gambling Task). Adolescents with BED and obesity displayed significantly poorer inhibitory control compared to normal-weight adolescents. This effect persisted after controlling for the level of secondary education. However, initial differences between adolescents with obesity and normal-weight controls regarding inhibitory control and sustained attention vanished after controlling for education. The three groups did not differ regarding cognitive flexibility and decision-making. Moreover, adolescents with BED and obesity did not perform worse than adolescents with obesity on any of the neuropsychological tests. Overall, our results indicate that adolescent BED is associated with only a few alterations in general EF, specifically inhibitory control, and underline BED and educational level as confounding factors in neuropsychological research on obesity. To further delineate EF profiles of adolescents with BED, future research should focus on EF in response to disorder-related stimuli and experimental settings with high ecological validity. © 2017 Wiley Periodicals, Inc.
Effluent characterization from a conical pressurized fluid bed
NASA Technical Reports Server (NTRS)
Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.
1977-01-01
To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.
Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport
NASA Astrophysics Data System (ADS)
Moulton, M. R.; Elgar, S.; Raubenheimer, B.
2012-12-01
Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.
APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomazic, D; Tatur, M; Thornton, M
A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percentmore » nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.« less
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
Human engineered heart tissue as a model system for drug testing.
Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas
2016-01-15
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening. Copyright © 2015 Elsevier B.V. All rights reserved.
Endurance cycling results in extreme environments
NASA Technical Reports Server (NTRS)
Guertin, S. M.; Nguyen, D. N.; Scheick, L. Z.
2003-01-01
A new test bed for life testing flash memories in extreme environments is introducted. the test bed is based on a state-of-the-art development board. Since space applications often desire state-of-the-art devices, such a basis seems appropriate. Comparison of this tester to other such systems, including those with data presented here in the past is made. Limitations of different testers for varying applications are discussed. Recently developed data, using this test bed is also presented.
Correlation of Amine Swingbed On-Orbit CO2 Performance with a Hardware Independent Predictive Model
NASA Technical Reports Server (NTRS)
Papale, William; Sweterlitsch, Jeffery
2015-01-01
The Amine Swingbed Payload is an experimental system deployed on the International Space Station (ISS) that includes a two-bed, vacuum regenerated, amine-based carbon dioxide (CO2) removal subsystem as the principal item under investigation. The aminebased subsystem, also described previously in various publications as CAMRAS 3, was originally designed, fabricated and tested by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) and delivered to NASA in November 2008. The CAMRAS 3 unit was subsequently designed into a flight payload experiment in 2010 and 2011, with flight test integration activities accomplished on-orbit between January 2012 and March 2013. Payload activation was accomplished in May 2013 followed by a 1000 hour experimental period. The experimental nature of the Payload and the interaction with the dynamic ISS environment present unique scientific and engineering challenges, in particular to the verification and validation of the expected Payload CO2 removal performance. A modeling and simulation approach that incorporates principles of chemical reaction engineering has been developed for the amine-based system to predict the dynamic cabin CO2 partial pressure with given inputs of sorbent bed size, process air flow, operating temperature, half-cycle time, CO2 generation rate, cabin volume and the magnitude of vacuum available. Simulation runs using the model to predict ambient CO2 concentrations show good correlation to on-orbit performance measurements and ISS dynamic concentrations for the assumed operating conditions. The dynamic predictive modelling could benefit operational planning to help ensure ISS CO2 concentrations are maintained below prescribed limits and for the Orion vehicle to simulate various operating conditions, scenarios and transients.
1993-06-01
COMMUNITY ENZYME OSMOREGULATION ENERGY FLOW DNA/RNA BEHAVIOR NUTRIENT CYCLING END POINT MEMBRANES METABOLISM INTRASPECIFIC HISTOPATHOLOGY SURVIVAL...Miscellaneous Paper D-93-2AD-A268 207 June 1993 US Army Corps of Engineers Waterways Experiment Station Long-Term Effects of Dredging Operations...Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments by
Testing a Threshold-Based Bed Bug Management Approach in Apartment Buildings.
Singh, Narinderpal; Wang, Changlu; Zha, Chen; Cooper, Richard; Robson, Mark
2017-07-26
We tested a threshold-based bed bug ( Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size and initial bed bug count, obtained through a combination of visual inspection and bed bug monitors: I- Non-chemical only in apartments with 1-12 bed bug count, II- Chemical control only in apartments with 1-12 bed bug count, III- Non-chemical and chemical control in apartments with >12 bed bug count, and IV- Chemical control only in apartments with ≥11 bed bug count. All apartments were monitored or treated once every two weeks for a maximum of 28 wk. Treatment I eliminated bed bugs in a similar amount of time to treatment II. Time to eliminate bed bugs was similar between treatment III and IV but required significantly less insecticide spray in treatment III than that in treatment IV. A threshold-based management approach (non-chemical only or non-chemical and chemical) can eliminate bed bugs in a similar amount of time, using little to no pesticide compared to a chemical only approach.
Testing a Threshold-Based Bed Bug Management Approach in Apartment Buildings
Singh, Narinderpal; Zha, Chen; Cooper, Richard; Robson, Mark
2017-01-01
We tested a threshold-based bed bug (Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size and initial bed bug count, obtained through a combination of visual inspection and bed bug monitors: I- Non-chemical only in apartments with 1–12 bed bug count, II- Chemical control only in apartments with 1–12 bed bug count, III- Non-chemical and chemical control in apartments with >12 bed bug count, and IV- Chemical control only in apartments with ≥11 bed bug count. All apartments were monitored or treated once every two weeks for a maximum of 28 wk. Treatment I eliminated bed bugs in a similar amount of time to treatment II. Time to eliminate bed bugs was similar between treatment III and IV but required significantly less insecticide spray in treatment III than that in treatment IV. A threshold-based management approach (non-chemical only or non-chemical and chemical) can eliminate bed bugs in a similar amount of time, using little to no pesticide compared to a chemical only approach. PMID:28933720
Performance evaluation of two black nickel and two black chrome solar collectors
NASA Technical Reports Server (NTRS)
Losey, R.
1977-01-01
The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.
The SSM/PMAD automated test bed project
NASA Technical Reports Server (NTRS)
Lollar, Louis F.
1991-01-01
The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).
FPGA Based Reconfigurable ATM Switch Test Bed
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Jones, Robert E.
1998-01-01
Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.
LPG as a Fuel for Diesel Engines-Experimental Investigations
NASA Astrophysics Data System (ADS)
Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel
2017-10-01
The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].
Indirect and direct tensile behavior of Devonian oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.P.; Chen, J.L.; Dana, G.F.
1984-03-01
Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less
An approach for modeling sediment budgets in supply-limited rivers
Wright, Scott A.; Topping, David J.; Rubin, David M.; Melis, Theodore S.
2010-01-01
Reliable predictions of sediment transport and river morphology in response to variations in natural and human-induced drivers are necessary for river engineering and management. Because engineering and management applications may span a wide range of space and time scales, a broad spectrum of modeling approaches has been developed, ranging from suspended-sediment "rating curves" to complex three-dimensional morphodynamic models. Suspended sediment rating curves are an attractive approach for evaluating changes in multi-year sediment budgets resulting from changes in flow regimes because they are simple to implement, computationally efficient, and the empirical parameters can be estimated from quantities that are commonly measured in the field (i.e., suspended sediment concentration and water discharge). However, the standard rating curve approach assumes a unique suspended sediment concentration for a given water discharge. This assumption is not valid in rivers where sediment supply varies enough to cause changes in particle size or changes in areal coverage of sediment on the bed; both of these changes cause variations in suspended sediment concentration for a given water discharge. More complex numerical models of hydraulics and morphodynamics have been developed to address such physical changes of the bed. This additional complexity comes at a cost in terms of computations as well as the type and amount of data required for model setup, calibration, and testing. Moreover, application of the resulting sediment-transport models may require observations of bed-sediment boundary conditions that require extensive (and expensive) observations or, alternatively, require the use of an additional model (subject to its own errors) merely to predict the bed-sediment boundary conditions for use by the transport model. In this paper we present a hybrid approach that combines aspects of the rating curve method and the more complex morphodynamic models. Our primary objective was to develop an approach complex enough to capture the processes related to sediment supply limitation but simple enough to allow for rapid calculations of multi-year sediment budgets. The approach relies on empirical relations between suspended sediment concentration and discharge but on a particle size specific basis and also tracks and incorporates the particle size distribution of the bed sediment. We have applied this approach to the Colorado River below Glen Canyon Dam (GCD), a reach that is particularly suited to such an approach because it is substantially sediment supply limited such that transport rates are strongly dependent on both water discharge and sediment supply. The results confirm the ability of the approach to simulate the effects of supply limitation, including periods of accumulation and bed fining as well as erosion and bed coarsening, using a very simple formulation. Although more empirical in nature than standard one-dimensional morphodynamic models, this alternative approach is attractive because its simplicity allows for rapid evaluation of multi-year sediment budgets under a range of flow regimes and sediment supply conditions, and also because it requires substantially less data for model setup and use.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta
2006-01-01
A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.
Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy
2015-05-01
In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less
United States Department of Energy solar receiver technology development
NASA Astrophysics Data System (ADS)
Klimas, P. C.; Diver, R. B.; Chavez, J. M.
The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.
NASA Technical Reports Server (NTRS)
Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo
1990-01-01
Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.
A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo
1996-01-01
A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.
Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies
NASA Technical Reports Server (NTRS)
Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.
2011-01-01
Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C/D) ratio. For all measures, there was no significant difference between subject groups for pre-bed rest testing. Post bed rest values also remained similar between groups. Comparison of pre- to post bed rest testing within each group did not demonstrate any statistical differences. These preliminary results from 14-day bed rest studies suggest that the combination of exercise and horizontal bed rest as compared to 6 degrees HDT bed rest did not produce differences in the ocular response with regard to IOP and optic disc parameters. The ocular measures reported here only included pre- and post bed rest time points. Further investigation is needed to examine both the acute response and long term adaptation of structural and functional ocular parameters in the bed rest platform and determine its usefulness for studying spaceflight phenomena. From a clinical perspective, the ability to study ocular responses in the controlled environment of the bed rest platform can provide valuable information for the care of patients restricted to bed rest.
Simulation test beds for the space station electrical power system
NASA Technical Reports Server (NTRS)
Sadler, Gerald G.
1988-01-01
NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.
Comparison of attrition test methods: ASTM standard fluidized bed vs jet cup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, R.; Goodwin, J.G. Jr.; Jothimurugesan, K.
2000-05-01
Attrition resistance is one of the key design parameters for catalysts used in fluidized-bed and slurry phase types of reactors. The ASTM fluidized-bed test has been one of the most commonly used attrition resistance evaluation methods; however, it requires the use of 50 g samples--a large amount for catalyst development studies. Recently a test using the jet cup requiring only 5 g samples has been proposed. In the present study, two series of spray-dried iron catalysts were evaluated using both the ASTM fluidized-bed test and a test based on the jet cup to determine this comparability. It is shown thatmore » the two tests give comparable results. This paper, by reporting a comparison of the jet-cup test with the ASTM standard, provides a basis for utilizing the more efficient jet cup with confidence in catalyst attrition studies.« less
Differential Draining of Parallel-Fed Propellant Tanks in Morpheus and Apollo Flight
NASA Technical Reports Server (NTRS)
Hurlbert, Eric; Guardado, Hector; Hernandez, Humberto; Desai, Pooja
2015-01-01
Parallel-fed propellant tanks are an advantageous configuration for many spacecraft. Parallel-fed tanks allow the center of gravity (cg) to be maintained over the engine(s), as opposed to serial-fed propellant tanks which result in a cg shift as propellants are drained from tank one tank first opposite another. Parallel-fed tanks also allow for tank isolation if that is needed. Parallel tanks and feed systems have been used in several past vehicles including the Apollo Lunar Module. The design of the feedsystem connecting the parallel tank is critical to maintain balance in the propellant tanks. The design must account for and minimize the effect of manufacturing variations that could cause delta-p or mass flowrate differences, which would lead to propellant imbalance. Other sources of differential draining will be discussed. Fortunately, physics provides some self-correcting behaviors that tend to equalize any initial imbalance. The question concerning whether or not active control of propellant in each tank is required or can be avoided or not is also important to answer. In order to provide data on parallel-fed tanks and differential draining in flight for cryogenic propellants (as well as any other fluid), a vertical test bed (flying lander) for terrestrial use was employed. The Morpheus vertical test bed is a parallel-fed propellant tank system that uses passive design to keep the propellant tanks balanced. The system is operated in blow down. The Morpheus vehicle was instrumented with a capacitance level sensor in each propellant tank in order to measure the draining of propellants in over 34 tethered and 12 free flights. Morpheus did experience an approximately 20 lb/m imbalance in one pair of tanks. The cause of this imbalance will be discussed. This paper discusses the analysis, design, flight simulation vehicle dynamic modeling, and flight test of the Morpheus parallel-fed propellant. The Apollo LEM data is also examined in this summary report of the flight data.
Engineered in vitro disease models.
Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E
2015-01-01
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Progress on Shape Memory Alloy Actuator Development for Active Clearance Control
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald
2006-01-01
Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. Bed-rest results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data point to the importance of providing axial body loading as a central component of an inflight training system that will integrate cardiovascular, resistance and sensorimotor adaptability training modalities into a single interdisciplinary countermeasure system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B
2009-12-01
This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware,more » software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.« less
Hubble space telescope six-battery test bed
NASA Technical Reports Server (NTRS)
Pajak, J. A.; Bush, J. R., Jr.; Lanier, J. R., Jr.
1990-01-01
A test bed for a large space power system breadboard for the Hubble Space Telescope (HST) was designed and built to test the system under simulated orbital conditions. A discussion of the data acquisition and control subsystems designed to provide for continuous 24 hr per day operation and a general overview of the test bed is presented. The data acquisition and control subsystems provided the necessary monitoring and protection to assure safe shutdown with protection of test articles in case of loss of power or equipment failure over the life of the test (up to 5 years).
Evaluation of a Reverse Gradient Garment for prevention of bed-rest deconditioning
NASA Technical Reports Server (NTRS)
Sandler, H.; Dolkas, D.; Newsom, B.; Webb, P.; Annis, J.; Pace, N.; Grunbaum, B. W.
1983-01-01
A Reverse Gradient Garment (RGG) was used to intermittently induce venous pooling in the extremities of a magnitude similar to that seen in going from a lying to standing position during the course of a 15-d period of horizontal bed rest. Venous pooling failed to improve bed-rest-induced losses in +2.5 Gz and +3.0 Gz centrifugation tolerance or to prevent increased heart-rate responses to lower-body negative pressure (LBNP). Four subjects served as controls, four were treated. Tests during the 7-d recovery period showed fluid/electrolyte and body composition values to have returned to pre-bed-rest levels with continued depression of acceleration tolerance times (56% decreased at +2.5 Gz and 74% decreased at +3.0 Gz compared to pre-bed-rest levels) and exaggerated blood insulin response on glucose tolerance testing (blood insulin for treated group increased 95% at 1 h before bed rest and 465% during recovery). This study demonstrates that the physiologic changes after bed rest persist for significant periods of time. Acceleration tolerance time proved to be a sensitive test for the deconditioning process.
Positive train control test bed interoperability upgrades.
DOT National Transportation Integrated Search
2013-02-01
Transportation Technology Center, Inc. (TTCI) upgraded the Positive Train Control (PTC) Test Bed to support additional PTC testing configurations under Federal Railroad Administration (FRA) Task Order 270. The scope of work provided additional PTC Co...
16. Photocopy of Engineering Drawing (original in Engineering News, 4 ...
16. Photocopy of Engineering Drawing (original in Engineering News, 4 October 1890. p. 292), delineator unknown. Scales indicate height in feet above sea level. The gradient in the middle section of the tunnel is incorrectly labeled 1 in 100, whereas the correct gradient is 1 in 1,000. VIEW NORTH, PROFILE OF PART OF ST. CLAIR TUNNEL UNDER RIVER SHOWING SECTION OF RIVER BED AS DETERMINED BY BORINGS, 1890. - St. Clair Tunnel, Under St. Clair River between Port Huron, MI, & Sarnia, ON, Canada, Port Huron, St. Clair County, MI
23. Engine room, as seen from starboard side near ladderway ...
23. Engine room, as seen from starboard side near ladderway from main (promenade) deck. At left is hot well for main engine, at the sides of which are two reciprocating boiler feedwater pumps. Behind the hot well is the condenser and the foot of one of the legs supporting the walking beam A-frame. Hot well and condenser rest on a large bed (painted black) which runs the length of the engine. In the right foreground is water pump for trim tanks. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
My Rewarding Summer Research Experience at NASA
NASA Technical Reports Server (NTRS)
Aviles, Andres
2007-01-01
My summer research experience at the Kennedy Space Center has been a truly rewarding one. As an electrical engineering student at the University of South Florida, I was blessed with a beneficial opportunity to gain valuable knowledge in my career, and also apply it through working at NASA. One of my inspirations in becoming an engineer is to work at NASA someday, and I was very excited and honored to have this opportunity. My goal in this internship was to strengthen my preparation in becoming an engineer by learning new material, acquiring skills by practicing what I learned, and discovering the expectations of engineering work at NASA. Through this summer research, I was able to learn new computer programs and perform various tasks that gave me experience and skills as an engineer. My primary job was to conduct work on the Constellation Test article, which is a simulation model of the Crew Launch Vehicle (CLV) tanking system. This is a prototype of a launch facility and an Ares I Vehicle, which God willing will transport astronauts to the moon. Construction of the CLV is in progress and a test launch is anticipated for 2010. Moreover, the Test Article serves as a demonstration too, training test bed, and may be expanded for new simulation of launch system elements, which could be applied to real life operations. The test article is operated and run by a Programmable Logic Controller (PLC), which is a digital computer that is used to control all forms of machinery such as those in manufacturing buildings and other industries. PLCs are different than other computers because of the physical protection they have against damaging environmental conditions that would destroy other computers. Also, PLCs are equipped with lots of input and output connections that allow extensive amounts of commands to be executed, which would normally require many computers to do. Therefore, PLCs are small, rugged, and extremely powerful tools that may continue to be employed at NASA. Furthermore, in order to conduct productive work on the Test Article, I needed to learn the computer program called RS Logics 5000.
26. Port side of engine room looking forward from aft ...
26. Port side of engine room looking forward from aft bulkhead. This area contains mostly electrical equipment. Two single-cylinder steam-driven dynamos are located near the engine bed, one at right foreground, the other in background. At left in image are a motor-generator set installed to convert DC current (from dynamos) to AC current. Edge-on view of control panel appears near center of image. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT
DOT National Transportation Integrated Search
2015-06-01
FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...
2013-05-15
EDWARDS, Calif. – ED13-0142-01: With its wings and tail structure removed and shrouded in plastic wrap for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its approach-and-landing flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
2013-05-15
EDWARDS, Calif. – ED13-0142-03: Shrouded in plastic wrap with its wings and tail structure removed for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake in front of the control tower at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida
NASA Technical Reports Server (NTRS)
Glasgow, J. C.; Birchenough, A. G.
1978-01-01
The Mod-O 100 kW Experimental Wind Turbine was designed and fabricated by NASA, as part of the Federal Wind Energy Program, to assess technology requirements and engineering problems of large wind turbines. The machine became operational in October 1975 and has demonstrated successful operation in all of its design modes. During the course of its operations the machine has generated a wealth of experimental data and has served as a prototype developmental test bed for the Mod-OA operational wind turbines which are currently used on utility networks. This paper describes the mechanical and control systems as they evolved in operational tests and describes some of the experience with various systems in the downwind rotor configuration.
NASA Astrophysics Data System (ADS)
1980-11-01
The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Software To Secure Distributed Propulsion Simulations
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Bed load transport in gravel-bed rivers
Jeffrey J. Barry
2007-01-01
Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...
T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej
1998-01-01
Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...
Test Guideline Methods for Bed Bug Pesticide Products Now Available
EPA’s final test guidelines, 810.3900 - Laboratory Product Performance Testing Methods for Bed Bug Pesticide Products, provides recommendations for the design and execution of laboratory studies to evaluate the performance of pesticide products.
Multifunctional Mesoscale Observing Networks.
NASA Astrophysics Data System (ADS)
Dabberdt, Walter F.; Schlatter, Thomas W.; Carr, Frederick H.; Friday, Elbert W. Joe; Jorgensen, David; Koch, Steven; Pirone, Maria; Ralph, F. Martin; Sun, Juanzhen; Welsh, Patrick; Wilson, James W.; Zou, Xiaolei
2005-07-01
More than 120 scientists, engineers, administrators, and users met on 8 10 December 2003 in a workshop format to discuss the needs for enhanced three-dimensional mesoscale observing networks. Improved networks are seen as being critical to advancing numerical and empirical modeling for a variety of mesoscale applications, including severe weather warnings and forecasts, hydrology, air-quality forecasting, chemical emergency response, transportation safety, energy management, and others. The participants shared a clear and common vision for the observing requirements: existing two-dimensional mesoscale measurement networks do not provide observations of the type, frequency, and density that are required to optimize mesoscale prediction and nowcasts. To be viable, mesoscale observing networks must serve multiple applications, and the public, private, and academic sectors must all actively participate in their design and implementation, as well as in the creation and delivery of value-added products. The mesoscale measurement challenge can best be met by an integrated approach that considers all elements of an end-to-end solution—identifying end users and their needs, designing an optimal mix of observations, defining the balance between static and dynamic (targeted or adaptive) sampling strategies, establishing long-term test beds, and developing effective implementation strategies. Detailed recommendations are provided pertaining to nowcasting, numerical prediction and data assimilation, test beds, and implementation strategies.
Pearce, N
1985-10-01
This paper describes in broad terms, the fire testing programme we carried out on whole bed assemblies in 1984. It should be clear that the tests were carried out in a thoroughly rigorous scientific manner. As always there is more to be done. The immediate task of finding the so called 'safe' bed assembly is proceeding with the search this year for safer pillows. Softer barrier foams are now being produced and it may be that the NHS could use full depth foam mattresses rather than a barrier foam wrap. On the engineering side I have explained the false alarm problem, and I have reviewed some of the research we are doing to see that new technology is used to give us better systems in future. Life safety sprinkler systems give the possibility of truly active fire protection in patient areas. They will enhance fire safety but at the moment no trade-offs can be offered in other areas of fire protection--either active or passive. My final point is that although I have considered the Department's fire research by looking separately at specific projects, the fire safety of a hospital must always be considered as a total package. To be effective, individual components of fire safety must not be considered in isolation but as part of the overall fire safety system.
NASA Technical Reports Server (NTRS)
Nyangweso, Emmanuel; Bole, Brian
2014-01-01
Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.
Noise Certification Predictions for FJX-2-Powered Aircraft Using Analytic Methods
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
1999-01-01
Williams International Co. is currently developing the 700-pound thrust class FJX-2 turbofan engine for the general Aviation Propulsion Program's Turbine Engine Element. As part of the 1996 NASA-Williams cooperative working agreement, NASA agreed to analytically calculate the noise certification levels of the FJX-2-powered V-Jet II test bed aircraft. Although the V-Jet II is a demonstration aircraft that is unlikely to be produced and certified, the noise results presented here may be considered to be representative of the noise levels of small, general aviation jet aircraft that the FJX-2 would power. A single engine variant of the V-Jet II, the V-Jet I concept airplane, is also considered. Reported in this paper are the analytically predicted FJX-2/V-Jet noise levels appropriate for Federal Aviation Regulation certification. Also reported are FJX-2/V-Jet noise levels using noise metrics appropriate for the propeller-driven aircraft that will be its major market competition, as well as a sensitivity analysis of the certification noise levels to major system uncertainties.
Yarnell, K; Le Bon, M; Turton, N; Savova, M; McGlennon, A; Forsythe, S
2017-01-01
To compare the rate of growth of four microbial strains that cause disease in the horse, on four commonly used types of bedding. The moisture-holding capacity of each bedding type was also tested. Microbial strains included Streptococcus equi, Streptococcus zooepidemicus, Fusobacterium necrophorum, Dichelobacter nodosus and Dermatophilus congolensis. The bedding types tested were Pinus sylvestris (Scots pine shavings), Pinus nigra (Corsican pine shavings), Picea sitchensis (Sitka spruce shavings), Cannabis sativa (hemp) and chopped wheat straw. A suspension of each microbial strain was spread in triplicate on agar media and incubated in its optimal growth conditions. The viable count (colony-forming unit per ml) was determined for each bacterial strain for the five different bedding types. Pinus sylvestris bedding resulted in significantly less (P = 0·001) bacterial growth of all strains tested. Factors resulting in the inhibition of bacterial growth include the antibacterial effects reported in the Pinacea family and the physical properties of the bedding substrate. Research is currently focussed on the diagnosis and management of disease. Prevention of disease is also important for matters of biosecurity. Strategies should include the provision of a hygienic environment and the use of specific types of bedding. Bedding choice has implications for global equine health and disease prevention as well as potential benefits in other animal species. © 2016 The Society for Applied Microbiology.
A Test-Bed of Secure Mobile Cloud Computing for Military Applications
2016-09-13
searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT
Network operating system focus technology
NASA Technical Reports Server (NTRS)
1985-01-01
An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.
Chemical contamination remote sensing
NASA Technical Reports Server (NTRS)
Carrico, J. P.; Phelps, K. R.; Webb, E. N.; Mackay, R. A.; Murray, E. R.
1986-01-01
A ground mobile laser test bed system was assembled to assess the feasibility of detection of various types of chemical contamination using Differential Scattering (DISC) and Differential Absorption (DIAL) Lidar techniques. Field experiments with the test bed system using chemical simulants were performed. Topographic reflection and range resolved DIAL detection of vapors as well as DISC detection of aerosols and surface contamination were achieved. Review of detection principles, design of the test bed system, and results of the experiments are discussed.
MSFC Three Point Docking Mechanism design review
NASA Technical Reports Server (NTRS)
Schaefer, Otto; Ambrosio, Anthony
1992-01-01
In the next few decades, we will be launching expensive satellites and space platforms that will require recovery for economic reasons, because of initial malfunction, servicing, repairs, or out of a concern for post lifetime debris removal. The planned availability of a Three Point Docking Mechanism (TPDM) is a positive step towards an operational satellite retrieval infrastructure. This study effort supports NASA/MSFC engineering work in developing an automated docking capability. The work was performed by the Grumman Space & Electronics Group as a concept evaluation/test for the Tumbling Satellite Retrieval Kit. Simulation of a TPDM capture was performed in Grumman's Large Amplitude Space Simulator (LASS) using mockups of both parts (the mechanism and payload). Similar TPDM simulation activities and more extensive hardware testing was performed at NASA/MSFC in the Flight Robotics Laboratory and Space Station/Space Operations Mechanism Test Bed (6-DOF Facility).
Design and integrated operation of an innovative thermodynamic vent system concept
NASA Astrophysics Data System (ADS)
Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.
1993-06-01
A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.
Model-Based Diagnosis in a Power Distribution Test-Bed
NASA Technical Reports Server (NTRS)
Scarl, E.; McCall, K.
1998-01-01
The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
SLS Intertank Test Article, ITA, is attached to crosshead of loa
2018-04-04
SLS Intertank Test Article, ITA, is attached to crosshead of load test Annex, Bldg. 4619, and removed from bed of KMAG transporter. ITA is slowly raised from bed of KMAG transporter and KMAG is removed.
Hottel, Benjamin A; Pereira, Roberto M; Koehler, Philip G
2015-05-12
Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin) was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin). The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient.
Kayedi, Mohammad Hassan; Khamisabadi, Kiumars; Haghdoost, Ali Akbar; Kayedi, Zohreh; Fallahi, Shirzad; Abdali, Nargess
2017-01-01
ABSTRACT The aim of the present study was to examine the resistance of PermaNet® 2.0 bed nets against repeated washing and environmental factors by using bioassay tests. After 5, 15 and 21 washings with detergents and by using bioassay tests, the resistance of 40 PermaNet® 2.0 bed nets was compared with that of 40 bed nets conventionally treated with one K-O tablet. To examine the long-term resistance, 31 PermaNet® 2.0 bed nets were also distributed among villagers, and were re-collected to perform bioassay tests after 1, 2 and 5 years. In the first phase of this study, the insecticidal effect of the conventionally-treated nets significantly decreased due to repeated washings (P < 0.001); however, it was not significant regarding PermaNet® 2.0 bed nets (P = 0.92 in continuous exposure and P = 0.12 in mortality tests). In the long-term phase of this study, the time required for knockdown of PermaNet® 2.0 increased over the first 2 years and then decreased. In addition, the mortality rate decreased over the first 2 years and then increased. In conclusion, it seems that the technique used by the manufacturer for impregnation of PermaNet® 2.0 bed nets has an acceptable efficiency in comparison with conventional techniques. PMID:28423093
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
Aircraft Fleet on the Tarmac at the Lewis Flight Propulsion Laboratory
1946-04-21
This fleet of military aircraft was used in the 1940s for research at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The NACA Lewis flight research program was established in March 1943 to augment the lab’s wartime research efforts. NACA Lewis possessed a host of wind tunnels, test stands, and other ground facilities designed to replicate flight conditions, but actual flight tests remained an integral research tool. The military loaned NACA Lewis 15 different aircraft during World War II and six others in the six months following the end of hostilities. During the war these aircraft supported three main efforts: the improved performance of reciprocating engines, better fuel additives and mixtures, and deicing systems. The wartime researchers used the types of aircraft which the studies were intended to improve. After the war the research aircraft served as test beds to investigate engines or systems that often had little to do with the research aircraft. During the war, NACA Lewis’ three pilots were supported by 16 flight engineers, 36 mechanics, and 10 instrumentation specialists. The visible aircraft, from left to right, are a Boeing B-29 Superfortress, a Martin B-26A Marauder, two Consolidated B-24 Liberators, a Cessna UC-78 Bobcat, and a Northrop P-61 Black Widow. Partially obscured are a North American P-51 Mustang, a Bell P-63 King Cobra, a North American AT-6 Texan, and a Lockheed RA-29 Hudson.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
2018-03-28
SLS INTERTANK TEST ARTICLE IS ATTACHED TO CROSSHEAD OF LOAD TEST ANNEX, BLDG. 4619, AND REMOVED FROM BED OF KMAG TRANSPORTER. Matt Cash conducts tag up meeting before lift of ITA from KMAG transporter
Replication of Pine Needle Fuel Beds
John E. Deeming; Ernest R. Elliott
1971-01-01
A technique for building pine needle fuel beds has been developed and tested which assures uniform rates of spread and independence of the builder. Five beds were constructed by each of two technicians. They were burned under identical conditions and a comparison made of the time the fires took to spread 24 inches. A t-test showed that there was no difference between...
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Matthew
Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the ratesmore » of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H 2O and CO 2 management.« less
Nuclear Thermal Propulsion Ground Test History
NASA Technical Reports Server (NTRS)
Gerrish, Harold P.
2014-01-01
Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start-ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates allowed to be release in open air and successfully demonstrated a scrubber concept with the NF-1. The ETS stand was the only one with a high altitude test chamber used for XE'. The ETS and other test cells showed the effects the engine's radiation had on the facility materials and instrumentation as well as side effects the ground test facility has back on the engine operation. The breakdown of Phoebus 1A at test cell C showed how the site was cleaned up and back to operation for five more engines before the program was cancelled.
FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nicholas Ray; Watson, Tony Leroy
2015-09-30
Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
U.S. Army Oxygen Generation System Development
2010-04-01
engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum
Life-finding detector development at NASA GSFC using a custom H4RG test bed
NASA Astrophysics Data System (ADS)
Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander
2018-01-01
Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.
Wellbore stability analysis and its application in the Fergana basin, central Asia
NASA Astrophysics Data System (ADS)
Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han
2014-02-01
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
The clinical utility of makeshift beds in disaster shelters.
Nara, Masayuki; Ueda, Shinsaku; Aoki, Masashi; Tamada, Tsutomu; Yamaguchi, Takuhiro; Hongo, Michio
2013-12-01
Strong earthquakes have been reported to increase the incidence of diseases. One reason for these increases may be the stress from the poor living environment for evacuees in disaster shelters. To reduce stress, makeshift cardboard beds were introduced in shelters in the Ishinomaki region, one of the areas heavily damaged by the Great East Japan Earthquake, 4 months after the earthquake. The study was performed to determine whether use of the beds offered a reduction in the disease burden. Blood pressure and blood D-dimer values, often used as diagnostic tests for venous thrombosis, were checked. The timed Up & Go (TUG) test, which assesses functional mobility; a questionnaire survey about symptoms (cough, insomnia, and lumbago); and an SF-8 health survey, a health-related quality of life survey, were also administered before and 1 month after introducing the beds. Blood pressure measurements, TUG test results, and questionnaire survey scores improved significantly 1 month after the introduction of the beds. Also, evacuees with higher blood D-dimer values tended to show improvement, suggesting that the beds may have had a good effect on persons with underlying venous thrombotic disorders. Makeshift beds of cardboard could be very useful in disaster shelters.
NASA'S Standard Measures During Bed Rest: Adaptations in the Cardiovascular System
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Feiveson, Alan H.; Martin, David S.; Cromwell, Roni L.; Platts, Steven H.; Stenger, Michael B.
2016-01-01
Bed rest is a well-accepted analog of space flight that has been used extensively to investigate physiological adaptations in a larger number of subjects in a shorter amount of time than can be studied with space flight and without the confounding effects associated with normal mission operations. However, comparison across studies of different bed rest durations, between sexes, and between various countermeasure protocols have been hampered by dissimilarities in bed rest conditions, measurement protocols, and testing schedules. To address these concerns, NASA instituted standard bed rest conditions and standard measures for all physiological disciplines participating in studies conducted at the Flight Analogs Research Unit (FARU) at the University of Texas-Medical Branch. Investigators for individual studies employed their own targeted study protocols to address specific hypothesis-driven questions, but standard measures tests were conducted within these studies on a non-interference basis to maximize data availability while reducing the need to implement multiple bed rest studies to understand the effects of a specific countermeasure. When possible, bed rest standard measures protocols were similar to tests nominally used for medically-required measures or research protocols conducted before and after Space Shuttle and International Space Station missions. Specifically, bed rest standard measures for the cardiovascular system implemented before, during, and after bed rest at the FARU included plasma volume (carbon monoxide rebreathing), cardiac mass and function (2D, 3D and Doppler echocardiography), and orthostatic tolerance testing (15- or 30-minutes of 80 degree head-up tilt). Results to-date indicate that when countermeasures are not employed, plasma volume decreases and the incidence of presyncope during head-up tilt is more frequent even after short-duration bed rest while reductions in cardiac function and mass are progressive as bed rest duration increases. Additionally, while plasma volume loss can be corrected and cardiac mass can be prevented with properly applied countermeasures, orthostatic tolerance is more difficult to protect when supine exercise is the only countermeasure. Similar results have been observed after space flight. Plasma volume, cardiac chamber volume, and orthostatic tolerance recover relatively quickly with resumption of ambulation and normal activity levels after bed rest but restoration of cardiac mass is prolonged.
Effects of ultralow oxygen and vacuum treatments on bed bug (Heteroptera: Cimicidae) survival
USDA-ARS?s Scientific Manuscript database
Control of bed bugs has always been problematic, balancing among efficacy, safety, and cost. In this study, ultralow oxygen (ULO) and vacuum treatments were tested on bed bugs to develop a safer, effective, and environmental friendly solution to bed bug infestations. ULO treatments were establishe...
NASA Technical Reports Server (NTRS)
McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly
2011-01-01
A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.
Rajamohan, Sakthivel; Kasimani, Ramesh
2018-04-01
This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.
Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Noble, S.D.
Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two typesmore » of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.« less
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana
2003-01-01
This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.
Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation
Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; ...
2015-10-21
Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisturemore » content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.« less
A computational continuum model of poroelastic beds
Zampogna, G. A.
2017-01-01
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355
NASA Astrophysics Data System (ADS)
Viparelli, Enrica; Gaeuman, David; Wilcock, Peter; Parker, Gary
2011-02-01
Major changes in the morphology of the Trinity River in California, such as narrowing of the cross section and sedimentation of fine sediment in pools, occurred after the closure of a system of dams. These changes caused a dramatic reduction in the salmonid population and a resulting decline of the fishery. Gravel augmentation, regulated flood releases, and mechanical channel rehabilitation are currently being implemented to help restore the aquatic habitat of the river. The present paper describes a tool, named the Spawning Gravel Refresher, for designing and predicting the effects of gravel augmentation in gravel bed rivers. The tool assumes an imposed, cycled hydrograph. The model is calibrated and applied to the regulated reach of the Trinity River in four steps: (1) zeroing runs to reproduce conditions of mobile bed equilibrium as best can be estimated for the predam Trinity River, (2) runs to compare the predictions with the results of previous studies, (3) runs at an engineering time scale to reproduce the effects of the dams, and (4) runs to design gravel augmentation schemes. In the fourth group of runs, the combined effects of engineered flood flow releases and gravel augmentation are predicted. At an engineering time scale, the model indicates that the fraction of fine sediment in the surface layer and in the topmost part of the substrate should decrease when subjected to these two restoration measures, with a consequent improvement of the quality of the spawning gravel.
NASA Astrophysics Data System (ADS)
Cooper, J.; Tait, S.; Marion, A.
2005-12-01
Bed-load is governed by interdependent mechanisms, the most significant being the interaction between bed roughness, surface layer composition and near-bed flow. Despite this, practically all transport rate equations are described as a function of average bed shear stress. Some workers have examined the role of turbulence in sediment transport (Nelson et al. 1995) but have not explored the potential significance of spatial variations in the near-bed flow field. This is unfortunate considering evidence showing that transport is spatially heterogeneous and could be linked to the spatial nature of the near-bed flow (Drake et al., 1988). An understanding is needed of both the temporal and spatial variability in the near-bed flow field. This paper presents detailed spatial velocity measurements of the near-bed flow field over a gravel-bed, obtained using Particle Image Velocimetry. These data have been collected in a laboratory flume under two regimes: (i) tests with one bed slope and different flow depths; and (ii) tests with a combination of flow depths and slopes at the same average bed shear stress. Results indicate spatial variation in the streamwise velocities of up to 45 per cent from the double-averaged velocity (averaged in both time and space). Under both regimes, as the depth increased, spatial variability in the flow field increased. The probability distributions of near-bed streamwise velocities became progressively more skewed towards the higher velocities. This change was more noticeable under regime (i). This has been combined with data from earlier tests in which the near-bed velocity close to an entraining grain was measured using a PIV/image analysis system (Chegini et al, 2002). This along with data on the shape of the probability density function of velocities capable of entraining individual grains derived from a discrete-particle model (Heald et al., 2004) has been used to estimate the distribution of local velocities required for grain motion in the above tests. The overlap between this distribution and the measured velocities are used to estimate entrainment rates. Predicted entrainment rates increase with relative submergence, even for similar bed shear stress. Assuming bed-load rate is the product of entrainment rate and hop length, and that hop lengths are sensibly stable, suggests that transport rate has a dependence on relative submergence. This demonstrates that transport rate is not a direct function of average bed shear stress. The results describe a mechanism that will cause river channels with contrasting morphologies (and different relative submergence) but similar levels of average bed stress to experience different levels of sediment mobility. Chegini A. Tait S. Heald J. McEwan I. 2002 The development of an automated system for the measurement of near bed turbulence and grain motion. Proc. ASCE Conf. on Hydraulic Measurements and Experimental Methods, ISBN 0-7844-0655-3. Drake T.G. Shreve R.L. Dietrich W.E. Whiting P.J. Leopold L.B. 1988 Bedload transport of fine gravel observed by motion-picture photography, J. Fluid Mech., 192, 193-217. Heald J. McEwan I. Tait, S. 2004 Sediment transport over a flat bed in a unidirectional flow: simulations and validation, Phil. Trans. Roy. Soc. of London A, 362, 1973-1986. Nelson J.M. Shreve R.L. McLean S.R. Drake T.G. 1995 Role of near-bed turbulence structure in bed-load transport and bed form mechanics, Water. Res. Res., 31, 8, 2071-2086.
A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes
NASA Astrophysics Data System (ADS)
Mehta, A. J.; Krishna, G.
2009-12-01
Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.
ERIC Educational Resources Information Center
Arulselvi, Evangelin
2013-01-01
The present study aims at finding out the effectiveness of Mutual learning approach over the conventional method in learning English optional II among B.Ed students. The randomized pre-test, post test, control group and experimental group design was employed. The B.Ed students of the same college formed the control and experimental groups. Each…
Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.
2012-01-01
Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence tomography measurements of the retina.
[Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floating-bed].
Wu, Jian-Qiang; Wang, Min; Wu, Jian; Jiang, Yue; Sun, Cong-Jun; Cao, Yong
2011-04-01
Plant floating-bed tested engineering was constructed for eutrophication control in Dian-shan Lake, the characteristics and nutrient uptake abilities of Canna indica, Iris pseudacorus, Thalia dealbata and Lythrum salicaria were compared. It shows that using upper and lower nylon nets to fix the plants on the floating-bed is beneficial for them to grow and reproduce rapidly. Survival rates of Canna indica, lris pseudacorus, Thalia dealbata and Lythrum salicaria are 83.33%, 83.33%, 76.67% and 53.33% respectively. Ramets of Canna indica and Thalia dealbata are 64 and 78 respectively in November, and the biomass (fresh weight) of these two plants are 32.0 and 38.6 kg per individual plant. Nitrogen (N) and phosphorus (P) content in stems/leaves of Canna indica and Thalia dealbata are greater than those in roots. The ratio between stems/leaves and roots of N, P content in Canna indica are 1.40 and 1.21 respectively, while 1.59 and 1.08 in Thalia dealbata. The difference of cumulative N, P content in plants is mostly on account of different plant biomass. N uptake ability of Thalia dealbata is the highest, which is 457.11 g per square; Canna indica has the highest P uptake ability, which is 41.29 g per square. N, P uptake ability of stems/leaves in Canna indica are 2.17 and 1.86 times higher than that of roots, while 1.73 and 1.17 times higher respectively in Thalia dealbata. Thus, Canna indica and Thalia dealbata are recommended as the floating-bed plants to control the eutrophication in Dian-shan Lake.
NASA Astrophysics Data System (ADS)
Pasternack, Gregory B.; Bounrisavong, Michael K.; Parikh, Kaushal K.
2008-07-01
SummaryThe importance of channel non-uniformity to natural hydrogeomorphic and ecological processes in gravel-bed rivers is becoming increasingly known, but its use in channel rehabilitation lags behind. Many projects still use methods that assume steady, uniform flow and simple channel geometries. One aspect of channel non-uniformity that has not been considered much is its role in controlling backwater conditions and thus potentially influencing patterns of physical habitat and channel stability in sequences of riffles and pools. In this study, 2D hydrodynamic models of two non-uniform pool-riffle-pool configurations were used to systematically explore the effects of four different downstream water surface elevations at three different discharges (24 total simulations) on riffle-pool ecohydraulics. Downstream water surface elevations tested included backwater, uniform, accelerating, and critical conditions, which are naturally set by downstream riffle-crest morphology but may also be re-engineered artificially. Discharges included a fish-spawning low flow, summer fish-attraction flow, and a peak snowmelt pulse. It was found that the occurrence of a significant area of high-quality fish spawning habitat at low flow depends on riffles being imposed upon by backwater conditions, which also delay the onset of full bed mobility on riffles during floods. The assumption of steady, uniform flow was found to be inappropriate for gravel-bed rivers, since their non-uniformity controls spatial patterns of habitat and sediment transport. Also, model results indicated that a "reverse domino" mechanism can explain catastrophic failure and re-organization of a sequence of riffles based on the water surface elevation response to scour on downstream riffles, which then increases scour on upstream riffles.
Large-scale Clinical-grade Retroviral Vector Production in a Fixed-Bed Bioreactor
Wang, Xiuyan; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; Bartido, Shirley; Hermetet, Gregory; Sadelain, Michel
2015-01-01
The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase. PMID:25751502
Code of Federal Regulations, 2010 CFR
2010-01-01
... confirmation test on the mattress set it manufactures. (r) Confirmation test means a pre-market test conducted... included; examples are convertible sofa bed mattresses, corner group mattresses, day bed mattresses, roll...) This term includes any one, or any combination of the following: replacing the ticking or batting...
Code of Federal Regulations, 2012 CFR
2012-01-01
... confirmation test on the mattress set it manufactures. (r) Confirmation test means a pre-market test conducted... included; examples are convertible sofa bed mattresses, corner group mattresses, day bed mattresses, roll...) This term includes any one, or any combination of the following: replacing the ticking or batting...
Code of Federal Regulations, 2011 CFR
2011-01-01
... confirmation test on the mattress set it manufactures. (r) Confirmation test means a pre-market test conducted... included; examples are convertible sofa bed mattresses, corner group mattresses, day bed mattresses, roll...) This term includes any one, or any combination of the following: replacing the ticking or batting...
Code of Federal Regulations, 2014 CFR
2014-01-01
... confirmation test on the mattress set it manufactures. (r) Confirmation test means a pre-market test conducted... included; examples are convertible sofa bed mattresses, corner group mattresses, day bed mattresses, roll...) This term includes any one, or any combination of the following: replacing the ticking or batting...
16 CFR § 1633.2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... confirmation test on the mattress set it manufactures. (r) Confirmation test means a pre-market test conducted... included; examples are convertible sofa bed mattresses, corner group mattresses, day bed mattresses, roll...) This term includes any one, or any combination of the following: replacing the ticking or batting...
Removal of Cesium From Acidic Radioactive Tank Waste Using IONSIV IE-911 (CST)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nicholas Robert; Todd, Terry Allen
2004-10-01
IONSIV IE-911, or the engineered form of crystalline silicotitanate (CST), manufactured by UOP Molecular Sieves, has been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) acidic radioactive tank waste. A series of batch contacts and column tests were performed by using three separate batches of CST. Batch contacts were performed to evaluate the concentration effects of nitric acid, sodium, and potassium ions on cesium sorption. Additional batch tests were performed to determine if americium, mercury, and plutonium would sorb onto IONSIV IE-911. An equilibrium isotherm was generated by using a concentrated tank waste simulant.more » Column tests using a 1.5 cm 3 column and flow rates of 3, 5, 10, 20, and 30 bed volumes (BV)/hr were performed to elucidate dynamic cesium sorption capacities and sorption kinetics. Additional experiments investigated the effect of CST batch and pretreatment on cesium sorption. The thermal stability of IONSIV IE-911 was evaluated by performing thermal gravimetric analysis/differential thermal analysis. Overall, IONSIV IE-911 was shown to be effective for cesium sorption from complex, highly acidic solutions; however, sorbent stability in these solutions may have a deleterious effect on cesium sorption.« less
Development of braided rope seals for hypersonic engine applications: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank
1992-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.
Conceptual Design of a Chesapeake Bay Environmental Observatory (CBEO)
NASA Astrophysics Data System (ADS)
Ball, W. P.; di Toro, D.; Gross, T. F.; Kemp, W. M.; Burns, R.; Piasecki, M.; Zaslavsky, I.; Cuker, B. E.; Murray, L.
2006-12-01
A new project is underway to develop and deploy a Chesapeake Bay Environmental Observatory (CBEO), which is intended to serve as a prototype of cyberinfrastructure (CI) for environmental observatory networks (EONs) that will demonstrate the transformative power of CI. The CBEO will be developed by a team of highly qualified computer scientists, ecologists, oceanographers and environmental engineers with a track record of working together on environmental observatory projects and complex cross-discipline research efforts. The project approach has been organized around the following four concurrent interacting elements, which follow the acronym "NETS": (1) The CBEO:N group will incorporate the test bed CI into the national EONs by constructing a GEON-based node for the CBEO. This will entail resolving complex cross-disciplinary issues of semantics, syntax and inter- operability as well as developing new shared CI tools for data assimilation and interpolation. (2) CBEO:E is the education element and will use the CBEO to translate observational science for public consumption. Direct participation of multicultural students and a K-12 teacher are planned. The test-bed and network components (described below and above) will provide the focus of five workshops for users, managers and science educators; (3) Prior to full integration via CBEO:N, CBEO:T will rapidly construct a locally accessible CBEO test-bed prototype that will integrate a subset of currently available large data sets characterized by multiple variables and widely disparate time and space scales ? grab and continuous sampling at fixed stations, undulating towed sensors, and satellite and aircraft remote sensing. A novel feature will be the inclusion of the fifteen year (1986-2000) simulated data from the Bay-wide fine spatial (1-10 km) and temporal (0.02-1 hr) scale hydrodynamic and water quality model. CBEO:T will serve initially as the development platform for data integration, interpolation, and visualization. (4) The driving force and context for the effort will be provided by the environmental science element, CBEO:S. CBEO:S will use CBEO:T and CBEO:N to address unresolved questions of anthropogenic and climatic factors controlling hypoxia in Chesapeake Bay, a problem shared with many other estuaries and whose consequences are severe and long lasting. The CBEO:S and CBEO:E teams will test the CBEO capabilities, suggest modifications, and provide timely user feedback. Overall, the project intends to demonstrate the power of blending CI and domain science to produce new and exciting scientific insights and engineering tools. The CI will produce a joining of disparate and incommensurable Chesapeake Bay data sets, while also providing shared CI developments to serve a multi- disciplinary research community through an observation node that is a member of all EONs currently under development.
Verification of a ground-based method for simulating high-altitude, supersonic flight conditions
NASA Astrophysics Data System (ADS)
Zhou, Xuewen; Xu, Jian; Lv, Shuiyan
Ground-based methods for accurately representing high-altitude, high-speed flight conditions have been an important research topic in the aerospace field. Based on an analysis of the requirements for high-altitude supersonic flight tests, a ground-based test bed was designed combining Laval nozzle, which is often found in wind tunnels, with a rocket sled system. Sled tests were used to verify the performance of the test bed. The test results indicated that the test bed produced a uniform-flow field with a static pressure and density equivalent to atmospheric conditions at an altitude of 13-15km and at a flow velocity of approximately M 2.4. This test method has the advantages of accuracy, fewer experimental limitations, and reusability.
Cyber Security Testing and Training Programs for Industrial Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel Noyes
2012-03-01
Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall securitymore » posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.« less
Counter rotating fans — An aircraft propulsion for the future?
NASA Astrophysics Data System (ADS)
Schimming, Peter
2003-05-01
In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time. A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.
Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone
NASA Astrophysics Data System (ADS)
Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.
2014-12-01
Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.
RF Negative Ion Source Development at IPP Garching
NASA Astrophysics Data System (ADS)
Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.
2007-08-01
IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.
TDAS: The Thermal Expert System (TEXSYS) data acquisition system
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Healey, Kathleen J.
1987-01-01
As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.
Vegetation and other parameters in the Brevard County bar-built estuaries
NASA Technical Reports Server (NTRS)
Down, C.; Withrow, R. (Editor)
1978-01-01
It is shown that low-altitude aerial photography, using specific interpretive techniques, can effectively delineate sea-grass beds, oyster beds, and other underwater features. Various techniques were used on several sets of aerial imagery. Imagery was tested using several data analysis methods, ground truth, and biological testing. Approximately 45,000 acres of grass beds, 2,500 acres of oyster beds, and 4,200 acres of dredged canals were mapped. This data represents selected sites only. Areas chosen have the highest quality water in Brevard County and are among the most highly recognized biologically productive waters in Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.R.; Keil, K.; Mansker, W.L.
1984-10-01
This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.
2005-01-01
This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
John M. Buffington; William E. Dietrich; James W. Kirchner
1992-01-01
We report the first measurements of friction angles for a naturally formed gravel streambed. For a given test grain size placed on a bed surface, friction angles varied from 10º to over 100º; friction angle distributions can be expressed as a function of test grain size, median bed grain size, and bed sorting parameter. Friction angles decrease with increasing grain...
Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument
NASA Astrophysics Data System (ADS)
Evans, T.
The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.
Potential of Essential Oil-Based Pesticides and Detergents for Bed Bug Control.
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2014-12-01
The bed bug, (Cimex lectularius L.), is a difficult pest to control. Prevalence of insecticide resistance among bed bug populations and concerns over human-insecticide exposure has stimulated the development of alternative bed bug control materials. Many essential oil-based pesticides and detergent insecticides targeting bed bugs have been developed in recent years. We evaluated the efficacy of nine essential oil-based products and two detergents using direct spray and residual contact bioassays in the laboratory. Two conventional insecticides, Temprid SC (imidacloprid and β-cyfluthrin) and Demand CS (λ-cyhalothrin), were used for comparison. Among the 11 nonsynthetic insecticides tested, only EcoRaider (1% geraniol, 1% cedar extract, and 2% sodium lauryl sulfate) and Bed Bug Patrol (0.003% clove oil, 1% peppermint oil, and 1.3% sodium lauryl sulfate) caused >90% mortality of nymphs in direct spray and forced exposure residual assays. However, the efficacy of EcoRaider and Bed Bug Patrol was significantly lower than that of Temprid SC and Demand CS in choice exposure residual bioassay. Direct spray of EcoRaider caused 87% egg mortality, whereas the other nonsynthetic insecticides had little effect on bed bug eggs. EcoRaider and Bed Bug Patrol did not exhibit detectable repellency against bed bugs in the presence of a carbon dioxide source. These findings suggest that EcoRaider and Bed Bug Patrol are potentially useful pesticides for controlling bed bug infestations, but further testing in naturally infested environments is needed. © 2014 Entomological Society of America.
Seidel, Conrad; Reinhardt, Klaus
2013-01-01
Bed bugs appear to be feared more than vector insects and other household pests. The reasons for this exaggerated fear are not fully understood. One hypothesis is that the folk knowledge on recognising and controlling bed bugs decreased as bed bugs became rarer in the 1960s and led to irrational perceptions. Here, we examine people's ability to recognise a bed bug and their response what to do in case of an infestation. We found that 13% of a sample of 391 people in four large German cities recognised a bed bug; 15% of all respondents would call a pest controller in case of bed bug infestation. This results in the pessimistic estimate that 97% of all early-stage infestations could go untreated. We discuss additional scenarios. The effectiveness of efforts to educate people about the presence of bed bugs has never been tested, but our sample is useful to guide future studies. We found three sources of information were associated with increased recognition rates of bed bugs: a) previous contacts with bed bugs (60% recognition), b) knowledge from friends or relatives (25%) and school or education courses (15%). By contrast, people who heard of bed bugs from television, print media or the Internet showed reduced recognition rates. We propose that the former factors be tested for educational interventions. In Germany, the bed bug is an estranged creature to many people, a fact that seems to hinder rational approaches to their control.
Seidel, Conrad; Reinhardt, Klaus
2013-01-01
Bed bugs appear to be feared more than vector insects and other household pests. The reasons for this exaggerated fear are not fully understood. One hypothesis is that the folk knowledge on recognising and controlling bed bugs decreased as bed bugs became rarer in the 1960s and led to irrational perceptions. Here, we examine people’s ability to recognise a bed bug and their response what to do in case of an infestation. We found that 13% of a sample of 391 people in four large German cities recognised a bed bug; 15% of all respondents would call a pest controller in case of bed bug infestation. This results in the pessimistic estimate that 97% of all early-stage infestations could go untreated. We discuss additional scenarios. The effectiveness of efforts to educate people about the presence of bed bugs has never been tested, but our sample is useful to guide future studies. We found three sources of information were associated with increased recognition rates of bed bugs: a) previous contacts with bed bugs (60% recognition), b) knowledge from friends or relatives (25%) and school or education courses (15%). By contrast, people who heard of bed bugs from television, print media or the Internet showed reduced recognition rates. We propose that the former factors be tested for educational interventions. In Germany, the bed bug is an estranged creature to many people, a fact that seems to hinder rational approaches to their control. PMID:23300947
40 CFR 63.7187 - What performance tests and other compliance procedures must I use?
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service...
40 CFR 63.7187 - What performance tests and other compliance procedures must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... regeneration stream mass or volumetric flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service...
40 CFR 63.7187 - What performance tests and other compliance procedures must I use?
Code of Federal Regulations, 2012 CFR
2012-07-01
... regeneration stream mass or volumetric flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service...
40 CFR 63.7187 - What performance tests and other compliance procedures must I use?
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream mass or volumetric flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service...
Weeks, E N I; Logan, J G; Gezan, S A; Woodcock, C M; Birkett, M A; Pickett, J A; Cameron, M M
2011-02-01
The common bed bug, Cimex lectularius (Hemiptera: Cimicidae), has recently re-emerged in increasing numbers, distribution and intensity of infestation in many countries. Current control relies on the application of residual pesticides; but, due to the development of insecticide resistance, there is a need for new tools and techniques. Semiochemicals (behaviour and physiology modifying chemicals) could be exploited for management of bed bugs. However, in order to identify semiochemicals that can be utilised in monitoring or control, a suitable olfactometer is needed that enables the study of the responses of bed bugs to volatile chemicals. Previous studies have used olfactometers that do not separate olfactory responses from responses to physical contact. In this study, a still-air olfactometer was used to measure behavioural responses to different bed bug-derived volatiles presented in an odour pot. Bed bugs were significantly more likely to visit the area above the odour pot first, and more frequently, in the presence of volatiles from bed bug-exposed paper but not in the presence of volatiles from conspecific bed bugs. Bed bug activity was found to be dependent on the presence of the volatiles from bed bug-exposed paper, the time during the scotophase and the sex of the insect being tested. The still-air olfactometer could be used to test putative semiochemicals, which would allow an understanding of their behavioural role in bed bug ecology. Ultimately, this could lead to the identification of new semiochemical tools for bed bug monitoring and control.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models
NASA Technical Reports Server (NTRS)
Marquette, Michele L.; Sognier, Marguerite A.
2013-01-01
An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.
NASA Technical Reports Server (NTRS)
Clausen, Christian A., III
1996-01-01
Liquid oxygen is used as the oxidizer for the liquid fueled main engines during the launch of the space shuttle. Any hardware that comes into contact with pure oxygen either during servicing of the shuttle or in the operation of the shuttle must be validated as being free of nonvolatile residue (NVR). This is a safety requirement to prevent spontaneous combustion of carbonaceous NVR if it was to come into contact with pure oxygen. Previous NVR validation testing of space hardware used Freon (CFC-113) as the test solvent. Because CFC-113 no longer can be used, a program was conducted to develop a NVR test procedure that uses a safe environmentally friendly solvent. The solvent that has been used in the new NVR test procedure is water. Work that has been conducted over the past three years has served to demonstrate that when small parts are subjected to ultrasound in a water bath and NVR is present a sufficient quantity is dispersed into the water to analyze for its concentration by the TOC method. The work that is described in this report extends the water wash NVR validation test to large-scale parts; that is, parts too large to be subjected to ultrasound. The method consists of concentrating the NVR in the water wash onto a bed of silica gel. The total adsorbent bed is then analyzed for TOC content by using a solid sample probe. Work that has been completed thus far has demonstrated that hydrocarbon based NVR's can be detected at levels of less than 0.1 mg per square foot of part's surface area by using a simple water wash.
Achieving Tier 4 Emissions in Biomass Cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng
Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less
Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas
This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less
Field Training Activities for Hydrologic Science in West Java, Indonesia
NASA Astrophysics Data System (ADS)
Agustina, C.; Fajri, P. N.; Fathoni, F.; Gusti, T. P.; Harifa, A. C.; Hendra, Y.; Hertanti, D. R.; Lusiana, N.; Rohmat, F. I.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Pandjaitan, N.; Santoso, R.; Suharyanto, A.
2013-12-01
In hydrologic science and engineering, one challenge is establishing a common framework for discussion among workers from different disciplines. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, nine current or recent graduate students from four Indonesian universities participated in a week of training activities during June 2013. Students had backgrounds in agricultural engineering, civil and environmental engineering, water resources engineering, natural resources management, and soil science. Professors leading the training, which was based at Bogor Agricultural University (IPB) in west Java, included an agricultural engineer, civil engineers, and geologists. Activities in surface-water hydrology included geomorphic assessment of streams (measuring slope, cross-section, and bed-clast size) and gauging stream flow (wading with top-setting rods and a current meter for a large stream, and using a bucket and stopwatch for a small stream). Groundwater-hydrology activities included measuring depth to water in wells, conducting a pumping test with an observation well, and performing vertical electrical soundings to infer hydrostratigraphy. Students also performed relatively simple water-quality measurements (temperature, electrical conductivity, pH, and alkalinity) in streams, wells, and springs. The group analyzed data with commercially-available software such as AQTESOLV for well hydraulics, freeware such as the U.S. Geological Survey alkalinity calculator, and Excel spreadsheets. Results were discussed in the context of landscape position, lithology, and land use.
Economic aspects of advanced coal-fired gas turbine locomotives
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Houser, B. C.
1983-01-01
Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.
Advanced traffic technology test-bed.
DOT National Transportation Integrated Search
2004-06-01
The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...