Sample records for test compression test

  1. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  3. Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering

    NASA Astrophysics Data System (ADS)

    Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan

    2018-01-01

    To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.

  4. A low cost method of testing compression-after-impact strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  5. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    PubMed

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

  6. A test data compression scheme based on irrational numbers stored coding.

    PubMed

    Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan

    2014-01-01

    Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

  7. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Huanran; Cai Canyuan; Chen Danian

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less

  8. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  9. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  10. Micromechanics of composite laminate compression failure

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1986-01-01

    The Dugdale analysis for metals loaded in tension was adapted to model the failure of notched composite laminates loaded in compression. Compression testing details, MTS alignment verification, and equipment needs were resolved. Thus far, only 2 ductile material systems, HST7 and F155, were selected for study. A Wild M8 Zoom Stereomicroscope and necessary attachments for video taping and 35 mm pictures were purchased. Currently, this compression test system is fully operational. A specimen is loaded in compression, and load vs shear-crippling zone size is monitored and recorded. Data from initial compression tests indicate that the Dugdale model does not accurately predict the load vs damage zone size relationship of notched composite specimens loaded in compression.

  11. Retention of basic life support knowledge, self-efficacy and chest compression performance in Thai undergraduate nursing students.

    PubMed

    Partiprajak, Suphamas; Thongpo, Pichaya

    2016-01-01

    This study explored the retention of basic life support knowledge, self-efficacy, and chest compression performance among Thai nursing students at a university in Thailand. A one-group, pre-test and post-test design time series was used. Participants were 30 nursing students undertaking basic life support training as a care provider. Repeated measure analysis of variance was used to test the retention of knowledge and self-efficacy between pre-test, immediate post-test, and re-test after 3 months. A Wilcoxon signed-rank test was used to compare the difference in chest compression performance two times. Basic life support knowledge was measured using the Basic Life Support Standard Test for Cognitive Knowledge. Self-efficacy was measured using the Basic Life Support Self-Efficacy Questionnaire. Chest compression performance was evaluated using a data printout from Resusci Anne and Laerdal skillmeter within two cycles. The training had an immediate significant effect on the knowledge, self-efficacy, and skill of chest compression; however, the knowledge and self-efficacy significantly declined after post-training for 3 months. Chest compression performance after training for 3 months was positively retaining compared to the first post-test but was not significant. Therefore, a retraining program to maintain knowledge and self-efficacy for a longer period of time should be established after post-training for 3 months. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Compressed/reconstructed test images for CRAF/Cassini

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Cheung, K.-M.; Onyszchuk, I.; Pollara, F.; Arnold, S.

    1991-01-01

    A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity.

  13. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr compression garment during the second testing session in Scotland, but none wore it during testing at JSC. RESULTS: The mean Delta HR from the supine to standing position in the 8 crewmembers measured pre-flight or 60 days after return from long-duration space flight was 9.8 bpm. During the first few hours after landing from long-duration space flight, the mean Delta HR of the 6 crewmembers who wore the Russian Kentavr compression garment in Kazakhstan or Karaganda was +14 bpm and the change in mean arterial pressure (Delta MAP) was +0.8 mmHg, while the 2 crewmembers who did not wear the Russian Kentavr compression garment had a Delta HR of +38 bpm and a Delta MAP of +1.1 mmHg. In Scotland, 4 crewmembers wore the Russian Kentavr compression garment and had a Delta HR of +7.4 bpm while the 3 crewmembers who did not wear it had a Delta HR of +25.0 bpm. Seven crewmembers were tested upon return to JSC approx. 24 hr after landing, but none wore the Russian Kentavr compression garment and their Delta HR was 16.0 bpm. CONCLUSIONS: These are the first stand-test data to be collected from long-duration crewmembers during the first 24 hr of re-adaptation to gravity on Earth. The Delta HR measured in crewmembers who completed the stand-test while wearing Kentavr within the first approx.4 hours after returning to Earth was only slightly elevated from pre-flight Delta HR, while the few subjects who did not wear the Russian Kentavr compression garment had a much larger increase in HR in order to maintain arterial pressure throughout 3.5-min of standing. These data demonstrate the effectiveness of a compression garment in preventing large increases in HR during a 3.5 min stand test after long-duration space flight. However, the fact that three crewmembers were too ill to complete the test or was not able to complete 3.5 min of standing despite wearing the Russian Kentavr compression garment indicates that wearing a compression garment does not resolve all problems crewmembers face during the period of re-adaptation immediately after return to Earth's gravity.

  14. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Test for Liquefied Compressed Gases A Appendix A to Part 180 Transportation Other Regulations Relating... Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each.... 2. On pump-actuated pressure differential internal valves, the three-way toggle valve handle or its...

  15. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  16. Constitutive Soil Properties for Mason Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.

    2011-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.

  17. Prechamber Compression-Ignition Engine Performance

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  18. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... weighed to determine the percent of weight loss. 3. Test method D-3—Compression Exudation Test The entire... from the glass tube and weighed to determine the percent of weight loss. EC02MR91.067 ... assembly is placed under the compression rod, and compression is applied by means of the weight on the...

  19. Reactive Material Structures

    DTIC Science & Technology

    2014-03-31

    dissimilar materials ( steel end fixtures and RMS). 2.6.4 Compression Tests To prevent the ends of the specimens from mushrooming during compression ...RMS cylinder. The compression test was modeled in ANSYS by applying a fixed displacement in the axial direction. The first ply to exceed the...four phases of loading: 1) a compressive acceleration during gun launch, 2) a tensile unloading on exit from the barrel , 3) a compressive decelera

  20. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    NASA Astrophysics Data System (ADS)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  1. Permeability and compression characteristics of municipal solid waste samples

    NASA Astrophysics Data System (ADS)

    Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz

    2006-08-01

    Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.

  2. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Treesearch

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  3. Transverse compression of PPTA fibers

    NASA Astrophysics Data System (ADS)

    Singletary, James

    2000-07-01

    Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.

  4. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  5. Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Herzke, Tobias; Hohmann, Volker

    2005-12-01

    The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test) showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test) showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase in intelligibility resulting from a gain provided by instantaneous compression is as high as from a gain provided by linear amplification. No negative effects of the distortions introduced by the instantaneous compression scheme in terms of speech recognition are observed.

  6. The Use of DNS in Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    The use of Direct numerical simulations (DNS) data in developing and testing turbulence models is reviewed. The data is used to test turbulence models at all levels: algebraic, one-equation, two-equation and full Reynolds stress models were tested. Particular examples on the development of models for the dissipation rate equation are presented. Homogeneous flows are used to test new scaling arguments for the various terms in the dissipation rate equation. The channel flow data is used to develop modifications to the equation model that take into account near-wall effects. DNS of compressible flows under mean compression are used in testing new compressible modifications to the two-equation models.

  7. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  8. Insights into the effects of tensile and compressive loadings on human femur bone.

    PubMed

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  9. A materials test system for static compression at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  10. Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.

    1977-01-01

    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.

  11. Method for testing the strength and structural integrity of nuclear fuel particles

    DOEpatents

    Lessing, P.A.

    1995-10-17

    An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.

  12. Method for testing the strength and structural integrity of nuclear fuel particles

    DOEpatents

    Lessing, Paul A.

    1995-01-01

    An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.

  13. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  14. Analysis of the Mechanical Behavior and Surface Rugosity of Different Dental Die Materials.

    PubMed

    Niekawa, Ciro T; Kreve, Simone; A'vila, Gisseli Bertozzi; Godoy, Gilmar Gil; Eduardo Vieira da Silva, J R; Dias, Sergio Candido

    2017-01-01

    This work evaluated the mechanical and surface behavior of different die materials. The studied materials are polyurethane resin Exakto-Form (Bredent), Gypsum type IV, Fuji Rock EP (Gc), and Durone (Dentsply). Two metallic matrices molded in polyvinyl siloxane provided 30 cylindrical test specimens for the diametral compression test and 30 hemispherical test specimens for the surface rugosity test. The cylindrical test specimens were submitted to tests of diametral compression strength using a DL2000 universal assay machine, with a load cell of 2000 Kgf and constant speed of 1 mm/min connected to the software. Kruskal-Wallis and Dunn's nonparametric tests were used to analyze the results. The hemispheres were submitted to the surface rugosity assay using a SJ201-P rugosimeter with a sensitivity of 300 μm, speed of 0.5 mm/s, and cut-off of 0.8 mm, and the readings were taken on the convex surface of the test specimens and metallic matrix. Results were analyzed using with Fisher's least significant differences test (LSD) and Dunnett's test. Kruskal-Wallis test showed significant difference between die materials for diametral compression strength ( P = 0.002). Dunn's test showed significantly higher values for modified polyurethane resin (Exakto-Form). The gypsum type IV, which did not significantly differ regarding diametral compression strength, showed 34.0% (Durone) and 42.7% (Fuji Rock) lower values in comparison to Exakto-Form. Within the parameters adopted in this study, it is possible to conclude that Exakto-Form polyurethane resin showed higher resistance to compression and was closer to the metallic matrix rugosity, and, along with the gypsum type IV Durone, showed better reproducibility of details relative to the Fuji Rock.

  15. Rapid-Rate Compression Testing of Sheet Materials at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bernett, E. C.; Gerberich, W. W.

    1961-01-01

    This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.

  16. Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    NASA Technical Reports Server (NTRS)

    Raju, B. B.; Camarda, C. J.; Cooper, P. A.

    1979-01-01

    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).

  17. Previous concrete as one of the technology to overcome the puddle

    NASA Astrophysics Data System (ADS)

    Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar

    2018-03-01

    Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer

  18. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  19. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  20. Torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis).

    PubMed

    Kerrigan, Shannon M; Kapatkin, Amy S; Garcia, Tanya C; Robinson, Duane A; Guzman, David Sanchez-Migallon; Stover, Susan M

    2018-04-01

    OBJECTIVE To describe the torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis). SAMPLE 16 cadaveric tibiotarsal bones from 8 red-tailed hawks. PROCEDURES 1 tibiotarsal bone from each bird was randomly assigned to be tested in torsion, and the contralateral bone was tested in axial compression. Intact bones were monotonically loaded in either torsion (n = 8) or axial compression (8) to failure. Mechanical variables were derived from load-deformation curves. Fracture configurations were described. Effects of sex, limb side, and bone dimensions on mechanical properties were assessed with a mixed-model ANOVA. Correlations between equivalent torsional and compressive properties were determined. RESULTS Limb side and bone dimensions were not associated with any mechanical property. During compression tests, mean ultimate cumulative energy and postyield energy for female bones were significantly greater than those for male bones. All 8 bones developed a spiral diaphyseal fracture and a metaphyseal fissure or fracture during torsional tests. During compression tests, all bones developed a crushed metaphysis and a fissure or comminuted fracture of the diaphysis. Positive correlations were apparent between most yield and ultimate torsional and compressive properties. CONCLUSIONS AND CLINICAL RELEVANCE The torsional and axial compressive properties of tibiotarsal bones described in this study can be used as a reference for investigations into fixation methods for tibiotarsal fractures in red-tailed hawks. Although the comminuted and spiral diaphyseal fractures induced in this study were consistent with those observed in clinical practice, the metaphyseal disruption observed was not and warrants further research.

  1. Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.

    PubMed

    Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty

    2003-01-01

    The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.

  2. Time-compressed speech test in the elderly.

    PubMed

    Arceno, Rayana Silva; Scharlach, Renata Coelho

    2017-09-28

    The present study aimed to evaluate the performance of elderly people in the time-compressed speech test according to the variables ears and order of display, and analyze the types of errors presented by the volunteers. This is an observational, descriptive, quantitative, analytical and primary cross-sectional study involving 22 elderly with normal hearing or mild sensorineural hearing loss between the ages of 60 and 80. The elderly were submitted to the time-compressed speech test with compression ratio of 60%, through the electromechanical time compression method. A list of 50 disyllables was applied to each ear and the initial side was chosen at random. On what concerns to the performance in the test, the elderly fell short in relation to the adults and there was no statistical difference between the ears. It was found statistical evidence of better performance for the second ear in the test. The most mistaken words were the ones initiated with the phonemes /p/ and /d/. The presence of consonant combination in a word also increased the occurrence of mistakes. The elderly have worse performance in the auditory closure ability when assessed by the time-compressed speech test compared to adults. This result suggests that elderly people have difficulty in recognizing speech when this is pronounced in faster rates. Therefore, strategies must be used to facilitate the communicative process, regardless the presence of hearing loss.

  3. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  4. Development and Evaluation of Stitched Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)

    2001-01-01

    This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.

  5. Visual acuity, contrast sensitivity, and range performance with compressed motion video

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; de Vries, Sjoerd C.

    2010-10-01

    Video of visual acuity (VA) and contrast sensitivity (CS) test charts in a complex background was recorded using a CCD color camera mounted on a computer-controlled tripod and was fed into real-time MPEG-2 compression/decompression equipment. The test charts were based on the triangle orientation discrimination (TOD) test method and contained triangle test patterns of different sizes and contrasts in four possible orientations. In a perception experiment, observers judged the orientation of the triangles in order to determine VA and CS thresholds at the 75% correct level. Three camera velocities (0, 1.0, and 2.0 deg/s, or 0, 4.1, and 8.1 pixels/frame) and four compression rates (no compression, 4 Mb/s, 2 Mb/s, and 1 Mb/s) were used. VA is shown to be rather robust to any combination of motion and compression. CS, however, dramatically decreases when motion is combined with high compression ratios. The measured thresholds were fed into the TOD target acquisition model to predict the effect of motion and compression on acquisition ranges for tactical military vehicles. The effect of compression on static performance is limited but strong with motion video. The data suggest that with the MPEG2 algorithm, the emphasis is on the preservation of image detail at the cost of contrast loss.

  6. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  7. Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1999-01-01

    The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

  8. Compressive Testing of Stitched Frame and Stringer Alternate Configurations

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Jegley, Dawn C.

    2016-01-01

    A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this report, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel.

  9. O-Ring-Testing Fixture

    NASA Technical Reports Server (NTRS)

    Turner, James E.; Mccluney, D. Scott

    1991-01-01

    Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.

  10. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    NASA Astrophysics Data System (ADS)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  11. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    NASA Astrophysics Data System (ADS)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  12. The effect of compression on individual pressure vessel nickel/hydrogen components

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Perez-Davis, Marla E.

    1988-01-01

    Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset.

  13. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    NASA Astrophysics Data System (ADS)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  14. Comparison of various contact algorithms for poroelastic tissues.

    PubMed

    Galbusera, Fabio; Bashkuev, Maxim; Wilke, Hans-Joachim; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik

    2014-01-01

    Capabilities of the commercial finite element package ABAQUS in simulating frictionless contact between two saturated porous structures were evaluated and compared with those of an open source code, FEBio. In ABAQUS, both the default contact implementation and another algorithm based on an iterative approach requiring script programming were considered. Test simulations included a patch test of two cylindrical slabs in a gapless contact and confined compression conditions; a confined compression test of a porous cylindrical slab with a spherical porous indenter; and finally two unconfined compression tests of soft tissues mimicking diarthrodial joints. The patch test showed almost identical results for all algorithms. On the contrary, the confined and unconfined compression tests demonstrated large differences related to distinct physical and boundary conditions considered in each of the three contact algorithms investigated in this study. In general, contact with non-uniform gaps between fluid-filled porous structures could be effectively simulated with either ABAQUS or FEBio. The user should be aware of the parameter definitions, assumptions and limitations in each case, and take into consideration the physics and boundary conditions of the problem of interest when searching for the most appropriate model.

  15. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  16. A reassessment of the compressive strength properties of southern yellow pine bark

    Treesearch

    Thomas L. Eberhardt

    2007-01-01

    Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...

  17. Constitutive Soil Properties for Cuddeback Lake, California and Carson Sink, Nevada

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material modeling properties for four soil models from two dry lakebeds in the western United States. The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples from the lakebeds. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific only to the two lakebeds discussed in the report. The Cuddeback A and B models represent the softest and hardest soils at Cuddeback Lake. The Carson Sink Wet and Dry models represent different seasonal conditions. It is possible to approximate other clay soils with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  18. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  19. Comparison of chest compressions in the standing position beside a bed at knee level and the kneeling position: a non-randomised, single-blind, cross-over trial.

    PubMed

    Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Sang Jin; Lee, Dong Hoon

    2014-07-01

    When rescuers perform cardiopulmonary resuscitation (CPR) from a standing position, the height at which chest compressions are carried out is raised. To determine whether chest compressions delivered on a bed adjusted to rescuer's knee height are as effective as those delivered on the floor. A total of 20 fourth-year medical students participated in the study. The students performed chest compressions for 2 min each on a manikin lying on the floor (test 1) and on a manikin lying on a bed (test 2). The average compression rate (ACR) and the average compression depth (ACD) were compared between the two tests. The ACR was not significantly different between tests 1 and 2 (120.1 to 132.9  vs 115.7 to 131.2 numbers/min, 95% CI, p=0.324). The ACD was also not significantly different between tests 1 and 2 (51.2 to 56.6 vs 49.4 to 55.7 mm, 95% CI, p=0.058). The results suggest that there may be no significant differences in compression rate and depth between CPR performed on manikins placed on the floor and those placed at a rescuer's knee height. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.

    PubMed

    Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min

    2018-03-01

    The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.

  1. Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.

    2008-01-01

    Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.

  2. Biomechanics of the Proximal Radius Following Drilling of the Bicipital Tuberosity to Mimic Cortical Button Distal Biceps Repair Technique.

    PubMed

    Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N

    2018-05-01

    A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.

  3. 46 CFR 188.10-21 - Compressed gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...

  4. Compression of thick laminated composite beams with initial impact-like damage

    NASA Technical Reports Server (NTRS)

    Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.

    1992-01-01

    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.

  5. 49 CFR Appendix B to Part 180 - Acceptable Internal Self-closing Stop Valve Leakage Tests for Cargo Tanks Transporting Liquefied...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Acceptable Internal Self-closing Stop Valve Leakage Tests for Cargo Tanks Transporting Liquefied Compressed Gases B Appendix B to Part 180... Leakage Tests for Cargo Tanks Transporting Liquefied Compressed Gases For internal self-closing stop valve...

  6. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or short-distance...

  7. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  8. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    PubMed

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  9. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  10. Strength of mortar containing rubber tire particle

    NASA Astrophysics Data System (ADS)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  11. Seal material development test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.

  12. Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA01. [Test Dates: 19-21 November 2008

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.

    2015-01-01

    Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.

  13. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  14. Effect of load introduction on graphite epoxy compression specimens

    NASA Technical Reports Server (NTRS)

    Reiss, R.; Yao, T. M.

    1981-01-01

    Compression testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated: (1) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (2) nonuniform gripping which induces bending into the specimen. An analytical model capable of quantifying these foregoing effects was developed which is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.

  15. Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration.

    PubMed

    Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E

    2017-03-21

    Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.

  16. Compression testing of flammable liquids

    NASA Technical Reports Server (NTRS)

    Briles, O. M.; Hollenbaugh, R. P.

    1979-01-01

    Small cylindrical test chamber determines catalytic effect of given container material on fuel that might contribute to accidental deflagration or detonation below expected temperature under adiabatic compression. Device is useful to producers and users of flammable liquids and to safety specialists.

  17. Blast Mitigation Sea Analysis - Evaluation of Lumbar Compression Data Trends in 5th Percentile Female Anthropomorphic Test Device Performance Compared to 50th Percentile Male Anthropomorphic Test Device in Drop Tower Testing

    DTIC Science & Technology

    2016-08-21

    less pronounced for pelvis velocity • Seat velocity and dynamic displacement not recorded for this test series – Would provide key information for...effectiveness of seat – Displacement /time history data should be recorded for all future test series UNCLASSIFIED UNCLASSIFIED Conclusions/Future...interfacing with seat manufacturers to broaden occupant protection range – Record dynamic stroke on all drop tower tests to evaluate correlation between displacement rate and lumbar compression UNCLASSIFIED UNCLASSIFIED 17

  18. Damage Characteristics and Residual Strength of Composite Sandwich Panels Impacted with and Without Compression Loading

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1998-01-01

    The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.

  19. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  20. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  1. Test Methods for Composites: A Status Report. Volume 2. Compression Test Methods

    DTIC Science & Technology

    1993-06-01

    glass and Kevlar fibers in a phenolic matrix) were relatively thick (24 plies), and more importantly, failed at very low compressive strength levels...ICH LAMINATE SPECIMEN TEST METHOD ........................................ 29 2.4 RECOMMENDATIONS...Thickness in the Middle of the Gage Section, for Four Laminate Thicknesses [711 ................... 143 52. Axial Stress Distributions in an AS4/3502 Carbon

  2. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Part 180—Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each emergency discharge control... 49 Transportation 3 2011-10-01 2011-10-01 false Internal Self-closing Stop Valve Emergency Closure...

  3. Composite Grids for Reinforcement of Concrete Structures.

    DTIC Science & Technology

    1998-06-01

    to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\

  4. Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression

    PubMed Central

    Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie

    2014-01-01

    In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846

  5. High-quality JPEG compression history detection for fake uncompressed images

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan

    2017-05-01

    Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.

  6. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.

    PubMed

    Calvert, Kayla L; Trumble, Kevin P; Webster, Thomas J; Kirkpatrick, Lynn A

    2010-05-01

    Mechanical properties and microstructure characterization of a series of graded commercial rigid polyurethane foams commonly used to mimic trabecular bone in testing orthopaedic devices is reported. Compressive testing conducted according to ASTM standard F1839-08, which requires large specimens (50.8 mm x 50.8 mm x 25.4 mm blocks) gave elastic modulus and compressive strength values ranging from 115 to 794 MPa and 4.7 to 24.7 MPa, respectively, for foams having densities of 0.240-0.641 g/cm(3). All these results were within the requirements of the specification for the corresponding grades. Compression testing using smaller specimens (7.5 mm diameter x 15 mm) typical of testing bone, gave results in good agreement with those obtained in the standard tests. Microstructural measurements showed the average pore size ranged from 125 to 234 microm for densities ranging from 0.641 to 0.159 g/cm(3), respectively. The relative modulus as a function of relative density of the foams fit well to the model of Gibson and Ashby. Cyclic testing revealed hysteresis in the lower density foams with a loading modulus statistically equivalent to that measured in monotonic testing. Shore DO durometry (hardness) measurements show good correlations to elastic modulus and compressive strength. The results suggest additional parameters to consider for the evaluation of polyurethane foams for bone analog applications.

  7. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition

    NASA Astrophysics Data System (ADS)

    Jun, Xie; Zhang, Yannian; Shan, Chunhong

    2017-10-01

    The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.

  8. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  9. Characterization of Shear Properties for APO/MBI Syntactic Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less

  10. Preprototype Vapor Compression Distillation Subsystem development

    NASA Technical Reports Server (NTRS)

    Thompson, C. D.; Ellis, G. S.; Schubert, F. H.

    1981-01-01

    Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.

  11. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  12. Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.

    2012-01-01

    Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.

  13. Damage mechanisms in alloy 800H under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Mu, Z.; Bothe, K.; Gerold, V.

    1994-05-01

    The interaction between fatigue damage (i.e., fatigue crack propagation) and internal grain boundary damage (i.e., cavity formation at grain boundaries) has been studied for the Alloy 800H at 750 C for constant plastic strain ranges but different experimental conditions. Most experiments were performed at constant ranges of alternating tensile/compression stresses. Symmetrical as well as asymmetrical tests (with larger compression stresses) were performed. In comparison to the former tests, asymmetrical tests led to shorter cyclic lifetimes mainly due to cavity formation which was not observed for symmetrical tests. It could be shown that a fast compressive and a slow tensile half cycle (at large compressive and low tensile stresses) are ideal conditions for the nucleation and growth of cavities. Based on quantitative measurements of the cavity density from interrupted fatigue tests, a physical model is presented which can predict the number of cycles to failure. This cycle number is determined only by fatigue crack growth which is controlled by (1) athermal plastic deformation, (2) creep deformation and (3) rate enhancement by cavitation.

  14. Experimental Results From Stitched Composite Multi-Bay Fuselage Panels Tested Under Uni-Axial Compression

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2004-01-01

    The experimental results from two stitched VARTM composite panels tested under uni-axial compression loading are presented. The curved panels are divided by frames and stringers into five or six bays with a column of three bays along the compressive loading direction. The frames are supported at the ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field measurement technique that utilizes a camera-based-stero-vision system was used to record displacements. The panels were loaded in increments to determine the first bay to buckle. Loading was discontinued at limit load and the panels were removed from the test machine for impact testing. After impacting at 20 ft-lbs to 25 ft-lbs of energy with a spherical indenter, the panels were loaded in compression until failure. Impact testing reduced the axial stiffness 4 percent and less than 1 percent. Postbuckled axial panel stiffness was 52 percent and 70 percent of the pre-buckled stiffness.

  15. Determination of friction coefficient in unconfined compression of brain tissue.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Rao, Qiuhua; Ma, Wenbo

    2018-03-01

    The sinkage of a moving tracked mining vehicle is greatly affected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at different speeds is calculated using the RecurDyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage (without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the RecurDyn software can be used to study the performance and structural optimization of moving tracked mining vehicles.

  17. Reliability and diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression: a pilot study.

    PubMed

    Trainor, Kate; Pinnington, Mark A

    2011-03-01

    It has been proposed that neurodynamic examination can assist differential diagnosis of upper/mid lumbar nerve root compression; however, the diagnostic validity of many of these tests has yet to be established. This pilot study aimed to establish the diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression in subjects with suspected lumbosacral radicular pain. Two independent examiners performed the slump knee bend test on subjects with radicular leg pain. Inter-tester reliability was calculated using the kappa coefficient. Slump knee bend test results were compared with magnetic resonance imaging findings, and diagnostic accuracy measures were calculated including sensitivity, specificity, predictive values and likelihood ratios. Orthopaedic spinal clinic, secondary care. Sixteen patients with radicular leg pain. All four subjects with mid lumbar nerve root compression on magnetic resonance imaging were correctly identified with the slump knee bend test; however, it was falsely positive in two individuals without the condition. Inter-tester reliability for the slump knee bend test using the kappa coefficient was 0.71 (95% confidence interval 0.33 to 1.0). Diagnostic validity calculations for the slump knee bend test (95% confidence intervals) were: sensitivity, 100% (40 to 100%); specificity, 83% (52 to 98%); positive predictive value, 67% (22 to 96%); negative predictive value, 100% (69 to 100%); positive likelihood ratio, 6.0 (1.58 to 19.4); and negative likelihood ratio, 0 (0 to 0.6). Results indicate good inter-tester reliability and suggest that the slump knee bend test has potential to be a useful clinical test for identifying patients with mid lumbar nerve root compression. Further investigation is needed on larger numbers of patients to confirm these findings. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  18. Locating Encrypted Data Hidden Among Non-Encrypted Data Using Statistical Tools

    DTIC Science & Technology

    2007-03-01

    length of a compressed sequence). If a bit sequence can be significantly compressed , then it is not random. Lempel - Ziv Compression Test This test...communication, targeting, and a host other of tasks. This software will most assuredly contain classified data or algorithms requiring protection in...containing the classified data and algorithms . As the program is executed the solider would have access to the common unclassified tasks, however, to

  19. Brainstem removal using compressed air for subsequent bovine spongiform encephalopathy testing

    PubMed Central

    2005-01-01

    Abstract The use of compressed air to expel the obex through a hole in the skull generated using a captured bolt stunner. The obex is the part of the brain that is tested for bovine spongiform encephalopathy. PMID:16018564

  20. Effect of angle-ply orientation on compression strength of composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeTeresa, S J; Hoppel, C P

    1999-03-01

    An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less

  1. Testing, Selection, and Implementation of Random Number Generators

    DTIC Science & Technology

    2008-07-01

    Complexity and Lempel - Ziv Compression tests. This causes concern for cryptographic use but is not relevant for our applications. In fact, the features of...Linear Complexity, Lempel - Ziv Compression , and Matrix Rank test failures excluded. The Mersenne Twister is widely accepted by the community; in fact...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments

  2. Spatially Targeted Activation of a Shape Memory, Polymer-Based, Reconfigurable Skin System

    DTIC Science & Technology

    2014-02-01

    bone samples described in ASTM Standard D638 using a CNC router. Compression test samples were cured in an aluminum cylinder mold treated with mold...release with Teflon end plugs and cut to length with a small lathe . 2.2 Tensile/Compressive Tests Tensile tests were conducted on a MTS QTest/1L...fixture with a CNC mill and a decal applied to the front surface for tracking by the DIC system. Figure 10: Shear Test Sample with DIC Decal 10

  3. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.

  4. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    PubMed

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45

  5. The analysis of axisymmetric viscoelasticity, time-dependent recovery, and hydration in rat tail intervertebral discs by radial compression test.

    PubMed

    Lin, Leou-Chyr; Hedman, Thomas P; Wang, Shyu-Jye; Huoh, Michael; Chang, Shih-Youeng

    2009-05-01

    The goal of this study was to develop a nondestructive radial compression technique and to investigate the viscoelastic behavior of the rat tail disc under repeated radial compression. Rat tail intervertebral disc underwent radial compression relaxation testing and creep testing using a custom-made gravitational creep machine. The axisymmetric viscoelasticity and time-dependent recovery were determined. Different levels of hydration (with or without normal saline spray) were supplied to evaluate the effect of changes in viscoelastic properties. Viscoelasticity was found to be axisymmetric in rat-tail intervertebral discs at four equidistant locations. Complete relaxation recovery was found to take 20 min, whereas creep recovery required 25 min. Hydration was required for obtaining viscoelastic axisymmetry and complete viscoelastic recovery.

  6. Mechanical testing of advanced coating system, volume 1

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    The Electron Beam Physical Vapor Deposition (EBPVD) coating material has a highly columnar microstructure, and as a result it was expected to have very low tensile strength. To be able to fabricate the required compression and tensile specimens, a substrate was required to provide structural integrity for the specimens. Substrate and coating dimensions were adjusted to provide sufficient sensitivity to resolve the projected loads carried by the EBPVD coating. The use of two distinctively different strain transducer systems, for tension and compression loadings, mandated two vastly different specimen geometries. Compression specimen and tensile specimen geometries are given. Both compression and tensile test setups are described. Data reduction mathematical models are given and discussed in detail as is the interpretation of the results. Creep test data is also given and discussed.

  7. The Pack Method for Compressive Tests of Thin Specimens of Materials Used in Thin-Wall Structures

    NASA Technical Reports Server (NTRS)

    Aitchison, C S; Tuckerman, L B

    1939-01-01

    The strength of modern lightweight thin-wall structures is generally limited by the strength of the compression members. An adequate design of these members requires a knowledge of the compressive stress-strain graph of the thin-wall material. The "pack" method was developed at the National Bureau of Standards with the support of the National Advisory Committee for Aeronautics to make possible a determination of compressive stress-strain graphs for such material. In the pack test an odd number of specimens are assembled into a relatively stable pack, like a "pack of cards." Additional lateral stability is obtained from lateral supports between the external sheet faces of the pack and outside reactions. The tests seems adequate for many problems in structural research.

  8. The effect on the flexural strength, flexural modulus and compressive strength of fibre reinforced acrylic with that of plain unfilled acrylic resin - an in vitro study.

    PubMed

    Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-03-01

    The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.

  9. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    NASA Technical Reports Server (NTRS)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  10. Development of procedures for calculating stiffness and damping of elastomers in engineering applications. Part 5: Elastomer performance limits and the design and test of an elastomer damper

    NASA Technical Reports Server (NTRS)

    Tecza, J. A.; Darlow, M. S.; Smalley, A. J.

    1979-01-01

    Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.

  11. The effect of strength training on quality of prolonged basic cardiopulmonary resuscitation.

    PubMed

    Abelairas-Gómez, Cristian; Barcala-Furelos, Roberto; Szarpak, Łukasz; García-García, Óscar; Paz-Domínguez, Álvaro; López-García, Sergio; Rodríguez-Núñez, Antonio

    2017-01-01

    Providing high-quality chest compressions and rescue breaths are key elements in the effectiveness of cardio-pulmonary resuscitation. To investigate the effects of a strength training programme on the quality of prolonged basic cardiopulmonary resuscitation on a manikin. This was a quasi-experimental trial. Thirty-nine participants with prior basic life support knowledge were randomised to an experimental or control group. They then performed a test of 10 min of chest compressions and mouth-to-mouth ventilation on manikins equipped with a skill reporter tool (baseline or test 1). The experimental group participated in a four-week strength training programme focused on the muscles involved in chest compressions. Both groups were subsequently tested again (test 2). After training, the experimental group significantly increased the mean depth of compression (53.7 ± 2.3 mm vs. 49.9 ± 5.9 mm; p = 0.003) and the correct compression fraction (68.2 ± 21.0% vs. 46.4 ± 29.1%; p = 0.004). Trained subjects maintained chest compression quality over time better than the control group. The mean tidal volume delivered was higher in the experimental than in the control group (701.5 ± 187.0 mL vs. 584.8 ± 113.6 mL; p = 0.040) and above the current resuscitation guidelines. In test 2, the percentage of rescue breaths with excessive volume was higher in the experi-mental group than in the controls (31.5 ± 19.6% vs. 15.6 ± 13.0%; p = 0.007). A simple strength training programme has a significant impact on the quality of chest compressions and its maintenance over time. Additional training is needed to avoid over-ventilation of potential patients.

  12. Evaluation of the mechanical properties of class-F fly ash.

    PubMed

    Kim, Bumjoo; Prezzi, Monica

    2008-01-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  13. [Evaluation of mechanical properties of four kinds of composite resins for inlay].

    PubMed

    Jiang, Ling-ling; Liu, Hong; Wang, Jin-rui

    2011-04-01

    To evaluate the compressive strength, wear resistance, hardness, and soaking fatigue of four composite resins for inlay, which were Ceramage, Surefil, Solitaire 2, and Filtek(TM) Z350. Scanning electron microscope (SEM) was used to analyze the microstructures of the wear surface of the samples. The samples for the compression test, hardness test and wear were prepared. The samples were respectively immersed in the artificial saliva for 2 months for immersed test. The electronic universal testing machine was used to test the compression strength. Hardness was quantified by micro-Vickers hardness test. The wear tester was used for the wear test. SEM was used to analyze the microstructures of the wear surface of samples. All the data was analyzed by using SPSS17.0 software package. The compressive strength of Surefil was the biggest which was significantly higher than the other three resins before soaking (P<0.05). After soaking, there was no significant difference between the composite resins (P>0.05). The hardness of Surefil was the best, and significant difference was found between the hardness of the materials before soaking (P<0.05). After soaking, no significant difference was obtained between the hardness of Surefil and Filtek(TM) Z350 (P>0.05).The compressive strength and hardness of 4 materials decreased after soaking in artificial saliva. But only the compressive strength of Filtek(TM) Z350 had no significant change after immersion (P>0.05). Except Filtek(TM) Z350, there was significant difference between the other three materials (P<0.05). Significant relationship was observed between wear and hardness of three materials (P<0.05). According to SEM observation, abrasive wear occurred in four materials. In addition to Ceramage, other composite resins had adhesive wear. The mechanical property of Surefil is the best, and it is suitable for fabrication of posterior inlay. Filtek(TM) Z350's ability to resist fatigue is the best.

  14. Permeability hysterisis of limestone during isotropic compression.

    PubMed

    Selvadurai, A P S; Głowacki, A

    2008-01-01

    The evolution of permeability hysterisis in Indiana Limestone during application of isotropic confining pressures up to 60 MPa was measured by conducting one-dimensional constant flow rate tests. These tests were carried out either during monotonic application of the confining pressure or during loading-partial unloading cycles. Irreversible permeability changes occurred during both monotonic and repeated incremental compression of the limestone. Mathematical relationships are developed for describing the evolution of path-dependent permeability during isotropic compression.

  15. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  16. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  17. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.

  18. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.

    PubMed

    Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando

    2008-11-01

    The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.

  19. Overview of CEV Thermal Protection System Seal Development

    NASA Technical Reports Server (NTRS)

    DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John

    2009-01-01

    NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.

  20. Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt

    NASA Astrophysics Data System (ADS)

    Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun

    2017-10-01

    Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.

  1. Study on the application of the time-compressed speech in children.

    PubMed

    Padilha, Fernanda Yasmin Odila Maestri Miguel; Pinheiro, Maria Madalena Canina

    2017-11-09

    To analyze the performance of children without alteration of central auditory processing in the Time-compressed Speech Test. This is a descriptive, observational, cross-sectional study. Study participants were 22 children aged 7-11 years without central auditory processing disorders. The following instruments were used to assess whether these children presented central auditory processing disorders: Scale of Auditory Behaviors, simplified evaluation of central auditory processing, and Dichotic Test of Digits (binaural integration stage). The Time-compressed Speech Test was applied to the children without auditory changes. The participants presented better performance in the list of monosyllabic words than in the list of disyllabic words, but with no statistically significant difference. No influence on test performance was observed with respect to order of presentation of the lists and the variables gender and ear. Regarding age, difference in performance was observed only in the list of disyllabic words. The mean score of children in the Time-compressed Speech Test was lower than that of adults reported in the national literature. Difference in test performance was observed only with respect to the age variable for the list of disyllabic words. No difference was observed in the order of presentation of the lists or in the type of stimulus.

  2. StirMark Benchmark: audio watermarking attacks based on lossy compression

    NASA Astrophysics Data System (ADS)

    Steinebach, Martin; Lang, Andreas; Dittmann, Jana

    2002-04-01

    StirMark Benchmark is a well-known evaluation tool for watermarking robustness. Additional attacks are added to it continuously. To enable application based evaluation, in our paper we address attacks against audio watermarks based on lossy audio compression algorithms to be included in the test environment. We discuss the effect of different lossy compression algorithms like MPEG-2 audio Layer 3, Ogg or VQF on a selection of audio test data. Our focus is on changes regarding the basic characteristics of the audio data like spectrum or average power and on removal of embedded watermarks. Furthermore we compare results of different watermarking algorithms and show that lossy compression is still a challenge for most of them. There are two strategies for adding evaluation of robustness against lossy compression to StirMark Benchmark: (a) use of existing free compression algorithms (b) implementation of a generic lossy compression simulation. We discuss how such a model can be implemented based on the results of our tests. This method is less complex, as no real psycho acoustic model has to be applied. Our model can be used for audio watermarking evaluation of numerous application fields. As an example, we describe its importance for e-commerce applications with watermarking security.

  3. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    PubMed Central

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  4. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    PubMed

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  5. 30 CFR 75.1106-5 - Maintenance and tests of liquefied and nonliquefied compressed gas cylinders; accessories and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to maintain torches in a safe operating condition. (d) Tests for leaks on the hose valves or gages of liquefied and nonliquefied compressed gas cylinders shall only be made with a soft brush and soapy water or...

  6. Gradient Compression Stockings may Prevent Recovery after Bed Rest Deconditioning

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Lee, Stuart M.; Westby, Christian M.; Willig, Michael C.; Platts, Steven H.

    2011-01-01

    Introduction: Astronauts continue to wear a compression garment during and immediately after landing to prevent orthostatic intolerance (OI). We recently developed a custom-fitted, 3-piece garment that consists of thigh-high stockings with biker-style shorts that provides continuous, gradient compression: 55 mmHg at the ankle that decreases to approximately 20 mmHg at the top of the leg and 15 mmHg over the abdomen. This garment has been shown to be effective in preventing symptoms of OI during a short stand test after Space Shuttle missions, but symptoms may persist for several days after a long-duration mission in some astronauts. The purpose of this study was to confirm the effectiveness of wearing these elastic, gradient compression garments during orthostatic testing after 2 weeks of 6 degree head-down tilt bed rest as a model of spaceflight and to determine whether they would impact recovery after bed rest. Methods: Eight (5 treatment, 3 control) of 16 subjects have completed this study to-date. All subjects wore the 3-piece garment from waking until tilt testing (3 h) as a simulation of the timeline for astronauts on landing day (BR+0). Control subjects removed the garment after the tilt test. Treatment subjects wore the garment for the remainder of the day and wore lower compression thigh-high only garments on the day after bed rest (BR+1). Blood pressure, heart rate, and stroke volume responses to a 15-min 80 degree head-up tilt test were determined before 2 weeks of 6 degree head-down tilt, and on BR+0 and BR+1. Plasma volume (PV) was measured before each of these test sessions. Data are mean SE. Results: Compression garments prevented signs of OI on BR+0; all subjects in both groups completed the full 15-min test. Heart rate responses to tilt were lower on BR+0 than all other test days. Control subjects demonstrated a marginal PV decrease after bed rest, but showed typical recovery the day after bed rest (BR+0: 2.32 plus or minus 0.15 L to BR+1: 2.79 plus or minus 0.15 L). Treatment subjects did not recover PV the day after bed rest (BR+0: 2.61 plus or minus 0.23 L to BR+1: 2.61 plus or minus 0.23 L). Conclusion: Abdomen-high compression garments, which are effective in preventing post-bed rest orthostatic intolerance, may slow recovery of PV. Modified garments with reduced compression may be necessary to prevent prolonging recovery.

  7. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.

  9. The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D. G.

    1992-01-01

    A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.

  10. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  11. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  12. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 6 - FRP composite pile axial compression testing.

    DOT National Transportation Integrated Search

    2015-04-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 6, FRP Composite Pile Axial Compression : Testing. : Hollow and conc...

  13. Data compression/error correction digital test system. Appendix 3: Maintenance. Book 2: Receiver assembly drawings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The assembly drawings of the receiver unit are presented for the data compression/error correction digital test system. Equipment specifications are given for the various receiver parts, including the TV input buffer register, delta demodulator, TV sync generator, memory devices, and data storage devices.

  14. Diatomite based ceramics macro- and microscopic characterization

    NASA Astrophysics Data System (ADS)

    Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.

    2005-03-01

    A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.

  15. Experimental Evaluation of the Taylor-Type Polycrystal Model for the Finite Deformation of an FCC Metal (OFHC Copper)

    DTIC Science & Technology

    1991-05-01

    was received as bar stocks in the work hardened condition. Before machining, the copper rods were annealed at 400 °C in argon for one hour. This...ABSTRACT Large deformation uniaxial compression and fixed-end torsion (simple shear) experiments were conducted on annealed OFHC Copper to obtain its... annealing treatment produced an average grain diameter of 45 jim. Experimental Procedure Compression Tests All the compression tests were conducted with

  16. Investigation of Innovative Lightcraft Designs for Hypersonic Air Breathing and Rocket Flight by Beamed Energy Propulsion

    DTIC Science & Technology

    2012-06-01

    driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration

  17. Diagnostic value of history and physical examination in patients suspected of lumbosacral nerve root compression

    PubMed Central

    Vroomen, P; de Krom, M C T F M; Wilmink, J; Kester, A; Knottnerus, J

    2002-01-01

    Objective: To evaluate patient characteristics, symptoms, and examination findings in the clinical diagnosis of lumbosacral nerve root compression causing sciatica. Methods: The study involved 274 patients with pain radiating into the leg. All had a standardised clinical assessment and magnetic resonance (MR) imaging. The associations between patient characteristics, clinical findings, and lumbosacral nerve root compression on MR imaging were analysed. Results: Nerve root compression was associated with three patient characteristics, three symptoms, and four physical examination findings (paresis, absence of tendon reflexes, a positive straight leg raising test, and increased finger-floor distance). Multivariate analysis, analysing the independent diagnostic value of the tests, showed that nerve root compression was predicted by two patient characteristics, four symptoms, and two signs (increased finger-floor distance and paresis). The straight leg raise test was not predictive. The area under the curve of the receiver-operating characteristic was 0.80 for the history items. It increased to 0.83 when the physical examination items were added. Conclusions: Various clinical findings were found to be associated with nerve root compression on MR imaging. While this set of findings agrees well with those commonly used in daily practice, the tests tended to have lower sensitivity and specificity than previously reported. Stepwise multivariate analysis showed that most of the diagnostic information revealed by physical examination findings had already been revealed by the history items. PMID:11971050

  18. Machine compliance in compression tests

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.

    2018-05-01

    The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.

  19. The Effect on the Flexural Strength, Flexural Modulus and Compressive Strength of Fibre Reinforced Acrylic with That of Plain Unfilled Acrylic Resin – An in Vitro Study

    PubMed Central

    Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-01-01

    Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696

  20. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being studied as cost effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. Data are presented to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade stiffened compression tests and stiffener pull-off tests.

  1. A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio

    NASA Astrophysics Data System (ADS)

    Monkul, M. Murat; Önal, Okan

    2006-06-01

    A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.

  2. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  3. Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program?

    PubMed

    Moshina, Nataliia; Sebuødegård, Sofie; Hofvind, Solveig

    2017-06-01

    We aimed to investigate early performance measures in a population-based breast cancer screening program stratified by compression force and pressure at the time of mammographic screening examination. Early performance measures included recall rate, rates of screen-detected and interval breast cancers, positive predictive value of recall (PPV), sensitivity, specificity, and histopathologic characteristics of screen-detected and interval breast cancers. Information on 261,641 mammographic examinations from 93,444 subsequently screened women was used for analyses. The study period was 2007-2015. Compression force and pressure were categorized using tertiles as low, medium, or high. χ 2 test, t tests, and test for trend were used to examine differences between early performance measures across categories of compression force and pressure. We applied generalized estimating equations to identify the odds ratios (OR) of screen-detected or interval breast cancer associated with compression force and pressure, adjusting for fibroglandular and/or breast volume and age. The recall rate decreased, while PPV and specificity increased with increasing compression force (p for trend <0.05 for all). The recall rate increased, while rate of screen-detected cancer, PPV, sensitivity, and specificity decreased with increasing compression pressure (p for trend <0.05 for all). High compression pressure was associated with higher odds of interval breast cancer compared with low compression pressure (1.89; 95% CI 1.43-2.48). High compression force and low compression pressure were associated with more favorable early performance measures in the screening program.

  4. Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1983-01-01

    Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  5. MHD simulation of plasma compression experiments

    NASA Astrophysics Data System (ADS)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  6. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.

  7. An Image Processing Technique for Achieving Lossy Compression of Data at Ratios in Excess of 100:1

    DTIC Science & Technology

    1992-11-01

    5 Lempel , Ziv , Welch (LZW) Compression ............... 7 Lossless Compression Tests Results ................. 9 Exact...since IBM holds the patent for this technique. Lempel , Ziv , Welch (LZW) Compression The LZW compression is related to two compression techniques known as... compression , using the input stream as data . This step is possible because the compression algorithm always outputs the phrase and character components of a

  8. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  9. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  10. Evaluation of BAUER UTILUS 10 and TRIPLEX Purification Systems

    DTIC Science & Technology

    1993-08-01

    of the test was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and...optimum filtering, moisture separation, third stage piston ring expansion/cylinder sealing and prevents compressed air return from the storage flasks to the...551 COMPRESSED AIR PLANTS AND SYSTEMS S9086-SY-STM-O0O PARA 551-4.2.2.1. 6. Navy Experimental Diving Unit Test Plan Number 93-01, Jan 93. 7. NAVSEAINST

  11. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  12. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  13. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  14. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  15. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  16. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...

  17. Experimental Study of Nonassociated Flow and Instability of Frictional Materials. Attachment No. 1

    DTIC Science & Technology

    1993-04-01

    pressure range of 0.25 to 68.9 MPa. One-dimensional compression tests up to 900 MPa axial stress level were also performed. U Strain localization was studied... range of confining pressures. Vesic and Clough (1968) performed a series of drained, triaxial compression tests on Chattahoochee River sand at confining...realization resulted in many investigators developing cubical triaxial testing apparatus, in which the full range of the effect of the intermediate I principal

  18. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  19. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  20. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    PubMed

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  1. The development of a performance-enhancing additive for vapor-compression heat pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.

    1997-12-31

    This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less

  2. Comparison of interfacial properties of electrodeposited single carbon fiber/epoxy composites using tensile and compressive fragmentation tests and acoustic emission.

    PubMed

    Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin

    2002-03-01

    Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.

  3. The effect of sludge water treatment plant residuals on the properties of compressed brick

    NASA Astrophysics Data System (ADS)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  4. Influence of bottom ash of palm oil on compressive strength of concrete

    NASA Astrophysics Data System (ADS)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  5. Novel concepts for the compression of large volumes of carbon dioxide-phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.

    In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less

  6. Contributions on the Study of the Compressive Strength of the Light-Cured Composite Resins

    PubMed Central

    Manolea, H.; Degeratu, Sonia; Deva, V.; Coles, Evantia; Draghici, Emma

    2009-01-01

    The mechanical properties of the light-cured composite resins are related to the material composition, but also vary according to the light-source characteristics used for polymerization. In this study we followed the compressive strength variation for a light-cured composite resin according to the time of exposure to the curing light. With that end in view,18 test pieces were made from a light-cured hybrid composite material (Filtek Z250). The test pieces where then submitted to a compressive force by a mechanical properties universal testing machine. Our results didn’t show an increase of the compressive strength according to the light-curing time increasing, than only in the light-curing time limit indicated by the manufacturer. A longer light-curing time may induce a shrinkage polymerization growth with the formation of internal tensions inside the material. The composite materials light-curing in short layers as long as there is indicated by the manufacturer seems to be a safer method to make the best from a resin qualities, then an exaggerated increase of the light-curing time. The light-curing is indicated to be done in the direction of the compressive forces. To confirm this supposition other mechanical tests are also necessary PMID:24778814

  7. Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Pesin, A.; Pustovoytov, D.; Lokotunina, N.

    2017-12-01

    The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.

  8. Mental Aptitude and Comprehension of Time-Compressed and Compressed-Expanded Listening Selections.

    ERIC Educational Resources Information Center

    Sticht, Thomas G.

    The comprehensibility of materials compressed and then expanded by means of an electromechanical process was tested with 280 Army inductees divided into groups of high and low mental aptitude. Three short listening selections relating to military activities were subjected to compression and compression-expansion to produce seven versions. Data…

  9. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  10. Analysis and testing of axial compression in imperfect slender truss struts

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Georgiadis, Nicholas

    1990-01-01

    The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.

  11. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  12. Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions

    NASA Astrophysics Data System (ADS)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2017-10-01

    This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.

  13. The Hybrid III upper and lower neck response in compressive loading scenarios with known human injury outcomes.

    PubMed

    Toomey, D E; Yang, K H; Van Ee, C A

    2014-01-01

    Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.

  14. Behavior of reinforcement SCC beams under elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  15. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  16. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.

    PubMed

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-11-22

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  17. Test and Analyses of a Composite Multi-Bay Fuselage Panel Under Uni-Axial Compression

    NASA Technical Reports Server (NTRS)

    Li, Jian; Baker, Donald J.

    2004-01-01

    A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-of-plane translation. The free edges of the panel were constrained by knife-edges. The panel was modeled with shell finite elements and analyzed with ABAQUS nonlinear solver. The nonlinear predictions were compared with the test results in out-of-plane displacements, back-to-back surface strains on stringer flanges and back-to-back surface strains at the centers of the skin-bays. The analysis predictions were in good agreement with the test data up to post-buckling.

  18. Design and Testing of CO 2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, Aaron

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustionmore » technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.« less

  19. Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.; Long, David A.

    1999-01-01

    Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (155). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.

  20. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  1. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    PubMed

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.

  2. Testing of the masonry arches of the Brooklyn Bridge approaches

    NASA Astrophysics Data System (ADS)

    Limaye, Hemant S.

    1996-11-01

    Diagnostic procedures play an important role in performing a condition survey of a structure. Specialized tests are used during a field survey to supplement visual observations. The tests provide valuable information regarding the internal condition of the structure and quality of the construction materials. The tests also help in determining the extent of damage, if any. Recently, a team of consulting engineers performed a study to determine the remaining capacity of the Brooklyn Bridge approaches for the Department of Transportation, City of New York. Using advanced diagnostic procedures such as impact-echo and flatjack testing, additional information was gathered to assist in the study. Impact-echo testing was helpful in identifying the condition of the brick soffits which were covered with pneumatically- applied concrete, and flatjack testing was useful in determining in-situ compressive strength and compression modulus of the brick masonry. The paper describes the work and the testing results.

  3. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  4. Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device

    NASA Astrophysics Data System (ADS)

    Cen, Duofeng; Huang, Da

    2017-06-01

    Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.

  5. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  6. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  7. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test fuels. 94.108 Section 94.108... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.108 Test fuels. (a) Distillate diesel test fuel. (1) The diesel fuels for testing Category 1 and Category 2 marine engines designed to...

  8. Analysis of the operation of the SCD Response intermittent compression system.

    PubMed

    Morris, Rh J; Griffiths, H; Woodcock, J P

    2002-01-01

    The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.

  9. Comparison of mechanical compressive properties of commercial and autologous fibrin glues for tissue engineering applications.

    PubMed

    Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L

    2017-11-01

    Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Distribution analysis for F100(3) engine

    NASA Technical Reports Server (NTRS)

    Walter, W. A.; Shaw, M.

    1980-01-01

    The F100(3) compression system response to inlet circumferential distortion was investigated using an analytical compressor flow model. Compression system response to several types of distortion, including pressure, temperature, and combined pressure/temperature distortions, was investigated. The predicted response trends were used in planning future F100(3) distortion tests. Results show that compression system response to combined temperature and pressure distortions depends upon the relative orientation, as well as the individual amplitudes and circumferential extents of the distortions. Also the usefulness of the analytical predictions in planning engine distortion tests is indicated.

  11. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  12. Measurements of the stress supported by the crush zone in open hole composite laminates loaded in compression

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.

  13. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  14. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  15. Preoperative Duplex Scanning is a Helpful Diagnostic Tool in Neurogenic Thoracic Outlet Syndrome.

    PubMed

    Orlando, Megan S; Likes, Kendall C; Mirza, Serene; Cao, Yue; Cohen, Anne; Lum, Ying Wei; Freischlag, Julie A

    2016-01-01

    To evaluate the diagnostic role of venous and arterial duplex scanning in neurogenic thoracic outlet syndrome (NTOS). Retrospective review of patients who underwent duplex ultrasonography prior to first rib resection and scalenectomy (FRRS) for NTOS from 2005 to 2013. Abnormal scans included ipsilateral compression (IC) with abduction of the symptomatic extremity (>50% change in subclavian vessel flow), contralateral (asymptomatic side) compression (CC) or bilateral compression (BC). A total of 143 patients (76% female, average age 34, range 13-59) underwent bilateral preoperative duplex scanning. Ipsilateral compression was seen in 44 (31%), CC in 12 (8%), and BC in 14 (10%). Seventy-three (51%) patients demonstrated no compression. Patients with IC more often experienced intraoperative pneumothoraces (49% vs. 25%, P < .05) and had positive Adson tests (86% vs. 61%, P < .02). Compression of the subclavian vein or artery on duplex ultrasonography can assist in NTOS diagnosis. Ipsilateral compression on abduction often correlates with Adson testing. © The Author(s) 2016.

  16. Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1982-01-01

    It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  17. The structural behavior of a graphite-polymide honeycomb sandwich panel with quasi-isotropic face sheets and an orthotropic core

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Hagaman, J. A.

    1979-01-01

    The results of a series of tests of graphite-polyimide honeycomb sandwich panels are presented. The panels were 1.22 m long, 0.508 m wide, and approximately 13.3 m thick. The face sheets were a T-300/PMR-15 fabric in a quasi-isotropic layup and were 0.279 mm thick. The core was Hexcel HRH 327-3/16 - 4.0 glass reinforced polyimide honeycomb, 12.7 mm thick. Three panels were used in the test: one was cut into smaller pieces for testing as beam, compression, and shear specimens; a second panel was used for plate bending tests; the third panel was used for in-plane stability tests. Presented are the experimental results of four point bending tests, short block compression tests, core transverse shear modulus, three point bending tests, vibration tests, plate bending tests, and panel stability tests. The results of the first three tests are used to predict the results of some of the other tests. The predictions and experimental results are compared, and the agreement is quite good.

  18. Performance Test on Polymer Waste Form - 12137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Se Yup

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less

  19. Investigation of potential cognitive tests for use with older adults in audiology clinics.

    PubMed

    Vaughan, Nancy; Storzbach, Daniel; Furukawa, Izumi

    2008-01-01

    Cognitive declines in working memory and processing speed are hallmarks of aging. Deficits in speech understanding also are seen in aging individuals. A clinical test to determine whether the cognitive aging changes contribute to aging speech understanding difficulties would be helpful for determining rehabilitation strategies in audiology clinics. To identify a clinical neurocognitive test or battery of tests that could be used in audiology clinics to help explain deficits in speech recognition in some older listeners. A correlational study examining the association between certain cognitive test scores and speech recognition performance. Speeded (time-compressed) speech was used to increase the cognitive processing load. Two hundred twenty-five adults aged 50 through 75 years were participants in this study. Both batteries of tests were administered to all participants in two separate sessions. A selected battery of neurocognitive tests and a time-compressed speech recognition test battery using various rates of speech were administered. Principal component analysis was used to extract the important component factors from each set of tests, and regression models were constructed to examine the association between tests and to identify the neurocognitive test most strongly associated with speech recognition performance. A sequencing working memory test (Letter-Number Sequencing [LNS]) was most strongly associated with rapid speech understanding. The association between the LNS test results and the compressed sentence recognition scores (CSRS) was strong even when age and hearing loss were controlled. The LNS is a sequencing test that provides information about temporal processing at the cognitive level and may prove useful in diagnosis of speech understanding problems, and in the development of aural rehabilitation and training strategies.

  20. Comparative evaluation of compressive strength, diametral tensile strength and shear bond strength of GIC type IX, chlorhexidine-incorporated GIC and triclosan-incorporated GIC: An in vitro study.

    PubMed

    Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia

    2016-04-01

    To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.

  1. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, Franck; Gourc, Jean-Pierre

    2007-07-01

    The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard tomore » both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.« less

  2. Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessions, H.; Morgan, G. A.

    2013-07-17

    The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.

  3. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  4. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    PubMed

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  5. Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema.

    PubMed

    Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G

    2016-07-01

    To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests may have value in selecting those patients who benefit most from compression. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  6. On lossy transform compression of ECG signals with reference to deformation of their parameter values.

    PubMed

    Koski, Antti; Tossavainen, Timo; Juhola, Martti

    2004-01-01

    Electrocardiogram (ECG) signals are the most prominent biomedical signal type used in clinical medicine. Their compression is important and widely researched in the medical informatics community. In the previous literature compression efficacy has been investigated only in the context of how much known or developed methods reduced the storage required by compressed forms of original ECG signals. Sometimes statistical signal evaluations based on, for example, root mean square error were studied. In previous research we developed a refined method for signal compression and tested it jointly with several known techniques for other biomedical signals. Our method of so-called successive approximation quantization used with wavelets was one of the most successful in those tests. In this paper, we studied to what extent these lossy compression methods altered values of medical parameters (medical information) computed from signals. Since the methods are lossy, some information is lost due to the compression when a high enough compression ratio is reached. We found that ECG signals sampled at 400 Hz could be compressed to one fourth of their original storage space, but the values of their medical parameters changed less than 5% due to compression, which indicates reliable results.

  7. Digital Imagery Compression Best Practices Guide - A Motion Imagery Standards Profile (MISP) Compliant Architecture

    DTIC Science & Technology

    2012-06-01

    MISP) COMPLIANT ARCHITECTURE WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST CENTER...DIGITAL MOTION IMAGERY COMPRESSION BEST PRACTICES GUIDE – A MOTION IMAGERY STANDARDS PROFILE (MISP) COMPLIANT ARCHITECTURE ...delivery, and archival purposes. These practices are based on a Motion Imagery Standards Profile (MISP) compliant architecture , which has been defined

  8. New rapid method for determining edgewise compressive strength of corrugated fiberboard

    Treesearch

    John W. Koning

    1986-01-01

    The objective of this study was to determine if corrugated fiberboard specimens that had been necked down with a common router would yield acceptable edgewise compressive strength values. Tests were conducted on specimens prepared using a circular saw and router, and the results were compared with those obtained on specimens prepared according to TAPPI Test Method T...

  9. COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION

    PubMed Central

    Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo

    2007-01-01

    The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148

  10. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.

    PubMed

    Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin

    2016-03-01

    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.

  12. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  13. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  14. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  15. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin

    2016-05-20

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  16. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  17. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    PubMed Central

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  18. Determination of Compressive Properties of Fibre Composites in the In-plane Direction According to ISO 14126. Part 1: A Round Robin Test

    NASA Astrophysics Data System (ADS)

    Schneider, Konrad

    2007-01-01

    Over the years different tests are established to characterise the compressive properties of composites in the in-plane direction. The international standard ISO 14126 (2000) (Fibre-reinforced plastic composites — determination of compressive properties in the in-plane direction, ISO 14126: 1999 (E), Faserverstärkte Kunststoffe, Bestimmung der Druckeigenschaften in der Laminatebene, DIN EN ISO 14126: 2000-12) tries to standardise these tests. The described wide range of arrangements enables to continue with the present practice to a large extent. But the standard doesn’t say anything about the precision of the method. Four labs performed a round robin test to check the precision and reproducibility of the Celanese-type arrangement for different composite materials, structures and dimensions. The test procedure is critically discussed and some proposals for the applicability of the method are derived. Mainly the advantages of optical monitoring the overall as well as the local strain of the specimen are demonstrated for the characterisation the failure process. By this method some of the reasons of unsatisfying reproducibility can be cleared up.

  19. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.

    PubMed

    Hobbs, Brian; Tchoketch Kebir, Mohamed

    2007-04-11

    This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature.

  20. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  1. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  2. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  3. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  4. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  5. Effects of compression clothing on speed-power performance of elite Paralympic sprinters: a pilot study.

    PubMed

    Loturco, Irineu; Winckler, Ciro; Lourenço, Thiago F; Veríssimo, Amaury; Kobal, Ronaldo; Kitamura, Katia; Pereira, Lucas A; Nakamura, Fábio Y

    2016-01-01

    Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception. The aim of this study was to test the effects of using compression garments on speed and power-related performances in elite sprinters with visual impairment, who rely more on proprioception to perform than their Olympic peers. Eight top-level Paralympic sprinters competing in 100- and 200-m races performed, in the following order: unloaded squat jump (SJ), loaded jump squat (JS) and sprint tests over 20- and 70-m distances; using or not the compression garment. The maximum mean propulsive power value obtained during the JS attempts (starting at 40 % of their body mass, after which a load of 10 % of body mass was progressively added) was considered for data analysis purposes. The athletes executed the SJ and JS attempts without any help from their guides. Magnitude-based inference was used to analyze the results. The unloaded SJ was possibly higher in the compression than the placebo condition (41.19 ± 5.09 vs. 39.49 ± 5.75 cm). Performance differences in the loaded JS and sprint tests were all rated as unclear. It was concluded that the acute enhancement in vertical jump ability should be explored in the preparation of Paralympic sprinters during power-related training sessions. However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

  6. Compression Fracture of CFRP Laminates Containing Stress Intensifications.

    PubMed

    Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo

    2017-09-05

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.

  7. Compression Fracture of CFRP Laminates Containing Stress Intensifications

    PubMed Central

    Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl

    2017-01-01

    For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers. PMID:28872623

  8. An investigation of the compressive strength of PRD-49-3/Epoxy composites

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.

    1973-01-01

    The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.

  9. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  10. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  11. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  12. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  13. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    PubMed

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  14. Mechanical and structural characteristics of the new BONE-LOK cortical-cancellous internal fixation device.

    PubMed

    Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew

    2003-01-01

    The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.

  15. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    PubMed

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those configurations, respectively. The unexpected moments were due to the inertia of the superior mounting structures. This study has shown that eccentric axial compression produces unexpected moments due to translation constraints at all loading rates and due to the inertia of the superior mounting structures in dynamic experiments. It may be incorrect to assume that bending moments are equal to the product of compression force and eccentricity, particularly where the test configuration involves translational constraints and where the experiments are dynamic. In order to reduce inertial moment artifacts, the mass, and moment of inertia of any loading jig structures that rotate with the specimen should be minimized. Also, the distance between these structures and the load cell should be reduced.

  16. Non-destructive testing of concrete.

    DOT National Transportation Integrated Search

    1979-11-01

    This research project was initiated to evaluate the performance of an ultrasonic testing device device in predicting compressive strengths from tests performed on samples of fresh concrete. : The initial phase of this study involved laboratory perora...

  17. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  18. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  19. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information.

    PubMed

    Becquaert, Mathias; Cristofani, Edison; Van Luong, Huynh; Vandewal, Marijke; Stiens, Johan; Deligiannis, Nikos

    2018-05-31

    This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1) between the components inside the side information and (2) between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  20. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones

    PubMed Central

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-01-01

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061

  1. Performance analysis of the GR712RC dual-core LEON3FT SPARC V8 processor in an asymmetric multi-processing environment

    NASA Astrophysics Data System (ADS)

    Giusi, Giovanni; Liu, Scige J.; Galli, Emanuele; Di Giorgio, Anna M.; Farina, Maria; Vertolli, Nello; Di Lellis, Andrea M.

    2016-07-01

    In this paper we present the results of a series of performance tests carried out on a prototype board mounting the Cobham Gaisler GR712RC Dual Core LEON3FT processor. The aim was the characterization of the performances of the dual core processor when used for executing a highly demanding lossless compression task, acting on data segments continuously copied from the static memory to the processor RAM. The selection of the compression activity to evaluate the performances was driven by the possibility of a comparison with previously executed tests on the Cobham/Aeroflex Gaisler UT699 LEON3FT SPARC™ V8. The results of the test activity have shown a factor 1.6 of improvement with respect to the previous tests, which can easily be improved by adopting a faster onboard board clock, and provided indications on the best size of the data chunks to be used in the compression activity.

  2. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  3. Survivability characteristics of composite compression structure

    NASA Technical Reports Server (NTRS)

    Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.

    1990-01-01

    Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.

  4. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  5. Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Ramapriyan, H. K.

    1989-01-01

    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.

  6. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  7. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response of reinforced aerogels can be fully understood, more tests of unreinforced aerogels are necessary. Unreinforced aerogels are of particular use because their birefringent nature allows for visual determination of stress fields during mechanical testing. The success of any future tests depends on the availability of a large supply of quality specimens with well-documented preparation and storage histories.

  8. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    PubMed

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

  9. The FBI compression standard for digitized fingerprint images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less

  10. FBI compression standard for digitized fingerprint images

    NASA Astrophysics Data System (ADS)

    Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas

    1996-11-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  11. Investigation of compression behavior of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  12. Extended testing of compression distillation.

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.

    1972-01-01

    During the past eight years, the NASA Manned Spacecraft Center has supported the development of an integrated water and waste management system which includes the compression distillation process for recovering useable water from urine, urinal flush water, humidity condensate, commode flush water, and concentrated wash water. This paper describes the design of the compression distillation unit, developed for this system, and the testing performed to demonstrate its reliability and performance. In addition, this paper summarizes the work performed on pretreatment and post-treatment processes, to assure the recovery of sterile potable water from urine and treated urinal flush water.

  13. Compressive Loading and Modeling of Stitched Composite Stiffeners

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.

    2016-01-01

    A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.

  14. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  15. Test fixture design for boron-aluminum and beryllium test panels

    NASA Technical Reports Server (NTRS)

    Breaux, C. G.

    1973-01-01

    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.

  16. On the compressibility and temperature boundary of warm frozen soils

    NASA Astrophysics Data System (ADS)

    Qi, Jilin; Dang, Boxiang; Guo, Xueluan; Sun, Xiaoyu; Yan, Xu

    2017-04-01

    A silty-clay obtained along the Qinghai-Tibetan railway and a standard Chinese sand were taken as study objects. Saturated frozen soil samples were prepared for testing. Step-load was used and confined compression was carried out on the soils under different temperatures. Compression index and pseudo-preconsolidation pressure (PPC) were obtained. Unlike unfrozen soils, PPC is not associated with stress history. However, it is still the boundary of elastic and plastic deformations. Different compression indexes can be obtained from an individual compression curve under pressures before and after PPC. The parameters at different thermal and stress conditions were analyzed. It is found that temperature plays a critical role in mechanical behaviours of frozen soils. Efforts were then made on the silty-clay in order to suggest a convincing temperature boundary in defining warm frozen soil. Three groups of ice-rich samples with different ice contents were prepared and tested under confined compression. The samples were compressed under a constant load and with 5 stepped temperatures. Strain rates at different temperatures were examined. It was found that the strain rate at around -0.6°C increased abruptly. Analysis of compression index was performed on the data both from our own testing program and from the literature, which showed that at about -1°C was a turning point in the curves for compression index against temperature. Based on both our work and taking into account the unfrozen water content vs. temperature, the range of -1°C to -0.5°C seems to be the temperature where the mechanical properties change greatly. For convenience, -1.0°C can be defined as the boundary for warm frozen soils.

  17. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model.

    PubMed

    Eichhorn, S; Mendoza Garcia, A; Polski, M; Spindler, J; Stroh, A; Heller, M; Lange, R; Krane, M

    2017-06-01

    The provision of sufficient chest compression is among the most important factors influencing patient survival during cardiopulmonary resuscitation (CPR). One approach to optimize the quality of chest compressions is to use mechanical-resuscitation devices. The aim of this study was to compare a new device for chest compression (corpuls cpr) with an established device (LUCAS II). We used a mechanical thorax model consisting of a chest with variable stiffness and an integrated heart chamber which generated blood flow dependent on the compression depth and waveform. The method of blood-flow generation could be changed between direct cardiac-compression mode and thoracic-pump mode. Different chest-stiffness settings and compression modes were tested to generate various blood-flow profiles. Additionally, an endurance test at high stiffness was performed to measure overall performance and compression consistency. Both resuscitation machines were able to compress the model thorax with a frequency of 100/min and a depth of 5 cm, independent of the chosen chest stiffness. Both devices passed the endurance test without difficulty. The corpuls cpr device was able to generate about 10-40% more blood flow than the LUCAS II device, depending on the model settings. In most scenarios, the corpuls cpr device also generated a higher blood pressure than the LUCAS II. The peak compression forces during CPR were about 30% higher using the corpuls cpr device than with the LUCAS II. In this study, the corpuls cpr device had improved blood flow and pressure outcomes than the LUCAS II device. Further examination in an animal model is required to prove the findings of this preliminary study.

  18. Observer detection of image degradation caused by irreversible data compression processes

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  19. Evaluation of multidensity orthotic materials used in footwear for patients with diabetes.

    PubMed

    Foto, J G; Birke, J A

    1998-12-01

    Selected combinations of multidensity orthotic materials were tested under simulated walking conditions found in the forefoot of diabetic patients. Materials were compared for therapeutic effectiveness by their stress/strain properties and dynamic compression set. Results showed that all of the multidensity materials experienced losses in performance throughout the testing period of 100,000 cycles, with the greatest losses occurring within the first 10,000 cycles. Of the materials tested, Poron + Plastazote #2 and Spenco + Microcel Puff Lite had the highest dynamic material strain and the lowest dynamic compression set over 100,000 cycles. In comparison, these are better multidensity combinations than the others tested to use as therapeutic orthoses in footwear for diabetic patients.

  20. Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.

    1997-01-01

    Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.

  1. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  2. Description of the NACA Universal Test Engine and Some Test Results

    NASA Technical Reports Server (NTRS)

    Ware, Marsden

    1927-01-01

    This report describes the 5-inch bore by 7-inch stroke single cylinder test engine used at the Langley Field Laboratory of the National Advisory Committee for Aeronautics in laboratory research on internal-combustion engine problems and presents some results of tests made therewith. The engine is arranged for variation over wide ranges, of the compression ratio and lift and timing of both inlet and exhaust valves while the engine is in operation. Provision is also made for the connection of a number of auxiliaries. These features tend to make the engine universal in character, and especially suited for the study of certain problems involving change in compression ratio, valve timing, and lift.

  3. Reinforced cementitous composite with in situ shrinking microfibers

    NASA Astrophysics Data System (ADS)

    Kim, Eric S.; Lee, Jason K.; Lee, Patrick C.; Huston, Dryver R.; Tan, Ting; Al-Ghamdi, Saleh

    2017-03-01

    This paper describes an innovative fiber reinforcement technology for cementitious composite structures that employs in situ shrinking microfibers to provide supplemental strength-enhancing compressive stresses. Reinforced concrete is one of the most commonly used structural materials in construction industry, primarily due to its cost, durability, ability to be easily fabricated into a variety of shapes on site, and locally abundant raw material availability almost everywhere. Unlike incumbent passive reinforcing microfiber technology, in situ shrinking microfibers that respond to an in situ stimulus such as heat, pH, or moisture variations can induce pre-compression to matrix and create additional resistance from external loads, creating stronger composite structures. In this paper, heat-activated-shrinking (HAS) microfibers made from polyolefin, and pH-activated-shrinking (pHAS) microfibers made from chitosan powder were used to study effects of shrinking microfiber reinforcing in concrete. Shrinking ratios and tensile strengths of both microfibers were measured. Cementitious specimens with active shrinking microfibers, passive non shrinking fibers, as well as control samples were made. Mechanical properties of the samples were compared with compression and three-point bending tests. The optimum microfiber weight percentages for HAS microfibers were 0.5 wt% in compression tests, and 1.0 wt% in three-point bending tests. For pHAS microfibers, the optimum weight percentages were 0.5 wt% in three-point bending tests. Compared to heat passive microfibers specimens, 45% increase in the maximum compression strengths, and 124% increase in the maximum bending strengths were achieved at the optimum weight percentages of HAS microfibers. In addition, with 0.5 wt% of pHAS microfibers, 145% increase in the maximum bending strengths of three-point bending tests resulted compared to pH passive microfibers specimens.

  4. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  5. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  6. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  7. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  8. 40 CFR 89.405 - Recorded information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature outlet. (10) Engine fuel inlet temperature at the pump inlet. (f) Test data; post-test. (1...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test..., where applicable, for each test. (b) Engine description and specification. A copy of the information...

  9. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  10. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites.

    PubMed

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-06-03

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  11. Dynamic biomechanical examination of the lumbar spine with implanted total disc replacement using a pendulum testing system.

    PubMed

    Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J

    2012-11-01

    Biomechanical cadaver investigation. To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted total disc replacement (TDR) under simulated physiological motion. The pendulum testing system is capable of applying physiological compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5º resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N·m/º) was calculated and compared for each testing mode. In flexion/extension, the TDR constructs reached equilibrium with significantly (P < 0.05) fewer cycles than the intact FSU with compressive loads of 282 N, 385 N, and 488 N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (P < 0.001). In flexion, with increasing compressive loading from 181 N to 488 N, the bending stiffness of the intact FSUs increased from 4.0 N·m/º to 5.5 N·m/º, compared with 2.1 N·m/º to 3.6 N·m/º after TDR implantation. At each compressive load, the intact FSU was significantly stiffer than the TDR (P < 0.05). Lumbar FSUs with implanted TDR were found to be less stiff, but absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion-preserving devices are not fully known, these results provide further insight into the biomechanical behavior of these devices under approximated physiological loading conditions.

  12. Compression Buckling Behavior of Large-Scale Friction Stir Welded and Riveted 2090-T83 Al-Li Alloy Skin-Stiffener Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, Eric K.; Hafley, Robert A.; Wagner, John A.; Jegley, Dawn C.; Pecquet, Robert W.; Blum, Celia M.; Arbegast, William J.

    2002-01-01

    To evaluate the potential of friction stir welding (FSW) as a replacement for traditional rivet fastening for launch vehicle dry bay construction, a large-scale friction stir welded 2090-T83 aluminum-lithium (Al-Li) alloy skin-stiffener panel was designed and fabricated by Lockheed-Martin Space Systems Company - Michoud Operations (LMSS) as part of NASA Space Act Agreement (SAA) 446. The friction stir welded panel and a conventional riveted panel were tested to failure in compression at the NASA Langley Research Center (LaRC). The present paper describes the compression test results, stress analysis, and associated failure behavior of these panels. The test results provide useful data to support future optimization of FSW processes and structural design configurations for launch vehicle dry bay structures.

  13. End-to-end communication test on variable length packet structures utilizing AOS testbed

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu

    1994-01-01

    This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.

  14. Effect of simulated sampling disturbance on creep behaviour of rock salt

    NASA Astrophysics Data System (ADS)

    Guessous, Z.; Gill, D. E.; Ladanyi, B.

    1987-10-01

    This article presents the results of an experimental study of creep behaviour of a rock salt under uniaxial compression as a function of prestrain, simulating sampling disturbance. The prestrain was produced by radial compressive loading of the specimens prior to creep testing. The tests were conducted on an artifical salt to avoid excessive scattering of the results. The results obtained from several series of single-stage creep tests show that, at short-term, the creep response of salt is strongly affected by the preloading history of samples. The nature of this effect depends upon the intensity of radial compressive preloading, and its magnitude is a function of the creep stress level. The effect, however, decreases with increasing plastic deformation, indicating that large creep strains may eventually lead to a complete loss of preloading memory.

  15. Results of Mechanical Testing for Pyroceram(tm) Glass-Ceramic

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2003-01-01

    Mechanical testing for Pyroceram (trademark) 9606 glass-ceramic fabricated by Corning was conducted to determine mechanical properties of the material including slow crack growth.Valid testing was not achieved in tension, compression, and shear testing due to inappropriate test specimen configurations provided and primarily due to the existence of fortified layer( in tension).

  16. 16 CFR 1510.4 - Test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedure. 1510.4 Section 1510.4... REQUIREMENTS FOR RATTLES § 1510.4 Test procedure. Place the test fixture shown in Figure 1 on a horizontal plane surface. Under its own weight and in a non-compressed state apply any portion of the test sample...

  17. 40 CFR 94.109 - Test procedures for Category 3 marine engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedures for Category 3 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.109 Test procedures for Category 3 marine engines. (a) Gaseous emissions shall be measured using the test...

  18. 40 CFR 94.109 - Test procedures for Category 3 marine engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test procedures for Category 3 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.109 Test procedures for Category 3 marine engines. (a) Gaseous emissions shall be measured using the test...

  19. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  20. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  1. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine test cycle. 89.410 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...

  2. Freeing Space for NASA: Incorporating a Lossless Compression Algorithm into NASA's FOSS System

    NASA Technical Reports Server (NTRS)

    Fiechtner, Kaitlyn; Parker, Allen

    2011-01-01

    NASA's Fiber Optic Strain Sensing (FOSS) system can gather and store up to 1,536,000 bytes (1.46 megabytes) per second. Since the FOSS system typically acquires hours - or even days - of data, the system can gather hundreds of gigabytes of data for a given test event. To store such large quantities of data more effectively, NASA is modifying a Lempel-Ziv-Oberhumer (LZO) lossless data compression program to compress data as it is being acquired in real time. After proving that the algorithm is capable of compressing the data from the FOSS system, the LZO program will be modified and incorporated into the FOSS system. Implementing an LZO compression algorithm will instantly free up memory space without compromising any data obtained. With the availability of memory space, the FOSS system can be used more efficiently on test specimens, such as Unmanned Aerial Vehicles (UAVs) that can be in flight for days. By integrating the compression algorithm, the FOSS system can continue gathering data, even on longer flights.

  3. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  4. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  5. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    PubMed

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  6. Bilaterally Abnormal Head Impulse Tests Indicate a Large Cerebellopontine Angle Tumor.

    PubMed

    Kim, Hyo Jung; Park, Seong Ho; Kim, Ji Soo; Koo, Ja Won; Kim, Chae Yong; Kim, Young Hoon; Han, Jung Ho

    2016-01-01

    Tumors involving the cerebellopontine angle (CPA) pose a diagnostic challenge due to their diverse manifestations. Head impulse tests (HITs) have been used to evaluate vestibular function, but few studies have explored the head impulse gain of the vestibulo-ocular reflex (VOR) in patients with a vestibular schwannoma. This study tested whether the head impulse gain of the VOR is an indicator of the size of a unilateral CPA tumor. Twenty-eight patients (21 women; age=64±12 years, mean±SD) with a unilateral CPA tumor underwent a recording of the HITs using a magnetic search coil technique. Patients were classified into non-compressing (T1-T3) and compressing (T4) groups according to the Hannover classification. Most (23/28, 82%) of the patients showed abnormal HITs for the semicircular canals on the lesion side. The bilateral abnormality in HITs was more common in the compressing group than the non-compressing group (80% vs. 8%, Pearson's chi-square test: p<0.001). The tumor size was inversely correlated with the head impulse gain of the VOR in either direction. Bilaterally abnormal HITs indicate that a patient has a large unilateral CPA tumor. The abnormal HITs in the contralesional direction may be explained either by adaptation or by compression and resultant dysfunction of the cerebellar and brainstem structures. The serial evaluation of HITs may provide information on tumor growth, and thereby reduce the number of costly brain scans required when following up patients with CPA tumors.

  7. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  8. Damage Behaviors and Compressive Strength of Toughened CFRP Laminates with Thin Plies Subjected to Transverse Impact Loadings

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio

    It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.

  9. Vapor Compression Distillation Subsystem (VCDS) component enhancement, testing and expert fault diagnostics development, volume 1

    NASA Technical Reports Server (NTRS)

    Kovach, L. S.; Zdankiewicz, E. M.

    1987-01-01

    Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.

  10. The Critical Compression Load for a Universal Testing Machine When the Specimen Is Loaded Through Knife Edges

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Schwartz, Edward B

    1942-01-01

    The results of a theoretical and experimental investigation to determine the critical compression load for a universal testing machine are presented for specimens loaded through knife edges. The critical load for the testing machine is the load at which one of the loading heads becomes laterally instable in relation to the other. For very short specimens the critical load was found to be less than the rated capacity given by the manufacturer for the machine. A load-length diagram is proposed for defining the safe limits of the test region for the machine. Although this report is particularly concerned with a universal testing machine of a certain type, the basic theory which led to the derivation of the general equation for the critical load, P (sub cr) = alpha L can be applied to any testing machine operated in compression where the specimen is loaded through knife edges. In this equation, L is the length of the specimen between knife edges and alpha is the force necessary to displace the upper end of the specimen unit horizontal distance relative to the lower end of the specimen in a direction normal to the knife edges through which the specimen is loaded.

  11. Testing compression strength of wood logs by drilling resistance

    NASA Astrophysics Data System (ADS)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  12. Failure of flight feathers under uniaxial compression.

    PubMed

    Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G

    2017-09-01

    Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    PubMed

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  14. Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature

    DOE PAGES

    Yang, Ling Wei; Mayer, Carl; Li, Nan; ...

    2017-09-21

    Al/SiC nanolaminates with equal nominal thicknesses of the Al and SiC layers (10, 25, 50 and 100 nm) were manufactured by magnetron sputtering. The mechanical properties were measured at 25 °C and 100 °C by means of nanoindentation and micropillar compression tests and the deformation mechanisms were analyzed by in situ micropillar compression tests in the transmission electron microscope. In addition, finite element simulations of both tests were carried out to ascertain the role played by the strength of the Al layers and by the elastic constraint of the ceramic layers on the plastic flow of Al in the mechanicalmore » response. It was found that the mechanical response was mainly controlled by the constraint during nanoindentation or micropillar compression tests of very thin layered (≈10 nm) laminates, while the influence of the strength of Al layers was not as critical. This behavior was reversed, however, for thick layered laminates (100 nm). Here, these mechanisms point to the different effects of layer thickness during nanoindentation and micropillar compression, at both temperatures, and showed the critical role played by constraint on the mechanical response of nanolaminates made of materials with a very large difference in the elasto-plastic properties.« less

  15. Strategy for Alternative Occupant Volume Testing

    DOT National Transportation Integrated Search

    2009-10-20

    This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...

  16. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  17. Test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.

    1994-01-01

    Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.

  18. Plasma Studies in the SPECTOR Experiment as Target Development for MTF

    NASA Astrophysics Data System (ADS)

    Ivanov, Russ; Young, William; the Fusion Team, General

    2016-10-01

    General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.

  19. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...

  20. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  1. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  2. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed... section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed natural gas...

  3. 40 CFR 92.113 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.113 Fuel specifications. (a) Diesel test fuel. (1) The diesel fuels for testing locomotives or locomotive engines designed...) of this section shall be reported in accordance with § 92.133. (b) Natural gas test fuel (compressed...

  4. 40 CFR 89.331 - Test conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test conditions. 89.331 Section 89.331... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.331 Test conditions. (a) General requirements. Calculate all volumes and volumetric flow rates at...

  5. Publications - GMC 86 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 86 Publication Details Title: Compressibility test data for the following seven NPRA wells : Inigok Test Well #1; Ikpikpuk Test Well #1; South Barrow Test Well #1; South Barrow Test Well #2; South Barrow #3; Peard Test Well #1; Point Barrow Core Test #1 Authors: Unknown Publication Date: 1988

  6. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  7. Highly Loaded Composite Strut Test Development

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.

    2011-01-01

    Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.

  8. Development of postcompressional textural tests to evaluate the mechanical properties of medicated chewing gum tablets with high drug loadings.

    PubMed

    Al Hagbani, Turki; Nazzal, Sami

    2018-02-01

    Medicated chewing gum tablets (CGTs) represent a unique platform for drug delivery. Loading directly compressible gums with high concentrations of powdered medication, however, results in compacts with hybrid properties between a chewable gum and a brittle tablet. The aim of the present study was to develop textural tests that can identify the point at which CGTs begin to behave like a solid tablet upon drug incorporation. Curcumin (CUR) CGTs made with Health in gum were prepared with increasing CUR load from 0 to 100% and were characterized for their mechanical properties by a single-bite (knife) and a two-bite tests. From each test several parameters were extracted and correlated with drug loading. In the single-bite test, the change in the resistance of the compacts to plastic deformation was found to give a definitive guide on whether they behave as gums or tablets. A more in depth analysis of the impact of CUR loading on the chewability of the CGTs was provided by the two-bite test where CUR loading was found to have a nonlinear impact on the mechanical properties of compacts. An upper limit of 10% was found to yield compacts with gum-like properties, which were abolished at higher CUR loads. The textural test procedure outlined in this study are expected to assist those involved in the formulation of medicated gums for pharmaceutical applications in making an informed decision on the impact of drug loading on gum behavior before proceeding with clinical testing. There is a growing interest in utilizing medicated chewing gums for drug delivery, especially those made using directly compressible gum bases, such as Health in gum. Directly compressing a gum base with high amounts of solid drug powder, however, poses a challenge as it may result in compressed compacts with hybrid properties between a chewing gum and a hard tablet. Currently, official Pharmacopeias do not specify a testing procedure for the estimation of the mechanical and textural properties of chewing gum tablets. To fill in the knowledge gap, we demonstrated in the present study how complementing a single-bite (knife) test with a modified two-bite test could be used to discriminate between chewing gums and hard tablets that were prepared by directly compressing Health in gum base with increasing concentration of curcumin powder in the blend. By utilizing these two tests, it was possible to identify clear demarcations between conventional tablets and chewing gums. In this study, we found that a 10% load by weight is the upper limit for curcumin loading in a binary blend with Health in gum to maintain the mastication properties of the compacts, which become brittle tablets at 30% load. © 2017 Wiley Periodicals, Inc.

  9. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  10. Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    McGhee, Paul

    The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.

  11. Reuse of waste iron as a partial replacement of sand in concrete.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.

  12. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure.

    PubMed

    Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi

    2008-03-31

    With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules.

  13. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure

    PubMed Central

    Liu, Qi; Yang, Yu; Chen, Chun; Bu, Jiajun; Zhang, Yin; Ye, Xiuzi

    2008-01-01

    Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1) present a robust and effective way for RNA structural data compression; (2) design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers) compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool for academic users. Extensive tests have shown that RNACompress is a universally efficient algorithm for the compression of RNA sequences with their secondary structures. RNACompress also serves as a good measurement of the informational complexity of RNA secondary structure, which can be used to study the functional activities of RNA molecules. PMID:18373878

  14. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  15. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.

  16. Systems aspects of COBE science data compression

    NASA Technical Reports Server (NTRS)

    Freedman, I.; Boggess, E.; Seiler, E.

    1993-01-01

    A general approach to compression of diverse data from large scientific projects has been developed and this paper addresses the appropriate system and scientific constraints together with the algorithm development and test strategy. This framework has been implemented for the COsmic Background Explorer spacecraft (COBE) by retrofitting the existing VAS-based data management system with high-performance compression software permitting random access to the data. Algorithms which incorporate scientific knowledge and consume relatively few system resources are preferred over ad hoc methods. COBE exceeded its planned storage by a large and growing factor and the retrieval of data significantly affects the processing, delaying the availability of data for scientific usage and software test. Embedded compression software is planned to make the project tractable by reducing the data storage volume to an acceptable level during normal processing.

  17. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.

    PubMed

    Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht

    2018-03-21

    Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.

  18. Optimized satellite image compression and reconstruction via evolution strategies

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael

    2009-05-01

    This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.

  19. Tensile and compressive stress-strain behavior of heat treated boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.

    1978-01-01

    An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.

  20. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    NASA Astrophysics Data System (ADS)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  1. 75 FR 8056 - California State Nonroad Engine Pollution Control Standards; California New Nonroad Compression...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... maintenance intervals, recordkeeping, warranties, test procedures, certification test fuel, and engine useful... Control of Emissions of Air Pollution From Nonroad Diesel Engines and Fuel and EPA's Final Rule for Test... request for an authorization of its emission standards and accompanying test procedures for new nonroad...

  2. 40 CFR 89.509 - Calculation and reporting of test results.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Calculation and reporting of test... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.509 Calculation and reporting of test results. (a) Initial test results...

  3. 40 CFR 94.104 - Test procedures for Category 2 marine engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test procedures for Category 2 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.104 Test procedures for Category 2 marine engines. (a) Gaseous and particulate emissions shall be measured...

  4. 40 CFR 94.104 - Test procedures for Category 2 marine engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedures for Category 2 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.104 Test procedures for Category 2 marine engines. (a) Gaseous and particulate emissions shall be measured...

  5. 40 CFR 94.103 - Test procedures for Category 1 marine engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test procedures for Category 1 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.103 Test procedures for Category 1 marine engines. (a) Gaseous and particulate emissions shall be measured...

  6. 40 CFR 94.103 - Test procedures for Category 1 marine engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test procedures for Category 1 marine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.103 Test procedures for Category 1 marine engines. (a) Gaseous and particulate emissions shall be measured...

  7. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    NASA Technical Reports Server (NTRS)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  8. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".

    PubMed

    Felderhof, B U

    2013-08-01

    Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.

  9. Toughening of PMR composites by semi-interpenetrating networks

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Polymerization of monomer reactants (PMR-15) type polyimide and RP46 prepregs were drum wound using IM-7 fibers. Prepregging and processing conditions were optimized to yield good quality laminates with fiber volume fractions of 60 percent (+/- 2 percent). Samples were fabricated and tested to determine comprehensive engineering properties of both systems. These included 0 deg flexure, short beam shear, transverse flexure and tension, 0 deg tension and compression, intralaminar shear, short block compression, mode 1 and 2 fracture toughness, and compression after impact properties. Semi-2-IPN (interpenetrating polymer networks) toughened PMR-15 and RP46 laminates were also fabricated and tested for the same properties.

  10. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  11. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuummore » and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the final year of the grant. Modifications planned to correct this deficiency included a larger FRC source as well as a much larger liner driver energy storage system. Due to discontinuation of the grant neither of these improvements were carried out.« less

  12. Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression

    DTIC Science & Technology

    2015-09-17

    Century of Flight. Jules Henri Gi_ard (1825 - 1882), January 2014. URL [Online]. Available: http://www.century-of-flight.net/Aviation%20history/to...20reality/ Jules % 20Henri%20Gi_ard.htm. [4] Compression test. [Online]. Available: http://en.wikipedia.org/wiki/Compressive_strength [5

  13. Compression failure of composite laminates

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.

    1983-01-01

    This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.

  14. Parameter studies of sediments in the Storegga Slide region

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.

    2006-09-01

    Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.

  15. Test and analysis results for composite transport fuselage and wing structures

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Madan, Ram C.; Chen, Victor L.

    1992-01-01

    Automated tow placement (ATP) and stitching of dry textile composite preforms followed by resin transfer molding (RTM) are being investigated by researchers at NASA LaRC and Douglas Aircraft Company as cost-effective manufacturing processes for obtaining damage tolerant fuselage and wing structures for transport aircraft. The Douglas work is being performed under a NASA contract entitled 'Innovative Composites Aircraft Primary Structures (ICAPS)'. Data are presented in this paper to assess the damage tolerance of ATP and RTM fuselage elements with stitched-on stiffeners from compression tests of impacted three-J-stiffened panels and from stiffener pull-off tests. Data are also presented to assess the damage tolerance of RTM wing elements which had stitched skin and stiffeners from impacted single stiffener and three blade-stiffened compression tests and stiffener pull-off tests.

  16. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites

    PubMed Central

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-01-01

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen. PMID:28773568

  17. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.

    PubMed

    Imamura, Koreyoshi; Nomura, Mayo; Tanaka, Kazuhiro; Kataoka, Nobuhide; Oshitani, Jun; Imanaka, Hiroyuki; Nakanishi, Kazuhiro

    2010-03-01

    An amorphous matrix comprised of sugar molecules is used as excipient and stabilizing agent for labile ingredients in the pharmaceutical industry. The amorphous sugar matrix is often compressed into a tablet form to reduce the volume and improve handling. Herein, the effect of compression on the crystallization behavior of an amorphous sucrose matrix was investigated. Amorphous sucrose samples were prepared by freeze-drying and compressed under different conditions, followed by analyses by differential scanning calorimetry, isothermal crystallization tests, X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), and gas pycnometry. The compressed sample had a lower crystallization temperature and a shorter induction period for isothermal crystallization, indicating that compression facilitates the formation of the critical nucleus of a sucrose crystal. Based on FTIR and molecular dynamics simulation results, the conformational distortion of sucrose molecules due to the compression appears to contribute to the increase in the free energy of the system, which leads to the facilitation of critical nucleus formation. An isothermal crystallization test indicated an increase in the growth rate of sucrose crystals by the compression. This can be attributed to the transformation of the microstructure from porous to nonporous, as the result of compression. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  18. The Influence of Multiple Nested Layer Waviness on the Compression Strength of Double Nested Wave Formations in a Carbon Fiber Composite Laminate

    NASA Astrophysics Data System (ADS)

    Khan, Z. M.; Adams, D. O.; Anas, S.

    2016-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.

  19. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  20. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    PubMed

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  1. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  2. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  3. Electromechanical Apparatus Measures Residual Stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  4. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  5. The Effect of Compressive Loading on the Fatigue Lifetime of Graphite/ Epoxy Laminates

    DTIC Science & Technology

    1979-10-01

    Un-notched 11 3 Specimen Configuration, Notched 12 4 Location of Thickness and Width Measurements 14 5 Overall View of Composite Compression Test...Grips in Universal Testing Machine 24 8 Specimen Positioning Device 26 9 "Full-Fixity" Apparatus, Showing Auxiliary Platens 26 10 Specimen and Restraint...the accumu- lation of a statistically significant data base. * IA previous research study [11 showed that graphite/epoxy composites under constant

  6. Material Compatability with Threshold Limit Value Levels of Monomethyl Hydrazine

    DTIC Science & Technology

    1988-10-26

    supply was house- compressed air conditioned by passing through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower...recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air . Cleaning the tubing material between tests had...niecessary and identify by block wbr -’Materials were evaluated for potential use as ambient air sample lines for hydrazines. Fluorinated poly- mers

  7. Column strength of magnesium alloy AM-57S

    NASA Technical Reports Server (NTRS)

    Holt, M

    1942-01-01

    Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.

  8. Feasibility and Economics Study of the Treatment, Recycling and Disposal of Spent Abrasives

    DTIC Science & Technology

    1999-04-09

    compression, and film stripping. The recycling performance testing plan is summarized in Table 2. (The test plan is discussed in detail in Appendix B: Law...D1188 Yes Yes Immersion Compression ................... ASTM C4867 Yes Yes Film Stripping................................... CalTrans 302 Yes Yes...from 10% to 20% for aluminum oxide abrasives, and 15% to 30% for garnet abrasives. 9 Data Intepretation SSPC-AB 1 requires that the conductivitiy of

  9. Study of the influence of hole quality on composite materials

    NASA Technical Reports Server (NTRS)

    Pengra, J. J.

    1980-01-01

    The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.

  10. Design and the parametric testing of the space station prototype integrated vapor compression distillation water recovery module

    NASA Technical Reports Server (NTRS)

    Reveley, W. F.; Nuccio, P. P.

    1975-01-01

    Potable water for the Space Station Prototype life support system is generated by the vapor compression technique of vacuum distillation. A description of a complete three-man modular vapor compression water renovation loop that was built and tested is presented; included are all of the pumps, tankage, chemical post-treatment, instrumentation, and controls necessary to make the loop representative of an automatic, self-monitoring, null gravity system. The design rationale is given and the evolved configuration is described. Presented next are the results of an extensive parametric test during which distilled water was generated from urine and urinal flush water with concentration of solids in the evaporating liquid increasing progressively to 60 percent. Water quality, quantity and production rate are shown together with measured energy consumption rate in terms of watt-hours per kilogram of distilled water produced.

  11. Fuel conservation evaluation of US (United States) Army helicopters. Part 4. OH-58C flight testing. Final report 22 Sep 20-Nov 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belte, D.; Stratton, M.V.

    1982-08-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the OH-58C helicopter at Edwards AFB, California from 22 September to 20 November 1981, and at St. Paul, Minnesota, from 12 January to 9 February 1982. Nondimensional methods were used to identify effects of compressibility and blade stall on performance, and increased referred rotor speeds were used to supplement the range of currently available level flight data. Maximum differences in nondimensional power required attributed to compressibility effects varied from 6.5 to 11%. However, high actual rotor speed at a given condition can result in less powermore » required than at low rotor speed even with the compressibility penalty. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficient operating conditions.« less

  12. Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad

    2016-10-01

    Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.

  13. The benefits of a simplified method for CPR training of medical professionals: a randomized controlled study.

    PubMed

    Allan, Katherine S; Wong, Natalie; Aves, Theresa; Dorian, Paul

    2013-08-01

    We developed and tested a training method for basic life support incorporating defibrillator feedback during simulated cardiac arrest (CA) to determine the impact on the quality and retention of CPR skills. 298 subjects were randomized into 3 groups. All groups received a 2h training session followed by a simulated CA test scenario, immediately after training and at 3 months. Controls used a non-feedback defibrillator during training and testing. Group 1 was trained and tested with an audiovisual feedback defibrillator. During training, Group 1 reviewed quantitative CPR data from the defibrillator. Group 2 was trained as per Group 1, but was tested using the non-feedback defibrillator. The primary outcome was difference in compression depth between groups at initial testing. Secondary outcomes included differences in rate, depth at retesting, compression fraction, and self-assessment. Groups 1 and 2 had significantly deeper compressions than the controls (35.3 ± 7.6 mm, 43.7 ± 5.8 mm, 42.2 ± 6.6 mm for controls, Groups 1 and 2, P=0.001 for Group 1 vs. controls; P=0.001 for Group 2 vs. controls). At three months, CPR depth was maintained in all groups but remained significantly higher in Group 1 (39.1 ± 9.9 mm, 47.0 ± 7.4 mm, 42.2 ± 8.4 mm for controls, Groups 1 and 2, P=0.001 for Group 1 vs. control). No significant differences were noted between groups in compression rate or fraction. A simplified 2h training method using audiovisual feedback combined with quantitative review of CPR performance improved CPR quality and retention of these skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Biomechanical comparison of straight DCP and helical plates for fixation of transverse and oblique bone fractures.

    PubMed

    Aksakal, Bunyamin; Gurger, Murat; Say, Yakup; Yilmaz, Erhan

    2014-01-01

    Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems was in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved in torsional testing for the TF-HP fixations. From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.

  15. Compression socks and functional recovery following marathon running: a randomized controlled trial.

    PubMed

    Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A

    2015-02-01

    Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.

  16. Update on alternative occupant volume testing

    DOT National Transportation Integrated Search

    2010-04-27

    This paper describes the conduct of the first of a series of quasi-static compression tests of rail passenger equipment being done to examine occupant volume strength. Budd Pioneer car 244 has been chosen as the test article for examination of altern...

  17. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  18. Fiber-reinforced silicone for tracheobronchial stents: An experimental study.

    PubMed

    Vearick, Samanta Bianchi; Demétrio, Kétner Bendo; Xavier, Rogério Gastal; Moreschi, Alexandre Heitor; Muller, André Frotta; Sanches, Paulo Roberto Stefani; Dos Santos, Luis Alberto Loureiro

    2018-01-01

    A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter. A solution to this problem is the use of tracheal stents, which are small tubular devices made of silicone. One is inserted into the trachea to prevent or correct its constriction. The purpose of tracheal stent use is to maintain cartilage support that would otherwise be lost in the airway. Current tracheal stent models present limitations in terms of shape and characteristics of the silicone used in their production. One of the most important is the large thickness of the wall, which makes its placement difficult; this mainly applies to pediatric patients. The wall thickness of the stent is closely related to the mechanical properties of the material. This study aims to test the reinforcement of silicone with three kinds of fibers, and then stents that were produced using fiber with the best compressive strength characteristics. Silicone samples were reinforced with polypropylene (PP), polyamide (PA), and carbon fiber (CF) at concentrations of 2% and 4% (vol%), which then underwent tensile strength and Shore A hardness testing. Samples with fiber showed good characteristics; surface analyses were carried out and they were used to produce stents with an internal diameter of 11 or 13mm and a length of 50mm. Stents underwent compression tests for qualitative evaluation. Samples with 2% and 4% CF blends showed the best mechanical performance, and they were used to produce stents. These samples presented similar compressive strengths at low deformation, but stents with a 4% CF blend exhibited improved compressive strength at deformations greater than 30-50% of their diameter (P ≤ 0.05). The addition of 2% and 4% CF blends conferred greater mechanical strength and resistance to the silicone matrix. This is particularly true at low deformation, which is the condition where the stent is used when implanted. In the finite element compression strength tests, the stent composite showed greater compression strength with the addition of fiber, and the results were in accordance with mechanical compression tests performed on the stents. In vivo tests showed that, after 30 days of post-implantation in sheep trachea, an inflammatory process occurred in the region of the trachea in contact with the stent composite and with the stent without fiber (WF). This response is a common process during the first few days of implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  20. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1988-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  1. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1990-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  2. Wear resistance and compression strength of ceramics tested in fluoride environments.

    PubMed

    Theodoro, Guilherme Teixeira; Fiorin, Lívia; Moris, Izabela Cristina Maurício; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; Faria, Adriana Cláudia Lapria

    2017-01-01

    Dental ceramics have been widely used because of aesthetic, but wear is still questioned. There are relates that ceramic surface is prone to degradation by acidulated fluoride, that can increase wear rates. The aim of this study was to evaluate the effect of neutral and acidulated fluoride gel, used as preventive agents for professional use, at wear and compression strength of dental ceramics IPS e.max ZirPress (ZIR), IPS Empress Esthetic (EMP) e IPS Inline POM (POM). For this, 30 crowns and 30 disks were obtained by heat-pressing. Crowns and disks were submitted to two-body wear test at machine of mechanical loading, simulating occlusion, lateral movement and disocclusion. It was performed 300,000 cycles at 1Hz frequency under 20N load, to simulate 1 year of mastication. Samples were totally immersed during the test and were divided into three groups according to the gel used for immersion (n=10): control, neutral (sodium fluoride 2%) and acidulated (acidulated phosphate fluoride 1.23%). Samples (crowns and disks) were analyzed for vertical height loss after the test using, respectively, profile projector and stereomicroscope. Roughness of worn surface of crowns and disks was evaluated by laser confocal microscopy. Data of height loss and roughness were evaluated by two-way ANOVA and Bonferroni's test. A crown/disk of each group was analyzed by scanning electronic microscopy. After wear resistance tests, crowns were cemented to their abutments and submitted to compressive load at 30° angulation and 1mm/min speed. Type of failures was compared by qui-square test. Ceramic EMP worn less while ZIR worn more. Control gel worn more at crowns while acidulated gel worn more at disks. Surface roughness of samples tested at acidulated gel was significantly lower. Type of failures found at compression resistance tests was affected by ceramic type, but not by gel used. The results suggest that ceramic and fluoride gel affect wear and roughness of worn surface while type of failure is only affected by ceramic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Texture Studies and Compression Behaviour of Apple Flesh

    NASA Astrophysics Data System (ADS)

    James, Bryony; Fonseca, Celia

    Compressive behavior of fruit flesh has been studied using mechanical tests and microstructural analysis. Apple flesh from two cultivars (Braeburn and Cox's Orange Pippin) was investigated to represent the extremes in a spectrum of fruit flesh types, hard and juicy (Braeburn) and soft and mealy (Cox's). Force-deformation curves produced during compression of unconstrained discs of apple flesh followed trends predicted from the literature for each of the "juicy" and "mealy" types. The curves display the rupture point and, in some cases, a point of inflection that may be related to the point of incipient juice release. During compression these discs of flesh generally failed along the centre line, perpendicular to the direction of loading, through a barrelling mechanism. Cryo-Scanning Electron Microscopy (cryo-SEM) was used to examine the behavior of the parenchyma cells during fracture and compression using a purpose designed sample holder and compression tester. Fracture behavior reinforced the difference in mechanical properties between crisp and mealy fruit flesh. During compression testing prior to cryo-SEM imaging the apple flesh was constrained perpendicular to the direction of loading. Microstructural analysis suggests that, in this arrangement, the material fails along a compression front ahead of the compressing plate. Failure progresses by whole lines of parenchyma cells collapsing, or rupturing, with juice filling intercellular spaces, before the compression force is transferred to the next row of cells.

  4. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    PubMed

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  5. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  6. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  7. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  8. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  9. 40 CFR Appendix A to Subpart D of... - Tables

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-test and post-test values) kPa Pv Saturation pressure at dew point temperature kPa Ra Relative humidity...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment... Percent torque related to maximum torque for the test mode % mass Pollutant mass flow g/h nd, i Engine...

  10. 40 CFR 89.406 - Pre-test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...

  11. 40 CFR 89.406 - Pre-test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...

  12. 40 CFR 89.406 - Pre-test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...

  13. 40 CFR 89.406 - Pre-test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...

  14. 40 CFR 89.406 - Pre-test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures. 89.406 Section 89...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.406 Pre-test procedures. (a) Allow a minimum of 30 minutes warmup in the standby or operating...

  15. Circumferential distortion modeling of the TF30-P-3 compression system

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Banks, G. A.

    1977-01-01

    Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.

  16. Application of improved technology to a preprototype vapor compression distillation /VCD/ water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Reysa, R. P.; Fricks, D. H.

    1981-01-01

    Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.

  17. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  18. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART).

    PubMed

    Molina, Gustavo Fabián; Cabral, Ricardo Juan; Mazzola, Ignacio; Lascano, Laura Brain; Frencken, Jo E

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Specimens for testing flexural (n = 240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers.

  19. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  1. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  2. Development of experimental concepts for investigating the strength behavior of fine-grained cohesive soil in the Spacelab/space shuttle zero-g environment

    NASA Technical Reports Server (NTRS)

    Bonaparte, R.; Mitchell, J. K.

    1981-01-01

    Three different sets of tests are proposed for the NASA Spacelab experimental program. The first of tests, designed to measure the true cohesion of several different soils, would be carried out in space through use of a specially prepared direct shear apparatus. As part of this first series of tests, it is recommended that a set of drained unconfined compression tests be performed terrestrially on the same soils as tested in space. A form of the direct tension test is planned to measure the true tensile strength of the same types of soils used in the first series of tests. The direct tension tests could be performed terrestrially. The combined results of the direct shear tests, direct tension tests, and unconfined compression tests can be used to construct approximate failure envelopes for the soils tested in the region of the stress origin. Relationships between true cohesion and true tensile strength can also be investigated. In addition, the role of physio-chemical variables should be studied. The third set of tests involves using a multiaxial cubical or true triaxial test apparatus to investigate the influence of gravity induced fabric anisotropy and stress nonhomogeneities on the stress strain behavior of cohesive soils at low effective stress levels. These tests would involve both in space and terrestrial laboratory testing.

  3. Failure analysis of composite laminates including biaxial compression

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1983-01-01

    This report describes a continued effort on the development and application of the tensor polynomial failure criterion for composite laminate analysis. In particular, emphasis is given to the design, construction and testing of a cross-beam laminate configuration to obtain "pure' biaxial compression failure. The purpose of this test case was to provide to permit "closure' of the cubic form of the failure surface in the 1-2 compression-compression quadrant. This resulted in a revised set of interaction strength parameters and the construction of a failure surface which can be used with confidence for strength predictions, assuming a plane stress state exists. Furthermore, the problem of complex conjugate roots which can occur in some failure regions is addressed and an "engineering' interpretation is provided. Results are presented illustrating this behavior and the methodology for overcoming this problem is discussed.

  4. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOEpatents

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  5. Response of Honeycomb Core Sandwich Panel with Minimum Gage GFRP Face-Sheets to Compression Loading After Impact

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2011-01-01

    A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.

  6. Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Raju, P.K.

    1998-06-01

    The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less

  7. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  8. Gradient Compression Garments as a Countermeasure to Post-Space Flight Orthostatic Intolerance: Potential Interactions with the Maximum Absorbency Garment

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Laurie, S. S.; Macias, B. R.; Willig, M.; Johnson, K.; Stenger, M. B.

    2017-01-01

    Astronauts and cosmonauts may experience symptoms of orthostatic intolerance during re-entry, landing, and for several days post-landing following short- and long-duration spaceflight. Presyncopal symptoms have been documented in approximately 20% of short-duration and greater than 60% of long-duration flyers on landing day specifically during 5-10 min of controlled (no countermeasures employed at the time of testing) stand tests or 80 deg head-up tilt tests. Current operational countermeasures to orthostatic intolerance include fluid loading prior to and whole body cooling during re-entry as well as compression garments that are worn during and for up to several days after landing. While both NASA and the Russian space program have utilized compression garments to protect astronauts and cosmonauts traveling on their respective vehicles, a "next-generation" gradient compression garment (GCG) has been developed and tested in collaboration with a commercial partner to support future space flight missions. Unlike previous compression garments used operationally by NASA that provide a single level of compression across only the calves, thighs, and lower abdomen, the GCG provides continuous coverage from the feet to below the pectoral muscles in a gradient fashion (from approximately 55 mm Hg at the feet to approximately 16 mmHg across the abdomen). The efficacy of the GCG has been demonstrated previously after a 14-d bed rest study without other countermeasures and after short-duration Space Shuttle missions. Currently the GCG is being tested during a stand test following long-duration missions (6 months) to the International Space Station. While results to date have been promising, interactions of the GCG with other space suit components have not been examined. Specifically, it is unknown whether wearing the GCG over NASA's Maximum Absorbency Garment (MAG; absorbent briefs worn for the collection of urine and feces while suited during re-entry and landing) will interfere with the effectiveness of the GCG or conversely whether the GCG will reduce the fluid absorption capabilities of the MAG. Methods: This operational, directed study, will (1) determine whether the effectiveness of the GCG is affected by the MAG with regard to cardiovascular responses to head-up tilt, the standard orthostatic intolerance test employed for astronauts and bed rest subjects; (2) determine whether the effectiveness of the MAG is compromised by the GCG tested by injecting a standard fluid volume (950 ml in 3 separate simulated "urine voids") at a standardized rate (30 ml/sec); and (3) determine whether comfort is affected by wearing the MAG under the GCG using a standardized questionnaire. Results from this study will guide future development and operational use of the GCG and MAG to maximize crew health, safety, and comfort.

  9. Warm Water Compress as an Alternative for Decreasing the Degree of Phlebitis.

    PubMed

    Annisa, Fitri; Nurhaeni, Nani; Wanda, Dessie

    Intravenous fluid therapy is an invasive procedure which may increase the risk of patient complications. One of the most common of these is phlebitis, which may cause discomfort and tissue damage. Therefore, a nursing intervention is needed to effectively treat phlebitis. The purpose of this study was to investigate the effectiveness of applying a warm compression intervention to reduce the degree of phlebitis. A quasi-experimental pre-test and post-test design was used, with a non-equivalent control group. The total sample size was 32 patients with degrees of phlebitis ranging from 1 to 4. The total sample was divided into 2 interventional groups: those patients that were given 0.9% NaCl compresses and those given warm water compresses. The results showed that both compresses were effective in reducing the degree of phlebitis, with similar p values (p = .000). However, there was no difference in the average reduction score between the two groups (p = .18). Therefore, a warm water compress is valuable in the treatment of phlebitis, and could decrease the degree of phlebitis both effectively and inexpensively.

  10. Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading

    PubMed Central

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli

    2015-01-01

    The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research. PMID:28793741

  11. Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading.

    PubMed

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli

    2015-12-12

    The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.

  12. Cervical total disc replacement exhibits similar stiffness to intact cervical functional spinal units tested on a dynamic pendulum testing system.

    PubMed

    Esmende, Sean M; Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J

    2015-01-01

    The pendulum testing system is capable of applying physiologic compressive loads without constraining the motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. To examine the dynamic bending stiffness and energy absorption of the cervical spine, with and without implanted cervical total disc replacement (TDR) under simulated physiologic motion. A biomechanical cadaver investigation. Nine unembalmed, frozen human cervical FSUs from levels C3-C4 and C5-C6 were tested on the pendulum system with axial compressive loads of 25, 50, and 100 N before and after TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°, resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and the bending stiffness (Newton-meter/°) was calculated and compared for each testing mode. In flexion/extension, with increasing compressive loading from 25 to 100 N, the average number of cycles to equilibrium for the intact FSUs increased from 6.6 to 19.1, compared with 4.1 to 12.7 after TDR implantation (p<.05 for loads of 50 and 100 N). In flexion, with increasing compressive loading from 25 to 100 N, the bending stiffness of the intact FSUs increased from 0.27 to 0.59 Nm/°, compared with 0.21 to 0.57 Nm/° after TDR implantation. No significant differences were found in stiffness between the intact FSU and the TDR in flexion/extension and lateral bending at any load (p<.05). Cervical FSUs with implanted TDR were found to have similar stiffness, but had greater energy absorption than intact FSUs during cyclic loading with an unconstrained pendulum system. These results provide further insight into the biomechanical behavior of cervical TDR under approximated physiologic loading conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders.

    PubMed

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-08-21

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.

  14. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  15. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders

    PubMed Central

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-01-01

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg. PMID:28825672

  16. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt

    PubMed Central

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong

    2018-01-01

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008

  17. Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material

    PubMed Central

    Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês

    2014-01-01

    The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798

  18. Wireless EEG System Achieving High Throughput and Reduced Energy Consumption Through Lossless and Near-Lossless Compression.

    PubMed

    Alvarez, Guillermo Dufort Y; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2018-02-01

    This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.

  19. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    NASA Astrophysics Data System (ADS)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  20. Compressibility characteristics of Sabak Bernam Marine Clay

    NASA Astrophysics Data System (ADS)

    Lat, D. C.; Ali, N.; Jais, I. B. M.; Baharom, B.; Yunus, N. Z. M.; Salleh, S. M.; Azmi, N. A. C.

    2018-04-01

    This study is carried out to determine the geotechnical properties and compressibility characteristics of marine clay collected at Sabak Bernam. The compressibility characteristics of this soil are determined from 1-D consolidation test and verified by existing correlations by other researchers. No literature has been found on the compressibility characteristics of Sabak Bernam Marine Clay. It is important to carry out this study since this type of marine clay covers large coastal area of west coast Malaysia. This type of marine clay was found on the main road connecting Klang to Perak and the road keeps experiencing undulation and uneven settlement which jeopardise the safety of the road users. The soil is indicated in the Generalised Soil Map of Peninsular Malaysia as a CLAY with alluvial soil on recent marine and riverine alluvium. Based on the British Standard Soil Classification and Plasticity Chart, the soil is classified as a CLAY with very high plasticity (CV). Results from laboratory test on physical properties and compressibility parameters show that Sabak Bernam Marine Clay (SBMC) is highly compressible, has low permeability and poor drainage characteristics. The compressibility parameters obtained for SBMC is in a good agreement with other researchers in the same field.

  1. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.

  2. An in vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion versus three parallel transarticular cortical screws inserted in lag fashion.

    PubMed

    Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S

    2010-01-01

    To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.

  3. Mechanical properties of thermal protection system materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less

  4. Experimental and finite element investigation of the buckling characteristics of a beaded skin panel for a hypersonic aircraft. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Siegel, W. H.

    1978-01-01

    As part of NASA's continuing research into hypersonics and 85 square foot hypersonic wing test section of a proposed hypersonic research airplane was laboratory tested. The project reported on in this paper has carried the hypersonic wing test structure project one step further by testing a single beaded panel to failure. The primary interest was focused upon the buckling characteristics of the panel under pure compression with boundary conditions similar to those found in a wing mounted condition. Three primary phases of analysis are included in the report. These phases include: experimental testing of the beaded panel to failure; finite element structural analysis of the beaded panel with the computer program NASTRAN; a summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. Comparisons between each of the analysis methods are also included.

  5. Plastometric tests for plasticine as physical modelling material

    NASA Astrophysics Data System (ADS)

    Wójcik, Łukasz; Lis, Konrad; Pater, Zbigniew

    2016-12-01

    This paper presents results of plastometric tests for plasticine, used as material for physical modelling of metal forming processes. The test was conducted by means of compressing by flat dies of cylindrical billets at various temperatures. The aim of the conducted research was comparison of yield stresses and course of material flow curves. Tests were made for plasticine in black and white colour. On the basis of the obtained experimental results, the influence of forming parameters change on flow curves course was determined. Sensitivity of yield stresses change in function of material deformation, caused by forging temperature change within the scope of 0&C ÷ 20&C and differentiation of strain rate for ˙ɛ = 0.563; ˙ɛ = 0.0563; ˙ɛ = 0.0056s-1,was evaluated. Experimental curves obtained in compression test were described by constitutive equations. On the basis of the obtained results the function which most favourably describes flow curves was chosen.

  6. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  7. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  8. Tissue-engineered articular cartilage exhibits tension-compression nonlinearity reminiscent of the native cartilage.

    PubMed

    Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2013-07-26

    The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  10. Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression

    NASA Astrophysics Data System (ADS)

    Orbulov, Imre Norbert; Májlinger, Kornél

    2014-06-01

    Metal matrix syntactic foam (MMSF) blocks were produced by an inert gas-assisted pressure infiltration technique. MMSFs are advanced hollow sphere reinforced-composite materials having promising application in the fields of aviation, transport, and automotive engineering, as well as in civil engineering. The produced blocks were investigated in free and constrained compression modes, and besides the characteristic mechanical properties, their deformation mechanisms and failure modes were studied. In the tests, the chemical composition of the matrix material, the size of the reinforcing ceramic hollow spheres, the applied heat treatment, and the compression mode were considered as investigation parameters. The monitored mechanical properties were the compressive strength, the fracture strain, the structural stiffness, the fracture energy, and the overall absorbed energy. These characteristics were strongly influenced by the test parameters. By the proper selection of the matrix and the reinforcement and by proper design, the mechanical properties of the MMSFs can be effectively tailored for specific and given applications.

  11. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    NASA Astrophysics Data System (ADS)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  12. Strength development of pervious concrete containing engineered biomass aggregate

    NASA Astrophysics Data System (ADS)

    Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd

    2017-11-01

    Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.

  13. The effect of compression speed on intelligibility: simulated hearing-aid processing with and without original temporal fine structure information.

    PubMed

    Hopkins, Kathryn; King, Andrew; Moore, Brian C J

    2012-09-01

    Hearing aids use amplitude compression to compensate for the effects of loudness recruitment. The compression speed that gives the best speech intelligibility varies among individuals. Moore [(2008). Trends Amplif. 12, 300-315] suggested that an individual's sensitivity to temporal fine structure (TFS) information may affect which compression speed gives most benefit. This hypothesis was tested using normal-hearing listeners with a simulated hearing loss. Sentences in a competing talker background were processed using multi-channel fast or slow compression followed by a simulation of threshold elevation and loudness recruitment. Signals were either tone vocoded with 1-ERB(N)-wide channels (where ERB(N) is the bandwidth of normal auditory filters) to remove the original TFS information, or not processed further. In a second experiment, signals were vocoded with either 1 - or 2-ERB(N)-wide channels, to test whether the available spectral detail affects the optimal compression speed. Intelligibility was significantly better for fast than slow compression regardless of vocoder channel bandwidth. The results suggest that the availability of original TFS or detailed spectral information does not affect the optimal compression speed. This conclusion is tentative, since while the vocoder processing removed the original TFS information, listeners may have used the altered TFS in the vocoded signals.

  14. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs

    PubMed Central

    Zhao, Caiqi; Zheng, Weidong; Ma, Jun; Zhao, Yangjian

    2016-01-01

    To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS)), lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1) Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2) The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure. PMID:28773567

  15. Mechanical properties of sugar beet root during storage

    NASA Astrophysics Data System (ADS)

    Nedomová, Šárka; Kumbár, Vojtěch; Pytel, Roman; Buchar, Jaroslav

    2017-10-01

    This paper is an investigation via two experimental methods, of the textural properties of sugar beet roots during the storage period. In the work, sugar beet roots mechanical properties were evaluated during the post-harvest period - 1, 8, 22, 43, and 71 days after crop. Both experimental methods, i.e. compression test and puncture test, suggest that the failure strength of the sugar beet root increases with the storage time. The parameters obtained using the puncture test, are more sensitive to the storage duration than those obtained by way of the compression test. We also found that such mechanical properties served as a reliable tool for monitoring the progress of sugar beet roots storage. The described methods could also be used to highlight important information on sugar beet evolution during storage.

  16. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  17. Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness

    NASA Technical Reports Server (NTRS)

    Chapman, Andrew J.

    1984-01-01

    Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.

  18. Chest compression rate measurement from smartphone video.

    PubMed

    Engan, Kjersti; Hinna, Thomas; Ryen, Tom; Birkenes, Tonje S; Myklebust, Helge

    2016-08-11

    Out-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training. Some existing smartphone apps can call the emergency number and provide for example global positioning system (GPS) location like Hjelp 113-GPS App by the Norwegian air ambulance. We propose to extend functionality of such apps by using the built in camera in a smartphone to capture video of the CPR performed, primarily to estimate the duration and rate of the chest compression executed, if any. All calculations are done in real time, and both the caller and the dispatcher will receive the compression rate feedback when detected. The proposed algorithm is based on finding a dynamic region of interest in the video frames, and thereafter evaluating the power spectral density by computing the fast fourier transform over sliding windows. The power of the dominating frequencies is compared to the power of the frequency area of interest. The system is tested on different persons, male and female, in different scenarios addressing target compression rates, background disturbances, compression with mouth-to-mouth ventilation, various background illuminations and phone placements. All tests were done on a recording Laerdal manikin, providing true compression rates for comparison. Overall, the algorithm is seen to be promising, and it manages a number of disturbances and light situations. For target rates at 110 cpm, as recommended during CPR, the mean error in compression rate (Standard dev. over tests in parentheses) is 3.6 (0.8) for short hair bystanders, and 8.7 (6.0) including medium and long haired bystanders. The presented method shows that it is feasible to detect the compression rate of chest compressions performed by a bystander by placing the smartphone close to the patient, and using the built-in camera combined with a video processing algorithm performed real-time on the device.

  19. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  20. Gamma Radiation Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Alviso, Cindy T.; Metz, Tom R.

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to a compressive strain of ~25% while exposed to a gamma radiation dose of 1, 5, or 10 Mrad under vacuum. Compression set and load retention of the aged specimens were measured after a ~24 h relaxation period. Compression set (relative to deflection) increased with radiation dose: 11, 35, and 51% after 1, 5, and 10 Mrad, respectively. Load retention was 96-97% for the doses tested. The SE 1700 compared favorably to M9763 cellular silicone tested under the samemore » conditions.« less

  1. An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B

    NASA Astrophysics Data System (ADS)

    Piao, Kun

    Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.

  2. Comparison of impact results for several polymeric composites over a wide range of low impact velocities

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.

    1991-01-01

    Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.

  3. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  4. Standard Test Methods for Textile Composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Portanova, Marc A.

    1996-01-01

    Standard testing methods for composite laminates reinforced with continuous networks of braided, woven, or stitched fibers have been evaluated. The microstructure of these textile' composite materials differs significantly from that of tape laminates. Consequently, specimen dimensions and loading methods developed for tape type composites may not be applicable to textile composites. To this end, a series of evaluations were made comparing testing practices currently used in the composite industry. Information was gathered from a variety of sources and analyzed to establish a series of recommended test methods for textile composites. The current practices established for laminated composite materials by ASTM and the MIL-HDBK-17 Committee were considered. This document provides recommended test methods for determining both in-plane and out-of-plane properties. Specifically, test methods are suggested for: unnotched tension and compression; open and filled hole tension; open hole compression; bolt bearing; and interlaminar tension. A detailed description of the material architectures evaluated is also provided, as is a recommended instrumentation practice.

  5. Comparison of Artificial Compressibility Methods

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan

    2004-01-01

    Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.

  6. Dynamic Biomechanical Examination of the Lumbar Spine with Implanted Total Disc Replacement (TDR) Utilizing a Pendulum Testing System

    PubMed Central

    Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J

    2013-01-01

    Study Design Biomechanical cadaver investigation Objective To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted Total Disc Replacement (TDR) under simulated physiologic motion. Summary of background data The pendulum testing system is capable of applying physiologic compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Methods Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181N, 282N, 385N, and 488N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5° resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results In flexion/extension, the TDR constructs reached equilibrium with significantly (p<0.05) fewer cycles than the intact FSU with compressive loads of 282N, 385N and 488N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (p<0.001). In flexion, with increasing compressive loading from 181N to 488N, the bending stiffness of the intact FSUs increased from 4.0N-m/° to 5.5N-m/°, compared to 2.1N-m/° to 3.6N-m/° after TDR implantation. At each compressive load, the intact FSU was significantly more stiff than the TDR (p<0.05). Conclusion Lumbar FSUs with implanted TDR were found to be less stiff, but also absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices are not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:22869057

  7. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    NASA Astrophysics Data System (ADS)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  8. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear.

    PubMed

    Nguyen, An M; Levenston, Marc E

    2012-01-01

    Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.

  10. Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.

    2010-01-01

    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.

  11. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    NASA Astrophysics Data System (ADS)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  12. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    NASA Astrophysics Data System (ADS)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  13. Cardiopulmonary resuscitation duty cycle in out-of-hospital cardiac arrest.

    PubMed

    Johnson, Bryce V; Johnson, Bryce; Coult, Jason; Fahrenbruch, Carol; Blackwood, Jennifer; Sherman, Larry; Kudenchuk, Peter; Sayre, Michael; Rea, Thomas

    2015-02-01

    Duty cycle is the portion of time spent in compression relative to total time of the compression-decompression cycle. Guidelines recommend a 50% duty cycle based largely on animal investigation. We undertook a descriptive evaluation of duty cycle in human resuscitation, and whether duty cycle correlates with other CPR measures. We calculated the duty cycle, compression depth, and compression rate during EMS resuscitation of 164 patients with out-of-hospital ventricular fibrillation cardiac arrest. We captured force recordings from a chest accelerometer to measure ten-second CPR epochs that preceded rhythm analysis. Duty cycle was calculated using two methods. Effective compression time (ECT) is the time from beginning to end of compression divided by total period for that compression-decompression cycle. Area duty cycle (ADC) is the ratio of area under the force curve divided by total area of one compression-decompression cycle. We evaluated the compression depth and compression rate according to duty cycle quartiles. There were 369 ten-second epochs among 164 patients. The median duty cycle was 38.8% (SD=5.5%) using ECT and 32.2% (SD=4.3%) using ADC. A relatively shorter compression phase (lower duty cycle) was associated with greater compression depth (test for trend <0.05 for ECT and ADC) and slower compression rate (test for trend <0.05 for ADC). Sixty-one of 164 patients (37%) survived to hospital discharge. Duty cycle was below the 50% recommended guideline, and was associated with compression depth and rate. These findings provider rationale to incorporate duty cycle into research aimed at understanding optimal CPR metrics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. The effect of changes in compression ratio upon engine performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)

  15. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the testmore » component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant compressive stresses were induced by clad bending deformation due to a clad bulging effect (or the barreling effect). The barreling effect caused very large localized shear stress in the clad and left testing material at a high risk of shear failure. The above combined effects will result in highly non-conservative predictions both in strength and ductility of the tested clad, and the associated mechanical properties as well. To overcome/mitigate the mentioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. Through detailed parameter investigation on specific geometry designs, careful filtering of material for the expansion plug, as well as adding newly designed parts to the testing system, a method to reconcile the potential non-conservatism embedded in the expansion plug test system has been discovered. A modified expansion plug testing protocol has been developed based on the method. In order to closely resemble thin-wall theory, a general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor called -factor is defined to correlate the ring load P into hoop stress . , = . The generated stress-strain curve agrees very well with tensile test data in both the elastic and plastic regions.« less

  16. Neurologic outcome of controlled compressed-air diving.

    PubMed

    Cordes, P; Keil, R; Bartsch, T; Tetzlaff, K; Reuter, M; Hutzelmann, A; Friege, L; Meyer, T; Bettinghausen, E; Deuschl, G

    2000-12-12

    The authors compared the neurologic, neuropsychological, and neuroradiologic status of military compressed-air divers without a history of neurologic decompression illness and controls. No gross differences in the neuropsychometric test results or abnormal neurologic findings were found. There was no correlation between test results, diving experience, and number and size of cerebral MRI lesions. Prevalence of cerebral lesions was not increased in divers. These results suggest that there are no long-term CNS sequelae in military divers if diving is performed under controlled conditions.

  17. Using Compressed Speech to Measure Simultaneous Processing in Persons with and without Visual Impairment

    ERIC Educational Resources Information Center

    Marks, William J.; Jones, W. Paul; Loe, Scott A.

    2013-01-01

    This study investigated the use of compressed speech as a modality for assessment of the simultaneous processing function for participants with visual impairment. A 24-item compressed speech test was created using a sound editing program to randomly remove sound elements from aural stimuli, holding pitch constant, with the objective to emulate the…

  18. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  19. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE PAGES

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    2015-12-10

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  20. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  1. 16 CFR 1510.4 - Test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedure. 1510.4 Section 1510.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... plane surface. Under its own weight and in a non-compressed state apply any portion of the test sample...

  2. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  3. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  4. A new display stream compression standard under development in VESA

    NASA Astrophysics Data System (ADS)

    Jacobson, Natan; Thirumalai, Vijayaraghavan; Joshi, Rajan; Goel, James

    2017-09-01

    The Advanced Display Stream Compression (ADSC) codec project is in development in response to a call for technologies from the Video Electronics Standards Association (VESA). This codec targets visually lossless compression of display streams at a high compression rate (typically 6 bits/pixel) for mobile/VR/HDR applications. Functionality of the ADSC codec is described in this paper, and subjective trials results are provided using the ISO 29170-2 testing protocol.

  5. Long-term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-reinforced PMR-15 Composites-data

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.

    2003-01-01

    A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.

  6. Wave transmission through silicone foam pads in a compression Kolsky bar apparatus. Comparisons between simulations and measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, Edmundo; Song, Bo

    This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less

  7. Temperature Measurements in Compressed and Uncompressed SPECTOR Plasmas at General Fusion

    NASA Astrophysics Data System (ADS)

    Young, William; Carter, Neil; Howard, Stephen; Carle, Patrick; O'Shea, Peter; Fusion Team, General

    2017-10-01

    Accurate temperature measurements are critical to establishing the behavior of General Fusion's SPECTOR plasma injector, both before and during compression. As compression tests impose additional constraints on diagnostic access to the plasma, a two-color, filter-based soft x-ray electron temperature diagnostic has been implemented. Ion Doppler spectroscopy measurements also provide impurity ion temperatures on compression tests. The soft x-ray and ion Doppler spectroscopy measurements are being validated against a Thomson scattering system on an uncompressed version of SPECTOR with more diagnostic access. The multipoint Thomson scattering diagnostic also provides up to a six point temperature and density profile, with the density measurements validated against a far infrared interferometer. Temperatures above 300 eV have been demonstrated to be sustained for over 500 microseconds in uncompressed plasmas. Optimization of soft x-ray filters is ongoing, in order to balance blocking of impurity line radiation with signal strength.

  8. 40 CFR 89.503 - Test orders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing § 89.503... Selective Enforcement Auditing (SEA) test orders than an annual limit determined to be the larger of the...

  9. Chest compression rates and survival following out-of-hospital cardiac arrest.

    PubMed

    Idris, Ahamed H; Guffey, Danielle; Pepe, Paul E; Brown, Siobhan P; Brooks, Steven C; Callaway, Clifton W; Christenson, Jim; Davis, Daniel P; Daya, Mohamud R; Gray, Randal; Kudenchuk, Peter J; Larsen, Jonathan; Lin, Steve; Menegazzi, James J; Sheehan, Kellie; Sopko, George; Stiell, Ian; Nichol, Graham; Aufderheide, Tom P

    2015-04-01

    Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions/min. A recent clinical study reported optimal return of spontaneous circulation with rates between 100 and 120/min during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. However, the relationship between compression rate and survival is still undetermined. Prospective, observational study. Data is from the Resuscitation Outcomes Consortium Prehospital Resuscitation IMpedance threshold device and Early versus Delayed analysis clinical trial. Adults with out-of-hospital cardiac arrest treated by emergency medical service providers. None. Data were abstracted from monitor-defibrillator recordings for the first five minutes of emergency medical service cardiopulmonary resuscitation. Multiple logistic regression assessed odds ratio for survival by compression rate categories (<80, 80-99, 100-119, 120-139, ≥140), both unadjusted and adjusted for sex, age, witnessed status, attempted bystander cardiopulmonary resuscitation, location of arrest, chest compression fraction and depth, first rhythm, and study site. Compression rate data were available for 10,371 patients; 6,399 also had chest compression fraction and depth data. Age (mean±SD) was 67±16 years. Chest compression rate was 111±19 per minute, compression fraction was 0.70±0.17, and compression depth was 42±12 mm. Circulation was restored in 34%; 9% survived to hospital discharge. After adjustment for covariates without chest compression depth and fraction (n=10,371), a global test found no significant relationship between compression rate and survival (p=0.19). However, after adjustment for covariates including chest compression depth and fraction (n=6,399), the global test found a significant relationship between compression rate and survival (p=0.02), with the reference group (100-119 compressions/min) having the greatest likelihood for survival. After adjustment for chest compression fraction and depth, compression rates between 100 and 120 per minute were associated with greatest survival to hospital discharge.

  10. Utilization of the waste from the marble industry for application in transport infrastructure: mechanical properties of cement pastes

    NASA Astrophysics Data System (ADS)

    Prošek, Zdeněk; Trejbal, Jan; Topič, Jaroslav; Plachý, Tomáš; Tesárek, Pavel

    2017-09-01

    This article is focused on the mechanical testing of cement-based samples containing a micronized waste marble powder used as replacement of standard binders. Tested materials consisted of cement CEM I 42.5 R (Radotín, Czech Republic) and three different amounts of the marbles (25, 50 and 70 wt. %). Standard bending and compressive tests of the prismatic samples having dimensions equal to 40 × 40 × 160 mm were done in order to reveal an influence of marble amount on flexural and compressive strength, respectively. Moreover, the dynamic modulus of elasticity and dynamic shear modulus were examined and compared after 7 and 28 days of mixture curing.

  11. The Lateral Stability of Equal-flanged Aluminum-alloy I-beams Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Dumont, C; Hill, H N

    1940-01-01

    Equal-flange beams of a special extruded I-section of 27ST aluminum alloy were tested in pure bending. Complete end fixity was not attained. Loading was continued until a definite maximum value had been reached. Tensile tests were made on specimens cut from the flanges and the web of each beam. Compressive stress-strain characteristics were determined by pack compression tests on specimens cut from the flanges. Values computed from an equation previously suggested by one of the authors for the critical stress at which such beams become unstable were found to be in good agreement with values computed from experimentally determined critically bending moments.

  12. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    PubMed

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Verification testing of the compression performance of the HEVC screen content coding extensions

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng

    2017-09-01

    This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.

  14. Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets.

    PubMed

    Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon

    2008-06-01

    The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.

  15. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  16. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  17. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  18. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulus, M. M., Jr.

    1976-01-01

    Structural efficiency studies were made to determine the weight saving potential of graphite/epoxy composite structures for compression panel applications. Minimum weight hat-stiffened and open corrugation configurations were synthesized using a nonlinear mathematical programming technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience suggests that most of the theoretical weight saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  19. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  20. Edgewise Compression Testing of STIPS-0 (Structurally Integrated Thermal Protection System)

    NASA Technical Reports Server (NTRS)

    Brewer, Amy R.

    2011-01-01

    The Structurally Integrated Thermal Protection System (SITPS) task was initiated by the NASA Hypersonics Project under the Fundamental Aeronautics Program to develop a structural load-carrying thermal protection system for use in aerospace applications. The initial NASA concept for SITPS consists of high-temperature composite facesheets (outer and inner mold lines) with a light-weight insulated structural core. An edgewise compression test was performed on the SITPS-0 test article at room temperature using conventional instrumentation and methods in order to obtain panel-level mechanical properties and behavior of the panel. Three compression loadings (10, 20 and 37 kips) were applied to the SITPS-0 panel. The panel behavior was monitored using standard techniques and non-destructive evaluation methods such as photogrammetry and acoustic emission. The elastic modulus of the SITPS-0 panel was determined to be 1.146x106 psi with a proportional limit at 1039 psi. Barrel-shaped bending of the panel and partial delamination of the IML occurred under the final loading.

  1. NASA Tech Briefs, February 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.

  2. Construction and Effect of New Mechanical Structure in Traditional Nitroguanidine Propellants

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Liao, Xin; Wang, Zeshan

    2017-07-01

    In order to improve the mechanical properties of nitroguanidine propellants, spheroidized nitroguanidine (SNGu) was mixed up with needle-shaped NGu (NSNGu) at different mass ratios. The results from tensile/compression tests showed that the addition of SNGu could improve compression properties of nitroguanidine propellants. At the NSNGu to SNGu ratio of 8:2, compression properties of the propellants exhibit an excellent promotion with the maximum increase of 25.2% at -40°C comparing against the value of the traditional propellants. Meanwhile, tensile properties of the new propellants at the same ratio were nearly equal to those of traditional propellants. The impacts of the morphology of NGus on the distribution density and orientation of the NGus were investigated by scanning electron microscopy (SEM). The aforementioned mechanical behavior of nitroguanidine propellants could be well explained by the results of closed-bomb tests. The difference of the total heat effect observed in the Differential Scanning Calorimeter (DSC) tests of the two NGus was calculated to be only 1.5%.

  3. Statistical Analysis of Compressive and Flexural Test Results on the Sustainable Adobe Reinforced with Steel Wire Mesh

    NASA Astrophysics Data System (ADS)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.

  4. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  5. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.

  6. Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    PubMed Central

    Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun

    2017-01-01

    Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456

  7. Experimental investigation of a Mach 6 fixed-geometry inlet featuring a swept external-internal compression flow field

    NASA Technical Reports Server (NTRS)

    Torrence, M. G.

    1975-01-01

    An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart.

  8. Building structural similarity database for metric learning

    NASA Astrophysics Data System (ADS)

    Jin, Guoxin; Pappas, Thrasyvoulos N.

    2015-03-01

    We propose a new approach for constructing databases for training and testing similarity metrics for structurally lossless image compression. Our focus is on structural texture similarity (STSIM) metrics and the matched-texture compression (MTC) approach. We first discuss the metric requirements for structurally lossless compression, which differ from those of other applications such as image retrieval, classification, and understanding. We identify "interchangeability" as the key requirement for metric performance, and partition the domain of "identical" textures into three regions, of "highest," "high," and "good" similarity. We design two subjective tests for data collection, the first relies on ViSiProG to build a database of "identical" clusters, and the second builds a database of image pairs with the "highest," "high," "good," and "bad" similarity labels. The data for the subjective tests is generated during the MTC encoding process, and consist of pairs of candidate and target image blocks. The context of the surrounding image is critical for training the metrics to detect lighting discontinuities, spatial misalignments, and other border artifacts that have a noticeable effect on perceptual quality. The identical texture clusters are then used for training and testing two STSIM metrics. The labelled image pair database will be used in future research.

  9. Axial strength test for round flat faced versus capsule shaped bilayer tablets.

    PubMed

    Franck, Jason; Abebe, Admassu; Keluskar, Rekha; Martin, Kyle; Majumdar, Antara; Kottala, Niranjan; Stamato, Howard

    2015-03-01

    There has been increasing interest in fixed dose combination (FDC) therapy. Multi-layer tablets are a popular choice among various technologies to deliver FDCs. In most cases, round flat faced tooling is used in testing tablets as they have the simplest geometry. However, shaped tooling is more common for commercial products and may have an effect on bilayer tablet strength. Capsule shaped bilayer tablets, similar to a commercial image, and holders conforming to the tablet topology, were compared with similar round flat faced bilayer tablets and their corresponding holders. Bilayer tablets were subjected to an axial test device, until fracture and the quantitative breaking force value was recorded. As the second layer compression force increases, regardless of holder design, an increase in breaking force occurs as expected. This consistent trend provides insight regarding the breaking force of capsule shaped bilayer tablets. The results of this study show that at lower second layer compression forces, tablet geometry does not significantly impact the results. However, at higher compression forces, a significant difference in breaking force between tablet geometries exists. Therefore, using a test geometry close to the final commercial tablet image is recommended to have the most accurate prediction for tablet breakage.

  10. Adaptation to nonlinear frequency compression in normal-hearing adults: a comparison of training approaches.

    PubMed

    Dickinson, Ann-Marie; Baker, Richard; Siciliano, Catherine; Munro, Kevin J

    2014-10-01

    To identify which training approach, if any, is most effective for improving perception of frequency-compressed speech. A between-subject design using repeated measures. Forty young adults with normal hearing were randomly allocated to one of four groups: a training group (sentence or consonant) or a control group (passive exposure or test-only). Test and training material differed in terms of material and speaker. On average, sentence training and passive exposure led to significantly improved sentence recognition (11.0% and 11.7%, respectively) compared with the consonant training group (2.5%) and test-only group (0.4%), whilst, consonant training led to significantly improved consonant recognition (8.8%) compared with the sentence training group (1.9%), passive exposure group (2.8%), and test-only group (0.8%). Sentence training led to improved sentence recognition, whilst consonant training led to improved consonant recognition. This suggests learning transferred between speakers and material but not stimuli. Passive exposure to sentence material led to an improvement in sentence recognition that was equivalent to gains from active training. This suggests that it may be possible to adapt passively to frequency-compressed speech.

  11. Effect of cements on fracture resistance of monolithic zirconia crowns

    PubMed Central

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown–die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements. PMID:27335900

  12. Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube

    DTIC Science & Technology

    gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.

  13. 49 CFR 178.815 - Stacking test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for transportation, and no loss of contents. (2) For fiberboard and wooden IBCs, there may be no loss... unsafe for transportation, and no loss of contents. (4) For the dynamic compression test, a container passes the test if, after application of the required load, there is no permanent deformation to the IBC...

  14. Investigating the effect of compression on solute transport through degrading municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to themore » presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.« less

  15. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  16. Preliminary design of a supercritical CO2 wind tunnel

    NASA Astrophysics Data System (ADS)

    Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.

    2017-03-01

    The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.

  17. Hypothesis to Explain the Size Effect Observed in APO-BMI Compression Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schembri, Philip Edward; Siranosian, Antranik Antonio; Kingston, Lance Allen

    2015-01-07

    In 2013 compression tests were performed on cylindrical specimens of carbon-microballoon-APOBMI syntactic foam machined to different lengths (0.25, 0.5, and 2.8 inches1) (Kingston, 2013). In 2014 similar tests were performed on glass-microballoon-APO-BMI of different lengths (~0.15”, ~0.32”, and ~0.57”). In all these tests it was observed that, when strains were calculated from the platen displacement (corrected for machine compliance), the apparent Young’s modulus of the material decreased with specimen size, as shown in Table 1. The reason for this size effect was speculated to be a layer of damage on or near the top and bottom machined surfaces of themore » specimens (Kingston, Schembri, & Siranosian, 2014). This report examines that hypothesis in further detail.« less

  18. Analysis of visual quality improvements provided by known tools for HDR content

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Alshina, Elena; Lee, JongSeok; Park, Youngo; Choi, Kwang Pyo

    2016-09-01

    In this paper, the visual quality of different solutions for high dynamic range (HDR) compression using MPEG test contents is analyzed. We also simulate the method for an efficient HDR compression which is based on statistical property of the signal. The method is compliant with HEVC specification and also easily compatible with other alternative methods which might require HEVC specification changes. It was subjectively tested on commercial TVs and compared with alternative solutions for HDR coding. Subjective visual quality tests were performed using SUHD TVs model which is SAMSUNG JS9500 with maximum luminance up to 1000nit in test. The solution that is based on statistical property shows not only improvement of objective performance but improvement of visual quality compared to other HDR solutions, while it is compatible with HEVC specification.

  19. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)

    PubMed Central

    MOLINA, Gustavo Fabián; CABRAL, Ricardo Juan; MAZZOLA, Ignacio; BRAIN LASCANO, Laura; FRENCKEN, Jo. E.

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective: To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Material and Methods: Specimens for testing flexural (n=240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results: The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). Conclusion: The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers. PMID:23857657

  20. Compression-Molding-Machine Tender (fabric. plastics prod.) 556.885--Technical Report on Development of USES Aptitude Test Battery.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  1. 29 CFR Appendix A to Subpart Q of... - References to subpart Q of Part 1926

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (ASTM C39-86). • Standard Test Method for Making and Curing Concrete Test Specimens in the Field (ASTM C31-85). • Standard Test Method for Penetration Resistance of Hardened Concrete (ASTM C803-82... (ASTM C873-85). • Standard Method for Developing Early Age Compressive Test Values and Projecting Later...

  2. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  3. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  4. Depth-Dependent Transverse Shear Properties of the Human Corneal Stroma

    PubMed Central

    Petsche, Steven J.; Chernyak, Dimitri; Martiz, Jaime; Levenston, Marc E.

    2012-01-01

    Purpose. To measure the transverse shear modulus of the human corneal stroma and its profile through the depth by mechanical testing, and to assess the validity of the hypothesis that the shear modulus will be greater in the anterior third due to increased interweaving of lamellae. Methods. Torsional rheometry was used to measure the transverse shear properties of 6 mm diameter buttons of matched human cadaver cornea pairs. One cornea from each pair was cut into thirds through the thickness with a femtosecond laser and each stromal third was tested individually. The remaining intact corneas were tested to measure full stroma shear modulus. The shear modulus from a 1% shear strain oscillatory test was measured at various levels of axial compression for all samples. Results. After controlling for axial compression, the transverse shear moduli of isolated anterior layers were significantly higher than central and posterior layers. Mean modulus values at 0% axial strain were 7.71 ± 6.34 kPa in the anterior, 1.99 ± 0.45 kPa in the center, 1.31 ± 1.01 kPa in the posterior, and 9.48 ± 2.92 kPa for full thickness samples. A mean equilibrium compressive modulus of 38.7 ± 8.6 kPa at 0% axial strain was calculated from axial compression measured during the shear tests. Conclusions. Transverse shear moduli are two to three orders of magnitude lower than tensile moduli reported in the literature. The profile of shear moduli through the depth displayed a significant increase from posterior to anterior. This gradient supports the hypothesis and corresponds to the gradient of interwoven lamellae seen in imaging of stromal cross-sections. PMID:22205608

  5. A study of pressure losses in residential air distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

    2002-07-01

    An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less

  6. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  7. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    NASA Astrophysics Data System (ADS)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  8. Aging and compressibility of municipal solid wastes.

    PubMed

    Chen, Y M; Zhan, Tony L T; Wei, H Y; Ke, H

    2009-01-01

    The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.

  9. PACE: Power-Aware Computing Engines

    DTIC Science & Technology

    2005-02-01

    more costly than compu- tation on our test platform, and it is memory access that dominates most lossless data compression algorithms . In fact, even...Performance and implementation concerns A compression algorithm may be implemented with many different, yet reasonable, data structures (including...Related work This section discusses data compression for low- bandwidth devices and optimizing algorithms for low energy. Though much work has gone

  10. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  11. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  12. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs.

    PubMed

    Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime

    2013-02-01

    The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller areas glued are better); and (c) the variation in the thickness of the specimen. The specimen's faces should be parallel to ensure a uniaxial stress state. However, this is not possible in real specimens, and a criterion must be defined to accept the specimen in terms of the specimen's thickness variation and the deviation of the fitted constants arising from such a variation.

  13. The Effect of Grain Size on the Strain Hardening Behavior for Extruded ZK61 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Duan, Junpeng; Wang, Wenke; Wang, Erde

    2017-12-01

    The effects of grain size on the tensile and compressive strain hardening behaviors for extruded ZK61 alloys have been investigated by uniaxial tensile and compressive tests along the extrusion directions. Cylindrical tension and compression specimens of extruded ZK61 alloys with various sized grain were fabricated by annealing treatments. Tensile and compressive tests at ambient temperature were conducted at a strain rate of 0.5 × 10-3 s-1. The results indicate that both tensile strain hardening and compressive strain hardening of ZK61 alloys with different grain sizes have an athermal regime of dislocation accumulation in early deformation. The threshold stress value caused dynamic recovery is predominantly related to grain size in tensile strain hardening, but the threshold stress values for different grain sizes are almost identical in compressive strain hardening. There are obvious transition points on the tensile strain hardening curves which indicate the occurrence of dynamic recrystallization (DRX). The tensile strain hardening rate of the coarse-grained alloy obviously decreases faster than that of fine-grained alloys before DRX and the tensile strain hardening curves of different grain sizes basically tend to parallel after DRX. The compressive strain hardening rate of the fine-grained alloy obviously increases faster than that of coarse-grained alloy for twin-induced strain hardening, but compressive strain hardening curves also tend to parallel after twinning is exhausted.

  14. Observer performance assessment of JPEG-compressed high-resolution chest images

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David

    1999-05-01

    The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.

  15. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-07-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  16. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    NASA Astrophysics Data System (ADS)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  17. A new application of Fe-28Mn-6Si-5Cr (mass%) shape memory alloy, for self-adjustable axial preloading of ball bearings

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Gurău, G.; Comăneci, R. I.; Sampath, V.; Gurău, C.; Bujoreanu, L. G.

    2018-07-01

    A new application of Fe-Mn-Si based shape memory alloys (SMAs) was developed under the form of truncated cone-shaped module, for self-adaptive axial preload control in angular contact bearings. The modules were processed by high-speed high-pressure torsion (HS-HPT), from circular crowns cut from axially drilled ingots of Fe-28Mn-6Si-9Cr (mass%) SMA. The specimens were mechanically tested in the hot rolled state, prior to HS-HPT processing, demonstrating free-recovery shape memory effect (SME) and high values for ultimate tensile stress and strain as well as low cycle fatigue life. The HS-HPT modules were subjected to static loading–unloading compression, without/with lubrication at specimen-tool interface, both individually and in different coupling modes. Dry compression cycles revealed reproducible stress plateaus both during loading and unloading stages, being associated with hardness gradient, along cone generator, caused by HS-HPT processing. Constrained recovery tests, performed using compressed modules, emphasized the continuous generation of stress during heating, by one way SME, at a rate of ∼9.3 kPa/%. Dynamic compression tests demonstrated the capability of modules to develop closed stress–strain loops after 50 000 cycles, without visible signs of fatigue. HS-HPT caused the fragmentation of crystalline grains, while compression cycles enabled the formation of ε hexagonal close-packed stress-induced martensite (ε), which is characterized by a high density of stacking faults. Using an experimental setup, specifically designed and manufactured for this purpose, both feasibility and functionality tests were performed using HS-HPT modules. The feasibility tests proved the existence of a general tendency of both axial force and friction torque to increase in time, favoured by the increase of initial preloading force and the augmentation of rotation speed. Functionality tests, performed on two pairs of HS-HPT modules fastened in base-to-base coupling mode, demonstrated the capacity of modules to accommodate high preloads while maintaining both axial force and friction torque at constant values in time. These preliminary results suggest that, for the time being, the modules can operate only as single use applications, more effective during the running-in period. This bevahior recommends HS-HPT modules as a new application of Fe-Mn-Si SMAs, with the potential to be used for the development of new temperature-responsive compression displacement systems.

  18. Polymer concrete overlay test program : final report.

    DOT National Transportation Integrated Search

    1981-12-01

    The results in this report were obtained during the test program which began in 1973. Physical properties of various polymer concretes are listed. They include compressive strength, splitting tensile strength, bond strength, the modulus of elasticity...

  19. Neoprene pads for capping concrete cylinders.

    DOT National Transportation Integrated Search

    1979-01-01

    The possibility of using neoprene pads as an alternate to sulfur mortar for capping concrete specimens subjected to compression tests was investigated. In preliminary tests to determine the feasibility of the investigation, two batches of concrete we...

  20. Thermomechanical Testing and Microstructural Development of Class L Steel Wheel Alloy

    DOT National Transportation Integrated Search

    1994-03-01

    Macrostructure, microstructure, and quantitative metallographic analysis is conducted on Association of American Railroads Class L wheel steel specimens tested in a Gleeble 1500 under combined mechanical compression and resistance heating to temperat...

Top