Sample records for test current understanding

  1. Effect of Current Electricity Simulation Supported Learning on the Conceptual Understanding of Elementary and Secondary Teachers

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy

    2011-01-01

    This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…

  2. Current and Emerging Technology Approaches in Genomics

    PubMed Central

    Conley, Yvette P.; Biesecker, Leslie G.; Gonsalves, Stephen; Merkle, Carrie J.; Kirk, Maggie; Aouizerat, Bradley E.

    2013-01-01

    Purpose To introduce current and emerging approaches that are being utilized in the field of genomics so the reader can conceptually evaluate the literature and appreciate how these approaches are advancing our understanding of health-related issues. Organizing Construct Each approach is described and includes information related to how it is advancing research, its potential clinical utility, exemplars of current uses, challenges related to technologies used for these approaches, and when appropriate information related to understanding the evidence base for clinical utilization of each approach is provided. Web-based resources are included for the reader who would like more in-depth information and to provide opportunity to stay up to date with these approaches and their utility. Conclusions The chosen approaches– genome sequencing, genome-wide association studies, epigenomics, and gene expression– are extremely valuable approaches for collecting research data to help us better understand the pathophysiology of a variety of health-related conditions, but they are also gaining in utility for clinical assessment and testing purposes. Clinical Relevance Our increased understanding of the molecular underpinnings of disease will assist with better development of screening tests, diagnostic tests, tests that allow us to prognosticate, tests that allow for individualized treatments, and tests to facilitate post-treatment surveillance. PMID:23294727

  3. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  4. Psychometric Characteristics of Single-Word Tests of Children's Speech Sound Production

    ERIC Educational Resources Information Center

    Flipsen, Peter, Jr.; Ogiela, Diane A.

    2015-01-01

    Purpose: Our understanding of test construction has improved since the now-classic review by McCauley and Swisher (1984) . The current review article examines the psychometric characteristics of current single-word tests of speech sound production in an attempt to determine whether our tests have improved since then. It also provides a resource…

  5. Conceptualizing Essay Tests' Reliability and Validity: From Research to Theory

    ERIC Educational Resources Information Center

    Badjadi, Nour El Imane

    2013-01-01

    The current paper on writing assessment surveys the literature on the reliability and validity of essay tests. The paper aims to examine the two concepts in relationship with essay testing as well as to provide a snapshot of the current understandings of the reliability and validity of essay tests as drawn in recent research studies. Bearing in…

  6. Chimpanzees Know What Others Know, but Not What They Believe

    ERIC Educational Resources Information Center

    Kaminski, Juliane; Call, Josep; Tomasello, Michael

    2008-01-01

    There is currently much controversy about which, if any, mental states chimpanzees and other nonhuman primates understand. In the current two studies we tested both chimpanzees' and human children's understanding of both knowledge-ignorance and false belief--in the same experimental paradigm involving competition with a conspecific. We found that…

  7. Taming theory with thought experiments: Understanding and scientific progress.

    PubMed

    Stuart, Michael T

    2016-08-01

    I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Unraveling the barriers to reconceptualization of the problem in chronic pain: the actual and perceived ability of patients and health professionals to understand the neurophysiology.

    PubMed

    Moseley, Lorimer

    2003-05-01

    To identify why reconceptualization of the problem is difficult in chronic pain, this study aimed to evaluate whether (1) health professionals and patients can understand currently accurate information about the neurophysiology of pain and (2) health professionals accurately estimate the ability of patients to understand the neurophysiology of pain. Knowledge tests were completed by 276 patients with chronic pain and 288 professionals either before (untrained) or after (trained) education about the neurophysiology of pain. Professionals estimated typical patient performance on the test. Untrained participants performed poorly (mean +/- standard deviation, 55% +/- 19% and 29% +/- 12% for professionals and patients, respectively), compared to their trained counterparts (78% +/- 21% and 61% +/- 19%, respectively). The estimated patient score (46% +/- 18%) was less than the actual patient score (P <.005). The results suggest that professionals and patients can understand the neurophysiology of pain but professionals underestimate patients' ability to understand. The implications are that (1) a poor knowledge of currently accurate information about pain and (2) the underestimation of patients' ability to understand currently accurate information about pain represent barriers to reconceptualization of the problem in chronic pain within the clinical and lay arenas.

  9. [The social marketing models and policy advices for HIV rapid testing initiated by non-govermental organization].

    PubMed

    Liu, H; Cai, L P; Xue, H; Zhao, Y; Wu, D; Zhang, D P; Yin, W Y; Sun, J P

    2016-10-06

    Currently, a growing number of community-based organizations are providing rapid HIV testing service in various forms, some people with specific needs also purchase HIV rapid test papers through online sales channels, those imply that the demand of HIV self-test is in increasing year by year.In this paper, aims to understand the current situation of HIV rapid test led by CBOs and the approach, strategies and results of social marketing by means of expert interviews and site visits. Hope to illustrate the current situation, and make recommendations for future work.

  10. Understanding Achievement Tests: A Guide for School Administrators.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M., Ed.; Conoley, Jane Close; Plake, Barbara S.

    Current information about tests and testing procedures is provided for school district staff, particularly in districts without specially trained testing directors. Practical information is given about selecting and administering tests and about reporting results effectively. This guide opens with a discussion of the basic principles of testing.…

  11. Understanding patient and provider perceptions and expectations of genomic medicine

    PubMed Central

    Hall, Michael J; Forman, Andrea; Montgomery, Susan; Rainey, Kim; Daly, Mary B

    2014-01-01

    Advances in genome sequencing technology have fostered a new era of clinical genomic medicine. Genetic counselors, who have begun to support patients undergoing multi-gene panel testing for hereditary cancer risk, will review brief clinical vignettes, and discuss early experiences with clinical genomic testing. Their experiences will frame a discussion about how current testing may challenge patient understanding and expectations toward the evaluation of cancer risk and downstream preventive behaviors. PMID:24992205

  12. Children's Perceptions of Tests: A Content Analysis

    ERIC Educational Resources Information Center

    Bulgan, Gokce

    2018-01-01

    Anxiety that students experience during test taking negatively influences their academic achievement. Understanding how students perceive tests and how they feel during test taking could help in taking effective preventive measures. Hence, the current study focused on assessing children's perceptions of tests using content analysis. The sample…

  13. Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement.

    PubMed

    Vlahovich, Nicole; Hughes, David C; Griffiths, Lyn R; Wang, Guan; Pitsiladis, Yannis P; Pigozzi, Fabio; Bachl, Nobert; Eynon, Nir

    2017-11-14

    There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.

  14. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    PubMed

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  15. Understanding patient and provider perceptions and expectations of genomic medicine.

    PubMed

    Hall, Michael J; Forman, Andrea D; Montgomery, Susan V; Rainey, Kim L; Daly, Mary B

    2015-01-01

    Advances in genome sequencing technology have fostered a new era of clinical genomic medicine. Genetic counselors, who have begun to support patients undergoing multi-gene panel testing for hereditary cancer risk, will review brief clinical vignettes, and discuss early experiences with clinical genomic testing. Their experiences will frame a discussion about how current testing may challenge patient understanding and expectations toward the evaluation of cancer risk and downstream preventive behaviors. © 2014 Wiley Periodicals, Inc.

  16. Assessing Students' Understanding of Macroevolution: Concerns regarding the validity of the MUM

    NASA Astrophysics Data System (ADS)

    Novick, Laura R.; Catley, Kefyn M.

    2012-11-01

    In a recent article, Nadelson and Southerland (2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. The Journal of Experimental Education, 78, 151-190) reported on their development of a multiple-choice concept inventory intended to assess college students' understanding of macroevolutionary concepts, the Measure of Understanding Macroevolution (MUM). Given that the only existing evolution inventories assess understanding of natural selection, a microevolutionary concept, a valid assessment of students' understanding of macroevolution would be a welcome and necessary addition to the field of science education. Although the conceptual framework underlying Nadelson and Southerland's test is promising, we believe the test has serious shortcomings with respect to validity evidence for the construct being tested. We argue and provide evidence that these problems are serious enough that the MUM should not be used in its current form to measure students' understanding of macroevolution.

  17. Laboratory considerations of United States Pharmacopeia Chapter <71> sterility tests and its application to pharmaceutical compounding.

    PubMed

    Hyde, Tiffany D

    2014-01-01

    The purpose of this article is to describe United States Pharmacopeia Chapter <71> Sterility Tests from the perspective of Current Good Manufacturing Practices in order to aid compounding pharmacists in understanding the details and complexities that are required. Compounding pharmacists face a unique challenge in the industry today, with their compounding practice and the U.S. Food and Drug Administration trying to impose Current Good Manufacturing Practices guidelines. Naturally, this becomes a challenge to contract testing laboratories as well, as they are caught between the testing for non-Current Good Manufacturing Practices compounding standards and Current Good Manufacturing Practices manufacturing. It is important that the compounding pharmacist and their partner testing laboratory work closely together to ensure appropriate requirements are being met.

  18. Exposure Science for Chemical Prioritization and Toxicity Testing

    EPA Science Inventory

    Currently, a significant research effort is underway to apply new technologies to screen and prioritize chemicals for toxicity testing as well as to improve understanding of toxicity pathways (Dix et al. 2007, Toxicol Sci; NRC, 2007, Toxicity Testing in the 21st Century; Collins ...

  19. The Effectiveness of Computer Supported versus Real Laboratory Inquiry Learning Environments on the Understanding of Direct Current Electricity among Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    Baser, Mustafa; Durmus, Soner

    2010-01-01

    The purpose of this study was to compare the changes in conceptual understanding of Direct Current Electricity (DCE) in virtual (VLE) and real laboratory environment (RLE) among pre-service elementary school teachers. A pre- and post-test experimental design was used with two different groups. One of the groups was randomly assigned to VLE (n =…

  20. The Vise/Vice of Standardized Testing: National Depreciation by Quantification.

    ERIC Educational Resources Information Center

    Farrell, Edmund J.

    Current uses of standardized English tests are adversely affecting students, misleading lay people, and having a pernicious effect on the English profession. These tests are severely limited, incapable of assessing speaking skill and effectiveness, reading interests, appreciation of literature, listening skill, understanding and appreciation of…

  1. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    PubMed

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Integrating surgery and genetic testing for the modern surgeon.

    PubMed

    Caso, Raul; Beamer, Matthew; Lofthus, Alexander D; Sosin, Michael

    2017-10-01

    The field of cancer genetics is rapidly evolving and several genetic mutations have been identified in hereditary cancer syndromes. These mutations can be diagnosed via routine genetic testing allowing prompt intervention. This is especially true for certain variants of colorectal, breast, and thyroid cancers where genetic testing may guide surgical therapy. Ultimately, surgical intervention may drastically diminish disease manifestation or progression in individuals deemed as high-risk based on their genetic makeup. Understanding the concepts of gene-based testing and integrating into current surgical practice is crucial. This review addresses common genetic syndromes, tests, and interventions salient to the current surgeon.

  3. Relations between mental verb and false belief understanding in Cantonese-speaking children.

    PubMed

    Cheung, Him; Chen, Hsuan-Chih; Yeung, William

    2009-10-01

    Previous research has shown that linguistic forms that codify mental contents bear a specific relation with children's false belief understanding. These forms include mental verbs and their following complements, yet the two have not been considered separately. The current study examined the roles of mental verb semantics and the complement syntax in children's false belief understanding. Independent tasks were used to measure verb meaning, complements, and false belief understanding such that the verbs in question were present only in the verb meaning test, and no linguistic devices biased toward false belief were used in the false belief test. We focused on (a) some mental verbs that obligatorily affirm or negate what follows and (b) sentential complements, the content of which is to be evaluated against the mind of another person, not reality. Results showed that only (a) predicted false belief understanding in a group of Cantonese-speaking 4-year-olds, controlling for nonverbal intelligence and general language ability. In particular, children's understanding of the strong nonfactive semantics of the Cantonese verbs /ji5-wai4/ ("falsely think") predicted false belief understanding most strongly. The current findings suggest that false belief understanding is specifically related to the comprehension of mental verbs that entail false thought in their semantics.

  4. Combining Learning and Assessment to Improve Science Education

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Chiu, Jennifer

    2011-01-01

    High-stakes tests take time away from valuable learning activities, narrow the focus of instruction, and imply that science involves memorizing details rather than understanding the natural world. Current tests lead precollege instructors to postpone science inquiry activities until after the last standardized test is completed--often during the…

  5. A history of the autonomic nervous system: part I: from Galen to Bichat.

    PubMed

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.

  6. Topical Trends in a Corpus of Persuasive Writing. Research Report. ETS RR-12-19

    ERIC Educational Resources Information Center

    Heilman, Michael; Madnani, Nitin

    2012-01-01

    Many writing assessments use generic prompts about social issues. However, we currently lack an understanding of how test takers respond to such prompts. In the absence of such an understanding, automated scoring systems may not be as reliable as they could be and may worsen over time. To move toward a deeper understanding of responses to generic…

  7. Children's Understanding of Ordinary and Extraordinary Minds

    ERIC Educational Resources Information Center

    Lane, Jonathan D.; Wellman, Henry M.; Evans, E. Margaret

    2010-01-01

    How and when do children develop an understanding of extraordinary mental capacities? The current study tested 56 preschoolers on false-belief and knowledge-ignorance tasks about the mental states of contrasting agents--some agents were ordinary humans, some had exceptional perceptual capacities, and others possessed extraordinary mental…

  8. Languages in Secondary Education: An Overview of National Tests in Europe: 2014/15. Eurydice Report

    ERIC Educational Resources Information Center

    Baïdak, Nathalie; De Coster, Isabelle; Petit, Marta Crespo

    2015-01-01

    The main objective of this report is to provide a clear understanding of the current national testing regimes for languages in European countries. National tests are defined as standardised tests/examinations set by central/top level public authorities and carried out under their responsibility. All languages are considered except the languages of…

  9. Adaptation of the European Commission-recommended user testing method to patient medication information leaflets in Japan.

    PubMed

    Yamamoto, Michiko; Doi, Hirohisa; Yamamoto, Ken; Watanabe, Kazuhiro; Sato, Tsugumichi; Suka, Machi; Nakayama, Takeo; Sugimori, Hiroki

    2017-01-01

    The safe use of drugs relies on providing accurate drug information to patients. In Japan, patient leaflets called Drug Guide for Patients are officially available; however, their utility has never been verified. This is the first attempt to improve Drug Guide for Patients via user testing in Japan. To test and improve communication of drug information to minimize risk for patients via user testing of the current and revised versions of Drug Guide for Patients, and to demonstrate that this method is effective for improving Drug Guide for Patients in Japan. We prepared current and revised versions of the Drug Guide for Patients and performed user testing via semi-structured interviews with consumers to compare these versions for two guides for Mercazole and Strattera. We evenly divided 54 participants into two groups with similar distributions of sex, age, and literacy level to test the differing versions of the Mercazole guide. Another group of 30 participants were divided evenly to test the versions of the Strattera guide. After completing user testing, the participants evaluated both guides in terms of amount of information, readability, usefulness of information, and layout and appearance. Participants were also asked for their opinions on the leaflets. Response rates were 100% for both Mercazole and Strattera. The revised versions of both Guides were superior or equal to the current versions in terms of accessibility and understandability. The revised version of the Mercazole guide showed better ratings for readability, usefulness of information, and layout ( p <0.01) than did the current version, while that for Strattera showed superior readability and layout ( p <0.01). User testing was effective for evaluating the utility of Drug Guide for Patients. Additionally, the revised version had superior accessibility and understandability.

  10. AGRICULTURAL CHEMICAL SAFETY ASSESSMENT: A MULTISECTOR APPROACH TO THE MODERNIZATION OF HUMAN SAFETY REQUIREMENTS.

    EPA Science Inventory

    Better understanding of toxicological mechanisms, enhanced testing capabilities, and demands for more sophisticated data for safety and health risk assessment have generated international interest in improving the current testing paradigm for agricultural chemicals. To address th...

  11. Biocontamination Control for Spacesuit Garments - A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard A.; Orndoff, Evelyne; Korona, F. Adam; Poritz, Darwin; Smith, Jelanie; Wong, Wing

    2011-01-01

    This paper outlines a preliminary study that was conducted to review, test, and improve on current space suit biocontamination control. Biocontamination from crew members can cause space suit damage and objectionable odors and lead to crew member health hazards. An understanding of the level of biocontamination is necessary to mitigate its effects. A series of tests were conducted with the intent of evaluating current suit materials, ground and on-orbit disinfectants, and potential commercial off-the-shelf antimicrobial materials. Included in this paper is a discussion of the test methodology, results, and analysis method.

  12. FY11 Facility Assessment Study for Aeronautics Test Program

    NASA Technical Reports Server (NTRS)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  13. The Misuse of Educational Achievement Tests for Grades K-12: A Perspective.

    ERIC Educational Resources Information Center

    Noggle, Nelson L.

    At the present time the American educational system seems caught in a squeeze play between the historical need for tests that are simple to administer and understand versus the current demand for tests that are respected as thorough measures of the kind of learning needed in a competitive and changing world. Many of the misuses of test data arise…

  14. Operational Analysis in the Launch Environment

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David; hide

    2012-01-01

    The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.

  15. The cost of genetic testing for ocular disease: who pays?

    PubMed

    Capasso, Jenina E

    2014-09-01

    To facilitate ophthalmologists' understanding on the cost of genetic testing in ocular disease, the complexities of insurance coverage and its impact on the availability of testing. Many insurance carriers address coverage for genetic testing in written clinical policies. They provide criteria for medically necessary testing. These policies mostly cover testing for individuals who are symptomatic and in whom testing will have a direct impact on medical treatment. In cases in which no treatments are currently available, other than research trials, patients may have difficulty in getting insurance coverage for genetic testing. Genetic testing for inherited eye diseases can be costly but has many benefits to patient care, including confirmation of a diagnosis, insight into prognostic information, and identification of associated health risks, inheritance patterns, and possible current and future treatments. As gene therapy advances progress, the availability for treatment in ocular diseases, coverage for genetic testing by third-party payers could increase on the basis of current clinical policies.

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XV, UNDERSTANDING DC GENERATOR PRINCIPLES (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF MAINTENANCE PROCEDURES FOR DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE SPECIAL GENERATOR CIRCUITS, GENERATOR TESTING, AND GENERATOR POLARITY. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "DC GENERATORS II--GENERATOR…

  17. Student Interactions in Online Discussion Forum: Empirical Research from "Media Richness Theory" Perspective

    ERIC Educational Resources Information Center

    Balaji, M. S.; Chakrabarti, Diganta

    2010-01-01

    The present study contributes to the understanding of the effectiveness of online discussion forum in student learning. A conceptual model based on "theory of online learning" and "media richness theory" was proposed and empirically tested. We extend the current understanding of media richness theory to suggest that use of…

  18. Mental Models: Understanding the Impact of Fantasy Violence on Children's Moral Reasoning.

    ERIC Educational Resources Information Center

    Krcmar, Marina; Curtis, Stephen

    2003-01-01

    Tests the efficacy of mental models in understanding the effect of exposure to fantasy violence on children's responses to and reasoning about moral dilemmas involving aggression. Offers a possible extension to mental models that is consistent with current theory in cognitive science. Suggests that the activation of mental models regarding…

  19. The Media and Educational Testing: In Pursuit of the Truth or in Pursuit of a Good Story?

    ERIC Educational Resources Information Center

    Camara, Wayne J.; Shaw, Emily J.

    2012-01-01

    The measurement community needs to better understand how to interact with the media to effectively disseminate important findings from educational testing efforts. To this end, the current paper will review media coverage of educational testing and related issues and elaborate on areas of concern and opportunities for improved communication…

  20. Immunotoxicity testing: Implementation of mechanistic understanding, key pathways of toxicological concern and components of these pathways.

    EPA Science Inventory

    At present, several animal-based assays are used to assess immunotoxic effects such as immunosuppression and sensitization. Growing societal and ethical concerns, European legislation and current research demands by industry are driving animal-based toxicity testing towards new a...

  1. Improving GRADE evidence tables part 1: a randomized trial shows improved understanding of content in summary of findings tables with a new format.

    PubMed

    Carrasco-Labra, Alonso; Brignardello-Petersen, Romina; Santesso, Nancy; Neumann, Ignacio; Mustafa, Reem A; Mbuagbaw, Lawrence; Etxeandia Ikobaltzeta, Itziar; De Stio, Catherine; McCullagh, Lauren J; Alonso-Coello, Pablo; Meerpohl, Joerg J; Vandvik, Per Olav; Brozek, Jan L; Akl, Elie A; Bossuyt, Patrick; Churchill, Rachel; Glenton, Claire; Rosenbaum, Sarah; Tugwell, Peter; Welch, Vivian; Garner, Paul; Guyatt, Gordon; Schünemann, Holger J

    2016-06-01

    The current format of summary of findings (SoFs) tables for presenting effect estimates and associated quality of evidence improve understanding and assist users finding key information in systematic reviews. Users of SoF tables have demanded alternative formats to express findings from systematic reviews. We conducted a randomized controlled trial among systematic review users to compare the relative merits of a new format with the current formats of SoF tables regarding understanding, accessibility of information, satisfaction, and preference. Our primary goal was to show that the new format is not inferior to the current format. Of 390 potentially eligible subjects, 290 were randomized. Of seven items testing understanding, three showed similar results, two showed small differences favoring the new format, and two (understanding risk difference and quality of the evidence associated with a treatment effect) showed large differences favoring the new format [63% (95% confidence interval {CI}: 55, 71) and 62% (95% CI: 52, 71) more correct answers, respectively]. Respondents rated information in the alternative format as more accessible overall and preferred the new format over the current format. While providing at least similar levels of understanding for some items and increased understanding for others, users prefer the new format of SoF tables. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. History and Evolution of the Johnson Criteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjaardema, Tracy A.; Smith, Collin S.; Birch, Gabriel Carisle

    The Johnson Criteria metric calculates probability of detection of an object imaged by an optical system, and was created in 1958 by John Johnson. As understanding of target detection has improved, detection models have evolved to better model additional factors such as weather, scene content, and object placement. The initial Johnson Criteria, while sufficient for technology and understanding at the time, does not accurately reflect current research into target acquisition and technology. Even though current research shows a dependence on human factors, there appears to be a lack of testing and modeling of human variability.

  3. Students' understanding of direct current resistive electrical circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Paula Vetter; Beichner, Robert J.

    2004-01-01

    Both high school and university students' reasoning regarding direct current resistive electric circuits often differ from the accepted explanations. At present, there are no standard diagnostic tests on electric circuits. Two versions of a diagnostic instrument were developed, each consisting of 29 questions. The information provided by this test can provide instructors with a way of evaluating the progress and conceptual difficulties of their students. The analysis indicates that students, especially females, tend to hold multiple misconceptions, even after instruction. During interviews, the idea that the battery is a constant source of current was used most often in answering the questions. Students tended to focus on the current in solving problems and to confuse terms, often assigning the properties of current to voltage and/or resistance.

  4. Executive Function and ADHD: A Comparison of Children's Performance during Neuropsychological Testing and Real-World Activities

    ERIC Educational Resources Information Center

    Lawrence, Vivienne; Houghton, Stephen; Douglas, Graham; Durkin, Kevin; Whiting, Ken; Tannock, Rosemary

    2004-01-01

    Objective: Current understanding of executive function deficits in Attention-Deficit/Hyperactivity Disorder (ADHD) is derived almost exclusively from neuropsychological testing conducted in laboratory settings. This study compared children's performance on both neuropsychological and real-life measures of executive function and processing speed.…

  5. Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian

    2010-01-01

    This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.

  6. Principals' Portfolios: A Reflective Process for Displaying Professional Competencies, Personal Qualities and Job Accomplishments

    ERIC Educational Resources Information Center

    Green, James E.

    2004-01-01

    The current emphasis on high-stakes testing is leaving an unmistakable imprint on all aspects of education. Our curriculum, our instructional methods and materials and even our understanding of the purpose of public education are being reshaped by the standardized tests. Another area where the impact of high-stakes testing can be felt is in the…

  7. Understanding the Role of "SES," Ethnicity, and Discipline Infractions in Students' Standardized Test Scores

    ERIC Educational Resources Information Center

    Koca, Fatih

    2017-01-01

    The goal of the current study is to examine the impact of students' social economic status, ethnicity, and discipline infractions on their standardized test scores in Indiana, the USA. Data from this study extracted from Indiana Department of Education. ISTEP is a criterion-referenced standardized test. It consists of items that assess a student's…

  8. The Edinburgh Social Cognition Test (ESCoT): Examining the effects of age on a new measure of theory of mind and social norm understanding

    PubMed Central

    Abrahams, Sharon; Auyeung, Bonnie; MacPherson, Sarah E.

    2018-01-01

    Current measures of social cognition have shown inconsistent findings regarding the effects of healthy aging. Moreover, no tests are currently available that allow clinicians and researchers to examine cognitive and affective theory of mind (ToM) and understanding of social norms within the same test. To address these limitations, we present the Edinburgh Social Cognition Test (ESCoT) which assesses cognitive and affective ToM and inter- and intrapersonal understanding of social norms. We examined the effects of age, measures of intelligence and the Broader Autism Phenotype (BAP) on the ESCoT and established tests of social cognition. Additionally, we investigated the convergent validity of the ESCoT based on traditional social cognition measures. The ESCoT was administered alongside Reading the Mind in Films (RMF), Reading the Mind in Eyes (RME), Judgement of Preference and Social Norm Questionnaire to 91 participants (30 aged 18–35 years, 30 aged 45–60 years and 31 aged 65–85 years). Poorer performance on the cognitive and affective ToM ESCoT subtests were predicted by increasing age. The affective ToM ESCoT subtest and RMF were predicted by gender, where being female predicted better performance. Unlike the ESCoT, better performance on the RMF was predicted by higher verbal comprehension and perceptual reasoning abilities, while better performance on the RME was predicted by higher verbal comprehension scores. Lower scores on inter-and intrapersonal understanding of social norms were both predicted by the presence of more autism-like traits while poorer interpersonal understanding of social norms performance was predicted by increasing age. These findings show that the ESCoT is a useful measure of social cognition and, unlike established tests of social cognition, performance is not predicted by measures of verbal comprehension and perceptual reasoning. This is particularly valuable to obtain an accurate assessment of the influence of age on our social cognitive abilities. PMID:29664917

  9. The Edinburgh Social Cognition Test (ESCoT): Examining the effects of age on a new measure of theory of mind and social norm understanding.

    PubMed

    Baksh, R Asaad; Abrahams, Sharon; Auyeung, Bonnie; MacPherson, Sarah E

    2018-01-01

    Current measures of social cognition have shown inconsistent findings regarding the effects of healthy aging. Moreover, no tests are currently available that allow clinicians and researchers to examine cognitive and affective theory of mind (ToM) and understanding of social norms within the same test. To address these limitations, we present the Edinburgh Social Cognition Test (ESCoT) which assesses cognitive and affective ToM and inter- and intrapersonal understanding of social norms. We examined the effects of age, measures of intelligence and the Broader Autism Phenotype (BAP) on the ESCoT and established tests of social cognition. Additionally, we investigated the convergent validity of the ESCoT based on traditional social cognition measures. The ESCoT was administered alongside Reading the Mind in Films (RMF), Reading the Mind in Eyes (RME), Judgement of Preference and Social Norm Questionnaire to 91 participants (30 aged 18-35 years, 30 aged 45-60 years and 31 aged 65-85 years). Poorer performance on the cognitive and affective ToM ESCoT subtests were predicted by increasing age. The affective ToM ESCoT subtest and RMF were predicted by gender, where being female predicted better performance. Unlike the ESCoT, better performance on the RMF was predicted by higher verbal comprehension and perceptual reasoning abilities, while better performance on the RME was predicted by higher verbal comprehension scores. Lower scores on inter-and intrapersonal understanding of social norms were both predicted by the presence of more autism-like traits while poorer interpersonal understanding of social norms performance was predicted by increasing age. These findings show that the ESCoT is a useful measure of social cognition and, unlike established tests of social cognition, performance is not predicted by measures of verbal comprehension and perceptual reasoning. This is particularly valuable to obtain an accurate assessment of the influence of age on our social cognitive abilities.

  10. Pharmacogenomic Testing for Neuropsychiatric Drugs: Current Status of Drug Labeling, Guidelines for Using Genetic Information, and Test Options

    PubMed Central

    Drozda, Katarzyna; Müller, Daniel J.; Bishop, Jeffrey R.

    2014-01-01

    Advancements in pharmacogenomics have introduced an increasing number of opportunities to bring personalized medicine into clinical practice. Understanding how and when to use this technology to help guide pharmacotherapy used to treat neuropsychiatric conditions remains a challenge for many clinicians. Currently, guidelines exist to assist clinicians in the use of genetic information for drug selection and/or dosing for the tricyclic antidepressants, carbamazepine, and phenytoin. Additional language in the product labeling suggests that genetic information may also be useful for assessing the starting and target doses, as well as drug interaction potential, for a number of other medications used to treat psychiatric and neurological conditions. In this review, we outline the current status of pharmacogenomic testing for neuropsychiatric drugs as it pertains to information contained in drug labeling, consensus guidelines, and test panels, as well as considerations related to obtaining tests for patients. PMID:24523097

  11. Sneaking a peek: pigeons use peripheral vision (not mirrors) to find hidden food.

    PubMed

    Ünver, Emre; Garland, Alexis; Tabrik, Sepideh; Güntürkün, Onur

    2017-07-01

    A small number of species are capable of recognizing themselves in the mirror when tested with the mark-and-mirror test. This ability is often seen as evidence of self-recognition and possibly even self-awareness. Strangely, a number of species, for example monkeys, pigs and dogs, are unable to pass the mark test but can locate rewarding objects by using the reflective properties of a mirror. Thus, these species seem to understand how a visual reflection functions but cannot apply it to their own image. We tested this discrepancy in pigeons-a species that does not spontaneously pass the mark test. Indeed, we discovered that pigeons can successfully find a hidden food reward using only the reflection, suggesting that pigeons can also use and potentially understand the reflective properties of mirrors, even in the absence of self-recognition. However, tested under monocular conditions, the pigeons approached and attempted to walk through the mirror rather than approach the physical food, displaying similar behavior to patients with mirror agnosia. These findings clearly show that pigeons do not use the reflection of mirrors to locate reward, but actually see the food peripherally with their near-panoramic vision. A re-evaluation of our current understanding of mirror-mediated behavior might be necessary-especially taking more fully into account species differences in visual field. This study suggests that use of reflections in a mirrored surface as a tool may be less widespread than currently thought.

  12. Stakeholder Assessment of the Evidence for Cancer Genomic Tests: Insights from Three Case Studies

    PubMed Central

    Deverka, Patricia A.; Schully, Sheri D.; Ishibe, Naoko; Carlson, Josh J.; Freedman, Andrew; Goddard, Katrina A.B.; Khoury, Muin J.; Ramsey, Scott D.

    2015-01-01

    Insufficient evidence on the net benefits and harms of genomic tests in real-world settings is a translational barrier for genomic medicine. Purpose Understanding stakeholders’ assessment of the current evidence base for clinical practice and coverage decisions should be a critical step to influence research, policy, and practice. Methods Twenty-two stakeholders participated in a workshop exploring the evidence of genomic tests for clinical and coverage decision-making. Stakeholders completed a survey prior to and during the meeting. They also discussed if they would recommend for or against current clinical use of each test. Results At baseline, the level of confidence on the clinical validity and clinical utility of each test varied, although the group expressed greater confidence for EGFR mutation and Lynch Syndrome (LS) testing than for Oncotype DX. Following the discussion, survey results reflected even less confidence for Oncotype DX and EGFR testing, but not LS. The majority of stakeholders would consider clinical use for all three tests, but under the conditions of additional research or a shared clinical decision-making approach. Conclusion Stakeholder engagement in unbiased settings is necessary to understand various perspectives about evidentiary thresholds in genomic medicine. Participants recommended the use of various methods for evidence generation and synthesis. PMID:22481130

  13. The development of test beds to support the definition and evolution of the Space Station Freedom power system

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.

    1991-01-01

    Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop test beds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC Test Bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in operation and evolution of the SSF are addressed.

  14. Influence of thermal aging on AC leakage current in XLPE insulation

    NASA Astrophysics Data System (ADS)

    Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun

    2018-02-01

    Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.

  15. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  16. Construction and Validation of an Instrument to Measure Environmental Orientations in a Diverse Group of Children

    ERIC Educational Resources Information Center

    Larson, Lincoln R.; Green, Gary T.; Castleberry, Steven B.

    2011-01-01

    An understanding of children's environmental orientations is of critical importance as opportunities for authentic contact with nature diminish. Current instruments for measuring children's environmental attitudes are complex, and few have been tested across diverse audiences. This study employed a mixed-methods approach that included pilot tests,…

  17. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XVII, LEARNING ABOUT AC GENERATOR (ALTERNATOR) PRINCIPLES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND THE SERVICING AND TESTING PROCEDURES FOR ALTERNATING CURRENT (AC) GENERATORS AND REGULATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEW OF ALTERNATOR PRINCIPLES, ALTERNATOR SERVICING AND TESTING, ALTERNATOR REGULATOR OPERATING…

  18. The development of test beds to support the definition and evolution of the Space Station Freedom power system

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.

    1991-01-01

    Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.

  19. An investigative model evaluating how consumers process pictorial information on nonprescription medication labels.

    PubMed

    Sansgiry, S S; Cady, P S

    1997-01-01

    Currently, marketed over-the-counter (OTC) medication labels were simulated and tested in a controlled environment to understand consumer evaluation of OTC label information. Two factors, consumers' age (younger and older adults) and label designs (picture-only, verbal-only, congruent picture-verbal, and noncongruent picture-verbal) were controlled and tested to evaluate consumer information processing. The effects exerted by the independent variables, namely, comprehension of label information (understanding) and product evaluations (satisfaction, certainty, and perceived confusion) were evaluated on the dependent variable purchase intention. Intention measured as purchase recommendation was significantly related to product evaluations and affected by the factor label design. Participants' level of perceived confusion was more important than actual understanding of information on OTC medication labels. A Label Evaluation Process Model was developed which could be used for future testing of OTC medication labels.

  20. Understanding Magnetic Anomalies and Their Significance.

    ERIC Educational Resources Information Center

    Shea, James H.

    1988-01-01

    Describes a laboratory exercise testing the Vine-Matthews-Morley hypothesis of plate tectonics. Includes 14 questions with explanations using graphs and charts. Provides a historical account of the current plate tectonic and magnetic anomaly theory. (MVL)

  1. How and when do students use flashcards?

    PubMed

    Wissman, Kathryn T; Rawson, Katherine A; Pyc, Mary A

    2012-01-01

    Previous survey research has documented students' use of self-regulated study strategies, with a particular interest in self-testing. These surveys indicate that students frequently use flashcards to self-test and that self-testing is primarily used as a way to monitor learning. Whereas previous surveys provide information about whether and why students self-test, they provide minimal information about how and when students choose to self-test. Accordingly, the primary purpose of the current survey was to explore how and when students engage in self-testing. We surveyed 374 undergraduates about the amount of practice and the timing of practice, two factors that strongly affect the efficacy of self-testing. Results indicate that students understand the benefits of practising to higher criterion levels (amount of practice) but do not typically implement or understand the benefits of practising with longer lags (timing of practice). We discuss practical implications for supporting more successful student learning.

  2. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  3. Variation in Women's Understanding of Prenatal Testing.

    PubMed

    Bryant, Allison S; Norton, Mary E; Nakagawa, Sanae; Bishop, Judith T; Pena, Sherri; Gregorich, Steven E; Kuppermann, Miriam

    2015-06-01

    To investigate women's understanding of prenatal testing options and of their own experience with screening, diagnostic genetic testing, or both. This was a secondary analysis of data from a randomized controlled trial of enhanced information and values clarification regarding prenatal genetic testing in the absence of financial barriers to testing. Women in the third trimester of pregnancy were asked whether they had discussed prenatal genetic testing with their health care providers, whether they understood this testing was optional, and whether they had undergone testing during their pregnancy. Multivariable logistic regression models were fit to determine independent predictors of these outcomes. Data were available from 710 study participants. Discussions about screening tests were reported by 654 participants (92%); only 412 (58%) reported discussing diagnostic testing. That screening and diagnostic testing were optional was evident to approximately two thirds of women (n=470 and 455, respectively). Recall of actual tests undergone was correct for 626 (88%) for screening and for 700 (99%) for diagnostic testing. Racial, ethnic and socioeconomic variation existed in the understanding of whether screening and diagnostic tests were optional and in the correct recall of whether screening had been undertaken in the current pregnancy. In the usual care group, women receiving care in low-income settings were less likely to recall being offered diagnostic testing (adjusted odds ratio 0.23 [0.14-0.39]). Disparities exist in women's recall of prenatal genetic testing discussions and their understanding of their own experience. Interventions that explain testing options to women and help clarify their preferences may help to eliminate these differences.

  4. Effect of fatigue loading on critical current in stainless steel-laminated DI-BSCCO superconducting composite tape

    NASA Astrophysics Data System (ADS)

    Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.

    2010-11-01

    Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.

  5. Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.

  6. Coordinated scenarios for a transdisciplinary assessment of the scientific understanding of Arctic environmental change

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Holland, M. M.

    2016-12-01

    The Arctic is undergoing an exceptionally rapid transformation. Trying to predict or project the consequences of this change is pushing nearly every discipline in the physical, biogeochemical and social sciences towards the limits of their current understanding. Adequate data is missing to test and validate models for capturing a state of the Arctic system that we have not observed. But even more challenging is the systems-level evaluation, where impacts can quickly lead to unexpected outcomes with cascading repercussions throughout the different components and subcomponents of the environment. One approach to test our understanding, and to expose gaps in current observation strategies, modeling approaches as well as planning tools (e.g., forecast workflows, or decision frameworks) is to carefully design a small number of coordinated scenarios of plausible future states of the system, and then to study their diverse, potential impacts. A coordination of the scenarios is essential so that all disciplinary perspectives can be arranged around a common state, assumptions can be aligned, and a transdisciplinary conversation can be advanced from a common platform to form a comprehensive assessment of our knowledge. This presentation is a call to the community to join and assist the SEARCH program in designing effective scenarios that can be used for cross-cutting investigation of current limitations in our scientific understanding of how the Arctic environment might change, and what consequences these changes might bring to the physical, biological and social environments.

  7. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USDA-ARS?s Scientific Manuscript database

    Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...

  8. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt; Hollowell, Benjamin Charles; Martinez, Todd P.

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  9. Exploring the Interweaving of Contrary Currents: Transnational Policy Enactment and Path-Dependent Policy Implementation in Australia and Japan

    ERIC Educational Resources Information Center

    Takayama, Keita

    2012-01-01

    This article explores the neo-institutional theory of global policy convergence, or "isomorphism", by comparatively examining one of its most recent manifestations--the global diffusion of national standardised testing--in Australia and Japan. By understanding the particular configurations of national testing as being conditioned by both…

  10. A Day at the Museum: The Impact of Field Trips on Middle School Science Achievement

    ERIC Educational Resources Information Center

    Whitesell, Emilyn Ruble

    2016-01-01

    Field trips are an important feature of the United States' education system, although in the current context of high-stakes tests and school accountability, many schools are shifting resources away from enrichment. It is critical to understand how field trips and other informal learning experiences contribute to student test scores, but little…

  11. A Democratic Structure for School Discipline: Reflections from Two New York City High Schools

    ERIC Educational Resources Information Center

    Hawkes, T. Elijah

    2011-01-01

    Given the way that student, teacher, principal, and school testing and accountability measures are currently leaning, it is understandable why a child's moral development sometimes gets less attention than her aptitude in algebra. Yet even with nearly all major accountability incentives heaped upon the tests in math and English, there are still…

  12. Developing Understanding of Twentieth Century Composition in Junior High School General Music. Final Report.

    ERIC Educational Resources Information Center

    Adler, Marvin Stanley

    To develop an understanding of major 20th century musical styles and compositional techniques in junior high school general music classes, and to utilize rather than ignore student interest in current music, a sequence for units-of-study was developed and tested over a 2-year period in urban junior high schools. The initial units dealt with what…

  13. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding itself. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. An apparent deficiency in the current understanding is a lack of knowledge about flow directions and rates away from major areas of testing. Efforts are necessary to delineate areas of downgradient flow and to identify factors that constrain and control flow within these areas. These efforts also should identify the areas most critical to gaining detailed understanding and to establishing long-term monitoring sites necessary for effective remediation.

  14. The insanity defense: Related issues.

    PubMed

    Asokan, T V

    2016-12-01

    For the past 150 years, there is no change in the understanding and knowledge other than autonomy and capacity to choose the right and wrong for criminal liability. The alternative concept that human behavior is the result of an interaction between biological and environmental factors other than free choice failed to impress the criminal justice system because of a direct threat to a society's deep seated need to blame someone than themselves for criminal harms that occur. The insanity defense has a long history, and is evolved after many tests that have been tried and tested. McNaughton's rules stressed on "understandability of right and wrong" and "intellectual" rather than a moral or affective definition dominated in its formulation. Lack of control and irresistible drives or impulses were neglected Going by the current understanding of neurological evidences of compulsion and lack of impulse control, rationality tests without the inclusion of lack of control, seem to be outdated. Separate "Control determination" than the "Rationality determination" by the jurors may improve the accuracy of Juror's categorizations. There is a suggestion that Relevance ratio is ideal for 'Evidentiary relevance" and there should be a quality control on expert testimonies. With progress in neuroscience, the law may need to abandon or alter some of its current assumptions about the nature of voluntary conduct, which underlies various defenses.

  15. Balancing Selection and Its Effects on Sequences in Nearby Genome Regions

    PubMed Central

    Charlesworth, Deborah

    2006-01-01

    Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained. PMID:16683038

  16. Developing Organs On-a-Chip: Chemical Safety Research Collaborators Provide Research Review

    EPA Pesticide Factsheets

    Risk assessors must understand how chemicals impact human systems, including complex tissues and organs. Unfortunately, there are huge data gaps in this area, and current testing methods are costly and time-consuming.

  17. Psychometric characteristics of single-word tests of children's speech sound production.

    PubMed

    Flipsen, Peter; Ogiela, Diane A

    2015-04-01

    Our understanding of test construction has improved since the now-classic review by McCauley and Swisher (1984). The current review article examines the psychometric characteristics of current single-word tests of speech sound production in an attempt to determine whether our tests have improved since then. It also provides a resource that clinicians may use to help them make test selection decisions for their particular client populations. Ten tests published since 1990 were reviewed to determine whether they met the 10 criteria set out by McCauley and Swisher (1984), as well as 7 additional criteria. All of the tests reviewed met at least 3 of McCauley and Swisher's (1984) original criteria, and 9 of 10 tests met at least 5 of them. Most of the tests met some of the additional criteria as well. The state of the art for single-word tests of speech sound production in children appears to have improved in the last 30 years. There remains, however, room for improvement.

  18. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  19. Understanding Charge Collection Mechanisms in InGaAs FinFETs Using High-Speed Pulsed-Laser Transient Testing With Tunable Wavelength

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús

    2017-08-01

    A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.

  20. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  1. Technical Report - FINAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current buildingmore » standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities« less

  2. The Generating Mechanism of Non-Sustained Disruptive Discharges in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Hara, Daisuke; Taki, Masayuki; Tanaka, Hitoshi; Okawa, Mikio; Yanabu, Satoru

    To develop vacuum circuit breaker (VCB) for higher voltage application, it may be important to understand generating mechanism and its influence of non-sustained disruptive discharges (NSDD) to the systems. So, we carried out the tests using equivalent testing circuit and observed the contacts after testing, For the test, by using commercial vacuum circuit interrupters, AC voltages of 50Hz was applied between contacts for 4 seconds after current interruption, and measured generating frequencies of NSDD vs. the voltages and vs. currents. Typical contact material used in the commercial switching equipment, such as AgWC, CuW, CuCr were tested and compared. Then CuCr's of different composition and manufacturing process are investigated. And CuCr-50 (manufactured by melting process) showed the best performance in all tests. We point out that surface condition may affect the generation of NSDD and also conditioning effect is very important.

  3. The Effects of Virtual Versus Physical Lab Manipulatives on Inquiry Skill Acquisition and Conceptual Understanding of Density

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.

  4. Referral and Diagnosis of Developmental Auditory Processing Disorder in a Large, United States Hospital-Based Audiology Service.

    PubMed

    Moore, David R; Sieswerda, Stephanie L; Grainger, Maureen M; Bowling, Alexandra; Smith, Nicholette; Perdew, Audrey; Eichert, Susan; Alston, Sandra; Hilbert, Lisa W; Summers, Lynn; Lin, Li; Hunter, Lisa L

    2018-05-01

    Children referred to audiology services with otherwise unexplained academic, listening, attention, language, or other difficulties are often found to be audiometrically normal. Some of these children receive further evaluation for auditory processing disorder (APD), a controversial construct that assumes neural processing problems within the central auditory nervous system. This study focuses on the evaluation of APD and how it relates to diagnosis in one large pediatric audiology facility. To analyze electronic records of children receiving a central auditory processing evaluation (CAPE) at Cincinnati Children's Hospital, with a broad goal of understanding current practice in APD diagnosis and the test information which impacts that practice. A descriptive, cross-sectional analysis of APD test outcomes in relation to final audiologist diagnosis for 1,113 children aged 5-19 yr receiving a CAPE between 2009 and 2014. Children had a generally high level of performance on the tests used, resulting in marked ceiling effects on about half the tests. Audiologists developed the diagnostic category "Weakness" because of the large number of referred children who clearly had problems, but who did not fulfill the AAA/ASHA criteria for diagnosis of a "Disorder." A "right-ear advantage" was found in all tests for which each ear was tested, irrespective of whether the tests were delivered monaurally or dichotically. However, neither the side nor size of the ear advantage predicted the ultimate diagnosis well. Cooccurrence of CAPE with other learning problems was nearly universal, but neither the number nor the pattern of cooccurring problems was a predictor of APD diagnosis. The diagnostic patterns of individual audiologists were quite consistent. The number of annual assessments decreased dramatically during the study period. A simple diagnosis of APD based on current guidelines is neither realistic, given the current tests used, nor appropriate, as judged by the audiologists providing the service. Methods used to test for APD must recognize that any form of hearing assessment probes both sensory and cognitive processing. Testing must embrace modern methods, including digital test delivery, adaptive testing, referral to normative data, appropriate testing for young children, validated screening questionnaires, and relevant objective (physiological) methods, as appropriate. Audiologists need to collaborate with other specialists to understand more fully the behaviors displayed by children presenting with listening difficulties. To achieve progress, it is essential for clinicians and researchers to work together. As new understanding and methods become available, it will be necessary to sort out together what works and what doesn't work in the clinic, both from a theoretical and a practical perspective. American Academy of Audiology.

  5. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards

    NASA Astrophysics Data System (ADS)

    Snaith, Henry J.; Hacke, Peter

    2018-06-01

    Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.

  6. First-year university Physics students’ knowledge about direct current circuits: probing improvement in understanding as a function of teaching and learning interventions

    NASA Astrophysics Data System (ADS)

    Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle

    2017-07-01

    Probing university students’ understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in the life sciences stream. The study involved 366 students enrolled in the physics (bio) 154 module at Stellenbosch University in 2015. Students’ understanding of DC resistive circuits was probed by means of a standardized test instrument. The instrument comprises 29 multiple choice questions that students have to answer in ~40 min. Students were required to first complete the standardized test at the start of semester (July 2015). For ease of reference we call this test the pre-test. Students answered the pre-test having no university-level formal exposure to DC circuits in theory or practice. The pre-test therefore served to probe students’ school level knowledge of DC circuits. As the semester progressed students were exposed to a practical (E1), lectures, a prescribed textbook, a tutorial and online videos focusing on DC circuits. The E1 practical required students to solve DC circuit problems by means of physically constructing circuits, algebraically using Kirchhoff's Rules and Ohm’s Law, and by means of simulating circuits using the app iCircuit running on iPads (iOS platform). Each E1 practical involved ~50 students in a three hour session. The practical was repeated three afternoons per week over an eight week period. Twenty three iPads were distributed among students on a practical afternoon in order for them to do the circuit simulations in groups (of 4-5 students). At the end of the practical students were again required to do the standardized test on circuits and complete a survey on their experience of the use of the iPad and iCircuit app. For ease of reference we refer to this second test as the post-test. The students’ average score on the post-test was found to be ~25% higher than their pre-test score. The results of the iPad use survey show that the majority of students felt that the iCircuit app enhanced their learning of DC circuits.

  7. Assessing the readiness of precision medicine interoperabilty: An exploratory study of the National Institutes of Health genetic testing registry.

    PubMed

    Ronquillo, Jay G; Weng, Chunhua; Lester, William T

    2017-11-17

      Precision medicine involves three major innovations currently taking place in healthcare:  electronic health records, genomics, and big data.  A major challenge for healthcare providers, however, is understanding the readiness for practical application of initiatives like precision medicine.   To better understand the current state and challenges of precision medicine interoperability using a national genetic testing registry as a starting point, placed in the context of established interoperability formats.   We performed an exploratory analysis of the National Institutes of Health Genetic Testing Registry.  Relevant standards included Health Level Seven International Version 3 Implementation Guide for Family History, the Human Genome Organization Gene Nomenclature Committee (HGNC) database, and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT).  We analyzed the distribution of genetic testing laboratories, genetic test characteristics, and standardized genome/clinical code mappings, stratified by laboratory setting. There were a total of 25472 genetic tests from 240 laboratories testing for approximately 3632 distinct genes.  Most tests focused on diagnosis, mutation confirmation, and/or risk assessment of germline mutations that could be passed to offspring.  Genes were successfully mapped to all HGNC identifiers, but less than half of tests mapped to SNOMED CT codes, highlighting significant gaps when linking genetic tests to standardized clinical codes that explain the medical motivations behind test ordering.  Conclusion:  While precision medicine could potentially transform healthcare, successful practical and clinical application will first require the comprehensive and responsible adoption of interoperable standards, terminologies, and formats across all aspects of the precision medicine pipeline.

  8. Current understanding of genetics and genetic testing and information needs and preferences of adults with inherited retinal disease.

    PubMed

    McKibbin, Martin; Ahmed, Mushtaq; Allsop, Matthew J; Downey, Louise; Gale, Richard; Grant, Hilary Louise; Potrata, Barbara; Willis, Thomas A; Hewison, Jenny

    2014-09-01

    Advances in sequencing technology and the movement of genetic testing into all areas of medicine will increase opportunities for molecular confirmation of a clinical diagnosis. For health-care professionals without formal genetics training, there is a need to know what patients understand about genetics and genetic testing and their information needs and preferences for the disclosure of genetic testing results. These topics were explored during face-to-face interviews with 50 adults with inherited retinal disease, selected in order to provide a diversity of opinions. Participants had variable understanding of genetics and genetic testing, including basic concepts such as inheritance patterns and the risk to dependents, and many did not understand the term 'genetic counselling'. Most were keen for extra information on the risk to others, the process for genetic testing and how to share the information with other family members. Participants were divided as to whether genetic testing should be offered at the time of the initial diagnosis or later. Many would prefer the results to be given by face-to-face consultation, supplemented by further information in a format accessible to those with visual impairment. Health-care professionals and either leaflets or websites of trusted agencies were the preferred sources of information. Permission should be sought for disclosure of genetic information to other family members. The information needs of many patients with inherited retinal disease appear to be unmet. An understanding of their information needs and preferences is required to help health-care professionals provide optimal services that meet patient expectations.

  9. Preschool-aged children’s understanding of gratitude: Relations with emotion and mental state knowledge

    PubMed Central

    Nelson, Jackie A.; de Lucca Freitas, Lia Beatriz; O’Brien, Marion; Calkins, Susan D.; Leerkes, Esther M.; Marcovitch, Stuart

    2016-01-01

    Developmental precursors to children’s early understanding of gratitude were examined. A diverse group of 263 children were tested for emotion and mental state knowledge at ages 3 and 4, and their understanding of gratitude was measured at age 5. Children varied widely in their understanding of gratitude, but most understood some aspects of gratitude-eliciting situations. A model-building path analysis approach was used to examine longitudinal relations among early emotion and mental state knowledge and later understanding of gratitude. Children with a better early understanding of emotions and mental states understand more about gratitude. Mental state knowledge at age 4 mediated the relation between emotion knowledge at age 3 and gratitude understanding at age 5. The current study contributes to the scant literature on the early emergence of children’s understanding of gratitude. PMID:23331105

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z.

    Physicists are often expected to have a solid grounding in experimental design and statistical analysis, sometimes filling in when biostatisticians or other experts are not available for consultation. Unfortunately, graduate education on these topics is seldom emphasized and few opportunities for continuing education exist. Clinical physicists incorporate new technology and methods into their practice based on published literature. A poor understanding of experimental design and analysis could Result in inappropriate use of new techniques. Clinical physicists also improve current practice through quality initiatives that require sound experimental design and analysis. Academic physicists with a poor understanding of design and analysismore » may produce ambiguous (or misleading) results. This can Result in unnecessary rewrites, publication rejection, and experimental redesign (wasting time, money, and effort). This symposium will provide a practical review of error and uncertainty, common study designs, and statistical tests. Instruction will primarily focus on practical implementation through examples and answer questions such as: where would you typically apply the test/design and where is the test/design typically misapplied (i.e., common pitfalls)? An analysis of error and uncertainty will also be explored using biological studies and associated modeling as a specific use case. Learning Objectives: Understand common experimental testing and clinical trial designs, what questions they can answer, and how to interpret the results Determine where specific statistical tests are appropriate and identify common pitfalls Understand the how uncertainty and error are addressed in biological testing and associated biological modeling.« less

  11. The general public's understanding and perception of direct-to-consumer genetic test results.

    PubMed

    Leighton, J W; Valverde, K; Bernhardt, B A

    2012-01-01

    Direct-to-consumer (DTC) genetic testing allows consumers to discover their risk for common complex disorders. The extent to which consumers understand typical results provided by DTC genetic testing is currently unknown. Misunderstanding of the results could lead to negative consequences including unnecessary concern, false reassurance or unwarranted changes in screening behaviors. We conducted a study to investigate consumers' perceptions and understanding of DTC test results. An online survey was posted on Facebook that included questions relating to 4 sample test results for risk of developing colorectal cancer, heart disease and skin cancer. Genetic counselors were used as a comparison group. 145 individuals from the general public and 171 genetic counselors completed the survey. A significant difference was found between the way the general public and genetic counselors interpreted the meaning of the DTC results. The general public respondents also believed that results in all 4 scenarios would be significantly more helpful than the genetic counselors did. Although the majority of general public respondents rated the results as easy to understand, they often misinterpreted them. These findings imply that the general public has the potential to misinterpret DTC results without appropriate assistance. Further research is needed to explore optimal methods of providing DTC test results and ways to minimize the risk of negative consequences for consumers. Copyright © 2011 S. Karger AG, Basel.

  12. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  13. Preliminary test results of electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1982-01-01

    A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.

  14. Urine drug screening in the medical setting.

    PubMed

    Hammett-Stabler, Catherine A; Pesce, Amadeo J; Cannon, Donald J

    2002-01-01

    The term drug screen is a misnomer since it implies screening for all drugs, which is not possible. Current practice is to limit the testing to the examination of serum for several drugs such as ethanol, acetaminophen, salicylate, and of urine for several specific drugs or classes of drugs. In the emergency setting the screen should be performed in less than one hour. Controversies continue to exist regarding the value of urine drug testing in the medical setting. The reasons for these include the drugs involved, the sample, the methods utilized to perform the tests, and the level of understanding of the physician using the data, all of which are closely related to the other. Current automated methods provide rapid results demanded in emergency situations, but are often designed for, or adapted from, workplace testing and are not necessarily optimized for clinical applications. Furthermore, the use of these methods without consideration of the frequency in which the drugs are found in a given area is not cost-effective. The laboratory must understand the limitations of the assays used and provide this information to the physician. Additionally, the laboratory and the physicians using the data must cooperate to determine which drugs are appropriate and necessary to measure for their institution and clinical setting. In doing so it should be remembered that for many drugs, the sample, urine, contains the end product(s) of drug metabolism, not the parent drug. Furthermore, it is necessary to understand the pharmacokinetic parameters of the drug of interest when interpreting data. Finally, while testing for some drugs may not appear cost-effective, the prevention or reduction of morbidity and mortality may offset any laboratory costs. While the literature is replete with studies concerning new methods and a few regarding physician understanding, there are none that we could find that thoroughly, objectively, and fully addressed the issues of utility and cost-effectiveness.

  15. The insanity defense: Related issues

    PubMed Central

    Asokan, T. V.

    2016-01-01

    For the past 150 years, there is no change in the understanding and knowledge other than autonomy and capacity to choose the right and wrong for criminal liability. The alternative concept that human behavior is the result of an interaction between biological and environmental factors other than free choice failed to impress the criminal justice system because of a direct threat to a society's deep seated need to blame someone than themselves for criminal harms that occur. The insanity defense has a long history, and is evolved after many tests that have been tried and tested. McNaughton's rules stressed on “understandability of right and wrong” and “intellectual” rather than a moral or affective definition dominated in its formulation. Lack of control and irresistible drives or impulses were neglected Going by the current understanding of neurological evidences of compulsion and lack of impulse control, rationality tests without the inclusion of lack of control, seem to be outdated. Separate “Control determination” than the “Rationality determination” by the jurors may improve the accuracy of Juror's categorizations. There is a suggestion that Relevance ratio is ideal for ‘Evidentiary relevance” and there should be a quality control on expert testimonies. With progress in neuroscience, the law may need to abandon or alter some of its current assumptions about the nature of voluntary conduct, which underlies various defenses PMID:28216769

  16. Quantifying the Effects of Pesticide Exposure on Seasonal Fecundity Rates of Birds

    EPA Science Inventory

    Current risk assessment practice uses the results of avian reproduction tests in risk quotients to classify the potential for pesticide use to adversely affect avian reproductive success. However, as risk assessors move toward better understanding the population-level consequenc...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkirk, J.K.

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  18. Experimental testing of scattering polarization models

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Casini, Roberto; Tomczyk, Steven; Landi Degl'Innocenti, Egidio; Marsell, Brandan

    2018-06-01

    We realized a laboratory experiment to study the polarization of the Na I doublet at 589.3 nm, in the presence of a magnetic field. The purpose of the experiment is to test the theory of scattering polarization for illumination conditions typical of astrophysical plasmas. This work was stimulated by solar observations of the Na I doublet that have proven particularly challenging to reproduce with current models of polarized line formation, even casting doubts on our very understanding of the physics of scattering polarization on the Sun. The experiment has confirmed the fundamental correctness of the current theory, and demonstrated that the "enigmatic'' polarization of those observations is exclusively of solar origin.

  19. Using Benchmarking To Strengthen the Assessment of Persistence.

    PubMed

    McLachlan, Michael S; Zou, Hongyan; Gouin, Todd

    2017-01-03

    Chemical persistence is a key property for assessing chemical risk and chemical hazard. Current methods for evaluating persistence are based on laboratory tests. The relationship between the laboratory based estimates and persistence in the environment is often unclear, in which case the current methods for evaluating persistence can be questioned. Chemical benchmarking opens new possibilities to measure persistence in the field. In this paper we explore how the benchmarking approach can be applied in both the laboratory and the field to deepen our understanding of chemical persistence in the environment and create a firmer scientific basis for laboratory to field extrapolation of persistence test results.

  20. The electromagnetic environment in CFC structures

    NASA Technical Reports Server (NTRS)

    Hardwick, C. J.; Haigh, S. J.

    1991-01-01

    Extensive measurements of induced voltages and currents were made using a CFC (carbon fiber composites) horizontal stabilizer from the A320 as a test bed. The work was done to investigate the efficacy of various protection schemes to reduce the magnitudes of the induced voltages and validate a computer program INDCAL. Results indicate that a good understanding of the various induced voltage mechanisms including the long wave effect due to current redistribution was obtained.

  1. Montaigne's Uses of Classical Learning.

    ERIC Educational Resources Information Center

    Hall, Michael L.

    1997-01-01

    M. de Montaigne's essay "On the Education of Children" (1580) demonstrates the importance of examining classical authors to test understanding and develop judgment. Montaigne's method provides a way to study cultural heritage and to use the past to examine current issues. Implications for teaching today are discussed. (SLD)

  2. El paradigma jerarquico de formacion de estructuras

    NASA Astrophysics Data System (ADS)

    Lambas, D. G.

    This contribution aims at showing our current understanding of the hierarchical clustering scenario for structure formation, its main success in terms of agreement of theoretical predictions and observations, and the most direct tests that provide confidence on the validity of the paradigm. FULL TEXT IN SPANISH

  3. Learning a Language with Web 2.0: Exploring the Use of Social Networking Features of Foreign Language Learning Websites

    ERIC Educational Resources Information Center

    Stevenson, Megan P.; Liu, Min

    2010-01-01

    This paper presents the results of an online survey and a usability test performed on three foreign language learning websites that use Web 2.0 technology. The online survey was conducted to gain an understanding of how current users of language learning websites use them for learning and social purposes. The usability test was conducted to gain…

  4. Preschool-aged children's understanding of gratitude: relations with emotion and mental state knowledge.

    PubMed

    Nelson, Jackie A; de Lucca Freitas, Lia Beatriz; O'Brien, Marion; Calkins, Susan D; Leerkes, Esther M; Marcovitch, Stuart

    2013-03-01

    Developmental precursors to children's early understanding of gratitude were examined. A diverse group of 263 children was tested for emotion and mental state knowledge at ages 3 and 4, and their understanding of gratitude was measured at age 5. Children varied widely in their understanding of gratitude, but most understood some aspects of gratitude-eliciting situations. A model-building path analysis approach was used to examine longitudinal relations among early emotion and mental state knowledge and later understanding of gratitude. Children with a better early understanding of emotions and mental states understand more about gratitude. Mental state knowledge at age 4 mediated the relation between emotion knowledge at age 3 and gratitude understanding at age 5. The current study contributes to the scant literature on the early emergence of children's understanding of gratitude. © 2012 The British Psychological Society.

  5. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    NASA Astrophysics Data System (ADS)

    Busby, Karin Burk

    Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton's laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant's sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton's three laws of motion were extrapolated to determine any correlations. The sample size for this study was small (n=24), requiring a second study investigate potential correlations to teacher characteristics. The second study was conducted using the 2013-2014 school year participants in the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching [TRC] (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013), a statewide program led by The University of Texas at Austin Center for STEM Education (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013). Participants completed a demographic survey and took the TRC Physics Assessment instrument developed for the TRC to determine current conceptual understanding of Newtonian mechanics as defined by the Texas Essential Knowledge and Skills. The TRC also collected demographic data including Texas Educational Agency region, participant's sex, years of service in teaching, current teaching position, level of highest degree earned, whether or not the participant had a STEM degree, and certification type. Correlations were determined between overall average and conceptual force questions only. The sample size was substantial (n=368) but due to time constraints in its development, the TRC Physics Assessment was unable to undergo reliability or validity testing before implementation. Test question pertaining to each of Newton's three laws of motion were extrapolated to determine any correlations. A significance value of p= 0.05 was used for all tests. Both content assessments indicated that, on average, teacher-participants had a considerable misunderstanding of Newtonian mechanics with Newton's third law questions especially difficult for the populations. Teachers' current teaching assignment was statistically significant for most tests, suggesting that high school physics teachers have more conceptual understanding of Newtonian mechanics than middle school teachers but have not necessarily mastered Newtonian mechanics. STEM majors and participant's sex were significant only for the TRC Physics Assessment. One outcome of this study is a recommendation that the Texas teacher certification process for middle school science change to include a general science test that includes physical science. Also, in-service science teachers responsible for teaching Newton's laws of motion should participate in specific professional development from a physics content educational expert to address misconceptions. Additional recommendations include that physics teachers take a mentoring role to help other teachers in physical science concepts and that middle school curriculum provide assistance to teachers for addressing misconceptions of Newton's third law.

  6. Development of Piagetian object permanence in a grey parrot (Psittacus erithacus).

    PubMed

    Pepperberg, I M; Willner, M R; Gravitz, L B

    1997-03-01

    The authors evaluated the ontogenetic performance of a grey parrot (Psittacus erithacus) on object permanence tasks designed for human infants. Testing began when the bird was 8 weeks old, prior to fledging and weaning. Because adult grey parrots understand complex invisible displacements (I. M. Pepperberg & F. A. Kozak, 1986), the authors continued weekly testing until the current subject completed all of I. C. Uzgiris and J. Hunt's (1975) Scale 1 tasks. Stage 6 object permanence with respect to these tasks emerged at 22 weeks, after the bird had fledged but before it was completely weaned. Although the parrot progressed more rapidly overall than other species that have been tested ontogenetically, the subject similarly exhibited a behavioral plateau part way through the study. Additional tests, administered at 8 and 12 months as well as to an adult grey parrot, demonstrated, respectively, that these birds have some representation of a hidden object and understand advanced invisible displacements.

  7. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  8. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  9. Temperament Types of Social Studies Teachers.

    ERIC Educational Resources Information Center

    Dorow, Ernest B.

    Temperament type is a key to understanding the classroom behavior of social studies teachers. Current criticisms of strategies employed, dependence on the textbook, fact oriented testing, and the dearth of problem solving in lesson planning are grounded in professional decisions based on temperament preferences. Employing four types of temperament…

  10. Teachers' Perceptions of Kindergarten Readiness Indicators

    ERIC Educational Resources Information Center

    Boylan, Tronya E.

    2017-01-01

    The study of school readiness is multifaceted, encompassing an understanding of many developmental areas and skills. In the current educational culture of high-stakes testing, increased rigor, and high learning expectations, parents may be concerned about a child's readiness to begin kindergarten. With increased accountability, teachers may also…

  11. Structural mechanics of seed deterioration: Standing the test of time

    USDA-ARS?s Scientific Manuscript database

    Seeds die unexpectedly during storage and current understanding of seed quality and storage conditions does not allow reliable means to predict or prevent this critical problem. Chemical degradation of seed components likely occurs through oxidative damage, but the rate of these reactions is domina...

  12. Stirling Convertor Extended Operation Testing and Data Analysis at GRC

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2009-01-01

    This paper focuses on extended operation testing and data analysis of free-piston Stirling convertors at the NASA Glenn Research Center (GRC). Extended operation testing is essential to the development of radioisotope power systems and their potential use for long duration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable; allowing us to better understand and quantity the long life characteristics of the convertors. Further, investigation and comparison of the extended operation data to baseline performance data provides us an opportunity for understanding system behavior should any off-nominal performance occur. GRC currently has 14 Stirling convertors under 24-hour unattended extended operation testing, including two operating the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG-EU). 10 of the 14 Stirling convertors at GRC are the Advanced Stirling Convertors (ASC) developed by Sunpower, Incorporated. These are highly efficient (up to > 33.5% conversion efficiency), low mass convertors that have evolved through technologically progressive convertor builds. The remaining four convertors at GRC are Technology Demonstration Convertors (TDC) from Infinia Corporation. They have achieved> 27% conversion efficiency and have accumulated over 178,000 of the total 250,622 hours of extended operation currently at GRC. A synopsis of the Stirling convertor extended operation testing and data analysis at NASA GRC is presented in this paper, as well as how this testing has contributed to the Stirling convertor's progression toward flight.

  13. Promotion of research on in vitro immunotoxicology.

    PubMed

    Balls, M; Sabbioni, E

    2001-04-10

    ECVAM was established to play a leading role at the European level in the independent evaluation of the reliability and relevance of test methods and testing strategies for specific purposes through research on advanced methods and new test development and validation, so that chemicals and products of various kinds, including medicines, vaccines, medical devices, cosmetics, household products and agricultural products, can be manufactured, transported and used more economically and more safely, whilst the current relevance on animal test procedures is progressively reduced. Nowhere is this activity more necessary than in the field of immunotoxicology, where we know that chemicals and products of many kinds have the potential to stimulate, modulate or suppress the induction or expression of various types of immune responses. The problem is to effectively evaluate the potency of these effectors, and, since the available information is currently based on rather qualitative animal tests, to evaluate the true relevance of this knowledge and apply it intelligently in risk assessment processes which will protect human beings without unnecessarily limiting the development and use of materials which otherwise have economic, health and social benefits. The way forward must depend on the following: (a) a better understanding of immunotoxicological processes, based on a sounder understanding of the immune system itself (and of its network of control systems and interrelationships with other body systems); (b) The use of in vitro (not in vivo) systems based on human (not animal) cells and tissues; (c) integrated and tiered testing strategies, incorporating QSAR, as well as in vitro approaches; (d) taking advantage of the use of cells or factors from humans who have been exposed to potential immunotoxins, be this voluntarily, occupationally, environmentally or by accident; and (e) the recognition that virtually everything will effect one or more aspects of the immune system at some dose level and, in some circumstances, deciding when such effects are relevant, is the key to immunotoxicity testing. Some current ECVAM-sponsored work and activities at ECVAM are described.

  14. NASA Airframe Icing Research Overview Past and Current

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    This slide presentation reviews the past and current research that NASA has done in the area of airframe icing. Both the history experimental efforts and model development to understand the process and problem of ice formation are reviewed. This has resulted in the development of new experimental methods, advanced icing simulation software, flight dynamics and experimental databases that have an impact on design, testing, construction and certification and qualification of the aircraft and its sub-systems.

  15. Commissioning Cornell OSTs for SRF cavity testing at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory

    2011-07-01

    Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.

  16. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  17. 76 FR 4376 - Office of Justice Programs; Agency Information Collection Activities; Proposed Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... technological collection techniques or other forms of information technology, e.g. permitting electronic... Forensic Casework DNA Backlog Programs over time and to diagnose performance problems in current casework... performance problems, but also to better understand whether the benefits of DNA collection and testing is in...

  18. A Preliminary Examination of Science Backroom Roles and Activities for Robotic Lunar Surface Science

    NASA Astrophysics Data System (ADS)

    Fong, T.; Deans, M.; Smith, T.; Lee, P.; Heldmann, J.; Pacis, E.; Schreckenghost, D.; Landis, R.; Osborn, J.; Kring, D.; Heggy, E.; Mishkin, A.; Snook, K.; Stoker, C.

    2008-07-01

    To understand the utility of a science backroom for the current lunar architecture, we are developing a new ground control structure for human and robot surface activity. In June 2008, we began examining this structure through a series of analog field tests.

  19. Children's Use of Categories and Mental States to Predict Social Behavior

    ERIC Educational Resources Information Center

    Chalik, Lisa; Rivera, Cyrielle; Rhodes, Marjorie

    2014-01-01

    Integrating generic information about categories with knowledge of specific individuals is a critical component of successful inductive inferences. The present study tested whether children's approach to this task systematically shifts as they develop causal understandings of the mechanisms that shape individual action. In the current study, 3-and…

  20. Genetics of forest trees

    Treesearch

    Jessica Wright

    2014-01-01

    Combining data from provenance test studies with our current understanding of predicted climate change can be a powerful tool for informing reforestation efforts. However, the limitations of both sources of data need to be understood to develop an approach to ecological restoration that reduces risk and promotes the highest chance of successful reforestation.

  1. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    EPA Science Inventory

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  2. Income, Family Characteristics, and Physical Violence toward Children

    ERIC Educational Resources Information Center

    Berger, L.M.

    2005-01-01

    Objective:: This paper discusses the ways in which existing microeconomic theories of partner abuse, intra-family bargaining, and distribution of resources within families may contribute to our current understanding of physical child abuse. The empirical implications of this discussion are then tested on data from the 1985 National Family Violence…

  3. Common Core in the Real World

    ERIC Educational Resources Information Center

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  4. The Mystery Tubes: Teaching Pupils about Hypothetical Modelling

    ERIC Educational Resources Information Center

    Kenrick, Carole

    2017-01-01

    This article recounts the author's working experience of one method by which pupils' understanding of the epistemologies of science can be developed, specifically how scientists can develop hypothetical models and test them through simulations. She currently uses this approach for transition lessons with pupils in upper primary or lower secondary…

  5. Current directions in behavioral medicine research on genetic testing for disease susceptibility: introduction to the special section.

    PubMed

    Sherman, Kerry A; Cameron, Linda D

    2015-10-01

    The aim of this special section is to showcase research contributing to our understanding of factors influencing decisions to undergo genetic testing and the impact of the genetic testing process on health-related behaviors of tested individuals. The first two articles report studies investigating factors associated with interest in genetic testing and acceptance of test results (Sherman et al. in J Behav Med doi: 10.1007/s10865-015-9630-9 , 2015; Taber et al. in J Behav Med doi: 10.1007/s10865-015-9642-5 , 2015b). The next two papers address the unique contribution of genetic risk information to understanding risk beyond genetic counseling alone (Heiniger et al. in J Behav Med doi 10.1007/s10865-015-9632-7 , 2015; Taber et al. in J Behav Med doi: 10.1007/s10865-015-9648-z , 2015a). The final three articles investigate the effects of genetic risk information on beliefs about disease control and prevention (Aspinwall et al. in J Behav Med doi: 10.1007/s10865-015-9631-8 , 2015; Kelly et al. in J Behav Med doi 10.1007/s10865-014-9613-2 , 2014; Myers et al. in J Behav Med doi: 10.1007/s10865-015-9626-5 , 2015). Collectively, the special section of papers highlights the diverse ways in which behavioural medicine contributes to our understanding of genetic testing for disease risk, and points to the value of further research to better understand ways in which individuals perceive, interpret and respond to genetic risk information.

  6. ACOG Technology Assessment No. 11: Genetics and molecular diagnostic testing.

    PubMed

    2014-02-01

    Human genetics and molecular testing are playing an increasingly important role in medicine, including obstetric and gynecologic practice. As the genetic basis for reproductive disorders, common diseases, and cancer is elucidated with improved molecular technology, genetic testing opportunities are expanding and influencing treatment options and prevention strategies. It is essential that obstetrician-gynecologists be aware of advances in the understanding of genetic disease and the fundamental principles of genetic screening and molecular testing as genetics becomes a more integral part of routine medical practice. This document reviews the basics of genetic transmission and genetic technologies in current use.

  7. Current Knowledge on Cannabinoids in Oral Fluid

    PubMed Central

    Lee, Dayong; Huestis, Marilyn A.

    2015-01-01

    Oral fluid (OF) is a new biological matrix for clinical and forensic drug testing, offering non-invasive and directly observable sample collection reducing adulteration potential, ease of multiple sample collections, lower biohazard risk during collection, recent exposure identification, and stronger correlation with blood than urine concentrations. Because cannabinoids are usually the most prevalent analytes in illicit drug testing, application of OF drug testing requires sufficient scientific data to support sensitive and specific OF cannabinoid detection. This review presents current knowledge on OF cannabinoids, evaluating pharmacokinetic properties, detection windows, and correlation with other biological matrices and impairment from field applications and controlled drug administration studies. In addition, on-site screening technologies, confirmatory analytical methods, drug stability, and effects of sample collection procedure, adulterants, and passive environmental exposure are reviewed. Delta-9-tetrahydrocannabinol OF concentrations could be > 1000 μg/L shortly after smoking, whereas minor cannabinoids are detected at 10-fold and metabolites at 1000-fold lower concentrations. OF research over the past decade demonstrated that appropriate interpretation of test results requires a comprehensive understanding of distinct elimination profiles and detection windows for different cannabinoids, which are influenced by administration route, dose, and drug use history. Thus, each drug testing program should establish cutoff criteria, collection/analysis procedures, and storage conditions tailored to its purposes. Building a scientific basis for OF testing is on-going, with continuing OF cannabinoids research on passive environmental exposure, drug use history, donor physiological conditions, and oral cavity metabolism needed to better understand mechanisms of cannabinoid OF disposition and expand OF drug testing applicability. PMID:23983217

  8. A Risk-Based Approach for Aerothermal/TPS Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Grinstead, Jay H.; Bose, Deepak

    2007-01-01

    The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.

  9. Collecting Currents with Water Turbines

    NASA Astrophysics Data System (ADS)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  10. The Storm Time Ring Current Dynamics and Response to CMEs and CIRs Using Van Allen Probes Observations and CIMI Simulations

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Fok, M. C. H.; Glocer, A.; Farrugia, C. J.; Gkioulidou, M.; Spence, H. E.

    2016-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CMEs), and co-rotating interaction regions (CIRs). Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. In addition, we identify the populations (energy and species) responsible. We find that during the storm main phase and the early recovery phase the plasma sheet particles (10-80 keV) convecting from the nightside contribute the most on the ring current pressure and current density. However, during these phases, the main difference between CMEs and CIRs is in the O+ contribution. This empirical model is compared to the results of CIMI simulations of CMEs and CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model, while different inner magnetosphere boundary conditions will be tested in order to match the empirical model results. Comparing the model and simulation results will fill our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system.

  11. Content or connectedness? Mother-child talk and early social understanding.

    PubMed

    Ensor, Rosie; Hughes, Claire

    2008-01-01

    Despite much research into individual differences in social understanding among preschoolers, little is known about corresponding individual differences within younger children. Likewise, although studies of preschoolers highlight the importance of mental-state references, other aspects of talk have received less attention. The current study involved 120 families with 2-year-olds; video-based transcripts of observations of family interaction were coded for quantity, connectedness, and content of mothers' and children's talk. At 2, 3, and 4 years of age, children completed social understanding and verbal ability tests. Mothers' connected turns and mental-state reference within connected turns showed independent associations with children's social understanding (as did children's mental-state references, both overall and within connected turns). Connected conversations provide a fertile context for children's developing social understanding.

  12. Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.G. Quinn

    A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.

  13. Is intuition really cooperative? Improved tests support the social heuristics hypothesis.

    PubMed

    Isler, Ozan; Maule, John; Starmer, Chris

    2018-01-01

    Understanding human cooperation is a major scientific challenge. While cooperation is typically explained with reference to individual preferences, a recent cognitive process view hypothesized that cooperation is regulated by socially acquired heuristics. Evidence for the social heuristics hypothesis rests on experiments showing that time-pressure promotes cooperation, a result that can be interpreted as demonstrating that intuition promotes cooperation. This interpretation, however, is highly contested because of two potential confounds. First, in pivotal studies compliance with time-limits is low and, crucially, evidence shows intuitive cooperation only when noncompliant participants are excluded. The inconsistency of test results has led to the currently unresolved controversy regarding whether or not noncompliant subjects should be included in the analysis. Second, many studies show high levels of social dilemma misunderstanding, leading to speculation that asymmetries in understanding might explain patterns that are otherwise interpreted as intuitive cooperation. We present evidence from an experiment that employs an improved time-pressure protocol with new features designed to induce high levels of compliance and clear tests of understanding. Our study resolves the noncompliance issue, shows that misunderstanding does not confound tests of intuitive cooperation, and provides the first independent experimental evidence for intuitive cooperation in a social dilemma using time-pressure.

  14. The missing explanation of the false-belief advantage in bilingual children: a longitudinal study.

    PubMed

    Diaz, Vanessa; Farrar, M Jeffrey

    2018-07-01

    Bilingual preschoolers often perform better than monolingual children on false-belief understanding. It has been hypothesized that this is due to their enhanced executive function skills, although this relationship has rarely been tested or supported. The current longitudinal study tested whether metalinguistic awareness was responsible for this advantage. Further, we examined the contributions of both executive functioning and language ability to false-belief understanding by including multiple measures of both. Seventy-eight children (n = 40 Spanish-English bilingual; age M = 49.29, SD = 7.38 and, n = 38 English monolingual; age M = 47.75, SD = 6.86) were tested. A year later the children were tested again (n = 22 bilingual, n = 25 monolingual). The results indicated that language and executive function (inhibitory control) at time 1 were related to false belief in monolinguals at time 2. In contrast, bilinguals' metalinguistic performance at time 1 was the sole predictor of false belief at time 2. The different linguistic and cognitive profiles of monolinguals and bilinguals may create different pathways for their development of false-belief understanding. A video abstract of this article can be viewed at: https://youtu.be/vILn2gKjFxw. © 2017 John Wiley & Sons Ltd.

  15. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.

  16. A 'difficult' insect allergy patient: reliable history of a sting, but all testing negative.

    PubMed

    Tracy, James M; Olsen, Jonathan A; Carlson, John

    2015-08-01

    Few conditions are as treatable as allergy to stinging insects, with venom immunotherapy (VIT) providing up to 98% protection to subsequent stings. The challenge with VIT is not in the treatment, but in the diagnosis. To offer VIT, one must determine a history of a systemic reaction to a stinging insect in conjunction with the presence venom-specific IgE. Current diagnostic methods, although sensitive and specific, are imperfect, and some newer testing options are not widely available. A conundrum occasionally faced is the patient with a reliable and compelling history of a systemic allergic reaction yet negative venom-specific testing. This diagnostic dilemma presents an opportunity to consider possible causes for this diagnostic challenge. Our evolving understanding of the role of occult mast cell disease may begin to help us understand this situation and develop appropriate management strategies. Venom-specific skin testing has long been the cornerstone of the evaluation of venom sensitivity and is often combined with in-vitro assays to add clarity, but even these occasionally may fall short. Exploring novel venom diagnostic testing methods may help to fill in some of the diagnostic gaps. Do currently available venom vaccines contain all the key venom species? Are there enough differences between insect species that we may simply be missing the relevant allergens? What is the significance of the antigenicity of carbohydrate moieties in venoms? What is the role of recombinant venom extracts? VIT is the definitive treatment for insect allergic individuals. To utilize VIT, identification of the relevant Hymenoptera is necessary. Unfortunately, this cannot always be accomplished. This deficiency can have several causes: a potential comorbid condition such as occult mast cell disease, limitations of currently available diagnostic resources, or testing vaccines with an insufficient coverage of relevant venom allergens. Exploring these potential causes may help to provide important insight into this important diagnostic conundrum. The use of a case report may help clarify this challenge.

  17. Effectiveness of Dry Cell Microscopic Simulation (DCMS) to Promote Conceptual Understanding about Battery

    NASA Astrophysics Data System (ADS)

    Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh

    2017-07-01

    Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.

  18. Development of a head-phantom and measurement setup for lightning effects.

    PubMed

    Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael

    2016-08-01

    Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.

  19. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma.

    PubMed

    Tsang, Andy Hin-Fung; Cheng, Ka-Ho; Wong, Apple Siu-Ping; Ng, Simon Siu-Man; Ma, Brigette Buig-Yue; Chan, Charles Ming-Lok; Tsui, Nancy Bo-Yin; Chan, Lawrence Wing-Chi; Yung, Benjamin Yat-Ming; Wong, Sze-Chuen Cesar

    2014-04-14

    Colorectal cancer (CRC) is one of the most prevalent cancers in developed countries. On the other hand, CRC is also one of the most curable cancers if it is detected in early stages through regular colonoscopy or sigmoidoscopy. Since CRC develops slowly from precancerous lesions, early detection can reduce both the incidence and mortality of the disease. Fecal occult blood test is a widely used non-invasive screening tool for CRC. Although fecal occult blood test is simple and cost-effective in screening CRC, there is room for improvement in terms of the accuracy of the test. Genetic dysregulations have been found to play an important role in CRC development. With better understanding of the molecular basis of CRC, there is a growing expectation on the development of diagnostic tests based on more sensitive and specific molecular markers and those tests may provide a breakthrough to the limitations of current screening tests for CRC. In this review, the molecular basis of CRC development, the characteristics and applications of different non-invasive molecular biomarkers, as well as the technologies available for the detection were discussed. This review intended to provide a summary on the current and future molecular diagnostics in CRC and its pre-malignant state, colorectal adenoma.

  20. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma

    PubMed Central

    Tsang, Andy Hin-Fung; Cheng, Ka-Ho; Wong, Apple Siu-Ping; Ng, Simon Siu-Man; Ma, Brigette Buig-Yue; Chan, Charles Ming-Lok; Tsui, Nancy Bo-Yin; Chan, Lawrence Wing-Chi; Yung, Benjamin Yat-Ming; Wong, Sze-Chuen Cesar

    2014-01-01

    Colorectal cancer (CRC) is one of the most prevalent cancers in developed countries. On the other hand, CRC is also one of the most curable cancers if it is detected in early stages through regular colonoscopy or sigmoidoscopy. Since CRC develops slowly from precancerous lesions, early detection can reduce both the incidence and mortality of the disease. Fecal occult blood test is a widely used non-invasive screening tool for CRC. Although fecal occult blood test is simple and cost-effective in screening CRC, there is room for improvement in terms of the accuracy of the test. Genetic dysregulations have been found to play an important role in CRC development. With better understanding of the molecular basis of CRC, there is a growing expectation on the development of diagnostic tests based on more sensitive and specific molecular markers and those tests may provide a breakthrough to the limitations of current screening tests for CRC. In this review, the molecular basis of CRC development, the characteristics and applications of different non-invasive molecular biomarkers, as well as the technologies available for the detection were discussed. This review intended to provide a summary on the current and future molecular diagnostics in CRC and its pre-malignant state, colorectal adenoma. PMID:24744577

  1. Theory of Mind training in children with autism: a randomized controlled trial.

    PubMed

    Begeer, Sander; Gevers, Carolien; Clifford, Pamela; Verhoeve, Manja; Kat, Kirstin; Hoddenbach, Elske; Boer, Frits

    2011-08-01

    Many children with Autism Spectrum Disorders (ASD) participate in social skills or Theory of Mind (ToM) treatments. However, few studies have shown evidence for their effectiveness. The current study used a randomized controlled design to test the effectiveness of a 16-week ToM treatment in 8-13 year old children with ASD and normal IQs (n = 40). The results showed that, compared to controls, the treated children with ASD improved in their conceptual ToM skills, but their elementary understanding, self reported empathic skills or parent reported social behaviour did not improve. Despite the effects on conceptual understanding, the current study does not indicate strong evidence for the effectiveness of a ToM treatment on the daily life mindreading skills.

  2. New Visions for Transforming Teaching

    ERIC Educational Resources Information Center

    Epler, James W.

    2009-01-01

    Those who work in schools understand the demands placed on teachers in the face of mounting pressures from parents, administrators, and standardized tests. It would be foolish to assume these demands do not overshadow aspirations to remain current in educational technology trends and tools. That is why it is more important than ever for ed tech…

  3. An Active-Learning Approach to Fostering Understanding of Research Methods in Large Classes

    ERIC Educational Resources Information Center

    LaCosse, Jennifer; Ainsworth, Sarah E.; Shepherd, Melissa A.; Ent, Michael; Klein, Kelly M.; Holland-Carter, Lauren A.; Moss, Justin H.; Licht, Mark; Licht, Barbara

    2017-01-01

    The current investigation tested the effectiveness of an online student research project designed to supplement traditional methods (e.g., lectures, discussions, and assigned readings) of teaching research methods in a large-enrollment Introduction to Psychology course. Over the course of the semester, students completed seven assignments, each…

  4. Exploring the Greenhouse Effect through Physics-Oriented Activities

    ERIC Educational Resources Information Center

    Browne, Kerry P.; Laws, Priscilla W.

    2003-01-01

    We are developing a new activity-based unit on global warming and the environment as part of the "Explorations in Physics Curriculum." We describe the current status of this unit, which focuses on helping students understand the greenhouse effect and its relationship to global warming. We outline several problems encountered in testing the unit…

  5. An Examination of the Impact of Harsh Parenting Contexts on Children's Adaptation within an Evolutionary Framework

    ERIC Educational Resources Information Center

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Martin, Meredith J.; Cicchetti, Dante; Hentges, Rochelle F.

    2012-01-01

    The current study tests whether propositions set forth in an evolutionary model of temperament (Korte, Koolhaas, Wingfield, & McEwen, 2005) may enhance our understanding of children's differential susceptibility to unsupportive and harsh caregiving practices. Guided by this model, we examined whether children's behavioral strategies for coping…

  6. Why Is Benevolent Sexism Appealing?: Associations with System Justification and Life Satisfaction

    ERIC Educational Resources Information Center

    Connelly, Kathleen; Heesacker, Martin

    2012-01-01

    Previous research suggests that benevolent sexism is an ideology that perpetuates gender inequality. But despite its negative consequences, benevolent sexism is a prevalent ideology that some even find attractive. To better understand why women and men alike might be motivated to adopt benevolent sexism, the current study tested system…

  7. The Need to Introduce System Thinking in Teaching Climate Change

    ERIC Educational Resources Information Center

    Roychoudhury, Anita; Shepardson, Daniel P.; Hirsch, Andrew; Niyogi, Devdutta; Mehta, Jignesh; Top, Sara

    2017-01-01

    Research related to teaching climate change, system thinking, current reform in science education, and the research on reform-oriented assessment indicate that we need to explore student understanding in greater detail instead of only testing for an incremental gain in disciplinary knowledge. Using open-ended items we assessed details in student…

  8. When Do Infants Begin to Follow a Point?

    ERIC Educational Resources Information Center

    Bertenthal, Bennett I.; Boyer, Ty W.; Harding, Samuel

    2014-01-01

    Infants' understanding of a pointing gesture represents a major milestone in their communicative development. The current consensus is that infants are not capable of following a pointing gesture until 9-12 months of age. In this article, we present evidence from 4- and 6-month-old infants challenging this conclusion. Infants were tested with…

  9. Delineation of taxonomic species within complex of species: Aeromonas media and related species as a test case

    USDA-ARS?s Scientific Manuscript database

    Aeromonas media is an opportunistic pathogen for human and animals mainly found in aquatic habitats and which has been noted for significant genomic and phenotypic heterogeneities. We aimed to better understand the population structure and diversity of strains currently affiliated to A. media and th...

  10. Understanding False Belief as Generalized Operant Behavior

    ERIC Educational Resources Information Center

    McHugh, Louise; Barnes-Holmes, Yvonne; Barnes-Holmes, Dermot; Stewart, Ian

    2006-01-01

    The current work reports 2 experiments that investigate the development of false belief from the perspective of Relational Frame Theory. The true and false belief test protocol used across both experiments contained a range of tasks that involved responding in accordance with the 3 perspective-taking frames of I-YOU, HERE-THERE, NOW-THEN, and in…

  11. Understanding the Relationship between Student Attitudes and Student Learning

    ERIC Educational Resources Information Center

    Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca

    2018-01-01

    Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study…

  12. Designing a Summer Transition Program for Incoming and Current College Students on the Autism Spectrum: A Participatory Approach.

    PubMed

    Hotez, Emily; Shane-Simpson, Christina; Obeid, Rita; DeNigris, Danielle; Siller, Michael; Costikas, Corinna; Pickens, Jonathan; Massa, Anthony; Giannola, Michael; D'Onofrio, Joanne; Gillespie-Lynch, Kristen

    2018-01-01

    Students with Autism Spectrum Disorder (ASD) face unique challenges transitioning from high school to college and receive insufficient support to help them navigate this transition. Through a participatory collaboration with incoming and current autistic college students, we developed, implemented, and evaluated two intensive week-long summer programs to help autistic students transition into and succeed in college. This process included: (1) developing an initial summer transition program curriculum guided by recommendations from autistic college students in our ongoing mentorship program, (2) conducting an initial feasibility assessment of the curriculum [Summer Transition Program 1 (STP1)], (3) revising our initial curriculum, guided by feedback from autistic students, to develop a curriculum manual, and (4) pilot-testing the manualized curriculum through a quasi-experimental pre-test/post-test assessment of a second summer program [Summer Transition Program 2 (STP2)]. In STP2, two autistic college students assumed a leadership role and acted as "mentors" and ten incoming and current autistic college students participated in the program as "mentees." Results from the STP2 pilot-test suggested benefits of participatory transition programming for fostering self-advocacy and social skills among mentees. Autistic and non-autistic mentors (but not mentees) described practicing advanced forms of self-advocacy, specifically leadership, through their mentorship roles. Autistic and non-autistic mentors also described shared (e.g., empathy) and unique (an intuitive understanding of autism vs. an intuitive understanding of social interaction) skills that they contributed to the program. This research provides preliminary support for the feasibility and utility of a participatory approach in which autistic college students are integral to the development and implementation of programming to help less experienced autistic students develop the self-advocacy skills they will need to succeed in college.

  13. Designing a Summer Transition Program for Incoming and Current College Students on the Autism Spectrum: A Participatory Approach

    PubMed Central

    Hotez, Emily; Shane-Simpson, Christina; Obeid, Rita; DeNigris, Danielle; Siller, Michael; Costikas, Corinna; Pickens, Jonathan; Massa, Anthony; Giannola, Michael; D'Onofrio, Joanne; Gillespie-Lynch, Kristen

    2018-01-01

    Students with Autism Spectrum Disorder (ASD) face unique challenges transitioning from high school to college and receive insufficient support to help them navigate this transition. Through a participatory collaboration with incoming and current autistic college students, we developed, implemented, and evaluated two intensive week-long summer programs to help autistic students transition into and succeed in college. This process included: (1) developing an initial summer transition program curriculum guided by recommendations from autistic college students in our ongoing mentorship program, (2) conducting an initial feasibility assessment of the curriculum [Summer Transition Program 1 (STP1)], (3) revising our initial curriculum, guided by feedback from autistic students, to develop a curriculum manual, and (4) pilot-testing the manualized curriculum through a quasi-experimental pre-test/post-test assessment of a second summer program [Summer Transition Program 2 (STP2)]. In STP2, two autistic college students assumed a leadership role and acted as “mentors” and ten incoming and current autistic college students participated in the program as “mentees.” Results from the STP2 pilot-test suggested benefits of participatory transition programming for fostering self-advocacy and social skills among mentees. Autistic and non-autistic mentors (but not mentees) described practicing advanced forms of self-advocacy, specifically leadership, through their mentorship roles. Autistic and non-autistic mentors also described shared (e.g., empathy) and unique (an intuitive understanding of autism vs. an intuitive understanding of social interaction) skills that they contributed to the program. This research provides preliminary support for the feasibility and utility of a participatory approach in which autistic college students are integral to the development and implementation of programming to help less experienced autistic students develop the self-advocacy skills they will need to succeed in college. PMID:29487547

  14. Cointegration and Nonstationarity in the Context of Multiresolution Analysis

    NASA Astrophysics Data System (ADS)

    Worden, K.; Cross, E. J.; Kyprianou, A.

    2011-07-01

    Cointegration has established itself as a powerful means of projecting out long-term trends from time-series data in the context of econometrics. Recent work by the current authors has further established that cointegration can be applied profitably in the context of structural health monitoring (SHM), where it is desirable to project out the effects of environmental and operational variations from data in order that they do not generate false positives in diagnostic tests. The concept of cointegration is partly built on a clear understanding of the ideas of stationarity and nonstationarity for time-series. Nonstationarity in this context is 'traditionally' established through the use of statistical tests, e.g. the hypothesis test based on the augmented Dickey-Fuller statistic. However, it is important to understand the distinction in this case between 'trend' stationarity and stationarity of the AR models typically fitted as part of the analysis process. The current paper will discuss this distinction in the context of SHM data and will extend the discussion by the introduction of multi-resolution (discrete wavelet) analysis as a means of characterising the time-scales on which nonstationarity manifests itself. The discussion will be based on synthetic data and also on experimental data for the guided-wave SHM of a composite plate.

  15. The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations

    NASA Astrophysics Data System (ADS)

    Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina

    2017-04-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.

  16. Climate change 'understanding' and knowledge

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2011-12-01

    Recent surveys find that many people report having "a great deal" of understanding about climate change. Self-assessed understanding does not predict opinions, however, because those with highest "understanding" tend also to be most polarized. These findings raise questions about the relationship between "understanding" and objectively-measured knowledge. In summer 2011 we included three new questions testing climate-change knowledge on a statewide survey. The multiple-choice questions address basic facts that are widely accepted by contrarian as well as mainstream scientists. They ask about trends in Arctic sea ice, in CO2 concentrations, and the meaning of "greenhouse effect." The questions say nothing about impacts, attribution or mitigation. Each has a clear and well-publicized answer that does not presume acceptance of anthropogenic change. About 30% of respondents knew all three answers, and 36% got two out of three. 34% got zero or one right. Notably, these included 31% of those who claimed to have "a great deal" of understanding. Unlike self-assessed understanding, knowledge scores do predict opinions. People who knew more were significantly more likely to agree that climate change is happening now, caused mainly by human activities. This positive relationship remains significant controlling for gender, age, education, partisanship and "understanding." It does not exhibit the interaction effects with partisanship that characterize self-assessed understanding. Following the successful statewide test, the same items were added to a nationwide survey currently underway. Analyses replicated across both surveys cast a new light on the problematic connections between "understanding," knowledge and opinions about climate science.

  17. A diagnostic approach to hemochromatosis

    PubMed Central

    Tavill, Anthony S; Adams, Paul C

    2006-01-01

    In the present clinical review, a diagnostic approach to hemochromatosis is discussed from the perspective of two clinicians with extensive experience in this area. The introduction of genetic testing and large-scale population screening studies have broadened our understanding of the clinical expression of disease and the utility of biochemical iron tests for the detection of disease and for the assessment of disease severity. Liver biopsy has become more of a prognostic test than a diagnostic test. The authors offer a stepwise, diagnostic algorithm based on current evidence-based data, that they regard as most cost-effective. An early diagnosis can lead to phlebotomy therapy to prevent the development of cirrhosis. PMID:16955151

  18. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  19. Studies of blade-vortex interaction noise reduction by rotor blade modification

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1993-01-01

    Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.

  20. Regulatory perspectives on acceptability testing of dosage forms in children.

    PubMed

    Kozarewicz, Piotr

    2014-08-05

    Current knowledge about the age-appropriateness of different dosage forms is still fragmented or limited. Applicants are asked to demonstrate that the target age group(s) can manage the dosage form or propose an alternative strategy. However, questions remain about how far the applicant must go and what percentage of patients must find the strategy 'acceptable'. The aim of this overview is to provide an update on current thinking and understanding of the problem, and discuss issues relating to the acceptability testing. This overview should be considered as means to start a wider discussion which hopefully will result in a harmonised, globally acceptable approach for confirmation of the acceptability in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Current Treatment and Recent Clinical Research in Alzheimer's Disease

    PubMed Central

    Neugroschl, Judith; Sano, Mary

    2010-01-01

    The transition from either epidemiological observation or the bench to rigorously tested clinical trials in patients with Alzheimer's disease is crucial in understanding which treatments are beneficial to patients. The amyloid hypothesis has undergone scrutiny recently, as many trials aimed at reducing amyloid and plaque have been completed or are in the testing phase. Examples include modulation of the secretases involved in beta amyloid formation, anti-aggregation agents, and immunotherapeutic trials. Other therapies targeting hyperphosphorylated tau and novel targets such as enhancement of mitochondrial function, serotonin receptors, receptor for advanced glycation end products, and nerve growth factor, as well as other strategies, are discussed. A brief review of the current Food and Drug Administration–approved treatments is included. PMID:20101716

  2. Correlation of understanding of physics and psychological symptoms among high-school students in Greece

    NASA Astrophysics Data System (ADS)

    Aggeliki, Anagnostopoulou; Miltiades, Kyprianou; Antigoni-Elisavet, Rota; Evangelia, Pavlatou; Loizos, Zaphiris

    2017-09-01

    Depression may essentially influence cognitive function contributing to poor school performance. The present study undertakes to determine the existence and strength of correlation between depressive symptomatology and other mental conditions with the acquired level of understanding of Newtonian physics taught in schools. The current study recruited 490 students (262 girls, 228 boys) attending the first semester of the Greek Second Grade of General Lyceum School. Force Concept Inventory (FCI) tested the depth of the students’ understanding of Newtonian Physics. Symptom Checklist-90-R assessed general mental status. The tests took place in the classroom during a 1 h session. Low FCI scores significantly correlated with mental conditions, with depression ranking first. Girls had higher scores in all nine symptoms scales of SCL-90 and lower FCI scores. Stepwise regression models proved that the gender effect on FCI could be effectively explained through the significant effect of depression. An understanding of Newtonian physics among high school students may be restricted by common problematic mental conditions, with depression being the greatest among all. Further research, using a more systematic approach to measure depression among adolescents with poor understanding of physics, would help to elucidate the nature of the effect.

  3. Man’s best friend: what can pet dogs teach us about non-Hodgkin lymphoma?

    PubMed Central

    Richards, Kristy L.; Suter, Steven E.

    2014-01-01

    Summary Animal models are essential for understanding lymphoma biology and testing new treatments prior to human studies. Spontaneously arising lymphomas in pet dogs represent an underutilized resource that could be used to complement current mouse lymphoma models, which do not adequately represent all aspects of the human disease. Canine lymphoma resembles human lymphoma in many important ways, including characteristic translocations and molecular abnormalities and similar therapeutic responses to chemotherapy, radiation, and newer targeted therapies (e.g. ibrutinib). Given the large number of pet dogs and high incidence of lymphoma, particularly in susceptible breeds, dogs represent a largely untapped resource for advancing the understanding and treatment of human lymphoma. This review highlights similarities in molecular biology, diagnosis, treatment, and outcomes between human and canine lymphoma. It also describes resources that are currently available to study canine lymphoma, advantages to be gained by exploiting the genetic breed structure in dogs, and current and future challenges and opportunities to take full advantage of this resource for lymphoma studies. PMID:25510277

  4. Comparison of the Three NIF Ablators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritcher, A. L.; Clark, D. S.; Haan, S. W.

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed sincemore » NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to the respective shots. Each was then scaled to a “full NIF” experiment that could be done using the respective ablators at full NIF power and/or energy, and these scaled-up designs were simulated in detail. (ii) The report also contains a general survey of experimental and simulated results as pertinent to comparing and evaluating the three ablators.« less

  5. Mental health and fitness to plead proposals in England and Wales.

    PubMed

    Mudathikundan, Faisal; Chao, Oriana; Forrester, Andrew

    2014-01-01

    Proposals to reform fitness to plead legislation have been published by the Law Commission in England and Wales; they include a new test of decision making capacity and a new psychiatric test that has yet to be fully developed. Although proposals have met with some support, there have also been detractors. The history of fitness to plead is reviewed and current case law (including the 1836 Pritchard criteria) is examined. Although existing arrangements have been criticised, this may be attributable to inconsistent practical application, rather than inherent conceptual flaws. The Pritchard test has largely stood the test of time and has emerged relatively unscathed. Fitness to plead is not a medical construct, but rather a legal entity and any new test would be likely to introduce its own difficulties. A capacity based assessment could enhance debate and disagreement and increase court time in many cases, presenting new resource implications with questionable benefit. As the existing Pritchard criteria, amended by case law, already include a five limb test that closely resembles a capacity assessment (ability to plead to the indictment, to understand the course of the proceedings, to instruct a lawyer, to challenge a juror and to understand the evidence) and given the difficulties in introducing a functional test format in other jurisdictions, the Law Commission's proposals should now be set aside, perhaps for another day: reconsideration may be possible some decades hence, pending enhanced scientific developments within psychiatry and better understanding of the mind. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. NASA/FAA Tailplane Icing Program Overview

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  7. Phase 1 Environmental Baseline Survey for the Leasing of Nevada Test and Training Range, EC-South Range, Well Site ER-EC-11, for the Underground Test Area Pahute Mesa Phase 2 Drilling and Testing Program Nye County, Nevada

    DTIC Science & Technology

    2009-05-01

    rates are low, ranging from 0.014 to 2.2 liters per second (0.22 to 35 gallons per minute) (IT, 1997; Thordarson and Robinson, 1971). Most water...Area Ash Meadows Discharge Area Oasis Valley Discharge Area 29 fractured volcanic rocks (Winograd and Thordarson , 1975; Laczniak et al., 1996...Vicinity The current understanding of regional groundwater flow at the subject property and adjacent NTS is derived from work by Winograd and Thordarson

  8. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  9. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  10. The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.

    1992-01-01

    The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.

  11. Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity

    EPA Science Inventory

    The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and pote...

  12. Effects of Combined Hands-on Laboratory and Computer Modeling on Student Learning of Gas Laws: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Liu, Xiufeng

    2006-01-01

    Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry…

  13. Money Management for Women: A Demonstration of the Role of Community Organizations in the Delivery of Consumer Education.

    ERIC Educational Resources Information Center

    Heller, Barbara R.; Florio, Carol

    The Money Management for Women program was designed and implemented to provide lower-income women with financial planning information geared to their current level of understanding and financial circumstances. Objectives were to develop a model consumer education program and test the efficacy of community-based organizations as agents in…

  14. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    USDA-ARS?s Scientific Manuscript database

    As a key component of the carbon cycle, soil respiration (Rsoil) is being excessively studied with the aim of improving our understanding as well as our ability to predict Rsoil when climate changes. Many manipulation experiments have been performed to test how Rsoil and other carbon fluxes and ecos...

  15. Further Evidence on Adolescent Employment and Substance Use: Differences by Race and Ethnicity

    ERIC Educational Resources Information Center

    Johnson, Monica Kirkpatrick

    2004-01-01

    In an on-going debate over the consequences of adolescent employment, there is growing agreement that work intensity (i.e., longer hours) fosters underage drinking and other substance use. The current study furthers our understanding of the relationship between hours of employment and substance use in adolescence by testing whether it is evident…

  16. Choosing the Right CC Welding Unit: Student Success Depends on It

    ERIC Educational Resources Information Center

    Borchert, Neal

    2008-01-01

    Understanding the personality of a constant current (CC) dc welding machine can make the difference between a successful or unsuccessful weld test or between a student who pursues a career in welding and one who may quit in frustration. In this article, the author explains the two different "personalities" of CC welders. He also explains how…

  17. Keeping Current: Doing It with Style for Different Folks: Learning Styles for School Library Media Specialists.

    ERIC Educational Resources Information Center

    Barron, Daniel D.

    1997-01-01

    Understanding learning styles can help teachers get beyond lecture, text, and test. This article reviews some of the research and literature on learning styles, highlighting the Myers-Briggs Type Indicator, the Keirsey Temperament Sorter, the 4-MAT System, and Attention Deficit Disorder (ADD). Includes related Web sites and print resources. (PEN)

  18. Surmounting the Challenges of Improving Academic Performance: Closing the Achievement Gap through Social-Emotional and Character Development

    ERIC Educational Resources Information Center

    Elias, Maurice J.; White, Gwyne; Stepney, Cesalie

    2014-01-01

    While educators and policy makers have an intuitive understanding of the influence of socioeconomic factors and race on student achievement, these factors make the current emphasis on standardized test scores as a primary criterion for evaluating schools and teachers indefensible and ineffective. The research presented illustrates the limits of…

  19. The changing face of medical negligence law: from Bolam to Bolitho.

    PubMed

    Sooriakumaran, Prasanna

    2008-06-01

    The Bolam test was the standard by which medical negligence cases were judged. However, recently, the Bolitho case has resulted in a shift away from Bolam, with significant effects for all future negligence suits. Doctors need to have a thorough understanding of these issues in order to practice successfully in the current litiginous climate.

  20. Sonic Booms And Building Vibration Revisited

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph

    2006-05-01

    Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.

  1. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  2. Zika fever.

    PubMed

    Martínez de Salazar, Pablo; Suy, Anna; Sánchez-Montalvá, Adrián; Rodó, Carlota; Salvador, Fernando; Molina, Israel

    2016-04-01

    Zika fever is an arboviral systemic disease that has recently become a public health challenge of global concern after its spread through the Americas. This review highlights the current understanding on Zika virus epidemiology, its routes of transmission, clinical manifestations, diagnostic tests, and the current management, prevention and control strategies. It also delves the association between Zika infection and complications, such as microencephaly or Guillem-Barré syndrome. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  3. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  4. TARDEC FMEA TRAINING: Understanding and Evaluating Failure Mode and Effects Analyses (FMEA)

    DTIC Science & Technology

    2012-06-07

    Tip Brass 1 1.1.2.1.3 Ball Tungsten Carbide 1 1.1.2.1.4 Blue Ink Ink .1 grams 1.1.2.2 Steel 1 1.1.3 ABS/PP 1 Ink/Spring Assembly Ink Tube Spring Nib...does not meet airflow (8) voltage circuit analy sis of vehic le - New Yuma - test requirements (6 in. WCtJ.P -Blown fuse control c ircuit vehicle...1500 CFM for XXXX) - Broken wire - Compare fuse capacity to in-rush current and stall current during high ambient temperature conditions - Review

  5. Public Health Genomics and Genetic Test Evaluation: The Challenge of Conducting Behavioural Research on the Utility of Lifestyle-Genetic Tests

    PubMed Central

    Sanderson, Saskia C.; Wardle, Jane; Humphries, Steve E.

    2008-01-01

    Human genetics research is increasingly concerned with multifactorial conditions such as diabetes and heart disease, which are influenced not only by genetic but also lifestyle factors such as diet and smoking. Although the results of ‘lifestyle-genetic’ tests using this information could conceivably motivate lifestyle changes in the future, companies are already selling such tests and related lifestyle advice commercially. Some academics and lobby groups have condemned the companies for selling these tests in advance of scientific support. Others are concerned that the tests may not motivate lifestyle improvements, instead causing distress in people receiving adverse test results and complacency in those receiving reassuring results. There is currently no regulatory oversight of genetic test utility, despite consensus in the Public Health Genomics community that clinical utility (including psychological and behavioural impact) of all emerging genetic tests should be evaluated before being introduced for individual use. Clearly, empirical data in this area is much needed, to inform understanding of the potential utility of these tests, and of whether stricter regulation of commercial exploitation is needed. In this article, we review the current situation regarding lifestyle-genetic tests, and discuss the challenges inherent in conducting this kind of behavioural research in the genomics era. PMID:19776630

  6. Is intuition really cooperative? Improved tests support the social heuristics hypothesis

    PubMed Central

    Maule, John; Starmer, Chris

    2018-01-01

    Understanding human cooperation is a major scientific challenge. While cooperation is typically explained with reference to individual preferences, a recent cognitive process view hypothesized that cooperation is regulated by socially acquired heuristics. Evidence for the social heuristics hypothesis rests on experiments showing that time-pressure promotes cooperation, a result that can be interpreted as demonstrating that intuition promotes cooperation. This interpretation, however, is highly contested because of two potential confounds. First, in pivotal studies compliance with time-limits is low and, crucially, evidence shows intuitive cooperation only when noncompliant participants are excluded. The inconsistency of test results has led to the currently unresolved controversy regarding whether or not noncompliant subjects should be included in the analysis. Second, many studies show high levels of social dilemma misunderstanding, leading to speculation that asymmetries in understanding might explain patterns that are otherwise interpreted as intuitive cooperation. We present evidence from an experiment that employs an improved time-pressure protocol with new features designed to induce high levels of compliance and clear tests of understanding. Our study resolves the noncompliance issue, shows that misunderstanding does not confound tests of intuitive cooperation, and provides the first independent experimental evidence for intuitive cooperation in a social dilemma using time-pressure. PMID:29304055

  7. Enhanced Large Solid Rocket Motor Understanding Through Performance Margin Testing: RSRM Five-Segment Engineering Test Motor (ETM-3)

    NASA Technical Reports Server (NTRS)

    Huppi, Hal; Tobias, Mark; Seiler, James

    2003-01-01

    The Five-Segment Engineering Test Motor (ETM-3) is an extended length reusable solid rocket motor (RSRM) intended to increase motor performance and internal environments above the current four-segment RSRM flight motor. The principal purpose of ETM-3 is to provide a test article for RSRM component margin testing. As the RSRM and Space Shuttle in general continue to age, replacing obsolete materials becomes an ever-increasing issue. Having a five-segment motor that provides environments in excess of normal opera- tion allows a mechanism to subject replacement materials to a more severe environment than experienced in flight. Additionally, ETM-3 offers a second design data point from which to develop and/or validate analytical models that currently have some level of empiricism associated with them. These enhanced models have the potential to further the understanding of RSRM motor performance and solid rocket motor (SRM) propulsion in general. Furthermore, these data could be leveraged to support a five-segment booster (FSB) development program should the Space Shuttle program choose to pursue this option for abort mode enhancements during the ascent phase. A tertiary goal of ETM-3 is to challenge both the ATK Thiokol Propulsion and NASA MSFC technical personnel through the design and analysis of a large solid rocket motor without the benefit of a well-established performance database such as the RSRM. The end result of this undertaking will be a more competent and experienced workforce for both organizations. Of particular interest are the motor design characteristics and the systems engineering approach used to conduct a complex yet successful large motor static test. These aspects of ETM-3 and more will be summarized.

  8. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design

    NASA Astrophysics Data System (ADS)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  9. Patient autonomy and choice in healthcare: self-testing devices as a case in point.

    PubMed

    Greaney, Anna-Marie; O'Mathúna, Dónal P; Scott, P Anne

    2012-11-01

    This paper aims to critique the phenomenon of advanced patient autonomy and choice in healthcare within the specific context of self-testing devices. A growing number of self-testing medical devices are currently available for home use. The premise underpinning many of these devices is that they assist individuals to be more autonomous in the assessment and management of their health. Increased patient autonomy is assumed to be a good thing. We take issue with this assumption and argue that self-testing provides a specific example how increased patient autonomy and choice within healthcare might not best serve the patient population. We propose that current interpretations of autonomy in healthcare are based on negative accounts of liberty to the detriment of a more relational understanding. We also propose that Kantian philosophy is often applied to the healthcare arena in an inappropriate manner. We draw on the philosophical literature and examples from the self-testing process to support these claims. We conclude by offering an alternative account of autonomy based on the interrelated concepts of relationality, care and responsibility.

  10. Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2017-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA's ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of e an Astronaut Occupational Health program to include expanded medical monitoring of former NASA astronauts. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks to astronauts. Such an expansion would therefore improve the understanding of the health of the astronaut population as a whole, and the ability to identify, mitigate, and manage such risks in preparation for deep space exploration missions.

  11. Be Mean or Be Nice? Understanding the Effects of Aggressive and Polite Communication Styles in Child Vaccination Debate.

    PubMed

    Yuan, Shupei; Besley, John C; Ma, Wenjuan

    2018-05-08

    The current study investigated the effect of communication style in the child vaccination debate. Based on expectancy violation theory, this study tested the effects of aggressive, neutral, and polite communication styles in the contexts of child vaccination, controlling for parents' attitudes toward the issue. The online experiment showed that expectancy violation significantly mediates the relationship between message style and outcomes. The results provided a novel way to understand the effect of communication style on child vaccination message and practical implications for health communicators to operate communication style during interactions in health contexts.

  12. Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate and diisononyl phthalate

    EPA Science Inventory

    Several phthalate esters have been linked to the Phthalate Syndrome, affecting male reproductive development when administered to pregnant rats during in utero sexual differentiation. The goal of the current study was to enhance understanding of this class of compounds in the Spr...

  13. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Treesearch

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  14. Is Longing Only for Germans? A Cross-Cultural Comparison of Sehnsucht in Germany and the United States

    ERIC Educational Resources Information Center

    Scheibe, Susanne; Blanchard-Fields, Fredda; Wiest, Maja; Freund, Alexandra M.

    2011-01-01

    "Sehnsucht", the longing or yearning for ideal yet seemingly unreachable states of life, is a salient topic in German culture and has proven useful for understanding self-regulation across adulthood in a German sample (e.g., Scheibe, Freund, & Baltes, 2007). The current study tested whether findings for German samples could be…

  15. Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands

    Treesearch

    Eric V. Mueller; Nicholas Skowronski; Kenneth Clark; Michael Gallagher; Robert Kremens; Jan C. Thomas; Mohamad El Houssami; Alexander Filkov; Rory M. Hadden; William Mell; Albert Simeoni

    2017-01-01

    Quantification of field-scale fire behavior is necessary to improve the current scientific understanding of wildland fires and to develop and test relevant, physics-based models. In particular, detailed descriptions of individual fires are required, for which the available literature is limited. In this work, two such field-scale experiments, carried out in pine stands...

  16. Theory of Mind Development in Chinese Children: A Meta-Analysis of False-Belief Understanding across Cultures and Languages

    ERIC Educational Resources Information Center

    Liu, David; Wellman, Henry M.; Tardif, Twila; Sabbagh, Mark A.

    2008-01-01

    Theory of mind is claimed to develop universally among humans across cultures with vastly different folk psychologies. However, in the attempt to test and confirm a claim of universality, individual studies have been limited by small sample sizes, sample specificities, and an overwhelming focus on Anglo-European children. The current meta-analysis…

  17. Relate@IU>>>Share@IU: A New and Different Computer-Based Communications Paradigm.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; Roberto, Joseph; Korkmaz, Ali; Oh, Jeong-En; Twal, Riad

    The purpose of this study was to examine problems with the current computer-based electronic communication systems and to initially test and revise a new and different paradigm for e-collaboration, Relate@IU. Understanding the concept of sending links to resources, rather than sending the resource itself, is at the core of how Relate@IU differs…

  18. Simulation of quaking aspen potential fire behavior in Northern Utah, USA

    Treesearch

    R. Justin DeRose; A. Joshua Leffler

    2014-01-01

    Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...

  19. An illustration of whole systems thinking.

    PubMed

    Kalim, Kanwal; Carson, Ewart; Cramp, Derek

    2006-08-01

    The complexity of policy-making in the NHS is such that systemic, holistic thinking is needed if the current government's plans are to be realized. This paper describes systems thinking and illustrates its value in understanding the complexity of the diabetes National Service Framework (NSF); its role in identifying problems and barriers previously not predicted; and in reaching conclusions as to how it should be implemented. The approach adopted makes use of soft systems methodology (SSM) devised by Peter Checkland. This analysis reveals issues relating to human communication, information provision and resource allocation needing to be addressed. From this, desirable and feasible changes are explored as means of achieving a more effective NSF, examining possible changes from technical, organizational, economic and cultural perspectives. As well as testing current health policies and plans, SSM can be used to test the feasibility of new health policies. This is achieved by providing a greater understanding and appreciation of what is happening in the real world and how people work. Soft systems thinking is the best approach, given the complexity of health care. It is a flexible, cost-effective solution, which should be a prerequisite before any new health policy is launched.

  20. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  1. A quantitative study of a physics-first pilot program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasero, Spencer Lee; /Northern Illinois U.

    Hundreds of high schools around the United States have inverted the traditional core sequence of high school science courses, putting physics first, followed by chemistry, and then biology. A quarter-century of theory, opinion, and anecdote are available, but the literature lacks empirical evidence of the effects of the program. The current study was designed to investigate the effects of the program on science achievement gain, growth in attitude toward science, and growth in understanding of the nature of scientific knowledge. One hundred eighty-five honor students participated in this quasi-experiment, self-selecting into either the traditional or inverted sequence. Students took themore » Explore test as freshmen, and the Plan test as sophomores. Gain scores were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. Participants were administered surveys measuring attitude toward science and understanding of the nature of scientific knowledge twice per year. A multilevel growth model, compared across program groups, did not show any significant effect of the inverted sequence on either attitude or understanding of the nature of scientific knowledge. The sole significant parameter showed a decline in student attitude independent of course sequence toward science over the first two years of high school. The results of this study support the theory that moving physics to the front of the science sequence can improve achievement. The importance of the composite gain score on tests vertically aligned with the high-stakes ACT is discussed, and several ideas for extensions of the current study are offered.« less

  2. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  3. Validation of bending tests by nanoindentation for micro-contact analysis of MEMS switches

    NASA Astrophysics Data System (ADS)

    Broue, Adrien; Fourcade, Thibaut; Dhennin, Jérémie; Courtade, Frédéric; Charvet, Pierre–Louis; Pons, Patrick; Lafontan, Xavier; Plana, Robert

    2010-08-01

    Research on contact characterization for microelectromechanical system (MEMS) switches has been driven by the necessity to reach a high-reliability level for micro-switch applications. One of the main failures observed during cycling of the devices is the increase of the electrical contact resistance. The key issue is the electromechanical behaviour of the materials used at the contact interface where the current flows through. Metal contact switches have a large and complex set of failure mechanisms according to the current level. This paper demonstrates the validity of a new methodology using a commercial nanoindenter coupled with electrical measurements on test vehicles specially designed to investigate the micro-scale contact physics. Dedicated validation tests and modelling are performed to assess the introduced methodology by analyzing the gold contact interface with 5 µm2 square bumps at various current levels. Contact temperature rise is measured, which affects the mechanical properties of the contact materials and modifies the contact topology. In addition, the data provide a better understanding of micro-contact behaviour related to the impact of current at low- to medium-power levels. This article was originally submitted for the special section 'Selected papers from the 20th Micromechanics Europe Workshop (MME 09) (Toulouse, France, 20-22 September 2009)', Journal of Micromechanics and Microengineering, volume 20, issue 6.

  4. Electrostatic Evaluation of the Propellant Handlers Ensemble

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Buhler, Charles

    2006-01-01

    The Self-Contained Atmospheric Protective Ensemble (SCAPE) used in propellant handling at NASA's Kennedy Space Center (KSC) has recently completed a series of tests to determine its electrostatic properties of the coverall fabric used in the Propellant Handlers Ensemble (PHE). Understanding these electrostatic properties are fundamental to ensuring safe operations when working with flammable rocket propellants such as hydrazine, methyl hydrazine, and unsymmetrical dimethyl hydrazine. These tests include surface resistivity, charge decay, triboelectric charging, and flame incendivity. In this presentation, we will discuss the results of these tests on the current PHE as well as new fabrics and materials being evaluated for the next generation of PHE.

  5. Event-scale relationships between surface velocity, temperature and chlorophyll in the coastal ocean, as seen by satellite

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted

    1991-01-01

    The overall goal of this project was to increase our understanding of processes which determine the temporally varying distributions of surface chlorophyll pigment concentration and surface temperature in the California Current System (CCS) on the time-scale of 'events', i.e., several days to several weeks. We also proposed to investigate seasonal and regional differences in these events. Additionally, we proposed to evaluate methods of estimating surface velocities and horizontal transport of pigment and heat from sequences of AVHRR and CZCS images. The four specific objectives stated in the original proposal were to: (1) test surface current estimates made from sequences of both SST and color images using variations of the statistical method of Emery et al. (1986) and estimate the uncertainties in these satellite-derived surface currents; (2) characterize the spatial and temporal relationships of chlorophyll and temperature in rapidly evolving features for which adequate imagery exist and evaluate the contribution of these events to monthly and seasonal averages; (3) use the methods tested in (1) to determine the nature of the velocity fields in the CCS; and (4) compare the currents, temperature, and currents in different seasons and in different geographic regions.

  6. Breaking barriers in the genomics and pharmacogenetics of drug addiction

    PubMed Central

    Ho, MK; Goldman, D; Heinz, A; Kaprio, J; Kreek, MJ; Li, MD; Munafò, MR; Tyndale, RF

    2013-01-01

    Drug addictions remain a substantial health issue, with limited treatment options currently available. Despite considerable advances in the understanding of our genetic architecture, the genetic underpinning of complex disorders remains elusive. Numerous candidate genes have been implicated in the etiology and response to treatment for different addictions based on our current understanding of the neurobiology. Genome-wide association studies have also provided novel targets. However, replication of these studies is often lacking which complicates interpretation; this will improve as issues such as phenotypic characterization, the apparent “missing heritability”, the identification of functional variants, and possible gene-environment interactions are addressed. In addition, there is growing evidence that genetic information can be useful for refining the choice of addiction treatment. As genetic testing becomes more common in the practice of medicine, a variety of ethical and practical challenges, some of which are unique to drug addiction, will also need to be considered. PMID:20981002

  7. Cyclic Polarization Behavior of ASTM A537-Cl.1 Steel in the Vapor Space Above Simulated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2004-11-01

    An assessment of the potential degradation mechanisms of Types I and II High-Level Waste (HLW) Tanks determined that pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Specifically, nitrate induced stress corrosion cracking was determined to be the principal degradation mechanism for the primary tank steel of non-stress relieved tanks. Controls on the solution chemistry have been in place to preclude the initiation and propagation of degradation in the tanks. However, recent experience has shown that steel not in contact with the bulk waste solution or slurry, but exposed to the ''vapor space'' above the bulkmore » waste, may be vulnerable to the initiation and propagation of degradation, including pitting and stress corrosion cracking. A program to resolve the issues associated with potential vapor space corrosion is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion (similar to current evaluations). There are several needs for a technically defensible basis with sufficient understanding to perform these evaluations. These include understanding of the (1) surface chemistry evolution, (2) corrosion response through coupon testing, and (3) mechanistic understanding through electrochemical studies. Experimentation performed in FY02 determined the potential for vapor space and liquid/air interface corrosion of ASTM A285-70 and ASTM A537-Cl.1 steels. The material surface characteristics, i.e. mill-scale, polished, were found to play a key role in the pitting response. The experimentation indicated that the potential for limited vapor space and liquid/air interface pitting exists at 1.5M nitrate solution when using chemistry controls designed to prevent stress corrosion cracking. Experimentation performed in FY03 quantified pitting rates as a function of material surface characteristics, including mill-scale and defects within the mill-scale. Testing was performed on ASTM A537-Cl.1 (normalized) steel, the material of construction of the Type III HLW tanks. The pitting rates were approximately 3 mpy for exposure above inhibited solutions, as calculated from the limited exposure times. This translates to a penetration time of 166 years for a 0.5-in tank wall provided that the pitting rate remains constant and the bulk solution chemistry is maintained within the L3 limit. The FY04 testing consisted of electrochemical testing to potentially lend insight into the surface chemistry and further understand the corrosion mechanism in the vapor space. Electrochemical testing lends insight into the corrosion processes through the determination of current potential relationships. The results of the electrochemical testing performed during FY04 are presented here.« less

  8. Assessing Student Understanding of Physical Hydrology

    NASA Astrophysics Data System (ADS)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2 students had a full understanding of the processes linked to hydrology. Half the students had provided evidence of the desired understanding; however, half still demonstrated only a rudimentary understanding. Results on Q2 were similar. On the pre-test, 2 students scored 0, 21 students scored 1, indicating rudimentary understanding, 2 students scored a 2, and no student scored a 3. On the post-test, again approximately half the students achieved the desired understanding: 9 students showed some recognition of concepts, 12 students demonstrated a basic understanding; only one student exhibited full understanding. On Q3, no student scored 0, 9 scored 1, 15 scored 2 and 1 student scored 3. On the post-test, one student scored 1, 16 students scored 2, and 5 students scored 3. Students were significantly better at responding to Q3 (the application) as opposed to Q1 and Q2, which were more abstract. Research has shown that students are often better able to solve contextualized problems when they are unable to deal with more abstract tasks. This result has limitations including the small number of participants, all from one institution, and the fact that the rubric was still under development. Nevertheless, the high inter-rater agreement by a group of experts is significant; the rubric we developed is a potentially useful tool for assessment of learning and understanding physical hydrology. Supported by NSF CAREER grant (EAR-0955750).

  9. Thermo-Mechanical Fatigue Crack Growth of RR1000

    PubMed Central

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles. PMID:28772394

  10. Measurement Requirements for Improved Modeling of Arcjet Facility Flows

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.

    2000-01-01

    Current efforts to develop new reusable launch vehicles and to pursue low-cost robotic planetary missions have led to a renewed interest in understanding arc-jet flows. Part of this renewed interest is concerned with improving the understanding of arc-jet test results and the potential use of available computational-fluid- dynamic (CFD) codes to aid in this effort. These CFD codes have been extensively developed and tested for application to nonequilibrium, hypersonic flow modeling. It is envisioned, perhaps naively, that the application of these CFD codes to the simulation of arc-jet flows would serve two purposes: first. the codes would help to characterize the nonequilibrium nature of the arc-jet flows; and second. arc-jet experiments could potentially be used to validate the flow models. These two objectives are, to some extent, mutually exclusive. However, the purpose of the present discussion is to address what role CFD codes can play in the current arc-jet flow characterization effort, and whether or not the simulation of arc-jet facility tests can be used to eva1uate some of the modeling that is used to formu1ate these codes. This presentation is organized into several sections. In the introductory section, the development of large-scale, constricted-arc test facilities within NASA is reviewed, and the current state of flow diagnostics using conventional instrumentation is summarized. The motivation for using CFD to simulate arc-jet flows is addressed in the next section, and the basic requirements for CFD models that would be used for these simulations are briefly discussed. This section is followed by a more detailed description of experimental measurements that are needed to initiate credible simulations and to evaluate their fidelity in the different flow regions of an arc-jet facility. Observations from a recent combined computational and experiment.al investigation of shock-layer flows in a large-scale arc-jet facility are then used to illustrate the current state of development of diagnostic instrumentation, CFD simulations, and general knowledge in the field of arc-jet characterization. Finally, the main points are summarized and recommendations for future efforts are given.

  11. Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2010-01-01

    Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.

  12. Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.

    2016-09-01

    The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less

  13. Novel strategies for the management of recurrent pregnancy loss.

    PubMed

    Kutteh, William H

    2015-05-01

    This article discusses the current trends in the diagnosis and treatment of recurrent pregnancy loss. Genetic testing of the miscarriage tissue by 23-chromosome microarray and the ability to identify maternal cell contamination have increased our awareness of the role of aneuploidy as a cause of recurrent pregnancy loss. This increasing influence and the role of genetic testing in developing a strategy for the evaluation of recurrent pregnancy loss are described and discussed. The most common questions that practicing physicians ask about recurrent pregnancy loss include how many losses are needed to make the diagnosis, what counts as a pregnancy loss, what constitutes a full workup, should we get karyotypes on the parents and the miscarriage, and what is the prognosis for a live birth? This review attempts to answer those questions based on current research and clinical experience to expand our current understanding of recurrent pregnancy loss. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Diagnosing cystic fibrosis-related diabetes: current methods and challenges.

    PubMed

    Prentice, Bernadette; Hameed, Shihab; Verge, Charles F; Ooi, Chee Y; Jaffe, Adam; Widger, John

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the end-point of a spectrum of glucose abnormalities in cystic fibrosis that begins with early insulin deficiency and ultimately results in accelerated nutritional decline and loss of lung function. Current diagnostic and management regimens are unable to entirely reverse this clinical decline. This review summarises the current understanding of the pathophysiology of CFRD, the issues associated with using oral glucose tolerance tests in CF and the challenges faced in making the diagnosis of CFRD. Medline database searches were conducted using search terms "Cystic Fibrosis Related Diabetes", "Cystic Fibrosis" AND "glucose", "Cystic Fibrosis" AND "insulin", "Cystic Fibrosis" AND "Diabetes". Additionally, reference lists were studied. Expert commentary: Increasing evidence points to early glucose abnormalities being clinically relevant in cystic fibrosis and as such novel diagnostic methods such as continuous glucose monitoring or 30 minute sampled oral glucose tolerance test (OGTT) may play a key role in the future in the screening and diagnosis of early glucose abnormalities in CF.

  15. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  16. Skin sensitisation: the Colipa strategy for developing and evaluating non-animal test methods for risk assessment.

    PubMed

    Maxwell, Gavin; Aeby, Pierre; Ashikaga, Takao; Bessou-Touya, Sandrine; Diembeck, Walter; Gerberick, Frank; Kern, Petra; Marrec-Fairley, Monique; Ovigne, Jean-Marc; Sakaguchi, Hitoshi; Schroeder, Klaus; Tailhardat, Magali; Teissier, Silvia; Winkler, Petra

    2011-01-01

    Allergic contact dermatitis is a delayed-type hypersensitivity reaction induced by small reactive chemicals (haptens). Currently, the sensitising potential and potency of new chemicals is usually characterised using data generated via animal studies, such as the local lymph node assay (LLNA). There are, however, increasing public and political concerns regarding the use of animals for the testing of new chemicals. Consequently, the development of in vitro, in chemico or in silico models for predicting the sensitising potential and/or potency of new chemicals is receiving widespread interest. The Colipa Skin Tolerance task force currently collaborates with and/or funds several academic research groups to expand our understanding of the molecular and cellular events occurring during the acquisition of skin sensitisation. Knowledge gained from this research is being used to support the development and evaluation of novel alternative approaches for the identification and characterisation of skin sensitizing chemicals. At present three non-animal test methods (Direct Peptide Reactivity Assay (DPRA), Myeloid U937 Skin Sensitisation Test (MUSST) and human Cell Line Activation Test (hCLAT)) have been evaluated in Colipa interlaboratory ring trials for their potential to predict skin sensitisation potential and were recently submitted to ECVAM for formal pre-validation. Data from all three test methods will now be used to support the study and development of testing strategy approaches for skin sensitiser potency prediction. This publication represents the current viewpoint of the cosmetics industry on the feasibility of replacing the need for animal test data for informing skin sensitisation risk assessment decisions.

  17. Contributions to the mini-workshop on beam-beam compensation in the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, V.

    1998-02-01

    The purpose of the Workshop was to assay the current understanding of compensation of the beam-beam effects in the Tevatron with use of low-energy high-current electron beam, relevant accelerator technology, along with other novel techniques of the compensation and previous attempts. About 30 scientists representing seven institutions from four countries--FNAL, SLAC, BNL, Novosibirsk, CERN, and Dubna were in attendance. Twenty one talks were presented. The event gave firm ground for wider collaboration on experimental test of the compensation at the Tevatron collider. This report consists of vugraphs of talks given at the meeting.

  18. Compression After Impact Experiments and Analysis on Honeycomb Core Sandwich Panels with Thin Facesheets

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.

    2011-01-01

    A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.

  19. Computer-assisted CI fitting: Is the learning capacity of the intelligent agent FOX beneficial for speech understanding?

    PubMed

    Meeuws, Matthias; Pascoal, David; Bermejo, Iñigo; Artaso, Miguel; De Ceulaer, Geert; Govaerts, Paul J

    2017-07-01

    The software application FOX ('Fitting to Outcome eXpert') is an intelligent agent to assist in the programing of cochlear implant (CI) processors. The current version utilizes a mixture of deterministic and probabilistic logic which is able to improve over time through a learning effect. This study aimed at assessing whether this learning capacity yields measurable improvements in speech understanding. A retrospective study was performed on 25 consecutive CI recipients with a median CI use experience of 10 years who came for their annual CI follow-up fitting session. All subjects were assessed by means of speech audiometry with open set monosyllables at 40, 55, 70, and 85 dB SPL in quiet with their home MAP. Other psychoacoustic tests were executed depending on the audiologist's clinical judgment. The home MAP and the corresponding test results were entered into FOX. If FOX suggested to make MAP changes, they were implemented and another speech audiometry was performed with the new MAP. FOX suggested MAP changes in 21 subjects (84%). The within-subject comparison showed a significant median improvement of 10, 3, 1, and 7% at 40, 55, 70, and 85 dB SPL, respectively. All but two subjects showed an instantaneous improvement in their mean speech audiometric score. Persons with long-term CI use, who received a FOX-assisted CI fitting at least 6 months ago, display improved speech understanding after MAP modifications, as recommended by the current version of FOX. This can be explained only by intrinsic improvements in FOX's algorithms, as they have resulted from learning. This learning is an inherent feature of artificial intelligence and it may yield measurable benefit in speech understanding even in long-term CI recipients.

  20. Practitioner review: the assessment of language pragmatics.

    PubMed

    Adams, Catherine

    2002-11-01

    The assessment of pragmatics expressed in spoken language is a central issue in the evaluation of children with communication impairments and related disorders. A developmental approach to assessment has remained problematic due to the complex interaction of social, linguistic, cognitive and cultural influences on pragmatics. A selective review and critique of current formal and informal testing methods and pragmatic analytic procedures. Formal testing of pragmatics has limited potential to reveal the typical pragmatic abnormalities in interaction but has a significant role to play in the assessment of comprehension of pragmatic intent. Clinical assessment of pragmatics with the pre-school child should focus on elicitation of communicative intent via naturalistic methods as part of an overall assessment of social communication skills. Assessments for older children should include a comprehensive investigation of speech acts, conversational and narrative abilities, the understanding of implicature and intent as well as the child's ability to employ contextual cues to understanding. Practical recommendations are made regarding the choice of a core set of pragmatic assessments and elicitation techniques. The practitioner's attention is drawn to the lack of the usual safeguards of reliability and validity that have persisted in some language pragmatics assessments. A core set of pragmatic assessment tools can be identified from the proliferation of instruments in current use. Further research is required to establish clearer norms and ranges in the development of pragmatic ability, particularly with respect to the understanding of inference, topic management and coherence.

  1. Assessing student understanding of measurement and uncertainty

    NASA Astrophysics Data System (ADS)

    Abbott, David Scot

    A test to assess student understanding of measurement and uncertainty has been developed and administered to more than 500 students at two large research universities. The aim is two-fold: (1) to assess what students learn in the first semester of introductory physics labs and (2) to uncover patterns in student reasoning and practice. The forty minute, eleven item test focuses on direct measurement and student attitudes toward multiple measurements. After one revision cycle using think-aloud interviews, the test was administered to students to three groups: students enrolled in traditional laboratory lab sections of first semester physics at North Carolina State University (NCSU), students in an experimental (SCALE-UP) section of first semester physics at NCSU, and students in first semester physics at the University of North Carolina at Chapel Hill. The results were analyzed using a mixture of qualitative and quantitative methods. In the traditional NCSU labs, where students receive no instruction in uncertainty and measurement, students show no improvement on any of the areas examined by the test. In SCALE-UP and at UNC, students show statistically significant gains in most areas of the test. Gains on specific test items in SCALE-UP and at UNC correspond to areas of instructional emphasis. Test items were grouped into four main aspects of performance: "point/set" reasoning, meaning of spread, ruler reading and "stacking." Student performance on the pretest was examined to identify links between these aspects. Items within each aspect are correlated to one another, sometimes quite strongly, but items from different aspects rarely show statistically significant correlation. Taken together, these results suggest that student difficulties may not be linked to a single underlying cause. The study shows that current instruction techniques improve student understanding, but that many students exit the introductory physics lab course without appreciation or coherent understanding for the concept of measurement uncertainty.

  2. Cumulative volume and mass profiles for dominant stems and whole trees tested for northern hardwoods

    Treesearch

    Neil R. Ver Planck; David W. MacFarlane

    2012-01-01

    New models were presented to understand the relationship between the dominant stem and a whole tree using cumulative, whole-tree mass/volume profiles which are compatible with the current bole taper modeling paradigm. New models were developed from intensive, destructive sampling of 32 trees from a temperate hardwood forest in Michigan. The species in the sample were...

  3. Apes perform like infants in false-belief tasks.

    PubMed

    Bugnyar, Thomas

    2017-12-01

    Although the extent to which some nonhuman animals understand mental states is currently under debate, attributing false beliefs has been considered to be beyond their limits. A recent study by Krupenye, Kano, Hirata, Call, and Tomasello (Science, 354, 110-114, 2016) shows that great apes pass a false-belief task when they are tested with an anticipatory-looking paradigm developed for nonverbal human infants.

  4. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

  5. Final Report: Continuation Study: A Systems Approach to Understanding Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2017-01-31

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Post Traumatic Stress Disorder, HPA-Circadian-metabolic pathway, methylation...17150 remaining probes were located in coding regions. Linear additive models were used to test the interactions among the quantitative loci and...SECURITY CLASSIFICATION OF: Post -Traumatic Stress Disorder (PTSD) is a complex anxiety disorder affecting many combat-exposed soldiers. Current

  6. Straight from the Mouths of Horses and Tapirs: Using Fossil Teeth to Clarify How Ancient Environments Have Changed over Time

    ERIC Educational Resources Information Center

    DeSantis, Larisa

    2009-01-01

    Clarifying ancient environments millions of years ago is necessary to better understand how ecosystems change over time, providing insight as to the potential impacts of current global warming. This module engages middle school students in the scientific process, asking them to use tooth measurement to test the null hypothesis that horse and tapir…

  7. Reading the Bible as a Pedagogical Text: Testing, Testament, and Some Postmodern Considerations about Religion/the Bible in Contemporary Education

    ERIC Educational Resources Information Center

    Segall, Avner; Burke, Kevin

    2013-01-01

    While it is true that following various Supreme Court decisions in the last century, religion is, in most cases, no longer explicitly taught in public school classrooms, we use this article to explore the ways in which implicit religious understandings regarding curriculum and pedagogy still remain prevalent in current public education. Building…

  8. Understanding Psychopathy through an Evaluation of Interpersonal Behavior: Testing the Factor Structure of the Interpersonal Measure of Psychopathy in a Large Sample of Jail Detainees

    ERIC Educational Resources Information Center

    Vitacco, Michael J.; Kosson, David S.

    2010-01-01

    Interpersonal characteristics are core features of the psychopathy construct which have a unique pattern of correlations with a variety of external correlates. To improve the assessment of interpersonal traits, the current study evaluated the internal structure of the Interpersonal Measure of Psychopathy (IM-P) through exploratory and confirmatory…

  9. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    PubMed Central

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  10. Payload Planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, Tameka J.

    1995-01-01

    A review of the evolution of the International Space Station (ISS) was performed for the purpose of understanding the project objectives. It was requested than an analysis of the current Office of Space Access and Technology (OSAT) Partnership Utilization Plan (PUP) traffic model be completed to monitor the process through which the scientific experiments called payloads are manifested for flight to the ISS. A viewing analysis of the ISS was also proposed to identify the capability to observe the United States Laboratory (US LAB) during the assembly sequence. Observations of the Drop-Tower experiment and nondestructive testing procedures were also performed to maximize the intern's technical experience. Contributions were made to the meeting in which the 1996 OSAT or Code X PUP traffic model was generated using the software tool, Filemaker Pro. The current OSAT traffic model satisfies the requirement for manifesting and delivering the proposed payloads to station. The current viewing capability of station provides the ability to view the US LAB during station assembly sequence. The Drop Tower experiment successfully simulates the effect of microgravity and conveniently documents the results for later use. The non-destructive test proved effective in determining stress in various components tested.

  11. Post-mortem genetic testing in a family with long-QT syndrome and hypertrophic cardiomyopathy.

    PubMed

    Kane, David A; Triedman, John

    2014-01-01

    Pediatric sudden unexplained deaths are rare and tragic events that should be evaluated with all the tools available to the medical community. The current state of genetic testing is an excellent resource that improves our ability to diagnose cardiovascular disorders that can lead to sudden cardiac arrest. Post-mortem genetic testing is not typically a covered benefit of health insurance and may not be offered to families in the setting of a negative autopsy. This unusual case includes two separate cardiovascular disorders that highlight the use of genetic testing and its role in diagnosis, screening, and risk stratification. The insurance company's decision to cover post-mortem testing demonstrated both compassion as well as an understanding of the long-term cost effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The reliability and validity of the Caregiver Work Limitations Questionnaire.

    PubMed

    Lerner, Debra; Parsons, Susan K; Chang, Hong; Visco, Zachary L; Pawlecki, J Brent

    2015-01-01

    To test a new Caregiver Work Limitations Questionnaire (WLQ). On the basis of the original WLQ, this new survey instrument assesses the effect of caregiving for ill and/or disabled persons on the caregiver's work performance. A questionnaire was administered anonymously to employees of a large business services company. Scale reliability and validity were tested with psychometric methods. Of 4128 survey participants, 18.3% currently were caregivers, 10.2% were past caregivers, and 71.5% were not caregivers. Current caregivers were limited in their ability to perform basic job tasks between mean 10.3% and 16.8% of the time. Confirmatory factor analysis yielded a scale structure similar to the WLQ's. Scales reliabilities (the Cronbach's α) ranged from 0.91 to 0.95. The Caregiver WLQ is a new tool for understanding the workplace effect of caregiving.

  13. Design of experiments enhanced statistical process control for wind tunnel check standard testing

    NASA Astrophysics Data System (ADS)

    Phillips, Ben D.

    The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.

  14. Toxoplasma gondii: history and diagnostic test development.

    PubMed

    Wyrosdick, Heidi M; Schaefer, John J

    2015-12-01

    Toxoplasma gondii is a protozoa that causes toxoplasmosis in people and other animals. It is considered one of the most common parasitic infections in the world due to its impressive range of hosts, widespread environmental contamination and the diverse means by which animals can be infected. Despite its ubiquity and numerous ongoing research efforts into both its basic biology and clinical management, many aspects of diagnosis and management of this disease are poorly understood. The range of diagnostic options that is available for veterinary diagnostic investigators are notably more limited than those available to medical diagnosticians, making accurate interpretation of each test result critical. The current review joins other reviews on the parasite with a particular emphasis on the history and continued development of diagnostic tests that are useful for veterinary diagnostic investigations. An understanding of the strengths and shortcomings of current diagnostic techniques will assist veterinary and public health officials in formulating effective treatment and control strategies in diverse animal populations.

  15. D Imaging for Museum Artefacts: a Portable Test Object for Heritage and Museum Documentation of Small Objects

    NASA Astrophysics Data System (ADS)

    Hess, M.; Robson, S.

    2012-07-01

    3D colour image data generated for the recording of small museum objects and archaeological finds are highly variable in quality and fitness for purpose. Whilst current technology is capable of extremely high quality outputs, there are currently no common standards or applicable guidelines in either the museum or engineering domain suited to scientific evaluation, understanding and tendering for 3D colour digital data. This paper firstly explains the rationale towards and requirements for 3D digital documentation in museums. Secondly it describes the design process, development and use of a new portable test object suited to sensor evaluation and the provision of user acceptance metrics. The test object is specifically designed for museums and heritage institutions and includes known surface and geometric properties which support quantitative and comparative imaging on different systems. The development for a supporting protocol will allow object reference data to be included in the data processing workflow with specific reference to conservation and curation.

  16. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  17. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanton, Alan; Zondlo, Mark; Gomez, Anthony

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lackmore » of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and cost-effective. The technology developed on this project is especially groundbreaking as it could be widely applied across FLUXNET and AmeriFlux sites (>1200 worldwide) for direct measurements of N2O exchange. The technology can be more broadly applied to gas monitoring requirements in industry, environmental monitoring, health and safety, etc.« less

  18. Goals, intentions and mental states: challenges for theories of autism.

    PubMed

    Hamilton, Antonia F de C

    2009-08-01

    The ability to understand the goals and intentions behind other people's actions is central to many social interactions. Given the profound social difficulties seen in autism, we might expect goal understanding to be impaired in these individuals. Two influential theories, the 'broken mirror' theory and the mentalising theory, can both predict this result. However, a review of the current data provides little empirical support for goal understanding difficulties; several studies demonstrate normal performance by autistic children on tasks requiring the understanding of goals or intentions. I suggest that this conclusion forces us to reject the basic broken mirror theory and to re-evaluate the breadth of the mentalising theory. More subtle theories which distinguish between different types of mirroring and different types of mentalising may be able to account for the present data, and further research is required to test and refine these theories.

  19. Understanding of emotions and false beliefs among hearing children versus deaf children.

    PubMed

    Ziv, Margalit; Most, Tova; Cohen, Shirit

    2013-04-01

    Emotion understanding and theory of mind (ToM) are two major aspects of social cognition in which deaf children demonstrate developmental delays. The current study investigated these social cognition aspects in two subgroups of deaf children-those with cochlear implants who communicate orally (speakers) and those who communicate primarily using sign language (signers)-in comparison to hearing children. Participants were 53 Israeli kindergartners-20 speakers, 10 signers, and 23 hearing children. Tests included four emotion identification and understanding tasks and one false belief task (ToM). Results revealed similarities among all children's emotion labeling and affective perspective taking abilities, similarities between speakers and hearing children in false beliefs and in understanding emotions in typical contexts, and lower performance of signers on the latter three tasks. Adapting educational experiences to the unique characteristics and needs of speakers and signers is recommended.

  20. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying density conditions. The system allows the user to define human-interactive and scripted aircraft and controller models of various standards, such as (but not limited to) Very High Frequency Digital Link (VDL) of various modes.

  1. Quality gap in primary health care services in Isfahan: women's perspective

    PubMed Central

    Sharifirad, Gholam R.; Shamsi, Mohsen; Pirzadeh, Asiyeh; Farzanegan, Parvin D.

    2012-01-01

    Background: Quality gap is the gap between client's understanding and expectations. The first step in removing this gap is to recognize client's understanding and expectations of the services. This study aimed to determine women's viewpoint of quality gap in primary health care centers of Isfahan. Materials and Methods: This cross-sectional study was conducted on women who came to primary health care centers in Isfahan city. Sample size was 1280 people. Service Quality was used to collect data including tangible dimensions, confidence, responsiveness, assurance and sympathy in providing services. Data were analyzed by t test and chi square test. Results: The results showed that women had controversy over all 5 dimensions. The least mean quality gap was seen in assurance (-11.08) and the highest mean quality gap was seen in tangible dimension (-14.41). The difference between women's viewpoint in all 5 dimensions was significant. (P < 0.05) Conclusion: Negative difference means clients’ expectations are much higher than their understanding of the current situation, so there is a large space to improve services and satisfy clients. PMID:23555148

  2. Rational tool use and tool choice in human infants and great apes.

    PubMed

    Buttelmann, David; Carpenter, Malinda; Call, Josep; Tomasello, Michael

    2008-01-01

    G. Gergely, H. Bekkering, and I. Király (2002) showed that 14-month-old infants imitate rationally, copying an adult's unusual action more often when it was freely chosen than when it was forced by some constraint. This suggests that infants understand others' intentions as rational choices of action plans. It is important to test whether apes also understand others' intentions in this way. In each of the current 3 studies, a comparison group of 14-month-olds used a tool more often when a demonstrator freely chose to use it than when she had to use it, but apes generally used the tool equally often in both conditions (orangutans were an exception). Only some apes thus show an understanding of others' intentions as rational choices of action plans.

  3. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes.

    PubMed

    Brechwald, Whitney A; Prinstein, Mitchell J

    2011-03-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research.

  4. Synthetic biology through biomolecular design and engineering.

    PubMed

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N

    2008-08-01

    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  5. Schedule Risks Due to Delays in Advanced Technology Development

    NASA Technical Reports Server (NTRS)

    Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan

    2008-01-01

    This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.

  6. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    PubMed Central

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  7. The role of age in understanding the psychological effects of racism for African Americans.

    PubMed

    Greer, Tawanda M; Spalding, Abby

    2017-10-01

    The purpose of the current study was to test age as a moderator of the effects of types of racism on psychological symptoms for a sample of 184 African American women. We hypothesized that increased age would be associated with greater severity in psychological symptoms in relation to exposure to types of racism. Moderated hierarchical regression analyses were performed to test our hypothesis. Findings revealed significant interactions between institutional racism and age in predicting anxiety. Younger women experienced more severe anxiety in relation to greater exposure to institutional racism compared to older African American women. Findings suggest that older age may function as a buffer to psychological outcomes related to racism exposure. Additional studies are needed to understand the ways in which older African American adults cope with racism-related experiences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  9. Lower Aerobic Endurance Linked to History of Depression in Multiple Sclerosis: Preliminary Observations.

    PubMed

    Chapman, Kimberly R; Anderson, Jason R; Calvo, Dayana; Pollock, Brandon S; Petersen, Jennifer; Gerhart, Hayden; Ridgel, Angela; Spitznagel, Mary Beth

    2018-06-01

    Despite the demonstrated benefits of exercise in multiple sclerosis (MS), this population shows low rates of physical activity. Understanding barriers to exercise in persons with MS is important. The current study examined the relationship between lifetime history of depression, current depressive symptoms, and aerobic endurance in persons with relapsing-remitting MS to determine whether depression might be one such barrier. Thirty-one participants with relapsing-remitting MS self-reported current depressive symptoms and history of depression. Aerobic endurance was assessed via 2-Minute Step Test. Linear regression demonstrated that lifetime history of depression predicted lower aerobic fitness whereas current depressive symptoms did not. Findings suggest a possible role of lifetime depression as a barrier to exercise in MS and highlight the importance of effective treatment of depression in this population to reduce its potential impact on exercise adherence.

  10. Description of the NASA Hypobaric Decompression Sickness Database (1982-1998)

    NASA Technical Reports Server (NTRS)

    Wessel, J. H., III; Conkin, J.

    2008-01-01

    The availability of high-speed computers, data analysis software, and internet communication are compelling reasons to describe and make available computer databases from many disciplines. Methods: Human research using hypobaric chambers to understand and then prevent decompression sickness (DCS) during space walks has been conducted at the Johnson Space Center (JSC) from 1982 to 1998. The data are archived in the NASA Hypobaric Decompression Sickness Database, within an Access 2003 Relational Database. Results: There are 548 records from 237 individuals that participated in 31 unique tests. Each record includes physical characteristics, the denitrogenation procedure that was tested, and the outcome of the test, such as the report of a DCS symptom and the intensity of venous gas emboli (VGE) detected with an ultrasound Doppler bubble detector as they travel in the venous blood along the pulmonary artery on the way to the lungs. We documented 84 cases of DCS and 226 cases where VGE were detected. The test altitudes were 10.2, 10.1, 6.5, 6.0, and 4.3 pounds per square inch absolute (psia). 346 records are from tests conducted at 4.3 psia, the operating pressure of the current U.S. space suit. 169 records evaluate the Staged 10.2 psia Decompression Protocol used by the Space Shuttle Program. The mean exposure time at altitude was 242.3 minutes (SD = 80.6), with a range from 120 to 360 minutes. Among our test subjects, 96 records of exposures are females. The mean age of all test subjects was 31.8 years (SD = 7.17), with a range from 20 to 54 years. Discussion: These data combined with other published databases and evaluated with metaanalysis techniques would extend our understanding about DCS. A better understanding about the cause and prevention of DCS would benefit astronauts, aviators, and divers.

  11. Patients' comprehension of their emergency department encounter: a pilot study using physician observers.

    PubMed

    Musso, Mandi W; Perret, J Nelson; Sanders, Taylor; Daray, Ross; Anderson, Kyle; Lancaster, Melissa; Lim, David; Jones, Glenn N

    2015-02-01

    The current study examines patients' comprehension of their emergency department (ED) encounter, using physician observers to document both physician communication and details of the encounter. Eighty-nine patients were recruited from a convenience sample in an urban ED. To be included in this study, patients had to have low triage levels (4 and 5) and be discharged from the ED. Physician observers were present throughout the encounter, documenting physician communication and procedures performed. Patients were then interviewed by physician observers about their communication with physicians, accuracy in recalling facts about the encounter, and understanding of information provided during the encounter. The majority of patients were black and had a high school education. Physicians typically engaged in behaviors related to building rapport and diagnosing patients. However, physicians informed patients about test results and diagnoses less frequently. In terms of patients' accuracy and understanding of the visit, patients were generally aware of basic facts in regard to their ED encounter (ie, whether they had blood drawn), but 65.9% of patients demonstrated less than "good" understanding in at least 1 area assessed. The findings of the current study indicate physicians could improve communication with patients, particularly in regard to care received in the ED. This study also indicates that a large percentage of patients fail to understand information about their ED encounter even when physicians provide it. A primary limitation of the current study is the relatively homogenous physician sample. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  12. Cochlear implants: a remarkable past and a brilliant future

    PubMed Central

    Wilson, Blake S.; Dorman, Michael F.

    2013-01-01

    The aims of this paper are to (i) provide a brief history of cochlear implants; (ii) present a status report on the current state of implant engineering and the levels of speech understanding enabled by that engineering; (iii) describe limitations of current signal processing strategies and (iv) suggest new directions for research. With current technology the “average” implant patient, when listening to predictable conversations in quiet, is able to communicate with relative ease. However, in an environment typical of a workplace the average patient has a great deal of difficulty. Patients who are “above average” in terms of speech understanding, can achieve 100% correct scores on the most difficult tests of speech understanding in quiet but also have significant difficulty when signals are presented in noise. The major factors in these outcomes appear to be (i) a loss of low-frequency, fine structure information possibly due to the envelope extraction algorithms common to cochlear implant signal processing; (ii) a limitation in the number of effective channels of stimulation due to overlap in electric fields from electrodes, and (iii) central processing deficits, especially for patients with poor speech understanding. Two recent developments, bilateral implants and combined electric and acoustic stimulation, have promise to remediate some of the difficulties experienced by patients in noise and to reinstate low-frequency fine structure information. If other possibilities are realized, e.g., electrodes that emit drugs to inhibit cell death following trauma and to induce the growth of neurites toward electrodes, then the future is very bright indeed. PMID:18616994

  13. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    NASA Astrophysics Data System (ADS)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  14. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  15. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.

  16. Too many rodent carcinogens: Mitogenesis increases mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, B.N.; Gold, L.S.

    1990-08-31

    A clarification of the mechanism of carcinogenesis is developing at a rapid rate. This new understanding undermines many assumptions of current regulatory policy toward rodent carcinogens and necessitates rethinking the utility and meaning of routine animal cancer tests. At a recent watershed meeting on carcinogenesis, much evidence was presented suggesting that mitogenesis plays a dominant role in carcinogenesis. Our own rethinking of mechanism was prompted by our findings that: spontaneous DNA damage caused by endogenous oxidants is remarkably frequent and in chronic testing at the maximum tolerated dose (MTD), more than half of all chemicals tested (both natural and synthetic)more » are carcinogens in rodents, and a high percentage of these carcinogens are not mutagens.« less

  17. A gravitational puzzle.

    PubMed

    Caldwell, Robert R

    2011-12-28

    The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress-energy and space-time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.

  18. Current practices in corrosion, surface characterization, and nickel leach testing of cardiovascular metallic implants.

    PubMed

    Nagaraja, Srinidhi; Di Prima, Matthew; Saylor, David; Takai, Erica

    2017-08-01

    In an effort to better understand current test practices and improve nonclinical testing of cardiovascular metallic implants, the Food and Drug Administration (FDA) held a public workshop on Cardiovascular Metallic Implants: corrosion, surface characterization, and nickel leaching. The following topics were discussed: (1) methods used for corrosion assessments, surface characterization techniques, and nickel leach testing of metallic cardiovascular implant devices, (2) the limitations of each of these in vitro tests in predicting in vivo performance, (3) the need, utility, and circumstances when each test should be considered, and (4) the potential testing paradigms, including acceptance criteria for each test. In addition to the above topics, best practices for these various tests were discussed, and knowledge gaps were identified. Prior to the workshop, discussants had the option to provide feedback and information on issues relating to each of the topics via a voluntary preworkshop assignment. During the workshop, the pooled responses were presented and a panel of experts discussed the results. This article summarizes the proceedings of this workshop and background information provided by workshop participants. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 105B: 1330-1341, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Direct-to-consumer DNA testing and the GP.

    PubMed

    Trent, Ronald

    2014-07-01

    From early 2000 a new form of DNA genetic testing became available commercially. It bypasses the medical practitioner and can be ordered directly by the individual. To understand direct-to-consumer (DTC) DNA genetic testing and be able to respond appropriately if asked to be involved by a patient. Presently, all but one or two DTC DNA genetic testing laboratories are located outside Australia. The industry promotes itself as a means to better health through giving individuals complete control over their results. When communicating with patients about DTC DNA genetic testing, general practitioners will need to make a determination about the clinical utility of the test and the laboratory validity, both of which can be difficult in the current environment. Assistance may be available through public hospital clinical genetics services, although waiting times can be long. There is likely to be tighter regulation of these types of testing in the future, which may include involvement of medical practitioners.

  20. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  1. An Experimental Study of Launch Vehicle Propellant Tank Fragmentation

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben

    2014-01-01

    In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.

  2. Machining Test Specimens from Harvested Zion RPV Segments for Through Wall Attenuation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, Thomas M; Sokolov, Mikhail A; Nanstad, Randy K

    2015-01-01

    The decommissioning of the Zion Units 1 and 2 Nuclear Generating Station (NGS) in Zion, Illinois presents a special opportunity for developing a better understanding of materials degradation and other issues associated with extending the lifetime of existing Nuclear Power Plants (NPPs) beyond 60 years of service. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC, a subsidiary of Energy Solutions, the selective procurement of materials, structures, and componentsmore » from the decommissioned reactors. In this paper, we will discuss the acquisition of segments of the Zion Unit 2 Reactor Pressure Vessel (RPV), the cutting of these segments into sections and blocks from the beltline and upper vertical welds and plate material, the current status of machining those blocks into mechanical (Charpy, compact tension, and tensile) test specimens and coupons for chemical and microstructural (TEM, APT, SANS, and nano indention) characterization, as well as the current test plans and possible collaborative projects. Access to service-irradiated RPV welds and plate sections will allow through wall attenuation studies to be performed, which will be used to assess current radiation damage models (Rosseel et al. (2012) and Rosseel et al. (2015)).« less

  3. Molecular biology of gastroesophageal cancers: opportunities and challenges.

    PubMed

    Khan, Shaheer; Mikhail, Sameh; Xiu, Joanne; Salem, Mohamed E

    2017-01-01

    Gastroesophageal (GE) malignancies make up a significant and growing segment of newly diagnosed cancers. Approximately 80% of patients who have GE cancers die within 5 years of diagnosis, which means that effective treatments for these malignancies need to be found. Currently, targeted therapies have a minimal role in this disease group. Intensive study of the molecular biology of GE cancers is a relatively new and ongoing venture, but it has already led to a significant increase in our understanding of these malignancies. This understanding, although still limited, has the potential to enhance our ability to develop targeted therapies in conjunction with the ability to identify actionable gene mutations and perform genomic profiling to predict drug resistance. Several cell surface growth factor receptors have been found to play a prominent role in GE cancer cell signaling. This discovery has led to the approval of 2 agents within the last few years: trastuzumab, an anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody used in the first-line treatment of HER2-positive GE cancers, and ramucirumab, an anti-vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody that is currently used in later lines of therapy. This review discusses the current state of molecular testing in GE cancers, along with the known molecular biology and current and investigational treatments. The development of trastuzumab and ramucirumab represents a significant advance in our ability to make use of GE tumor molecular profiles. As our understanding of the impact of molecular aberrations on drug effectiveness and disease outcomes increases, we anticipate improved therapy for patients with GE cancers.

  4. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins.

    PubMed

    van Bilsen, Jolanda H M; Sienkiewicz-Szłapka, Edyta; Lozano-Ojalvo, Daniel; Willemsen, Linette E M; Antunes, Celia M; Molina, Elena; Smit, Joost J; Wróblewska, Barbara; Wichers, Harry J; Knol, Edward F; Ladics, Gregory S; Pieters, Raymond H H; Denery-Papini, Sandra; Vissers, Yvonne M; Bavaro, Simona L; Larré, Colette; Verhoeckx, Kitty C M; Roggen, Erwin L

    2017-01-01

    The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.

  5. DARe: Dark Asteroid Rendezvous

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; McFadden, L. A.; Rhoden, A. R.; Lim, L. F.; Boynton, W. V.; Carter, L. M.; Collins, G.; Englander, J. A.; Goossens, S. A.; Grundy, W. M.; hide

    2015-01-01

    Small bodies record the chemical, physical, and dynamical processes that gave birth to and shaped the solar system. The great variety of small bodies reflects the diversity of both their genesis and their histories. The DARe mission conducts a critical test of how small body populations reflect a history of planetary migration and planetesimal scattering. This understanding is crucial for planning future NASA missions and placing current and past missions into context.

  6. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  7. Future orientation and suicide ideation and attempts in depressed adults ages 50 and over.

    PubMed

    Hirsch, Jameson K; Duberstein, Paul R; Conner, Kenneth R; Heisel, Marnin J; Beckman, Anthony; Franus, Nathan; Conwell, Yeates

    2006-09-01

    The objective of this study was to test the hypothesis that future orientation is associated with lower levels of suicide ideation and lower likelihood of suicide attempt in a sample of patients in treatment for major depression. Two hundred two participants (116 female, 57%) ages 50-88 years were recruited from inpatient and outpatient settings. All were diagnosed with major depression using a structured diagnostic interview. Suicide ideation was assessed with the Scale for Suicide Ideation (both current and worst point ratings), and a measure of future orientation was created to assess future expectancies. The authors predicted that greater future orientation would be associated with less current and worst point suicide ideation, and would distinguish current and lifetime suicide attempters from nonattempters. Hypotheses were tested using multivariate logistic regression and linear regression analyses that accounted for age, gender, hopelessness, and depression. As hypothesized, higher future orientation scores were associated with lower current suicidal ideation, less intense suicidal ideation at its worst point, and lower probability of a history of attempted suicide after accounting for covariates. Future orientation was not associated with current attempt status. Future orientation holds promise as a cognitive variable associated with decreased suicide risk; a better understanding of its putative protective role is needed. Treatments designed to enhance future orientation might decrease suicide risk.

  8. Ethics, policy, and educational issues in genetic testing.

    PubMed

    Williams, Janet K; Skirton, Heather; Masny, Agnes

    2006-01-01

    Analyze ethics, public policy, and education issues that arise in the United States (US) and the United Kingdom (UK) when genomic information acquired as a result of genetic testing is introduced into healthcare services. Priorities in the Ethical, Legal, and Social Issues Research Program include privacy, integration of genetic services into clinical health care, and educational preparation of the nursing workforce. These constructs are used to examine health policies in the US and UK, and professional interactions of individuals and families with healthcare providers. Individual, family, and societal goals may conflict with current healthcare practices and policies when genetic testing is done. Current health policies do not fully address these concerns. Unresolved issues include protection of privacy of individuals while considering genetic information needs of family members, determination of appropriate monitoring of genetic tests, addressing genetic healthcare discrepancies, and assuring appropriate nursing workforce preparation. Introduction of genetic testing into health care requires that providers are knowledgeable regarding ethical, policy, and practice issues in order to minimize risk for harm, protect the rights of individuals and families, and consider societal context in the management of genetic test results. Understanding of these issues is a component of genetic nursing competency that must be addressed at all levels of nursing education.

  9. On the advantage of an external focus of attention: a benefit to learning or performance?

    PubMed

    Lohse, Keith R; Sherwood, David E; Healy, Alice F

    2014-02-01

    Although there is general agreement in the sport science community that the focus of attention (FOA) has significant effects on performance, there is some debate about whether or not the FOA adopted during training affects learning. A large number of studies on the focus of attention have shown that subjects who train with an external FOA perform better on subsequent retention and transfer tests. However, the FOA in these studies was not experimentally controlled during testing. Therefore, the current study used a dart-throwing paradigm in which the FOA was experimentally manipulated at both acquisition and testing over very short and long training times. Performance at test, in terms of accuracy and precision, was improved by adopting an external focus at test regardless of the focus instructed during acquisition, in both Experiment 1 and 2. Although an effect of acquisition focus during testing in Experiment 2 provides some evidence that FOA affects learning, the current data demonstrate a much stronger effect for performance than learning, and stronger effects of attention on precision than accuracy. Theoretical implications of these results are discussed, but in general these data provide a more nuanced understanding of how attentional focus instructions influence motor learning and performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Tsunami warnings: Understanding in Hawai'i

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Johnston, David M.; Swanson, D.A.; Yanagi, B.S.

    2007-01-01

    The devastating southeast Asian tsunami of December 26, 2004 has brought home the destructive consequences of coastal hazards in an absence of effective warning systems. Since the 1946 tsunami that destroyed much of Hilo, Hawai'i, a network of pole mounted sirens has been used to provide an early public alert of future tsunamis. However, studies in the 1960s showed that understanding of the meaning of siren soundings was very low and that ambiguity in understanding had contributed to fatalities in the 1960 tsunami that again destroyed much of Hilo. The Hawaiian public has since been exposed to monthly tests of the sirens for more than 25 years and descriptions of the system have been widely published in telephone books for at least 45 years. However, currently there remains some uncertainty in the level of public understanding of the sirens and their implications for behavioral response. Here, we show from recent surveys of Hawai'i residents that awareness of the siren tests and test frequency is high, but these factors do not equate with increased understanding of the meaning of the siren, which remains disturbingly low (13%). Furthermore, the length of time people have lived in Hawai'i is not correlated systematically with understanding of the meaning of the sirens. An additional issue is that warning times for tsunamis gene rated locally in Hawai'i will be of the order of minutes to tens of minutes and limit the immediate utility of the sirens. Natural warning signs of such tsunamis may provide the earliest warning to residents. Analysis of a survey subgroup from Hilo suggests that awareness of natural signs is only moderate, and a majority may expect notification via alerts provided by official sources. We conclude that a major change is needed in tsunami education, even in Hawai'i, to increase public understanding of, and effective response to, both future official alerts and natural warning signs of future tsunamis. ?? Springer 2006.

  11. Word Memory Test Performance Across Cognitive Domains, Psychiatric Presentations, and Mild Traumatic Brain Injury.

    PubMed

    Rowland, Jared A; Miskey, Holly M; Brearly, Timothy W; Martindale, Sarah L; Shura, Robert D

    2017-05-01

    The current study addressed two aims: (i) determine how Word Memory Test (WMT) performance relates to test performance across numerous cognitive domains and (ii) evaluate how current psychiatric disorders or mild traumatic brain injury (mTBI) history affects performance on the WMT after excluding participants with poor symptom validity. Participants were 235 Iraq and Afghanistan-era veterans (Mage = 35.5) who completed a comprehensive neuropsychological battery. Participants were divided into two groups based on WMT performance (Pass = 193, Fail = 42). Tests were grouped into cognitive domains and an average z-score was calculated for each domain. Significant differences were found between those who passed and those who failed the WMT on the memory, attention, executive function, and motor output domain z-scores. WMT failure was associated with a larger performance decrement in the memory domain than the sensation or visuospatial-construction domains. Participants with a current psychiatric diagnosis or mTBI history were significantly more likely to fail the WMT, even after removing participants with poor symptom validity. Results suggest that the WMT is most appropriate for assessing validity in the domains of attention, executive function, motor output and memory, with little relationship to performance in domains of sensation or visuospatial-construction. Comprehensive cognitive batteries would benefit from inclusion of additional performance validity tests in these domains. Additionally, symptom validity did not explain higher rates of WMT failure in individuals with a current psychiatric diagnosis or mTBI history. Further research is needed to better understand how these conditions may affect WMT performance. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery.

    PubMed

    Kawakami, Kohsaku

    2017-06-01

    Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.

  13. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures.

    PubMed

    Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D

    2016-09-01

    Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.

  14. The washington metropolitan pediatric vision screening quality control assessment.

    PubMed

    Couser, Natario L; Smith-Marshall, Janine

    2011-01-01

    Objective. To ascertain if parents are familiar with current recommendations on pediatric vision screening and to assess their knowledge of the roles that pediatricians, ophthalmologists and optometrists have in this screening process. Methods. A survey was targeted at parents to determine what the general public understands regarding vision screening. Results. The survey was conducted from January-May 2010. One hundred fifty six persons responded. Over one-third did not know the difference between eye care specialists. Many believed opticians and optometrists receive medical school training. Over forty percent incorrectly identified the recommended visual acuity testing age. A large discrepancy existed regarding who should perform pediatric eye exams. Most agreed a failed screening warranted follow-up, but there was not a uniform opinion as to when to seek care. The majority of respondents understood amblyopia should be treated at least before age ten; although nine percent believed amblyopia could be treated at any age. Discussion. There is a significant lack of understanding of the current screening recommendations, difference between eye care professionals, and the importance of early treatment of amblyopia. Conclusions. Many parents do not understand the potential detrimental consequences of delayed care in the event their child fails a vision screening.

  15. Access to laboratory testing: the impact of managed care in the Pacific Northwest.

    PubMed

    LaBeau, K M; Simon, M; Steindel, S J

    1999-01-01

    Patient access to health-care services has become an important issue owing to the growth of managed care organizations and the number of patients enrolled. To better understand the current issues related to access to laboratory testing, with a particular focus on the impact of managed care, we gathered information from a network of clinical laboratories in the Pacific Northwest. Two questionnaires were sent to the 257 Laboratory Medicine Sentinel Monitoring Network participants in November 1995 and March 1996 to investigate trends in the availability and utilization of laboratory testing services and changes in onsite testing menus. Although laboratories reported that managed care was a factor in their decisions about laboratory practices, testing decisions were more likely made for business reasons, based on medical practice changes and marketplace influences not associated with managed care.

  16. Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms

    NASA Astrophysics Data System (ADS)

    Rayfield, Emily J.

    2007-05-01

    Finite element analysis (FEA) is a technique that reconstructs stress, strain, and deformation in a digital structure. Although commonplace in engineering and orthopedic science for more than 30 years, only recently has it begun to be adopted in the zoological and paleontological sciences to address questions of organismal morphology, function, and evolution. Current research tends to focus on either deductive studies that assume a close relationship between form and function or inductive studies that aim to test this relationship, although explicit hypothesis-testing bridges these two standpoints. Validation studies have shown congruence between in vivo or in vitro strain and FE-inferred strain. Future validation work on a broad range of taxa will assist in phylogenetically bracketing our extinct animal FE-models to increase confidence in our input parameters, although currently, FEA has much potential in addressing questions of form-function relationships, providing appropriate questions are asked of the existing data.

  17. Antifungal resistance in mucorales.

    PubMed

    Dannaoui, E

    2017-11-01

    The order Mucorales, which includes the agents of mucormycosis, comprises a large number of species. These fungi are characterised by high-level resistance to most currently available antifungal drugs. Standardised antifungal susceptibility testing methods are now available, allowing a better understanding of the in vitro activity of antifungal drugs against members of Mucorales. Such tests have made apparent that antifungal susceptibility within this group may be species-specific. Experimental animal models of mucormycosis have also been developed and are of great importance in bridging the gap between in vitro results and clinical trials. Amphotericin B, posaconazole and isavuconazole are currently the most active agents against Mucorales; however, their activity remains suboptimal and new therapeutic strategies are needed. Combination therapy could be a promising approach to overcome resistance, but further studies are required to confirm its benefits and safety for patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Pisano, Silvia

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong in- teractions. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first stud- ies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides ac- cess to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure.more » Large acceptance of the CLAS detector at Jef- ferson Lab, allowing detection of two hadrons, produced back-to-back (b2b) in the current and target fragmentation regions, provides a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions« less

  19. Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Reynolds, Lindsay V.

    2011-01-01

    Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread.

  20. Testing and modeling of PBX-9591 shock initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Kim; Foley, Timothy; Novak, Alan

    2010-01-01

    This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation andmore » growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.« less

  1. Ethical principles and pitfalls of genetic testing for dementia.

    PubMed

    Hedera, P

    2001-01-01

    Progress in the genetics of dementing disorders and the availability of clinical tests for practicing physicians increase the need for a better understanding of multifaceted issues associated with genetic testing. The genetics of dementia is complex, and genetic testing is fraught with many ethical concerns. Genetic testing can be considered for patients with a family history suggestive of a single gene disorder as a cause of dementia. Testing of affected patients should be accompanied by competent genetic counseling that focuses on probabilistic implications for at-risk first-degree relatives. Predictive testing of at-risk asymptomatic patients should be modeled after presymptomatic testing for Huntington's disease. Testing using susceptibility genes has only a limited diagnostic value at present because potential improvement in diagnostic accuracy does not justify potentially negative consequences for first-degree relatives. Predictive testing of unaffected subjects using susceptibility genes is currently not recommended because individual risk cannot be quantified and there are no therapeutic interventions for dementia in presymptomatic patients.

  2. Chip Scale Package Integrity Assessment by Isothermal Aging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    1998-01-01

    Many aspects of chip scale package (CSP) technology, with focus on assembly reliability characteristics, are being investigated by the JPL-led consortia. Three types of test vehicles were considered for evaluation and currently two configurations have been built to optimize attachment processes. These test vehicles use numerous package types. To understand potential failure mechanisms of the packages, particularly solder ball attachment, the grid CSPs were subjected to environmental exposure. Package I/Os ranged from 40 to nearly 300. This paper presents both as assembled, up to 1, 000 hours of isothermal aging shear test results and photo micrographs, and tensile test results before and after 1,500 cycles in the range of -30/100 C for CSPs. Results will be compared to BGAs with the same the same isothermal aging environmental exposures.

  3. Expert consensus document: Advances in the evaluation of anorectal function.

    PubMed

    Carrington, Emma V; Scott, S Mark; Bharucha, Adil; Mion, François; Remes-Troche, Jose M; Malcolm, Allison; Heinrich, Henriette; Fox, Mark; Rao, Satish S

    2018-05-01

    Faecal incontinence and evacuation disorders are common, impair quality of life and incur substantial economic costs worldwide. As symptoms alone are poor predictors of underlying pathophysiology and aetiology, diagnostic tests of anorectal function could facilitate patient management in those cases that are refractory to conservative therapies. In the past decade, several major technological advances have improved our understanding of anorectal structure, coordination and sensorimotor function. This Consensus Statement provides the reader with an appraisal of the current indications, study performance characteristics, clinical utility, strengths and limitations of the most widely available tests of anorectal structure (ultrasonography and MRI) and function (anorectal manometry, neurophysiological investigations, rectal distension techniques and tests of evacuation, including defecography). Additionally, this article provides our consensus on the clinical relevance of these tests.

  4. Encouraging a "Romantic Understanding" of Science: The Effect of the Nikola Tesla Story

    NASA Astrophysics Data System (ADS)

    Hadzigeorgiou, Yannis; Klassen, Stephen; Klassen, Cathrine Froese

    2012-08-01

    The purpose of this paper is to discuss and apply the notion of romantic understanding by outlining its features and its potential role in science education, to identify its features in the story of Nikola Tesla, and to describe an empirical study conducted to determine the effect of telling such a story to Grade 9 students. Elaborated features of the story are the humanization of meaning, an association with heroes and heroic qualities, the limits of reality and extremes of experience, a sense of wonder, and a contesting of conventions and conventional ideas. The study demonstrates the learning benefits of encouraging a romantic understanding through a story that is structured explicitly around the identified features, in this instance in the context of the production and transmission of alternating current electricity. Quantitative and qualitative analyses of journal entries showed that the group of students who were encouraged to understand the concept of alternating current romantically (the experimental group) became more involved with both the content and the context of the story than a comparison group of students who were taught the concept explicitly, without a context (the control group). The students in the experimental group also performed statistically better on a science-content test taken 1 week and again 8 weeks after the indicated teaching intervention. This finding, along with the content analyses of students' journals, provided evidence of romantic understanding of the science content for those students who listened to the Tesla story.

  5. Neurophysiological testing in anorectal disorders

    PubMed Central

    Remes-Troche, Jose M; Rao, Satish SC

    2013-01-01

    Neurophysiological tests of anorectal function can provide useful information regarding the integrity of neuronal innervation, as well as neuromuscular function. This information can give insights regarding the pathophysiological mechanisms that lead to several disorders of anorectal function, particularly fecal incontinence, pelvic floor disorders and dyssynergic defecation. Currently, several tests are available for the neurophysiological evaluation of anorectal function. These tests are mostly performed on patients referred to tertiary care centers, either following negative evaluations or when there is lack of response to conventional therapy. Judicious use of these tests can reveal significant and new understanding of the underlying mechanism(s) that could pave the way for better management of these disorders. In addition, these techniques are complementary to other modalities of investigation, such as pelvic floor imaging. The most commonly performed neurophysiological tests, along with their indications and clinical utility are discussed. Several novel techniques are evolving that may reveal new information on brain–gut interactions. PMID:19072383

  6. Twenty-first century approaches to toxicity testing, biomonitoring, and risk assessment: perspectives from the global chemical industry.

    PubMed

    Phillips, Richard D; Bahadori, Tina; Barry, Brenda E; Bus, James S; Gant, Timothy W; Mostowy, Janet M; Smith, Claudia; Willuhn, Marc; Zimmer, Ulrike

    2009-09-01

    The International Council of Chemical Associations' Long-Range Research Initiative (ICCA-LRI) sponsored a workshop, titled Twenty-First Century Approaches to Toxicity Testing, Biomonitoring, and Risk Assessment, on 16 and 17 June 2008 in Amsterdam, The Netherlands. The workshop focused on interpretation of data from the new technologies for toxicity testing and biomonitoring, and on understanding the relevance of the new data for assessment of human health risks. Workshop participants articulated their concerns that scientific approaches for interpreting and understanding the emerging data in a biologically relevant context lag behind the rapid advancements in the new technologies. Research will be needed to mitigate these lags and to develop approaches for communicating the information, even in a context of uncertainty. A collaborative, coordinated, and sustained research effort is necessary to modernize risk assessment and to significantly reduce current reliance on animal testing. In essence, this workshop was a call to action to bring together the intellectual and financial resources necessary to harness the potential of these new technologies towards improved public health decision making. Without investment in the science of interpretation, it will be difficult to realize the potential that the advanced technologies offer to modernize toxicity testing, exposure science, and risk assessment.

  7. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  8. Towards improved behavioural testing in aquatic toxicology: Acclimation and observation times are important factors when designing behavioural tests with fish.

    PubMed

    Melvin, Steven D; Petit, Marie A; Duvignacq, Marion C; Sumpter, John P

    2017-08-01

    The quality and reproducibility of science has recently come under scrutiny, with criticisms spanning disciplines. In aquatic toxicology, behavioural tests are currently an area of controversy since inconsistent findings have been highlighted and attributed to poor quality science. The problem likely relates to limitations to our understanding of basic behavioural patterns, which can influence our ability to design statistically robust experiments yielding ecologically relevant data. The present study takes a first step towards understanding baseline behaviours in fish, including how basic choices in experimental design might influence behavioural outcomes and interpretations in aquatic toxicology. Specifically, we explored how fish acclimate to behavioural arenas and how different lengths of observation time impact estimates of basic swimming parameters (i.e., average, maximum and angular velocity). We performed a semi-quantitative literature review to place our findings in the context of the published literature describing behavioural tests with fish. Our results demonstrate that fish fundamentally change their swimming behaviour over time, and that acclimation and observational timeframes may therefore have implications for influencing both the ecological relevance and statistical robustness of behavioural toxicity tests. Our review identified 165 studies describing behavioural responses in fish exposed to various stressors, and revealed that the majority of publications documenting fish behavioural responses report extremely brief acclimation times and observational durations, which helps explain inconsistencies identified across studies. We recommend that researchers applying behavioural tests with fish, and other species, apply a similar framework to better understand baseline behaviours and the implications of design choices for influencing study outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Probabilistic hazard assessment for skin sensitization potency by dose–response modeling using feature elimination instead of quantitative structure–activity relationships

    PubMed Central

    McKim, James M.; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa

    2016-01-01

    Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose–response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimension-ality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals’ potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced "false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. PMID:26046447

  10. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships.

    PubMed

    Luechtefeld, Thomas; Maertens, Alexandra; McKim, James M; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa

    2015-11-01

    Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.

  12. The Hybrid III upper and lower neck response in compressive loading scenarios with known human injury outcomes.

    PubMed

    Toomey, D E; Yang, K H; Van Ee, C A

    2014-01-01

    Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.

  13. Comparative effectiveness research methodology using secondary data: A starting user's guide.

    PubMed

    Sun, Maxine; Lipsitz, Stuart R

    2018-04-01

    The use of secondary data, such as claims or administrative data, in comparative effectiveness research has grown tremendously in recent years. We believe that the current review can help investigators relying on secondary data to (1) gain insight into both the methodologies and statistical methods, (2) better understand the necessity of a rigorous planning before initiating a comparative effectiveness investigation, and (3) optimize the quality of their investigations. Specifically, we review concepts of adjusted analyses and confounders, methods of propensity score analyses, and instrumental variable analyses, risk prediction models (logistic and time-to-event), decision-curve analysis, as well as the interpretation of the P value and hypothesis testing. Overall, we hope that the current review article can help research investigators relying on secondary data to perform comparative effectiveness research better understand the necessity of a rigorous planning before study start, and gain better insight in the choice of statistical methods so as to optimize the quality of the research study. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High-Throughput Assessment of Cellular Mechanical Properties.

    PubMed

    Darling, Eric M; Di Carlo, Dino

    2015-01-01

    Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

  15. [An integrative model of the psychological benefits of gardening in older adults].

    PubMed

    Tournier, Isabelle; Postal, Virginie

    2014-12-01

    This review of the literature tackles the question of the psychological benefits linked to gardening in older adults. First, the current data on these benefits are reviewed, and the findings reveal that gardening is linked to feelings of accomplishment, well-being and peace, a decrease of depressive symptoms, a protective effect on cognitive functions as well as to the development of social links for community living older adults. In institutionalized older adults, gardening promotes internal locus of control and well-being, and is related to a decrease of sadness and anxiety. Second, several explanatory theories are discussed. All of them postulate an action on the cognitive and/or emotional spheres, which were included into a integrated model that must be tested in future research. In conclusion, gardening appears to be a beneficial activity for promoting older adults' functioning but the current knowledge still has to be extended to understand the specific mechanisms of action. This deeper understanding is necessary in order to improve the future actions depending on this activity.

  16. Precision CMB Measurements from Long Duration Stratospheric Balloons: Towards B-modes and Inflation

    NASA Astrophysics Data System (ADS)

    Jones, William C.

    2013-01-01

    Observations of the Cosmic Microwave Background (CMB) have played a leading role in establishing an understanding of the structure and evolution of the Universe on the largest scales. This achievement has been enabled by a series of extremely successful experiments, coupled with the simplicity of the relationship between the cosmological theory and data. Antarctic experiments, including both balloon-borne telescopes and instruments at the South Pole, have played a key role in realizing the scientific potential of the CMB, from the characterization of the temperature anisotropies to the detection and study of the polarized component. Current and planned Antarctic long duration balloon experiments will extend this heritage of discovery to test theories of cosmic genesis through sensitive polarized surveys of the millimeter-wavelength sky. In this paper we will review the pivotal role that Antarctic balloon borne experiments have played in transforming our understanding of the Universe, and describe the scientific goals and technical approach of current and future missions.

  17. Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population

    NASA Astrophysics Data System (ADS)

    Vos, Joris; Vučković, Maja

    2017-12-01

    One of the important issues regarding the final evolution of stars is the impact of binarity. A rich zoo of peculiar, evolved objects are born from the interaction between the loosely bound envelope of a giant, and the gravitational pull of a companion. However, binary interactions are not understood from first principles, and the theoretical models are subject to many assumptions. It is currently agreed upon that hot subdwarf stars can only be formed through binary interaction, either through common envelope ejection or stable Roche-lobe overflow (RLOF) near the tip of the red giant branch (RGB). These systems are therefore an ideal testing ground for binary interaction models. With our long term study of wide hot subdwarf (sdB) binaries we aim to improve our current understanding of stable RLOF on the RGB by comparing the results of binary population synthesis studies with the observed population. In this article we describe the current model and possible improvements, and which observables can be used to test different parts of the interaction model.

  18. Summary report of PQRI Workshop on Nanomaterial in Drug Products: current experience and management of potential risks.

    PubMed

    Bartlett, Jeremy A; Brewster, Marcus; Brown, Paul; Cabral-Lilly, Donna; Cruz, Celia N; David, Raymond; Eickhoff, W Mark; Haubenreisser, Sabine; Jacobs, Abigail; Malinoski, Frank; Morefield, Elaine; Nalubola, Ritu; Prud'homme, Robert K; Sadrieh, Nakissa; Sayes, Christie M; Shahbazian, Hripsime; Subbarao, Nanda; Tamarkin, Lawrence; Tyner, Katherine; Uppoor, Rajendra; Whittaker-Caulk, Margaret; Zamboni, William

    2015-01-01

    At the Product Quality Research Institute (PQRI) Workshop held last January 14-15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines discussed the current state of characterization, formulation development, manufacturing, and nonclinical safety evaluation of nanomaterial-containing drug products for human use. The workshop discussions identified areas where additional understanding of material attributes, absorption, biodistribution, cellular and tissue uptake, and disposition of nanosized particles would continue to inform their safe use in drug products. Analytical techniques and methods used for in vitro characterization and stability testing of formulations containing nanomaterials were discussed, along with their advantages and limitations. Areas where additional regulatory guidance and material characterization standards would help in the development and approval of nanomedicines were explored. Representatives from the US Food and Drug Administration (USFDA), Health Canada, and European Medicines Agency (EMA) presented information about the diversity of nanomaterials in approved and newly developed drug products. USFDA, Health Canada, and EMA regulators discussed the applicability of current regulatory policies in presentations and open discussion. Information contained in several of the recent EMA reflection papers was discussed in detail, along with their scope and intent to enhance scientific understanding about disposition, efficacy, and safety of nanomaterials introduced in vivo and regulatory requirements for testing and market authorization. Opportunities for interaction with regulatory agencies during the lifecycle of nanomedicines were also addressed at the meeting. This is a summary of the workshop presentations and discussions, including considerations for future regulatory guidance on drug products containing nanomaterials.

  19. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    PubMed

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  20. Wiring for aerospace applications

    NASA Astrophysics Data System (ADS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-07-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  1. Electrochemical kinetics and dimensional considerations, at the nanoscale

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Bandaru, P. R.

    2016-06-01

    It is shown that the consideration of the density of states variation in nanoscale electrochemical systems yields modulations in the rate constant and concomitant electrical currents. The proposed models extend the utility of Marcus-Hush-Chidsey (MHC) kinetics to a larger class of materials and could be used as a test of dimensional character. The implications of the study are of much significance to an understanding and modulation of charge transfer nanostructured electrodes.

  2. Is EETA79001 Lithology B A True Melt Composition?

    NASA Technical Reports Server (NTRS)

    Arauza, S. J.; Jones, John H.; Mittlefehldt, D. W.; Le, L.

    2010-01-01

    EETA79001 is a member of the SNC (shergottite, nakhlite, chassignite) group of Martian meteorites. Most SNC meteorites are cumulates or partial cumulates [1] inhibiting calculation of parent magma compositions; only two (QUE94201 and Y- 980459) have been previously identified as true melt compositions. The goal of this study is to test whether EETA79001-B may also represent an equilibrium melt composition, which could potentially expand the current understanding of martian petrology.

  3. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  4. Three-Year-Olds Understand Appearance and Reality--Just Not about the Same Object at the Same Time

    ERIC Educational Resources Information Center

    Moll, Henrike; Tomasello, Michael

    2012-01-01

    Young children struggle in the classic tests of appearance versus reality. In the current Study 1, 3-year-olds had to determine which of 2 objects (a deceptive or a nondeceptive one) an adult requested when asking for the "real X" versus "the one that looks like X." In Study 2, children of the same age had to indicate what a single deceptive…

  5. Testing of Hypothesis in Equivalence and Non Inferiority Trials-A Concept.

    PubMed

    Juneja, Atul; Aggarwal, Abha R; Adhikari, Tulsi; Pandey, Arvind

    2016-04-01

    Establishing the appropriate hypothesis is one of the important steps for carrying out the statistical tests/analysis. Its understanding is important for interpreting the results of statistical analysis. The current communication attempts to provide the concept of testing of hypothesis in non inferiority and equivalence trials, where the null hypothesis is just reverse of what is set up for conventional superiority trials. It is similarly looked for rejection for establishing the fact the researcher is intending to prove. It is important to mention that equivalence or non inferiority cannot be proved by accepting the null hypothesis of no difference. Hence, establishing the appropriate statistical hypothesis is extremely important to arrive at meaningful conclusion for the set objectives in research.

  6. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  7. Barriers to gender-equitable HIV testing: going beyond routine screening for pregnant women in Nova Scotia, Canada.

    PubMed

    Gahagan, Jacqueline C; Fuller, Janice L; Proctor-Simms, E Michelle; Hatchette, Todd F; Baxter, Larry N

    2011-05-11

    Women and men face different gender-based health inequities in relation to HIV, including HIV testing as well as different challenges in accessing HIV care, treatment and support programs and services when testing HIV-positive. In this article, we discuss the findings of a mixed methods study exploring the various individual and structural barriers and facilitators to HIV counselling and testing experienced among a sample of adult women and men living in Nova Scotia, Canada. Drawing from testing demographics, qualitative interview data and a review of existing testing policies and research, this paper focuses on understanding the gendered health inequities and their implications for HIV testing rates and behaviours in Nova Scotia. The findings of this research serve as the basis to further our understanding of gender as a key determinant of health in relation to HIV testing. Recognizing gender as a key determinant of health in terms of both vulnerability to HIV and access to testing, this paper explores how gender intersects with health equity issues such as access to HIV testing, stigma and discrimination, and sexual behaviours and relationships. Drawing on the current gender and HIV literatures, in conjunction with our data, we argue that an enhanced, gender-based, context-dependent approach to HIV counselling and testing service provision is required in order to address the health equity needs of diverse groups of women and men living in various settings. Further, we argue that enhanced HIV testing efforts must be inclusive of both men and women, addressing uniquely gendered barriers to accessing HIV counselling and testing services and in the process moving beyond routine HIV testing for pregnant women.

  8. Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.

    2015-01-01

    NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.

  9. Dependency aspect of caregiver burden is uniquely related to cognitive impairment in Veterans.

    PubMed

    Stinson, Jennifer M; Collins, Robert L; Maestas, Kacey Little; Pacheco, Vitor; LeMaire, Ashley; Benge, Jared

    2014-01-01

    The psychosocial toll of caring for an individual with dementia is an important, if understudied, concept. For practitioners and researchers alike, understanding the relation between patient characteristics and different facets of caregiver burden is important for guiding treatment and prevention efforts. The current study analyzed the dimensions of caregiver burden and the relation between caregiver burden and results of neuropsychological testing. Participants included 243 dyads of caregivers and Veterans referred for neuropsychological evaluation. Caregivers completed the Zarit Burden Interview (ZBI) to assess caregiver burden. Patients completed a battery of neuropsychological tests measuring the domains of attention/processing speed, memory, language, and executive functioning. A principal components analysis of the ZBI revealed a three-factor structure: psychosocial burden, dependency burden, and guilt. Correlations with neuropsychological test performance by Veteran patients suggested that test performance in the memory, attention, processing speed, executive functioning, and emotional functioning domains were solely related to the caregiver dependency burden factor of the ZBI. Additional analyses suggested severity of dementia and number of tests in the impaired range further influenced reported caregiver burden. The current study is one of the few studies examining caregiver burden in relation to neuropsychological functioning in a mixed clinical sample and has important implications for clinical practice.

  10. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less

  11. Fibrosis Assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016.

    PubMed

    Kaswala, Dharmesh H; Lai, Michelle; Afdhal, Nezam H

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathologies characterized by hepatic steatosis with a history of little to no alcohol consumption or secondary causes of hepatic steatosis. The prevalence of NAFLD is 20-25 % of the general population in the Western countries and is associated with metabolic risk factors such as obesity, diabetes mellitus, and dyslipidemia. The spectrum of disease ranges from simple steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis. Advanced fibrosis is the most significant predictor of mortality in NAFLD. It is crucial to assess for the presence and degree of hepatic fibrosis in order to make therapeutic decisions and predict clinical outcomes. Liver biopsy, the current gold standard to assess the liver fibrosis, has a number of drawbacks such as invasiveness, sampling error, cost, and inter-/intra-observer variability. There are currently available a number of noninvasive tests as an alternative to liver biopsy for fibrosis staging. These noninvasive fibrosis tests are increasingly used to rule out advanced fibrosis and help guide disease management. While these noninvasive tests perform relatively well for ruling out advanced fibrosis, they also have limitations. Understanding the strengths and limitations of liver biopsy and the noninvasive tests is necessary for deciding when to use the appropriate tests in the evaluation of patients with NAFLD.

  12. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  13. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2012-01-01

    GPM is a satellite constellation to study precipitation formed from a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA). The GPM Core Observatory, being developed and tested at GSFC, serves as a reference standard to unify precipitation measurements from the GPM satellite constellation. The Core Observatory carries an advanced radar/radiometer system to measure precipitation from space. The scientific data gained from GPM will benefit both NASA and JAXA by advancing our understanding of Earth's water and energy cycle, improving forecasts of extreme weather events, and extending our current capabilities in using accurate and timely precipitation information to benefit society.

  14. Birth Control in Clinical Trials: Industry Survey of Current Use Practices, Governance, and Monitoring.

    PubMed

    Stewart, J; Breslin, W J; Beyer, B K; Chadwick, K; De Schaepdrijver, L; Desai, M; Enright, B; Foster, W; Hui, J Y; Moffat, G J; Tornesi, B; Van Malderen, K; Wiesner, L; Chen, C L

    2016-03-01

    The Health and Environmental Sciences Institute (HESI) Developmental and Reproductive Toxicology Technical Committee sponsored a pharmaceutical industry survey on current industry practices for contraception use during clinical trials. The objectives of the survey were to improve our understanding of the current industry practices for contraception requirements in clinical trials, the governance processes set up to promote consistency and/or compliance with contraception requirements, and the effectiveness of current contraception practices in preventing pregnancies during clinical trials. Opportunities for improvements in current practices were also considered. The survey results from 12 pharmaceutical companies identified significant variability among companies with regard to contraception practices and governance during clinical trials. This variability was due primarily to differences in definitions, areas of scientific uncertainty or misunderstanding, and differences in company approaches to enrollment in clinical trials. The survey also revealed that few companies collected data in a manner that would allow a retrospective understanding of the reasons for failure of birth control during clinical trials. In this article, suggestions are made for topics where regulatory guidance or scientific publications could facilitate best practice. These include provisions for a pragmatic definition of women of childbearing potential, guidance on how animal data can influence the requirements for male and female birth control, evidence-based guidance on birth control and pregnancy testing regimes suitable for low- and high-risk situations, plus practical methods to ascertain the risk of drug-drug interactions with hormonal contraceptives.

  15. Medical students’ attitudes and perspectives regarding novel computer-based practical spot tests compared to traditional practical spot tests

    PubMed Central

    Wijerathne, Buddhika; Rathnayake, Geetha

    2013-01-01

    Background Most universities currently practice traditional practical spot tests to evaluate students. However, traditional methods have several disadvantages. Computer-based examination techniques are becoming more popular among medical educators worldwide. Therefore incorporating the computer interface in practical spot testing is a novel concept that may minimize the shortcomings of traditional methods. Assessing students’ attitudes and perspectives is vital in understanding how students perceive the novel method. Methods One hundred and sixty medical students were randomly allocated to either a computer-based spot test (n=80) or a traditional spot test (n=80). The students rated their attitudes and perspectives regarding the spot test method soon after the test. The results were described comparatively. Results Students had higher positive attitudes towards the computer-based practical spot test compared to the traditional spot test. Their recommendations to introduce the novel practical spot test method for future exams and to other universities were statistically significantly higher. Conclusions The computer-based practical spot test is viewed as more acceptable to students than the traditional spot test. PMID:26451213

  16. A framework for evolutionary systems biology

    PubMed Central

    Loewe, Laurence

    2009-01-01

    Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications. PMID:19239699

  17. Why Color Matters: The Effect of Visual Cues on Learner's Interpretation of Dark Matter in a Cosmology Visualization

    NASA Astrophysics Data System (ADS)

    Buck, Z.

    2013-04-01

    As we turn more and more to high-end computing to understand the Universe at cosmological scales, visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better understanding the use of visualizations to mediate astronomy learning across formal and informal settings. The aspect of my research that I present here uses quantitative methods to investigate how learners are relying on color to interpret dark matter in a cosmology visualization. The concept of dark matter is vital to our current understanding of the Universe, and yet we do not know how to effectively present dark matter visually to support learning. I employ an alternative treatment post-test only experimental design, in which members of an equivalent sample are randomly assigned to one of three treatment groups, followed by treatment and a post-test. Results indicate significant correlation (p < .05) between the color of dark matter in the visualization and survey responses, implying that aesthetic variations like color can have a profound effect on audience interpretation of a cosmology visualization.

  18. The Relation Between Emotion Understanding and Theory of Mind in Children Aged 3 to 8: The Key Role of Language

    PubMed Central

    Grazzani, Ilaria; Ornaghi, Veronica; Conte, Elisabetta; Pepe, Alessandro; Caprin, Claudia

    2018-01-01

    Although a significant body of research has investigated the relationships among children’s emotion understanding (EU), theory of mind (ToM), and language abilities. As far as we know, no study to date has been conducted with a sizeable sample of both preschool and school-age children exploring the direct effect of EU on ToM when the role of language was evaluated as a potential exogenous factor in a single comprehensive model. Participants in the current study were 389 children (age range: 37–97 months, M = 60.79 months; SD = 12.66), to whom a False-Belief understanding battery, the Test of Emotion Comprehension, and the Peabody Test were administered. Children’s EU, ToM, and language ability (receptive vocabulary) were positively correlated. Furthermore, EU scores explained variability in ToM scores independently of participants’ age and gender. Finally, language was found to play a crucial role in both explaining variance in ToM scores and in mediating the relationship between EU and ToM. We discuss the theoretical and educational implications of these outcomes, particularly in relation to offering social and emotional learning programs through schools.

  19. The Relation Between Emotion Understanding and Theory of Mind in Children Aged 3 to 8: The Key Role of Language.

    PubMed

    Grazzani, Ilaria; Ornaghi, Veronica; Conte, Elisabetta; Pepe, Alessandro; Caprin, Claudia

    2018-01-01

    Although a significant body of research has investigated the relationships among children's emotion understanding (EU), theory of mind (ToM), and language abilities. As far as we know, no study to date has been conducted with a sizeable sample of both preschool and school-age children exploring the direct effect of EU on ToM when the role of language was evaluated as a potential exogenous factor in a single comprehensive model. Participants in the current study were 389 children (age range: 37-97 months, M = 60.79 months; SD = 12.66), to whom a False-Belief understanding battery, the Test of Emotion Comprehension, and the Peabody Test were administered. Children's EU, ToM, and language ability (receptive vocabulary) were positively correlated. Furthermore, EU scores explained variability in ToM scores independently of participants' age and gender. Finally, language was found to play a crucial role in both explaining variance in ToM scores and in mediating the relationship between EU and ToM. We discuss the theoretical and educational implications of these outcomes, particularly in relation to offering social and emotional learning programs through schools.

  20. The Source Physics Experiments (SPE): A Physics-Based Approach to Discriminate Low-Yield Nuclear Events (Invited)

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.

    2013-12-01

    Discriminating low-yield nuclear explosions is one of the current challenges in the field of monitoring and verification. Work is currently underway in Nevada to address this challenge by conducting a series of experiments using a physics-based approach. This has been accomplished by using a multifaceted, multi-disciplinary approach that includes a range of activities, from characterizing the shallow subsurface to acquiring new explosion data both in the near field (< 100 m from the source) to the far field (> 100 m to 10 s km from the source). The Source Physics Experiment (SPE) is a collaborative project between National Security Technologies, LLC, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories, the Defense Threat Reduction Agency, and the Air Force Technical Applications Center. The goal of the SPE is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and to understand how anisotropy controls seismic energy transmission and partitioning. To fully explore these problems, the SPE test series includes tests in both simple and complex geology cases. The current series is being conducted in a highly fractured granite body. This location was chosen, in part, because it was the location of previous nuclear tests in the same rock body and because generally the geology has been well characterized. In addition to historic data, high-resolution seismic reflection, cross-hole tomography, core samples, LIDAR, hyperspectral, and fracture mapping data have been acquired to further characterize and detect changes after each of the shot across the test bed. The complex geology series includes 7 planned shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival, Velocity of Detonation, down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the granite instead of multiple test beds to obtain the same results. The shots are planned at various depths to obtain a Green's function, scaled depth-of-burial data, nominal depth-of-burial data and damage-zone data. Three shots have been executed to date and the fourth is planned for August 2013 as a 220 lb (100 kg) TNT equivalent shot at a depth of 315 ft (96 m). Over 400 data channels have been recorded on the first series of shots with high fidelity. Once the complex geology site data have been exploited, a new test bed will be developed in a simpler geology to test these physics-based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1835.

  1. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.

  2. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.

  3. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512

  4. Conducting meta-analyses of HIV prevention literatures from a theory-testing perspective.

    PubMed

    Marsh, K L; Johnson, B T; Carey, M P

    2001-09-01

    Using illustrations from HIV prevention research, the current article advocates approaching meta-analysis as a theory-testing scientific method rather than as merely a set of rules for quantitative analysis. Like other scientific methods, meta-analysis has central concerns with internal, external, and construct validity. The focus of a meta-analysis should only rarely be merely describing the effects of health promotion, but rather should be on understanding and explaining phenomena and the processes underlying them. The methodological decisions meta-analysts make in conducting reviews should be guided by a consideration of the underlying goals of the review (e.g., simply effect size estimation or, preferably theory testing). From the advocated perspective that a health behavior meta-analyst should test theory, the authors present a number of issues to be considered during the conduct of meta-analyses.

  5. Self-reported concussion history: impact of providing a definition of concussion.

    PubMed

    Robbins, Clifford A; Daneshvar, Daniel H; Picano, John D; Gavett, Brandon E; Baugh, Christine M; Riley, David O; Nowinski, Christopher J; McKee, Ann C; Cantu, Robert C; Stern, Robert A

    2014-01-01

    In recent years, the understanding of concussion has evolved in the research and medical communities to include more subtle and transient symptoms. The accepted definition of concussion in these communities has reflected this change. However, it is unclear whether this shift is also reflected in the understanding of the athletic community. Self-reported concussion history is an inaccurate assessment of someone's lifetime exposure to concussive brain trauma. However, unfortunately, in many cases it is the only available tool. We hypothesize that athletes' self-reported concussion histories will be significantly greater after reading them the current definition of concussion, relative to the reporting when no definition was provided. An increase from baseline to post-definition response will suggest that athletes are unaware of the currently accepted medical definition. Cross-sectional study of 472 current and former athletes. Investigators conducted structured telephone interviews with current and former athletes between January 2010 and January 2013, asking participants to report how many concussions they had received in their lives. Interviewers then read participants a current definition of concussion, and asked them to re-estimate based on that definition. THE TWO ESTIMATES WERE SIGNIFICANTLY DIFFERENT (WILCOXON SIGNED RANK TEST: z=15.636, P<0.001). Comparison of the baseline and post-definition medians (7 and 15, respectively) indicated that the post-definition estimate was approximately twice the baseline. Follow-up analyses indicated that this effect was consistent across all levels of competition examined and across type of sport (contact versus non-contact). Our results indicate that athletes' current understandings of concussions are not consistent with a currently accepted medical definition. We strongly recommend that clinicians and researchers preface requests for self-reported concussion history with a definition. In addition, it is extremely important that researchers report the definition they used in published manuscripts of their work. Our study shows that unprompted reporting of concussion history produces results that are significantly different from those provided after a definition has been given, suggesting one possible mechanism to improve the reliability of self-reported concussion history across multiple individuals.

  6. Birth Control in Clinical Trials

    PubMed Central

    Stewart, J.; Beyer, B. K.; Chadwick, K.; De Schaepdrijver, L.; Desai, M.; Enright, B.; Foster, W.; Hui, J. Y.; Moffat, G. J.; Tornesi, B.; Van Malderen, K.; Wiesner, L.; Chen, C. L.

    2015-01-01

    The Health and Environmental Sciences Institute (HESI) Developmental and Reproductive Toxicology Technical Committee sponsored a pharmaceutical industry survey on current industry practices for contraception use during clinical trials. The objectives of the survey were to improve our understanding of the current industry practices for contraception requirements in clinical trials, the governance processes set up to promote consistency and/or compliance with contraception requirements, and the effectiveness of current contraception practices in preventing pregnancies during clinical trials. Opportunities for improvements in current practices were also considered. The survey results from 12 pharmaceutical companies identified significant variability among companies with regard to contraception practices and governance during clinical trials. This variability was due primarily to differences in definitions, areas of scientific uncertainty or misunderstanding, and differences in company approaches to enrollment in clinical trials. The survey also revealed that few companies collected data in a manner that would allow a retrospective understanding of the reasons for failure of birth control during clinical trials. In this article, suggestions are made for topics where regulatory guidance or scientific publications could facilitate best practice. These include provisions for a pragmatic definition of women of childbearing potential, guidance on how animal data can influence the requirements for male and female birth control, evidence-based guidance on birth control and pregnancy testing regimes suitable for low- and high-risk situations, plus practical methods to ascertain the risk of drug-drug interactions with hormonal contraceptives. PMID:27042398

  7. Long-term retention of a divided attention psycho-motor test combining choice reaction test and postural balance test: A preliminary study.

    PubMed

    Rossi, R; Pascolo, P B

    2015-09-01

    Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Moving college students to a better understanding of substrate specificity of enzymes through utilizing multimedia pre-training and an interactive enzyme model

    NASA Astrophysics Data System (ADS)

    Saleh, Mounir R.

    Scientists' progress in understanding enzyme specificity uncovered a complex natural phenomenon. However, not all of the currently available biology textbooks seem to be up to date on this progress. Students' understanding of how enzymes work is a core requirement in biochemistry and biology tertiary education. Nevertheless, current pre-college science education does not provide students with enough biochemical background to enable them to understand complex material such as this. To bridge this gap, a multimedia pre-training presentation was prepared to fuel the learner's prior knowledge with discrete facts necessary to understand the presented concept. This treatment is also known to manage intrinsic cognitive load during the learning process. An interactive instructional enzyme model was also built to motivate students to learn about substrate specificity of enzymes. Upon testing the effect of this combined treatment on 111 college students, desirable learning outcomes were found in terms of cognitive load, motivation, and achievement. The multimedia pre-training group reported significantly less intrinsic cognitive load, higher motivation, and demonstrated higher transfer performance than the control and post-training groups. In this study, a statistical mediation model is also proposed to explain how cognitive load and motivation work in concert to foster learning from multimedia pre-training. This type of research goes beyond simple forms of "what works" to a deeper understanding of "how it works", thus enabling informed decisions for multimedia instructional design. Multimedia learning plays multiple roles in science education. Therefore, science learners would be some of the first to benefit from improving multimedia instructional design. Accordingly, complex scientific phenomena can be introduced to college students in a motivating, informative, and cognitively efficient learning environment.

  9. Urine trouble: should we think differently about UTI?

    PubMed

    Price, Travis K; Hilt, Evann E; Dune, Tanaka J; Mueller, Elizabeth R; Wolfe, Alan J; Brubaker, Linda

    2018-02-01

    Urinary tract infection (UTI) is clinically important, given that it is one of the most common bacterial infections in adult women. However, the current understanding of UTI remains based on a now disproven concept that the urinary bladder is sterile. Thus, current standards for UTI diagnosis have significant limitations that may reduce the opportunity to improve patient care. Using data from our work and numerous other peer-reviewed studies, we identified four major limitations to the contemporary UTI description: the language of UTI, UTI diagnostic testing, the Escherichia coli-centric view of UTI, and the colony-forming units (CFU) threshold-based diagnosis. Contemporary methods and technology, combined with continued rigorous clinical research can be used to correct these limitations.

  10. Bidirectional Relationships Between Parenting Processes and Deviance in a Sample of Inner-City African American Youth

    PubMed Central

    Harris, Charlene; Vazsonyi, Alexander T.; Bolland, John M.

    2016-01-01

    The current study assessed for bidirectional relationships among supportive parenting (knowledge), negative parenting (permissiveness), and deviance in a sample (N = 5,325) of poor, inner-city African American youth from the Mobile Youth Survey (MYS) over 4 years. Cross-lagged path analysis provided evidence of significant bidirectional paths among parenting processes (knowledge and permissiveness) and deviance over time. Follow-up multigroup tests provided only modest evidence of dissimilar relationships by sex and by developmental periods. The findings improve our understanding of developmental changes between parenting behaviors and deviance during adolescence and extended current research of the bidirectionality of parent and child relationships among inner-city African American youth. PMID:28316460

  11. Pharmacological Therapy of Osteoporosis: A Systematic Current Review of Literature.

    PubMed

    Pavone, Vito; Testa, Gianluca; Giardina, Serena M C; Vescio, Andrea; Restivo, Domenico A; Sessa, Giuseppe

    2017-01-01

    Osteoporosis is the most common bone disease affecting millions of people worldwide, particularly in elderly or in post-menopausal women. The pathogenesis is useful to understand the possible mechanism of action of anti-osteoporotic drugs. Early diagnosis, possible with several laboratory and instrumental tests, allows a major accuracy in the choice of anti-osteoporosis drugs. Treatment of osteoporosis is strictly related to severity of pathology and consists on prevention of fragility fractures with a correct lifestyle and adequate nutritional supplements, and use of pharmacological therapy, started in patients with osteopenia and history of fragility fracture of the hip or spine. The purpose of this review is to focus on main current pharmacological products to treat osteoporotic patients.

  12. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences?

    PubMed

    Brezina, Paul R; Anchan, Raymond; Kearns, William G

    2016-07-01

    The purpose of the review was to define the various diagnostic platforms currently available to perform preimplantation genetic testing for aneuploidy and describe in a clear and balanced manner the various strengths and weaknesses of these technologies. A systematic literature review was conducted. We used the terms "preimplantation genetic testing," "preimplantation genetic diagnosis," "preimplantation genetic screening," "preimplantation genetic diagnosis for aneuploidy," "PGD," "PGS," and "PGD-A" to search through PubMed, ScienceDirect, and Google Scholar from the year 2000 to April 2016. Bibliographies of articles were also searched for relevant studies. When possible, larger randomized controlled trials were used. However, for some emerging data, only data from meeting abstracts were available. PGS is emerging as one of the most valuable tools to enhance pregnancy success with assisted reproductive technologies. While all of the current diagnostic platforms currently available have various advantages and disadvantages, some platforms, such as next-generation sequencing (NGS), are capable of evaluating far more data points than has been previously possible. The emerging complexity of different technologies, especially with the utilization of more sophisticated tools such as NGS, requires an understanding by clinicians in order to request the best test for their patients.. Ultimately, the choice of which diagnostic platform is utilized should be individualized to the needs of both the clinic and the patient. Such a decision must incorporate the risk tolerance of both the patient and provider, fiscal considerations, and other factors such as the ability to counsel patients on their testing results and how these may or may not impact clinical outcomes.

  13. Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

    NASA Astrophysics Data System (ADS)

    Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan

    2017-02-01

    Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.

  14. A scoping review of biomechanical testing for proximal humerus fracture implants.

    PubMed

    Cruickshank, David; Lefaivre, Kelly A; Johal, Herman; MacIntyre, Norma J; Sprague, Sheila A; Scott, Taryn; Guy, Pierre; Cripton, Peter A; McKee, Michael; Bhandari, Mohit; Slobogean, Gerard P

    2015-07-30

    Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants. A scoping review of the proximal humerus fracture literature was performed, and studies testing the mechanical properties of a PHF treatment were included in this review. Descriptive statistics were used to summarize the characteristics and methods of the included studies. 1,051 proximal humerus fracture studies were reviewed; 67 studies met our inclusion criteria. The most common specimen used was cadaver bone (87%), followed by sawbones (7%) and animal bones (4%). A two-part fracture pattern was tested most frequently (68%), followed by three-part (23%), and four-part (8%). Implants tested included locking plates (52%), intramedullary devices (25%), and non-locking plates (25%). Hemi-arthroplasty was tested in 5 studies (7%), with no studies using reverse total shoulder arthroplasty (RTSA) implants. Torque was the most common mode of force applied (51%), followed by axial loading (45%), and cantilever bending (34%). Substantial testing diversity was observed across all studies. The biomechanical literature was found to be both diverse and heterogeneous. More complex fracture patterns and RTSA implants have not been adequately tested. These gaps in the current literature will need to be addressed to ensure that future biomechanical research is clinically relevant and capable of improving the outcomes of challenging proximal humerus fracture patterns.

  15. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  16. NASA-STD-6001B Test 7: Impact of Test Methodology and Detection Advancements on the Obsolescence of Historical Offgas Data

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Woods, Brenton; Harper, Susana A.; Beeson, Harold D.; Perez, Horacio; Ryder, Valerie; Tapia, Alma S.; Pedley, Michael D.

    2017-01-01

    NASA-STD-6001B states "all nonmetals tested in accordance with NASA-STD-6001 should be retested every 10 years or as required by the responsible program/project." The retesting of materials helps ensure the most accurate data are used in material selection. Manufacturer formulas and processes can change over time, sometimes without an update to product number and material information. Material performance in certain NASA-STD-6001 tests can be particularly vulnerable to these changes, such as material offgas (Test 7). In addition, Test 7 analysis techniques at NASA White Sands Test Facility were dramatically enhanced in the early 1990s, resulting in improved detection capabilities. Low level formaldehyde identification was improved again in 2004. Understanding the limitations in offgas analysis data prior to 1990 puts into question the validity and current applicability of that data. Case studies on Super Koropon (Registered trademark) and Aeroglaze (Registered trademark) topcoat highlight the importance of material retesting.

  17. High HIV Prevalence, Suboptimal HIV Testing, and Low Knowledge of HIV-Positive Serostatus Among Injection Drug Users in St. Petersburg, Russia

    PubMed Central

    Toussova, Olga V.; Verevochkin, Sergei V.; Barbour, Russell; Heimer, Robert; Kozlov, Andrei P.

    2011-01-01

    The purpose of this analysis was to estimate human immunodeficiency virus (HIV) prevalence and testing patterns among injection drug users (IDUs) in St. Petersburg, Russia. HIV prevalence among 387 IDUs in the sample was 50%. Correlates of HIV-positive serostatus included unemployment, recent unsafe injections, and history/current sexually transmitted infection. Seventy-six percent had been HIV tested, but only 22% of those who did not report HIV-positive serostatus had been tested in the past 12 months and received their test result. Correlates of this measure included recent doctor visit and having been in prison or jail among men. Among the 193 HIV-infected participants, 36% were aware of their HIV-positive serostatus. HIV prevalence is high and continuing to increase in this population. Adequate coverage of HIV testing has not been achieved, resulting in poor knowledge of positive serostatus. Efforts are needed to better understand motivating and deterring factors for HIV testing in this setting. PMID:18843531

  18. Using Laboratory Homework to Facilitate Skill Integration and Assess Understanding in Intermediate Physics Courses

    NASA Astrophysics Data System (ADS)

    Johnston, Marty; Jalkio, Jeffrey

    2013-04-01

    By the time students have reached the intermediate level physics courses they have been exposed to a broad set of analytical, experimental, and computational skills. However, their ability to independently integrate these skills into the study of a physical system is often weak. To address this weakness and assess their understanding of the underlying physical concepts we have introduced laboratory homework into lecture based, junior level theoretical mechanics and electromagnetics courses. A laboratory homework set replaces a traditional one and emphasizes the analysis of a single system. In an exercise, students use analytical and computational tools to predict the behavior of a system and design a simple measurement to test their model. The laboratory portion of the exercises is straight forward and the emphasis is on concept integration and application. The short student reports we collect have revealed misconceptions that were not apparent in reviewing the traditional homework and test problems. Work continues on refining the current problems and expanding the problem sets.

  19. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppock, Edrick G.

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology inmore » collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.« less

  20. Comparative Approaches to Understanding the Relation Between Aging and Physical Function

    PubMed Central

    Cesari, Matteo; Seals, Douglas R.; Shively, Carol A.; Carter, Christy S.

    2016-01-01

    Despite dedicated efforts to identify interventions to delay aging, most promising interventions yielding dramatic life-span extension in animal models of aging are often ineffective when translated to clinical trials. This may be due to differences in primary outcomes between species and difficulties in determining the optimal clinical trial paradigms for translation. Measures of physical function, including brief standardized testing batteries, are currently being proposed as biomarkers of aging in humans, are predictive of adverse health events, disability, and mortality, and are commonly used as functional outcomes for clinical trials. Motor outcomes are now being incorporated into preclinical testing, a positive step toward enhancing our ability to translate aging interventions to clinical trials. To further these efforts, we begin a discussion of physical function and disability assessment across species, with special emphasis on mice, rats, monkeys, and man. By understanding how physical function is assessed in humans, we can tailor measurements in animals to better model those outcomes to establish effective, standardized translational functional assessments with aging. PMID:25910845

  1. Observation of creep behavior of cellulose electro-active paper (EAPap) actuator

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Lee, Sang-Woo; Yun, Gyu-Young; Yang, Chulho; Kim, Heung Soo; Kim, Jaehwan

    2009-03-01

    Understanding of creep effects on actuating mechanisms is important to precisely figure out the behavior of material. Creep behaviors of cellulose based Electro-Active Paper (EAPap) were studied under different constant loading conditions. We found the structural modification of microfibrils in EAPap after creep test. Structural differences of as-prepared and after creep tested samples were compared by SEM measurements. From the measured creep behaviors by different loading conditions, two different regions of induced strain and current were clearly observed as the measurement time increased. It is consider that local defects may occur and becomes micro-dimple or micro-crack formations in lower load cases as localized deformation proceeds, while the shrinkage of diameter of elongated fibers was observed only at the high level of loading. Therefore, cellulose nanofibers may play a role to be against the creep load and prevent the localized structural deformations. The results provide useful creep behavior and mechanism to understand the mechanical behavior of thin visco-elastic EAPap actuator.

  2. Laboratory investigation of hypercoagulability.

    PubMed

    Francis, J L

    1998-01-01

    For many years, the laboratory investigation of patients with thrombophilia has lagged behind that of patients with bleeding diathesis. Improved understanding of the mechanisms that control and regulate coagulation, and the resultant recognition of new defects, have greatly stimulated clinical laboratory interest in this area. Assays to detect resistance to activated protein C; deficiencies of antithrombin, protein C, and protein S; and the presence of antiphospholipid antibodies are widely available and should form part of the investigation of patients that present with idiopathic thrombosis. Such a work-up will likely provide an explanation for thrombosis in 40 to 60% of patients. Abnormalities of fibrinogen and fibrinolysis may explain still more, although such defects are currently considered rare. In addition, presently unrecognized defects almost certainly exist, and the identification of such individuals will undoubtedly improve our understanding of the hemostatic mechanism. Laboratory tests to define the hypercoagulable state are continually being developed. They include whole blood coagulation and platelet function tests and novel activation markers. However, acceptance of these approaches by clinical laboratories has been slow.

  3. Understanding and Mitigating Tip Leakage and Endwall Losses in High Pressure Ratio Cores

    NASA Technical Reports Server (NTRS)

    Christophel, Jesse

    2015-01-01

    Reducing endwall and tip secondary flow losses will be a key enabler for the next generation of commercial and military air transport and will be an improvement on the state-of-the-art in turbine loss reduction strategies. The objective of this research is three-fold: 1) To improve understanding of endwall secondary flow and tip clearance losses 2) To develop novel technologies to mitigate these losses and test them in low-speed cascade and rig environments 3) To validate predictive tools To accomplish these objectives, Pratt & Whitney (P&W) has teamed with Pennsylvania State University (PSU) to experimentally test new features designed by P&W. P&W will create new rim-cavity features to reduce secondary flow loss and improve purge flow cooling effectiveness and new blade tip features to manage leakage flows and reduce tip leakage secondary flow loss. P&W is currently developing technologies in these two areas that expect to be assimilated in the N+2/N+3 generation of commercial engines.

  4. Magnesium Alloys for Space Hardware Design

    NASA Technical Reports Server (NTRS)

    Aroh, Joseph

    2017-01-01

    There have been advances in magnesium alloy development that NASA has not taken into consideration for space hardware because of a lack of test data. Magnesium alloys offer excellent weight reduction, specific strength, and deep space radiation mitigation. Traditionally, magnesium has been perceived as having too poor of a flammability resistance and corrosion resistance to be used for flight. Recent developments in magnesium alloying has led to the formation of two alloys, WE43 and Elektron 21, which are self-extinguishing and significantly less flammable because of their composition. Likewise, an anodizing process called Tagnite was formulated to deter any concern with galvanic and saltwater corrosion. The Materials Science Branch at Kennedy Space Center is currently researching these new alloys and treatments to better understand how they behave in the harsh environment of space. Successful completion of the proposed testing should result in a more thorough understanding of modern aerospace materials and processes, and possibly the permission to use magnesium alloys in future NASA designs.

  5. Development and Testing of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Prather, E. E.; English, T. R.; Desch, S. M.; Keller, J. M.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Trying to assess if our students really understand the ideas we present in class can be difficult. Concept inventories are research-validated assessment tools that can provide us with data to better understand whether we are successful in the classroom. The idea for the Solar System Concept Inventory (SSCI) was born after realizing that no concept inventory currently available covered details regarding the formation and evolution of our solar system. Topics were selected by having faculty identify the key concepts they address when teaching about the solar system and interviewing students in order to identify common naive ideas and reasoning difficulties relating to these key topics. Beginning in fall of 2008, a national multi-institutional field test began which would eventually involve nearly 2500 students and 17 instructors from 10 different institutions. After each round of testing, a group of instructors from multiple institutions around the country worked together to analyze the data and revise or eliminate underperforming questions. Each question was examined using a combination of point biserial, percent correct on the pre-test, and item difficulty to determine if the question was properly differentiating student understanding while also ensuring the question was not too easy or too hard. In this talk, I will present an overall outline of the development of the SSCI as well as the final testing results. The final version of the SSCI can be found at http://casa.colorado.edu/ hornstei/ssci/. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any findings expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

  6. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  7. Levitating Trains and Kamikaze Genes: Technological Literacy for the Future

    NASA Astrophysics Data System (ADS)

    Brennan, Richard P.

    1994-08-01

    A lively survey of the horizons of modern technology. Provides easy-to-read summaries of the state of the art in space science, biotechnology, computer science, exotic energy sources and materials engineering as well as life-enhancing medical advancements and environmental, transportation and defense/weapons technologies. Each chapter explains how a current or future technology works and provides an understanding of the underlying scientific concepts. Includes an extensive self-test to review your knowledge.

  8. Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics

    PubMed Central

    Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.

    2016-01-01

    Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333

  9. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  10. TEMPEST-D Spacecraft

    NASA Image and Video Library

    2018-05-17

    The complete TEMPEST-D spacecraft shown with the solar panels deployed. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22458

  11. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  12. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.J.; Antonescu, C.

    A program to assess the impact of smoke on digital instrumentation and control (I and C) safety systems began in 1994, funded by the US Nuclear Regulatory Commission Office of Research. Digital I and C safety systems are likely replacements for today`s analog systems. The nuclear industry has little experience in qualifying digital electronics for critical systems, part of which is understanding system performance during plant fires. The results of tests evaluating the performance of digital circuits and chip technologies exposed to the various smoke and humidity conditions representative of cable fires are discussed. Tests results show that low tomore » moderate smoke densities can cause intermittent failures of digital systems. Smoke increases leakage currents between biased contacts, leading to shorts. Chips with faster switching times, and thus higher output drive currents, are less sensitive to leakage currents and thus to smoke. Contact corrosion from acidic gases in smoke and inductance of stray capacitance are less important contributors to system upset. Transmission line coupling was increased because the smoke acted as a conductive layer between the lines. Permanent circuit damage was not obvious in the 24 hr of circuit monitoring. Test results also show that polyurethane, parylene, and acrylic conformal coatings are more effective in protecting against smoke than epoxy or silicone. Common-sense mitigation measures are discussed. Unfortunately the authors are a long way from standard tests for smoke exposure that capture the variations in smoke exposure possible in an actual fire.« less

  14. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.

  15. Neck injury tolerance under inertial loads in side impacts.

    PubMed

    McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand

    2007-03-01

    Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.

  16. Testing the Relations Between Impulsivity-Related Traits, Suicidality, and Nonsuicidal Self-Injury: A Test of the Incremental Validity of the UPPS Model

    PubMed Central

    Lynam, Donald R.; Miller, Joshua D.; Miller, Drew J.; Bornovalova, Marina A.; Lejuez, C. W.

    2011-01-01

    Borderline personality disorder (BPD) has received significant attention as a predictor of suicidal behavior (SB) and nonsuicidal self-injury (NSSI). Despite significant promise, trait impulsivity has received less attention. Understanding the relations between impulsivity and SB and NSSI is confounded, unfortunately, by the heterogeneous nature of impulsivity. This study examined the relations among 4 personality pathways to impulsive behavior studied via the UPPS model of impulsivity and SB and NSSI in a residential sample of drug abusers (N = 76). In this study, we tested whether these 4 impulsivity-related traits (i.e., Negative Urgency, Sensation Seeking, Lack of Premeditation, and Lack of Perseverance) provide incremental validity in the statistical prediction of SB and NSSI above and beyond BPD; they do. We also tested whether BPD symptoms provide incremental validity in the prediction of SB and NSSI above and beyond these impulsivity-related traits; they do not. In addition to the main effects of Lack of Premeditation and Negative Urgency, we found evidence of a robust interaction between these 2 personality traits. The current results argue strongly for the consideration of these 2 impulsivity-related domains—alone and in interaction—when attempting to understand and predict SB and NSSI. PMID:21833346

  17. Testing the relations between impulsivity-related traits, suicidality, and nonsuicidal self-injury: a test of the incremental validity of the UPPS model.

    PubMed

    Lynam, Donald R; Miller, Joshua D; Miller, Drew J; Bornovalova, Marina A; Lejuez, C W

    2011-04-01

    Borderline personality disorder (BPD) has received significant attention as a predictor of suicidal behavior (SB) and nonsuicidal self-injury (NSSI). Despite significant promise, trait impulsivity has received less attention. Understanding the relations between impulsivity and SB and NSSI is confounded, unfortunately, by the heterogeneous nature of impulsivity. This study examined the relations among 4 personality pathways to impulsive behavior studied via the UPPS model of impulsivity and SB and NSSI in a residential sample of drug abusers (N = 76). In this study, we tested whether these 4 impulsivity-related traits (i.e., Negative Urgency, Sensation Seeking, Lack of Premeditation, and Lack of Perseverance) provide incremental validity in the statistical prediction of SB and NSSI above and beyond BPD; they do. We also tested whether BPD symptoms provide incremental validity in the prediction of SB and NSSI above and beyond these impulsivity-related traits; they do not. In addition to the main effects of Lack of Premeditation and Negative Urgency, we found evidence of a robust interaction between these 2 personality traits. The current results argue strongly for the consideration of these 2 impulsivity-related domains--alone and in interaction--when attempting to understand and predict SB and NSSI.

  18. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery

    NASA Astrophysics Data System (ADS)

    Fernandes, Y.; Bry, A.; de Persis, S.

    2018-06-01

    As hazardous situations can occur during the life of a Li-ion battery, it is of great importance to understand its behavior under abusive conditions (mechanical, thermal or electrical). In particular, the study of overcharge, which consists of forcing a current through the cell, can be very helpful in improving battery safety. Very few studies in the literature have focused on the chemical reaction mechanism responsible for failure during overcharge. This is, however, of great interest because a Li-ion battery can produce reactions in a sealed container and is thus a highly reactive system. Here, experimental approaches are employed to understand the reaction mechanisms that occur during overcharge testing. Experiments consist of studying the overcharge kinetics of a commercial battery at an initial state of charge of 100%. The battery is maintained in a known volume and gaseous samples are withdrawn both at the end of the test and continuously during the test. The main gaseous species are then identified and quantified by gas phase chromatography coupled with mass spectrometry and FTIR spectroscopy. This experimental study is completed by a numerical investigation to determine the combustion parameters of the exhaust gases using a detailed reaction mechanism associated with a numerical code.

  19. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and potentially decrease the need for expensive engineered barriers.Our current work aims are 1) quantifying and understanding the processes associated with glass alteration in contact with Fe-bearing materials; 2) quantifying and understanding the processes associated with glass alteration in presence of MgO (example of engineered barrier used in WIPP); 3) identifying glass alteration suppressants and the processes involved to reach glass alteration suppression; 4) quantifying and understanding the processes associated with Saltstone and Cast Stone (SRS and Hanford cementitious waste forms) in various representative groundwaters; 5) investigating positron annihilation as a new tool for the study of glass alteration; and 6) quantifying and understanding the processes associated with glass alteration under gamma irradiation.« less

  20. Discordance of voluntary HIV testing with HIV sexual risk-taking and self-perceived HIV infection risk among social media-using black, Hispanic, and white young-men-who-have-sex-with-men (YMSM).

    PubMed

    Alexovitz, Kelsey A; Merchant, Roland C; Clark, Melissa A; Liu, Tao; Rosenberger, Joshua G; Bauermeister, Jose; Mayer, Kenneth H

    2018-01-01

    Discordance between self-perceived HIV risk and actual risk-taking may impede efforts to promote HIV testing among young adult men-who-have-sex-with-men (YMSM) in the United States (US). Understanding the extent of, and reasons for, the discordance of HIV risk self-perception, HIV risk-taking and voluntary HIV testing among black, Hispanic and white YMSM could aid in the development of interventions to increase HIV testing among this higher HIV risk population. HIV-uninfected 18-24-year-old black, Hispanic, and white YMSM were recruited from across the US through multiple social media websites. Participants were queried about their voluntary HIV testing history, perception of currently having an undiagnosed HIV infection, and condomless anal intercourse (CAI) history. We assessed the association between previous CAI and self-perceived possibility of currently having an HIV infection by HIV testing status using Cochran-Mantel-Haenszel testing. Of 2275 black, Hispanic and white social media-using 18-24 year-old YMSM, 21% had never been tested for HIV voluntarily, 87% ever had CAI with another man, 77% believed that it was perhaps possible (as opposed to not possible at all) they currently could have an undiagnosed HIV infection, and 3% who reported CAI with casual or exchange partners, but had not been tested for HIV, self-perceived having no possibility of being HIV infected. Of 471 YMSM who had not been HIV tested, 57% reported CAI with casual or exchange partners, yet self-perceived having no possibility of being HIV infected. Per the Cochran-Mantel-Haenszel test results, among those reporting HIV risk behaviors, the self-perception of possibly being HIV-infected was not greater among those who had never been tested for HIV, as compared to those who had been tested. Future interventions should emphasize promoting self-realization of HIV risk and translating that into seeking and accepting voluntary HIV testing among this higher HIV risk population.

  1. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  2. NASA's Analog Missions: Driving Exploration Through Innovative Testing

    NASA Technical Reports Server (NTRS)

    Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.

    2012-01-01

    Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).

  3. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M. Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-01-01

    Abstract Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment. PMID:27589015

  4. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study.

    PubMed

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-11-01

    The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R(2) = 0.40). All LEVEL 2 factors are important theoretically as well as for clinical assessment.

  5. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less

  6. Fundamentals of Counting Statistics in Digital PCR: I Just Measured Two Target Copies-What Does It Mean?

    PubMed

    Tzonev, Svilen

    2018-01-01

    Current commercially available digital PCR (dPCR) systems and assays are capable of detecting individual target molecules with considerable reliability. As tests are developed and validated for use on clinical samples, the need to understand and develop robust statistical analysis routines increases. This chapter covers the fundamental processes and limitations of detecting and reporting on single molecule detection. We cover the basics of quantification of targets and sources of imprecision. We describe the basic test concepts: sensitivity, specificity, limit of blank, limit of detection, and limit of quantification in the context of dPCR. We provide basic guidelines how to determine those, how to choose and interpret the operating point, and what factors may influence overall test performance in practice.

  7. Finite Element Analysis of an Energy Absorbing Sub-floor Structure

    NASA Technical Reports Server (NTRS)

    Moore, Scott C.

    1995-01-01

    As part of the Advanced General Aviation Transportation Experiments program, the National Aeronautics and Space Administration's Langley Research Center is conducting tests to design energy absorbing structures to improve occupant survivability in aircraft crashes. An effort is currently underway to design an Energy Absorbing (EA) sub-floor structure which will reduce occupant loads in an aircraft crash. However, a recent drop test of a fuselage specimen with a proposed EA sub-floor structure demonstrated that the effects of sectioning the fuselage on both the fuselage section's stiffness and the performance of the EA structure were not fully understood. Therefore, attempts are underway to model the proposed sub-floor structure on computers using the DYCAST finite element code to provide a better understanding of the structure's behavior in testing, and in an actual crash.

  8. Response of dorsomedial prefrontal cortex predicts altruistic behavior

    PubMed Central

    Waytz, Adam; Zaki, Jamil; Mitchell, Jason P.

    2012-01-01

    Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex (dorsal MPFC)—a region consistently involved in understanding others’ mental states—predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought. PMID:22649243

  9. Fundamentals in Biostatistics for Research in Pediatric Dentistry: Part I - Basic Concepts.

    PubMed

    Garrocho-Rangel, J A; Ruiz-Rodríguez, M S; Pozos-Guillén, A J

    The purpose of this report was to provide the reader with some basic concepts in order to better understand the significance and reliability of the results of any article on Pediatric Dentistry. Currently, Pediatric Dentists need the best evidence available in the literature on which to base their diagnoses and treatment decisions for the children's oral care. Basic understanding of Biostatistics plays an important role during the entire Evidence-Based Dentistry (EBD) process. This report describes Biostatistics fundamentals in order to introduce the basic concepts used in statistics, such as summary measures, estimation, hypothesis testing, effect size, level of significance, p value, confidence intervals, etc., which are available to Pediatric Dentists interested in reading or designing original clinical or epidemiological studies.

  10. Computer Aided Enzyme Design and Catalytic Concepts

    PubMed Central

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389

  11. Patient perceptions of receiving test results via online portals: a mixed-methods study.

    PubMed

    Giardina, Traber D; Baldwin, Jessica; Nystrom, Daniel T; Sittig, Dean F; Singh, Hardeep

    2018-04-01

    Online portals provide patients with access to their test results, but it is unknown how patients use these tools to manage results and what information is available to promote understanding. We conducted a mixed-methods study to explore patients' experiences and preferences when accessing their test results via portals. We conducted 95 interviews (13 semistructured and 82 structured) with adults who viewed a test result in their portal between April 2015 and September 2016 at 4 large outpatient clinics in Houston, Texas. Semistructured interviews were coded using content analysis and transformed into quantitative data and integrated with the structured interview data. Descriptive statistics were used to summarize the structured data. Nearly two-thirds (63%) did not receive any explanatory information or test result interpretation at the time they received the result, and 46% conducted online searches for further information about their result. Patients who received an abnormal result were more likely to experience negative emotions (56% vs 21%; P = .003) and more likely to call their physician (44% vs 15%; P = .002) compared with those who received normal results. Study findings suggest that online portals are not currently designed to present test results to patients in a meaningful way. Patients experienced negative emotions often with abnormal results, but sometimes even with normal results. Simply providing access via portals is insufficient; additional strategies are needed to help patients interpret and manage their online test results. Given the absence of national guidance, our findings could help strengthen policy and practice in this area and inform innovations that promote patient understanding of test results.

  12. Novel targets for the treatment of autosomal dominant polycystic kidney disease

    PubMed Central

    Belibi, Franck A; Edelstein, Charles L

    2010-01-01

    Importance of the field Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. Areas covered in the review The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. What the reader will gain Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. Take home message The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin–angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans. PMID:20141351

  13. Scientific Caricatures in the Earth Science Classroom: An Alternative Assessment for Meaningful Science Learning

    NASA Astrophysics Data System (ADS)

    Clary, Renee M.; Wandersee, James H.

    2010-01-01

    Archive-based, historical research of materials produced during the Golden Age of Geology (1788-1840) uncovered scientific caricatures (SCs) which may serve as a unique form of knowledge representation for students today. SCs played important roles in the past, stimulating critical inquiry among early geologists and fueling debates that addressed key theoretical issues. When historical SCs were utilized in a large-enrollment college Earth History course, student response was positive. Therefore, we offered SCs as an optional assessment tool. Paired t-tests that compared individual students’ performances with the SC option, as well as without the SC option, showed a significant positive difference favoring scientific caricatures ( α = 0.05). Content analysis of anonymous student survey responses revealed three consistent findings: (a) students enjoyed expressing science content correctly but creatively through SCs, (b) development of SCs required deeper knowledge integration and understanding of the content than conventional test items, and (c) students appreciated having SC item options on their examinations, whether or not they took advantage of them. We think that incorporation of SCs during assessment may effectively expand the variety of methods for probing understanding, thereby increasing the mode validity of current geoscience tests.

  14. Challenges of healthcare administration: optimizing quality and value at an affordable cost in pediatric cardiology.

    PubMed

    Cohen, Mitchell I; Frias, Patricio A

    2018-01-01

    The purpose of this review is to explore the paradigm shift in healthcare delivery that will need to take place over the next few years away from an emphasis on supply-driven health care to better quality transparent-driven health care whose focus is on the consumer's best interest. The current healthcare system is fragmented and costs continue to rise. The best way to contain costs is to improve quality to the consumer, the patient. Physicians and hospitals need to align in a team-based approach that allows physicians to understand current costs and how to strive toward a focus on healthcare outcomes. Pediatric cardiology is a unique discipline that cares for patients with complex congenital conditions that will span their lifetime and also involves not just cardiology but surgery, intensive care, anesthesia, nursing, and a host of inpatient and ambulatory services. Understanding what matters to the patient and his/her family and presenting quality outcomes in a transparent fashion will gradually allow a shift to take place away from physician visits, tests ordered, and procedures performed. This can only be achieved with physicians, given the appropriate tools to understand costs, value, and outcomes and models where the hospitals and physicians are aligned. The transformation to a value-based healthcare system is beginning and pediatric cardiologists need to be educated, given the appropriate resources, receive appropriate feedback, and patients need to be part of the solution so that care providers can understand what matters most to them.

  15. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  16. Studies of the nucleon structure in back-to-back SIDIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    2016-03-01

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less

  17. Understanding cognitive dysfunction in multiple sclerosis: integrating a first-person perspective with neuropsychological testing, neuroimaging, and cognitive neuroscience research.

    PubMed

    Courtney, Susan M

    2011-12-01

    This paper gives perspectives on a companion article, the case history of a professional writer who has multiple sclerosis. The patient's first-person account of her illness is combined with clinical summaries about her care. The discussion of this case illustrates the value of combining such subjective and objective reports in evaluating a patient. Furthermore, considering these reports in the context of current research findings on the organization and function of cognitive neural systems can shed light on patients' seemingly contradictory clinical findings. For this patient, a deficit in the ability to select the most important information to achieve her current goals reflected her neuropsychological test results and neuroradiologic findings, and helped to explain her difficulties with her job and her activities of daily living. Because the patient's cognitive impairments have been her primary manifestations of multiple sclerosis, she illustrates the importance of physicians attending to and helping patients manage their cognitive deficits.

  18. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan

    2014-07-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.

  19. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, highmore » uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.« less

  20. Load Asymmetry Observed During Orion Main Parachute Inflation

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Taylor, Thomas; Olson, Leah

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) has flight tested the first two generations of the Orion parachute program. Three of the second generation tests instrumented the dispersion bridles of the Main parachute with a Tension Measuring System. The goal of this load measurement was to better understand load asymmetry during the inflation process of a cluster of Main parachutes. The CPAS Main parachutes exhibit inflations that are much less symmetric than current parachute literature and design guides would indicate. This paper will examine loads data gathered on three cluster tests, quantify the degree of asymmetry observed, and contrast the results with published design guides. Additionally, the measured loads data will be correlated with videos of the parachute inflation to make inferences about the shape of the parachute and the relative load asymmetry. The goal of this inquiry and test program is to open a dialogue regarding asymmetrical parachute inflation load factors.

  1. Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen

    NASA Astrophysics Data System (ADS)

    Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael

    2018-06-01

    The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.

  2. Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughn, Kyle; Mausolff, Zander; Gonzalez, Esteban

    Advanced modeling techniques and current computational capacity make full core TREAT simulations possible, with the goal of such simulations to understand the pre-test core and minimize the number of required calibrations. But, in order to simulate TREAT with a high degree of precision the reactor materials and geometry must also be modeled with a high degree of precision. This paper examines how uncertainty in the reported values of boron and graphite have an effect on simulations of TREAT.

  3. RainCube 6U CubeSat

    NASA Image and Video Library

    2018-05-17

    The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457

  4. Mineback Stimulation Research Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The objective of the Mineback Stimulation Research Experiments is to improve hydraulic fracture stimulation technology by providing an in situ laboratory where basic processes and mechanisms that control and influence fracture propagation can be observed, measured and understood. While previous tests have been instrumental in providing an understanding of the mechanisms controlling fracture height, current experiments are focused on fluid flow through the created fracture and the associated pressure drops and crack widths. Work performed, accomplishments and future plans are presented. 7 refs., 2 figs.

  5. Improving Attachments of Remotely-Deployed Dorsal Fin-Mounted Tags: Tissue Structure, Hydrodynamics, In Situ Performance, and Tagged-Animal Follow-Up

    DTIC Science & Technology

    2013-09-30

    in situ performance of our current attachment devices and then design and test improved retention systems 4. Conduct follow-up studies of tagged... retention system operates when first implanted, we do not fully understand the mechanics in a living fin. Therefore, we will use non-invasive imaging of...carcass tissue to determine how the retention elements behave in situ. These results, along with those from the analysis of dorsal fin histology

  6. Improving attachments of remotely-deployed dorsal fin-mounted tags: tissue structure, hydrodynamics, in situ performance, and tagged-animal follow-up

    DTIC Science & Technology

    2011-09-01

    Examine the in situ performance of our current attachment devices and then design and test improved retention systems Report Documentation Page Form...behavior (e.g., beaked whale versus melon-headed whale). 3. In situ behavior of retention system elements (Key individuals: Andrews, Schorr...Although we have a good idea of how the LIMPET retention system operates when first implanted, we do not fully understand the mechanics in a living fin

  7. Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David

    1994-01-01

    An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.

  8. Controlling the net charge on a nanoparticle optically levitated in vacuum

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  9. Chronic and Acute Stress Promote Overexploitation in Serial Decision Making

    PubMed Central

    Lenow, Jennifer K.; Constantino, Sara M.

    2017-01-01

    Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. PMID:28483979

  10. Solutions Network Formulation Report. Using NASA Sensors to Perform Crop Type Assessment for Monitoring Insect Resistance in Corn

    NASA Technical Reports Server (NTRS)

    Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent

    2007-01-01

    The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.

  11. An in-depth investigation of the life cycle of sulfate from the Kilauea volcano using satellite observations and EMAC model calculations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Hörmann, Christoph; Wagner, Thomas

    2015-04-01

    The Kilauea volcano (Hawaii), currently perhaps the most active volcano on Earth, has been continuously erupting since the beginning of 1983. A pronounced degassing phase in March-November 2008 caused the formation of an extensive SO2 plume, which in turn led to the formation of sulfate aerosols. The steady trade winds and lack of interfering sources previously allowed us to determine the life time of SO2 using only satellite-based measurements (no a priori or model information). The current investigation is focused on improving our understanding of the processes contributing to sulfate aerosol formation, processing, and loss. We use space-based aerosol measurements by MODIS, MISR, and CALIOP to characterize the aerosols (amount, size, altitude) and study the evolution of aerosol optical depth as a function of distance from the volcano to determine formation and loss rates. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle.

  12. Developing Area of Concrete Pavements and Transportation Structures

    DOT National Transportation Integrated Search

    2009-05-01

    The objectives are: analyze scope of work currently performed by the Bureau of Materials, and understand , based on facts available, current mission of the Bureau of Materials; to understand past and current tasks performed by CAIT for NJDOT and to e...

  13. Dynamic response of induced pressures, suckdown, and temperatures for two tandem jet STOVL configurations

    NASA Technical Reports Server (NTRS)

    Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.

    1992-01-01

    NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.

  14. Testing Iodine as a New Fuel for Cathodes

    NASA Astrophysics Data System (ADS)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  15. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  16. COD removal characteristics in air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J; Logan, Bruce E

    2015-01-01

    Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cellular and Molecular Mechanisms of Action of Transcranial Direct Current Stimulation: Evidence from In Vitro and In Vivo Models

    PubMed Central

    Pelletier, Simon J.

    2015-01-01

    Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391

  18. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, G.; Giordano, O.; Scandurra, G.

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less

  19. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world.

    PubMed

    Vrieze, Scott I; Iacono, William G; McGue, Matt

    2012-11-01

    This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations, and expected payoffs. Using substance use and abuse as our driving example, we then turn to the importance of etiological psychological theory in guiding genetic, environmental, and developmental research, as well as the utility of refined phenotypic measures, such as endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and environmental associations. Phenotypic measurement has received considerable attention in the history of psychology and is informed by psychometrics, whereas the environment remains relatively poorly measured and is often confounded with genetic effects (i.e., gene-environment correlation). Genetically informed designs, which are no longer limited to twin and adoption studies thanks to ever-cheaper genotyping, are required to understand environmental influences. Finally, we outline the vast amount of individual difference in structural genomic variation, most of which remains to be leveraged in genetic association tests. Although the genetic data can be massive and burdensome (tens of millions of variants per person), we argue that improved understanding of genomic structure and function will provide investigators with new tools to test specific a priori hypotheses derived from etiological psychological theory, much like current candidate gene research but with less confusion and more payoff than candidate gene research has to date.

  20. Are we ready for genetic testing for primary open-angle glaucoma?

    PubMed

    Khawaja, Anthony P; Viswanathan, Ananth C

    2018-05-01

    Following a dramatic reduction in the cost of genotyping technology in recent years, there have been significant advances in the understanding of the genetic basis of glaucoma. Glaucoma patients represent around a quarter of all outpatient activity in the UK hospital eye service and are a huge burden for the National Health Service. A potential benefit of genetic testing is personalised glaucoma management, allowing direction of our limited healthcare resources to the glaucoma patients who most need it. Our review aims to summarise recent discoveries in the field of glaucoma genetics and to discuss their potential clinical utility. While genome-wide association studies have now identified over ten genes associated with primary open-angle glaucoma (POAG), individually, variants in these genes are not predictive of POAG in populations. There are data suggesting some of these POAG variants are associated with conversion from ocular hypertension to POAG and visual field progression among POAG patients. However, these studies have not been replicated yet and such genetic testing is not currently justified in clinical care. In contrast, genetic testing for inherited early-onset disease in relatives of POAG patients with a known genetic mutation is of clear benefit; this can support either regular review to commence early treatment when the disease develops, or discharge from ophthalmology services of relatives who do not carry the mutation. Genetic testing for POAG at a population level is not currently justified.

  1. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  2. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  3. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  4. Basophil-activation tests in Hymenoptera allergy.

    PubMed

    Dubois, Anthony E J; van der Heide, Sicco

    2007-08-01

    Despite recent advances in our understanding of basophil biology and discovery of new markers for basophil activation, tests measuring basophil activation are not widely utilized in Hymenoptera allergy. Studies of the basophil-activation test in Hymenoptera allergy were examined and the clinical utility of this test was assessed. It has been demonstrated that the results of basophil-activation tests correlate quite well with those of serum IgE testing or skin-prick tests. Many studies compare test outcomes with history in patients and nonallergic controls, so that specificity in sensitized but clinically nonreactive individuals remains unknown. Although one study showed that the basophil-activation test might predict immunotherapy side effects, this could not be confirmed in a second study, and no role has been established for the basophil-activation test in the monitoring of venom immunotherapy. The basophil-activation test has no extra value in assessing sting challenges, although experience is limited. The measurement of basophil-activation markers may be useful in detecting IgE-mediated sensitization but the relevance for application of the basophil-activation test in prediction of clinical reactivity in Hymenoptera allergy is very limited. For this reason, this test currently has no established role in the diagnosis and management of patients with insect sting allergy.

  5. Inaugurating Rationalization: Three Field Studies Find Increased Rationalization When Anticipated Realities Become Current.

    PubMed

    Laurin, Kristin

    2018-04-01

    People will often rationalize the status quo, reconstruing it in an exaggeratedly positive light. They will even rationalize the status quo they anticipate, emphasizing the upsides and minimizing the downsides of sociopolitical realities they expect to take effect. Drawing on recent findings on the psychological triggers of rationalization, I present results from three field studies, one of which was preregistered, testing the hypothesis that an anticipated reality becoming current triggers an observable boost in people's rationalizations. San Franciscans rationalized a ban on plastic water bottles, Ontarians rationalized a targeted smoking ban, and Americans rationalized the presidency of Donald Trump, more in the days immediately after these realities became current compared with the days immediately before. Additional findings show evidence for a mechanism underlying these behaviors and rule out alternative accounts. These findings carry implications for scholarship on rationalization, for understanding protest behavior, and for policymakers.

  6. Dystonia-causing mutations as a contribution to the etiology of Spasmodic Dysphonia

    PubMed Central

    de Gusmão, Claudio M.; Fuchs, Tania; Moses, Andrew; Multhaupt-Buell, Trisha; Song, Phillip C.; Ozelius, Laurie J.; Franco, Ramon A.; Sharma, Nutan

    2017-01-01

    Objective Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There is scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations and allow a better understanding of mechanisms of disease. Study Design Prospective cohort Setting Tertiary academic medical center Subjects and methods We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data collected included demographic data, clinical features, family history and treatments administered. The following disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). Results 86 patients were recruited comprising 77% females and 23% males. A definite family history of neurological disorder was present in 15% (13/86). Average age of symptom onset was 42.1y (SD±15.7). Most (99%; 85/86) were treated with botulinum toxin and 12% (11/86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT 1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel /rare variants in THAP 1 (DYT 6). Conclusion Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1 and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort only two patients tested positive for novel/rare variants in THAP 1. Clinicians should make use of genetic testing judiciously and in cost-effective ways. PMID:27188707

  7. Dystonia-Causing Mutations as a Contribution to the Etiology of Spasmodic Dysphonia.

    PubMed

    de Gusmão, Claudio M; Fuchs, Tania; Moses, Andrew; Multhaupt-Buell, Trisha; Song, Phillip C; Ozelius, Laurie J; Franco, Ramon A; Sharma, Nutan

    2016-10-01

    Spasmodic dysphonia is a focal dystonia of the larynx with heterogeneous manifestations and association with familial risk factors. There are scarce data to allow precise understanding of etiology and pathophysiology. Screening for dystonia-causing genetic mutations has the potential to allow accurate diagnosis, inform about genotype-phenotype correlations, and allow a better understanding of mechanisms of disease. Cross-sectional study. Tertiary academic medical center. We enrolled patients presenting with spasmodic dysphonia to the voice clinic of our academic medical center. Data included demographics, clinical features, family history, and treatments administered. The following genes with disease-causing mutations previously associated with spasmodic dysphonia were screened: TOR1A (DYT1), TUBB4 (DYT4), and THAP1 (DYT6). Eighty-six patients were recruited, comprising 77% females and 23% males. A definite family history of neurologic disorder was present in 15% (13 of 86). Average age (± standard deviation) of symptom onset was 42.1 ± 15.7 years. Most (99%; 85 of 86) were treated with botulinum toxin, and 12% (11 of 86) received oral medications. Genetic screening was negative in all patients for the GAG deletion in TOR1A (DYT1) and in the 5 exons currently associated with disease-causing mutations in TUBB4 (DYT4). Two patients tested positive for novel/rare variants in THAP1 (DYT6). Genetic screening targeted at currently known disease-causing mutations in TOR1A, THAP1, and TUBB4 appears to have low diagnostic yield in sporadic spasmodic dysphonia. In our cohort, only 2 patients tested positive for novel/rare variants in THAP1. Clinicians should make use of genetic testing judiciously and in cost-effective ways. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  8. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way

    NASA Astrophysics Data System (ADS)

    Battaglia, Giuseppina; Helmi, Amina; Breddels, Maarten

    2013-09-01

    We review our current understanding of the internal dynamical properties of the dwarf spheroidal galaxies surrounding the Milky Way. These are the most dark matter dominated galaxies, and as such may be considered ideal laboratories to test the current concordance cosmological model, and in particular provide constraints on the nature of the dominant form of dark matter. We discuss the latest observations of the kinematics of stars in these systems, and how these may be used to derive their mass distribution. We tour through the various dynamical techniques used, with emphasis on the complementarity and limitations, and discuss what the results imply also in the context of cosmological models. Finally we provide an outlook on exciting developments in this field.

  9. Transformational leadership in sport: current status and future directions.

    PubMed

    Arthur, Calum A; Bastardoz, Nicolas; Eklund, Robert

    2017-08-01

    Borrowed from organizational psychology, the concept of transformational leadership has now been applied to a sport context for a decade. Our review covers and critically discusses empirical articles published on this growing topic. However, because the majority of studies used cross-sectional designs and single-source questionnaires to tap what has been a fuzzy construct, current theoretical and methodological issues impede understanding of whether transformational leadership matters for sport outcomes. To make a difference to applied practice and policy, the transformational leadership construct requires a refined definition and stronger empirical tests allowing for robust causal inference. We highlight avenues for advancing research on transformational leadership in the sport context. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Pharmacological Therapy of Osteoporosis: A Systematic Current Review of Literature

    PubMed Central

    Pavone, Vito; Testa, Gianluca; Giardina, Serena M. C.; Vescio, Andrea; Restivo, Domenico A.; Sessa, Giuseppe

    2017-01-01

    Osteoporosis is the most common bone disease affecting millions of people worldwide, particularly in elderly or in post-menopausal women. The pathogenesis is useful to understand the possible mechanism of action of anti-osteoporotic drugs. Early diagnosis, possible with several laboratory and instrumental tests, allows a major accuracy in the choice of anti-osteoporosis drugs. Treatment of osteoporosis is strictly related to severity of pathology and consists on prevention of fragility fractures with a correct lifestyle and adequate nutritional supplements, and use of pharmacological therapy, started in patients with osteopenia and history of fragility fracture of the hip or spine. The purpose of this review is to focus on main current pharmacological products to treat osteoporotic patients. PMID:29163183

  11. Seismic Methods of Identifying Explosions and Estimating Their Yield

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models and our ability to understand and predict where methods of identifying explosions and estimating their yield work well, and any circumstances where they may not.

  12. In Vitro Microfluidic Models for Neurodegenerative Disorders.

    PubMed

    Osaki, Tatsuya; Shin, Yoojin; Sivathanu, Vivek; Campisi, Marco; Kamm, Roger D

    2018-01-01

    Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Extension of the Contingency Naming Test to adult assessment: psychometric analysis in a college student sample.

    PubMed

    Riddle, Tara; Suhr, Julie

    2012-01-01

    The Contingency Naming Test (CNT; Taylor, Albo, Phebus, Sachs, & Bierl, 1987) was initially designed to assess aspects of executive functioning, such as processing speed and response inhibition, in children. The measure has shown initial utility in identifying differences in executive function among child clinical groups; however, there is an absence of adequate psychometric data for use with adults. The current study expanded psychometric data upward for use with a college student sample and explored the measure's test-retest reliability and factor structure. Performance in the adult sample showed continued improvement above child norms, consistent with theories of executive function development. Exploratory factor analysis showed that the CNT is most closely related to measures of processing speed, as well as elements of response inhibition within the latter trials. Overall, results from the current study provide added support for the utility of the CNT as a measure of executive functioning in young adults. However, more research is needed to determine patterns of performance among adult clinical groups, as well as to better understand how performance patterns may change in a broader age range, including middle and older adulthood.

  14. Active Learning Approaches by Visualizing ICT Devices with Milliseconds Resolution for Deeper Understanding in Physics

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akizo; Okiharu, Fumiko

    2010-07-01

    We are developing various modularized materials in physics education to overcome students' misconceptions by use of ICT, i.e. video analysis software and ultra-high-speed digital movies, motion detector, force sensors, current and voltage probes, temperature sensors etc. Furthermore, we also present some new modules of active learning approaches on electric circuit using high speed camera and voltage probes with milliseconds resolution. We are now especially trying to improve conceptual understanding by use of ICT devices with milliseconds resolution in various areas of physics education We give some modules of mass measurements by video analysis of collision phenomena by using high speed cameras—Casio EX-F1(1200 fps), EX-FH20(1000 fps) and EX-FC100/150(1000 fps). We present several new modules on collision phenomena to establish deeper understanding of conservation laws of momentum. We discuss some effective results of trial on a physics education training courses for science educators, and those for science teachers during the renewal years of teacher's license after every ten years in Japan. Finally, we discuss on some typical results of pre-test and post-test in our active learning approaches based on ICT, i.e. some evidence on improvements of physics education (increasing ratio of correct answer are 50%-level).

  15. Factors Associated with American Indian Cigarette Smoking in Rural Settings

    PubMed Central

    Hodge, Felicia; Nandy, Karabi

    2011-01-01

    Introduction: This paper reports on the prevalence, factors and patterns of cigarette smoking among rural California American Indian (AI) adults. Methods: Thirteen Indian health clinic registries formed the random household survey sampling frame (N = 457). Measures included socio-demographics, age at smoking initiation, intention to quit, smoking usage, smoking during pregnancy, health effects of smoking, suicide attempts or ideation, history of physical abuse, neglect and the role of the environment (smoking at home and at work). Statistical tests included Chi Square and Fisher’s Exact test, as well as multiple logistic regression analysis among never, former, and current smokers. Results: Findings confirm high smoking prevalence among male and female participants (44% and 37% respectively). American Indians begin smoking in early adolescence (age 14.7). Also, 65% of current smokers are less than 50% Indian blood and 76% of current smokers have no intention to quit smoking. Current and former smokers are statistically more likely to report having suicidal ideation than those who never smoked. Current smokers also report being neglected and physically abused in childhood and adolescence, are statistically more likely to smoke ½ pack or less (39% vs. 10% who smoke 1+ pack), smoke during pregnancy, and have others who smoke in the house compared with former and never smokers. Conclusion: Understanding the factors associated with smoking will help to bring about policy changes and more effective programs to address the problem of high smoking rates among American Indians. PMID:21695023

  16. The Different Benefits from Different Gestures in Understanding a Concept

    NASA Astrophysics Data System (ADS)

    Kang, Seokmin; Hallman, Gregory L.; Son, Lisa K.; Black, John B.

    2013-12-01

    Explanations are typically accompanied by hand gestures. While research has shown that gestures can help learners understand a particular concept, different learning effects in different types of gesture have been less understood. To address the issues above, the current study focused on whether different types of gestures lead to different levels of improvement in understanding. Two types of gestures were investigated, and thus, three instructional videos (two gesture videos plus a no gesture control) of the subject of mitosis—all identical except for the types of gesture used—were created. After watching one of the three videos, participants were tested on their level of understanding of mitosis. The results showed that (1) differences in comprehension were obtained across the three groups, and (2) representational (semantic) gestures led to a deeper level of comprehension than both beat gestures and the no gesture control. Finally, a language proficiency effect is discussed as a moderator that may affect understanding of a concept. Our findings suggest that a teacher is encouraged to use representational gestures even to adult learners, but more work is needed to prove the benefit of using gestures for adult learners in many subject areas.

  17. Non-IgE-related diagnostic methods (LST, patch test).

    PubMed

    Matsumoto, Kenji

    2015-01-01

    Although most food allergy patients have immediate-type reactions, some have delayed-type reactions. Unlike for the detection of food-specific IgE antibody in immediate-type (IgE-mediated) food allergies, only a few tests are currently available to aid in the diagnosis of delayed-type (non-IgE-mediated) food allergies. This chapter summarizes our current understanding of one in vitro test and one in vivo test for non-IgE-mediated food allergies: the lymphocyte stimulation test (LST) and the atopy patch test (APT). Although the LST is not yet standardized, a food protein-specific LST might be a useful tool for diagnosing delayed-type food allergies, and especially those manifesting with gastrointestinal symptoms but not skin symptoms. Various remaining issues - including basophil contamination of the peripheral blood mononuclear cell fraction and lipopolysaccharide contamination of food antigen preparations - are also discussed. The APT uses an epicutaneous patch technique to occlusively apply food antigens to the skin to induce inflammatory reactions at the patch application site. Because the APT shows modest sensitivity and specificity, the clinical benefit of the APT in the diagnosis of food allergies in patients with atopic dermatitis is limited. A position paper on the APT issued by the European Academy of Allergy and Clinical Immunology/Global Allergy and Asthma European Network in 2006 is briefly summarized, and several recent APT-related topics, including APT use for the diagnosis of food protein-induced enterocolitis syndrome, are discussed. © 2015 S. Karger AG, Basel.

  18. Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Butner, Harold M.

    1999-01-01

    Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.

  19. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  20. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snelson, C. M., Chipman, V. D., White, R. L., Emmitt, R. F., Townsend, M. J., Barker, D., Lee, P.

    Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. Themore » Source Physics Experiment at the Nevada National Security Site (SPE-N) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green’s function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1-N was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2-N was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3-N was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability.« less

  2. Impact of adolescent alcohol use across the lifespan: Long-lasting tolerance to high-dose alcohol coupled with potentiated spatial memory impairments to moderate-dose alcohol.

    PubMed

    Matthews, Douglas B; Novier, Adelle; Diaz-Granados, Jaime L; Van Skike, Candice E; Ornelas, Laura; Mittleman, G

    2017-06-01

    Understanding how alcohol exposure during adolescence affects aging is a critical but understudied area. In the present study, male rats were exposed to either alcohol or saline during adolescence, then tested every 4 months following either an ethanol or saline challenge; animals were tested until postnatal day (PD) 532. It was found that long-lasting tolerance to high-dose ethanol exists through the test period, as measured by loss of righting reflex, while tolerance to lower doses of ethanol is not found. In addition, alcohol exposure during adolescence facilitated spatial memory impairments to acute ethanol challenges later in life. The current work demonstrates that exposure to ethanol during adolescent development can produce long-lasting detrimental impairments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  4. Insights from the Source Physics Experiments on P/S Amplitude Ratio Methods of Identifying Explosions in a Background of Earthquakes

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Xu, H.; Pasyanos, M. E.; Pyle, M. L.; Matzel, E.; Mellors, R. J.; Hauk, T. F.

    2012-12-01

    It is well established empirically that regional distance (200-1600 km) amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes. However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. A goal of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS, formerly the Nevada Test Site (NTS)) is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. Current models of explosion P/S values suggest they are frequency dependent with poor performance below the source corner frequencies and good performance above. This leads to expectations that small magnitude explosions might require much higher frequencies (>10 Hz) to identify them. Interestingly the 1-ton chemical source physics explosions SPE2 and SPE3 appear to discriminate well from background earthquakes in the frequency band 6-8 Hz, where P and S signals are visible at the NVAR array located near Mina, NV about 200 km away. NVAR is a primary seismic station in the International Monitoring System (IMS), part of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The NVAR broadband element NV31 is co-located with the LLNL station MNV that recorded many NTS nuclear tests, allowing the comparison. We find the small SPE explosions in granite have similar Pn/Lg values at 6-8 Hz as the past nuclear tests mainly in softer rocks. We are currently examining a number of other stations in addition to NVAR, including the dedicated SPE stations that recorded the SPE explosions at much closer distances with very high sample rates, in order to better understand the observed frequency dependence as compared with the model predictions. We plan to use these observations to improve our explosion models and our ability to understand and predict where P/S methods of identifying explosions work and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. The limitations of point of care testing for pandemic influenza: what clinicians and public health professionals need to know.

    PubMed

    Hatchette, Todd F; Bastien, Nathalie; Berry, Jody; Booth, Tim F; Chernesky, Max; Couillard, Michel; Drews, Steven; Ebsworth, Anthony; Fearon, Margaret; Fonseca, Kevin; Fox, Julie; Gagnon, Jean-Nicolas; Guercio, Steven; Horsman, Greg; Jorowski, Cathy; Kuschak, Theodore; Li, Yan; Majury, Anna; Petric, Martin; Ratnam, Sam; Smieja, Marek; Van Caeseele, Paul

    2009-01-01

    As the world prepares for the next influenza pandemic, governments have made significant funding commitments to vaccine development and antiviral stockpiling. While these are essential components to pandemic response, rapid and accurate diagnostic testing remains an often neglected cornerstone of pandemic influenza preparedness. Clinicians and Public Health Practitioners need to understand the benefits and drawbacks of different influenza tests in both seasonal and pandemic settings. Culture has been the traditional gold standard for influenza diagnosis but requires from 1-10 days to generate a positive result, compared to nucleic acid detection methods such as real time reverse transcriptase polymerase chain reaction (RT-PCR). Although the currently available rapid antigen detection kits can generate results in less than 30 minutes, their sensitivity is suboptimal and they are not recommended for the detection of novel influenza viruses. Until point-of-care (POC) tests are improved, PILPN recommends that the best option for pandemic influenza preparation is the enhancement of nucleic acid-based testing capabilities across Canada.

  6. [Posture and aging. Current fundamental studies and management concepts].

    PubMed

    Mourey, F; Camus, A; Pfitzenmeyer, P

    2000-02-19

    FUNDAMENTAL IMPORTANCE OF POSTURE: In the elderly subject, preservation of posture is fundamental to maintaining functional independence. In recent years, there has been much progress in our understanding of the mechanisms underlying strategies used to control equilibrium in the upright position. Physiological aging, associated with diverse disease states, dangerously alters the postural function, particularly anticipated adjustments which allow an adaptation of posture to movement. CLINICAL ASSESSMENT OF POSTURE: Several tests have been developed to assess posture in the elderly subject, particularly the time it takes to start walking. We selected certain tests which can be used in everyday practice to predict falls: the stance test, the improved Romberg test, the "timed get up and go test", measurement of walking cadence, assessment of balance reactions, sitting-standing and standing-sitting movements and capacity to get up off the floor. PATIENT CARE: Elderly patients with equilibrium disorders can benefit from specific personalized rehabilitation protocols. Different techniques have been developed for multiple afferential stimulation, reprogramming postural strategies, and correcting for deficient motor automatisms.

  7. Do doctors understand the test characteristics of lung cancer screening?

    PubMed

    Schmidt, Richard; Breyer, Marie; Breyer-Kohansal, Robab; Urban, Matthias; Funk, Georg-Christian

    2018-04-01

    Screening for lung cancer with a low-dose computed tomography (CT) scan is estimated to prevent 3 deaths per 1000 individuals at high risk; however, false positive results and radiation exposure are relevant harms and deserve careful consideration. Screening candidates can only make an autonomous decision if doctors correctly inform them of the pros and cons of the method; therefore, this study aimed to evaluate whether doctors understand the test characteristics of lung cancer screening. In a randomized trial 556 doctors (members of the Austrian Respiratory Society) were invited to answer questions regarding lung cancer screening based on online case vignettes. Half of the participants were randomized to the group 'solutions provided' and received the correct solutions in advance. The group 'solutions withheld' had to rely on prior knowledge or estimates. The primary endpoint was the between-group difference in the estimated number of deaths preventable by screening. Secondary endpoints were the between-group differences in the prevalence of lung cancer, prevalence of a positive screening results, sensitivity, specificity, positive predictive value, and false negative rate. Estimations were also compared with current data from the literature. The response rate was 29% in both groups. The reduction in the number of deaths due to screening was overestimated six-fold (95% confidence interval CI: 4-8) compared with the actual data, and there was no effect of group allocation. Providing the correct solutions to doctors had no systematic effect on their answers. Doctors poorly understand the test characteristics of lung cancer screening. Providing the correct solutions in advance did not improve the answers. Continuing education regarding lung cancer screening and the interpretation of test characteristics may be a simple remedy. Clinical trial registered with www.clinicaltrials.gov (NCT02542332).

  8. A framework for testing and comparing binaural models.

    PubMed

    Dietz, Mathias; Lestang, Jean-Hugues; Majdak, Piotr; Stern, Richard M; Marquardt, Torsten; Ewert, Stephan D; Hartmann, William M; Goodman, Dan F M

    2018-03-01

    Auditory research has a rich history of combining experimental evidence with computational simulations of auditory processing in order to deepen our theoretical understanding of how sound is processed in the ears and in the brain. Despite significant progress in the amount of detail and breadth covered by auditory models, for many components of the auditory pathway there are still different model approaches that are often not equivalent but rather in conflict with each other. Similarly, some experimental studies yield conflicting results which has led to controversies. This can be best resolved by a systematic comparison of multiple experimental data sets and model approaches. Binaural processing is a prominent example of how the development of quantitative theories can advance our understanding of the phenomena, but there remain several unresolved questions for which competing model approaches exist. This article discusses a number of current unresolved or disputed issues in binaural modelling, as well as some of the significant challenges in comparing binaural models with each other and with the experimental data. We introduce an auditory model framework, which we believe can become a useful infrastructure for resolving some of the current controversies. It operates models over the same paradigms that are used experimentally. The core of the proposed framework is an interface that connects three components irrespective of their underlying programming language: The experiment software, an auditory pathway model, and task-dependent decision stages called artificial observers that provide the same output format as the test subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Vickie S., E-mail: wilson.vickie@epa.gov; Keshava, Nagalakshmi; Hester, Susan

    2013-09-15

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanismmore » or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.« less

  10. Building 865 Hypersonic Wind Tunnel Power System Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Larry X.

    2015-02-01

    This report documents the characterization and analysis of a high current power supply for the building 865 Hypersonic Wind Tunnel at Sandia National Laboratories. The system described in this report became operational in 2013, replacing the original 1968 system which employed an induction voltage regulator. This analysis and testing was completed to help the parent organization understand why an updated and redesigned power system was not delivering adequate power to resistive heater elements in the HWT. This analysis led to an improved understanding of the design and operation of the revised 2013 power supply system and identifies several reasons themore » revised system failed to achieve the performance of the original power supply installation. Design modifications to improve the performance of this system are discussed.« less

  11. Brief mindfulness meditation improves mental state attribution and empathizing.

    PubMed

    Tan, Lucy B G; Lo, Barbara C Y; Macrae, C Neil

    2014-01-01

    The ability to infer and understand the mental states of others (i.e., Theory of Mind) is a cornerstone of human interaction. While considerable efforts have focused on explicating when, why and for whom this fundamental psychological ability can go awry, considerably less is known about factors that may enhance theory of mind. Accordingly, the current study explored the possibility that mindfulness-based meditation may improve people's mindreading skills. Following a 5-minute mindfulness induction, participants with no prior meditation experience completed tests that assessed mindreading and empathic understanding. The results revealed that brief mindfulness meditation enhanced both mental state attribution and empathic concern, compared to participants in the control group. These findings suggest that mindfulness may be a powerful technique for facilitating core aspects of social-cognitive functioning.

  12. Our evolving universe

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    Our Evolving Universe is a lucid, non-technical and infectiously enthusiastic introduction to current astronomy and cosmology. Highly illustrated throughout with the latest colour images from the world's most advanced telescopes, it also provides a colourful view of our Universe. Malcolm Longair takes us on a breathtaking tour of the most dramatic recent results astronomers have on the birth of stars, the hunt for black holes and dark matter, on gravitational lensing and the latest tests of the Big Bang. He leads the reader right up to understand the key questions that future research in astronomy and cosmology must answer. A clear and comprehensive glossary of technical terms is also provided. For the general reader, student or professional wishing to understand the key questions today's astronomers and cosmologists are trying to answer, this is an invaluable and inspiring read.

  13. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis

    PubMed Central

    Hohwieler, Meike; Perkhofer, Lukas; Liebau, Stefan; Seufferlein, Thomas; Müller, Martin

    2016-01-01

    Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs. PMID:28815024

  14. LEO Spacecraft Charging Guidelines

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, D. C.

    2002-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, has commissioned and funded a design guidelines document intended to capture the current state of understanding. We present here an overview of this document, which is now nearing completion.

  15. Genetics and molecular pathology of gastric malignancy: Development of targeted therapies in the era of personalized medicine

    PubMed Central

    Van Ness, Michael; Gregg, Jeffrey; Wang, Jun

    2012-01-01

    Gastric malignancy constitutes a major cause of cancer deaths worldwide. Despite recent advances in surgical techniques combined with neoadjuvant chemotherapy and radiotherapy approaches, patients with advanced disease still have poor outcomes. An emerging understanding of the molecular pathways that characterize cell growth, cell cycle, apoptosis, angiogenesis, invasion and metastasis has provided novel targets in gastric cancer therapy. In this review, recent advances in the understanding of molecular tumorigenesis for common gastric malignancies are discussed. We also briefly review the current targeted therapies in the treatment of gastric malignancies. Practical insights are highlighted including HER2 testing and target therapy in gastric adenocarcinoma, morphologic features and molecular signatures of imatinib-resistance GISTs, and recent investigations aimed at tumor-specific therapy for neuroendocrine tumors. PMID:22943015

  16. Brief Mindfulness Meditation Improves Mental State Attribution and Empathizing

    PubMed Central

    Tan, Lucy B. G.; Lo, Barbara C. Y.; Macrae, C. Neil

    2014-01-01

    The ability to infer and understand the mental states of others (i.e., Theory of Mind) is a cornerstone of human interaction. While considerable efforts have focused on explicating when, why and for whom this fundamental psychological ability can go awry, considerably less is known about factors that may enhance theory of mind. Accordingly, the current study explored the possibility that mindfulness-based meditation may improve people’s mindreading skills. Following a 5-minute mindfulness induction, participants with no prior meditation experience completed tests that assessed mindreading and empathic understanding. The results revealed that brief mindfulness meditation enhanced both mental state attribution and empathic concern, compared to participants in the control group. These findings suggest that mindfulness may be a powerful technique for facilitating core aspects of social-cognitive functioning. PMID:25329321

  17. Determination of linear defect depths from eddy currents disturbances

    NASA Astrophysics Data System (ADS)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  18. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  19. The Validity and Responsiveness of Isometric Lower Body Multi-Joint Tests of Muscular Strength: a Systematic Review.

    PubMed

    Drake, David; Kennedy, Rodney; Wallace, Eric

    2017-12-01

    Researchers and practitioners working in sports medicine and science require valid tests to determine the effectiveness of interventions and enhance understanding of mechanisms underpinning adaptation. Such decision making is influenced by the supportive evidence describing the validity of tests within current research. The objective of this study is to review the validity of lower body isometric multi-joint tests ability to assess muscular strength and determine the current level of supporting evidence. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed in a systematic fashion to search, assess and synthesize existing literature on this topic. Electronic databases such as Web of Science, CINAHL and PubMed were searched up to 18 March 2015. Potential inclusions were screened against eligibility criteria relating to types of test, measurement instrument, properties of validity assessed and population group and were required to be published in English. The Consensus-based Standards for the Selection of health Measurement Instruments (COSMIN) checklist was used to assess methodological quality and measurement property rating of included studies. Studies rated as fair or better in methodological quality were included in the best evidence synthesis. Fifty-nine studies met the eligibility criteria for quality appraisal. The ten studies that rated fair or better in methodological quality were included in the best evidence synthesis. The most frequently investigated lower body isometric multi-joint tests for validity were the isometric mid-thigh pull and isometric squat. The validity of each of these tests was strong in terms of reliability and construct validity. The evidence for responsiveness of tests was found to be moderate for the isometric squat test and unknown for the isometric mid-thigh pull. No tests using the isometric leg press met the criteria for inclusion in the best evidence synthesis. Researchers and practitioners can use the isometric squat and isometric mid-thigh pull with confidence in terms of reliability and construct validity. Further work to investigate other validity components such as criterion validity, smallest detectable change and responsiveness to resistance exercise interventions may be beneficial to the current level of evidence.

  20. Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batheja, P.; Meier, W.J.; Rau, P.J.

    A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less

  1. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  2. Role of the laboratory in the evaluation of suspected drug abuse.

    PubMed

    Gold, M S; Dackis, C A

    1986-01-01

    Despite the high incidence of substance abuse, it remains a common cause of misdiagnosis. In patients who have abused or who are currently abusing drugs, symptoms of a psychiatric illness may be mimicked by either the drug's presence or absence. The laboratory can aid in making a differential diagnosis and eliminating drugs from active consideration as a cause of psychosis, depression, mania, and personality changes. Treatment planning and prevention of serious medical consequences often rest on the accuracy of the admission drug screen. Testing is widely used to assess improvement in substance abuse in both inpatient and outpatient settings. In occupational settings, testing has been used as an early indicator that a problem exists and as a successful prevention tool. The appropriate use of analytic technology in drug abuse testing requires an understanding of available test methodologies. These include drug screens by thin-layer chromatography, comprehensive testing using enzyme immunoassay, and computer-assisted gas chromatography-mass spectrometry (GC-MS). Testing for specific drugs considered likely causes or precipitants of "psychiatric" complaints is available with enzyme assays, radioimmunoassay, or definitive forensic-quality testing using GC-MS.

  3. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    PubMed

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  4. Patient perceptions of receiving test results via online portals: a mixed-methods study

    PubMed Central

    Giardina, Traber D; Baldwin, Jessica; Nystrom, Daniel T; Sittig, Dean F; Singh, Hardeep

    2018-01-01

    Abstract Objective Online portals provide patients with access to their test results, but it is unknown how patients use these tools to manage results and what information is available to promote understanding. We conducted a mixed-methods study to explore patients’ experiences and preferences when accessing their test results via portals. Materials and Methods We conducted 95 interviews (13 semistructured and 82 structured) with adults who viewed a test result in their portal between April 2015 and September 2016 at 4 large outpatient clinics in Houston, Texas. Semistructured interviews were coded using content analysis and transformed into quantitative data and integrated with the structured interview data. Descriptive statistics were used to summarize the structured data. Results Nearly two-thirds (63%) did not receive any explanatory information or test result interpretation at the time they received the result, and 46% conducted online searches for further information about their result. Patients who received an abnormal result were more likely to experience negative emotions (56% vs 21%; P = .003) and more likely to call their physician (44% vs 15%; P = .002) compared with those who received normal results. Discussion Study findings suggest that online portals are not currently designed to present test results to patients in a meaningful way. Patients experienced negative emotions often with abnormal results, but sometimes even with normal results. Simply providing access via portals is insufficient; additional strategies are needed to help patients interpret and manage their online test results. Conclusion Given the absence of national guidance, our findings could help strengthen policy and practice in this area and inform innovations that promote patient understanding of test results. PMID:29240899

  5. Self-reported concussion history: impact of providing a definition of concussion

    PubMed Central

    Robbins, Clifford A; Daneshvar, Daniel H; Picano, John D; Gavett, Brandon E; Baugh, Christine M; Riley, David O; Nowinski, Christopher J; McKee, Ann C; Cantu, Robert C; Stern, Robert A

    2014-01-01

    Background In recent years, the understanding of concussion has evolved in the research and medical communities to include more subtle and transient symptoms. The accepted definition of concussion in these communities has reflected this change. However, it is unclear whether this shift is also reflected in the understanding of the athletic community. What is known about the subject Self-reported concussion history is an inaccurate assessment of someone’s lifetime exposure to concussive brain trauma. However, unfortunately, in many cases it is the only available tool. Hypothesis/purpose We hypothesize that athletes’ self-reported concussion histories will be significantly greater after reading them the current definition of concussion, relative to the reporting when no definition was provided. An increase from baseline to post-definition response will suggest that athletes are unaware of the currently accepted medical definition. Study design Cross-sectional study of 472 current and former athletes. Methods Investigators conducted structured telephone interviews with current and former athletes between January 2010 and January 2013, asking participants to report how many concussions they had received in their lives. Interviewers then read participants a current definition of concussion, and asked them to re-estimate based on that definition. Results The two estimates were significantly different (Wilcoxon signed rank test: z=15.636, P<0.001). Comparison of the baseline and post-definition medians (7 and 15, respectively) indicated that the post-definition estimate was approximately twice the baseline. Follow-up analyses indicated that this effect was consistent across all levels of competition examined and across type of sport (contact versus non-contact). Conclusion Our results indicate that athletes’ current understandings of concussions are not consistent with a currently accepted medical definition. We strongly recommend that clinicians and researchers preface requests for self-reported concussion history with a definition. In addition, it is extremely important that researchers report the definition they used in published manuscripts of their work. What this study adds to existing knowledge Our study shows that unprompted reporting of concussion history produces results that are significantly different from those provided after a definition has been given, suggesting one possible mechanism to improve the reliability of self-reported concussion history across multiple individuals. PMID:24891816

  6. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems.

    PubMed

    Simon, Sheldon R

    2004-12-01

    The technology supporting the analysis of human motion has advanced dramatically. Past decades of locomotion research have provided us with significant knowledge about the accuracy of tests performed, the understanding of the process of human locomotion, and how clinical testing can be used to evaluate medical disorders and affect their treatment. Gait analysis is now recognized as clinically useful and financially reimbursable for some medical conditions. Yet, the routine clinical use of gait analysis has seen very limited growth. The issue of its clinical value is related to many factors, including the applicability of existing technology to addressing clinical problems; the limited use of such tests to address a wide variety of medical disorders; the manner in which gait laboratories are organized, tests are performed, and reports generated; and the clinical understanding and expectations of laboratory results. Clinical use is most hampered by the length of time and costs required for performing a study and interpreting it. A "gait" report is lengthy, its data are not well understood, and it includes a clinical interpretation, all of which do not occur with other clinical tests. Current biotechnology research is seeking to address these problems by creating techniques to capture data rapidly, accurately, and efficiently, and to interpret such data by an assortment of modeling, statistical, wave interpretation, and artificial intelligence methodologies. The success of such efforts rests on both our technical abilities and communication between engineers and clinicians.

  7. Plastic and evolutionary responses of plankton to environmental change are influenced by drift in ocean currents

    NASA Astrophysics Data System (ADS)

    Doblin, M.; van Sebille, E.

    2016-02-01

    The analytical framework for understanding fluctuations in ocean habitats has typically involved a Eulerian view. However, for marine microbes, this framework does not take into account their transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Using a modelling approach, we show that generations of upper ocean microbes experience along-trajectory temperature variability up to 10°C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents contributes to environmental fluctuation experienced by microbes and suggests that microbial populations may be adapted to upstream rather than local conditions. In an empirical test, we demonstrate that microbes in a warm, poleward flowing western boundary current (East Australian Current) have a different thermal response curve to microbes in coastal water at the same latitude (p < 0.05). Our findings suggest that advection has the capacity to influence microbial community assemblies such that water masses with relatively small thermal fluctuations select for thermal specialists, and communities with broad temperature performance curves are found in locations where ocean currents are strong or along-trajectory temperature variation is high.

  8. Emailing Drones: From Design to Test Range to ARS Offices and into the Field

    NASA Astrophysics Data System (ADS)

    Fuka, D. R.; Singer, S.; Rodriguez, R., III; Collick, A.; Cunningham, A.; Kleinman, P. J. A.; Manoukis, N. C.; Matthews, B.; Ralston, T.; Easton, Z. M.

    2017-12-01

    Unmanned aerial vehicles (UAVs or `drones') are one of the newest tools available for collecting geo- and biological-science data in the field, though today's commercial drones only come in a small range of options. While scientific research has benefitted from the enhanced topographic and surface characterization data that UAVs can provide through traditional image based remote sensing techniques, drones have significantly greater mission-specific potential than are currently utilized. The reasons for this under-utilization are twofold, 1) because with their broad capabilities comes the need to be careful in implementation, and as such, FAA and other regulatory agencies around the world have blanket regulations that can inhibit new designs from being implemented, and 2) current multi-mission-multi-payload commercial drones have to be over-designed to compensate for the fact that they are very difficult to stabilize for multiple payloads, leading to a much higher cost than necessary. For this project, we explore and demonstrate a workflow to optimize the design, testing, approval, and implementation of embarrassingly inexpensive mission specific drones, with two use cases. The first will follow the process from design (at VTech and UH Hilo) to field implementation (by USDA-ARS in PA and Extension in VA) of several custom water quality monitoring drones, printed on demand at ARS and Extension offices after testing at the Pan-Pacific UAS Test Range Complex (PPUTRC). This type of customized drone can allow for an increased understanding in the transition from non-point source to point source agri-chemical and pollutant transport in watershed systems. The second use case will follow the same process, resulting in customized drones with pest specific traps built into the design. This class of customized drone can facilitate IPM pest monitoring programs nationwide, decreasing the intensive and costly quarantine and population elimination measures that currently exist. This multi-institutional project works toward an optimized workflow where scientists can quickly 1) customize drones to meet specific purposes, 2) have them tested in FAA Test Ranges, and 3) get them certified and working in the field, while 4) cutting their cost to significantly less than what is currently available.

  9. Parasitic current collection by PASP Plus solar arrays

    NASA Technical Reports Server (NTRS)

    Davis, Victoria Ann; Gardner, Barbara M.

    1995-01-01

    Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.

  10. The role of disease characteristics in the ethical debate on personal genome testing.

    PubMed

    Bunnik, Eline M; Schermer, Maartje Hn; Janssens, A Cecile J W

    2012-01-19

    Companies are currently marketing personal genome tests directly-to-consumer that provide genetic susceptibility testing for a range of multifactorial diseases simultaneously. As these tests comprise multiple risk analyses for multiple diseases, they may be difficult to evaluate. Insight into morally relevant differences between diseases will assist researchers, healthcare professionals, policy-makers and other stakeholders in the ethical evaluation of personal genome tests. In this paper, we identify and discuss four disease characteristics--severity, actionability, age of onset, and the somatic/psychiatric nature of disease--and show how these lead to specific ethical issues. By way of illustration, we apply this framework to genetic susceptibility testing for three diseases: type 2 diabetes, age-related macular degeneration and clinical depression. For these three diseases, we point out the ethical issues that are relevant to the question whether it is morally justifiable to offer genetic susceptibility testing to adults or to children or minors, and on what conditions. We conclude that the ethical evaluation of personal genome tests is challenging, for the ethical issues differ with the diseases tested for. An understanding of the ethical significance of disease characteristics will improve the ethical, legal and societal debate on personal genome testing.

  11. Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dev, Bodhayan; Walter, Mark E.; Arkenberg, Gene B.; Swartz, Scott L.

    2014-01-01

    Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and an organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. By fully understanding the characteristics of this ceramic/glass composite seal, next generation seals can be fabricated for improved performance.

  12. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  13. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  14. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.

  15. Vadose zone transport field study: Detailed test plan for simulated leak tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from thesemore » uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.« less

  16. Comprehensive embryo testing. Experts' opinions regarding future directions: an expert panel study on comprehensive embryo testing.

    PubMed

    Hens, Kristien; Dondorp, Wybo J; Geraedts, Joep P M; de Wert, Guido M

    2013-05-01

    What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from four Western Europe countries. As willingness to participate in this study may be connected with expectations regarding the pace and direction of future developments, selection bias cannot be excluded. The introduction of comprehensive screening techniques in embryo testing calls for further ethical reflection that is grounded in empirical work. Specifically, there is a need for studies querying the opinions of infertile couples undergoing IVF/PGS regarding the desirability of embryo screening beyond aneuploidy. This research was supported by the CSG, Centre for Society and Life Sciences (project number: 70.1.074). The authors declare no conflict of interest. N/A.

  17. Understandings of Current Environmental Issues: Turkish Case Study in Six Teacher Education Colleges

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Irez, Serhat; Dogan, Ozgur Kivilcan

    2010-01-01

    The purpose of this study is to profile future science teachers' understandings of current environmental issues in the context of an education reform in Turkey. Knowledge base and understandings of elementary and secondary prospective science teachers about biodiversity, carbon cycle, global warming and ozone layer depletion were targeted in the…

  18. Contemporary Obstetric Triage.

    PubMed

    Sandy, Edward Allen; Kaminski, Robert; Simhan, Hygriv; Beigi, Richard

    2016-03-01

    The role of obstetric triage in the care of pregnant women has expanded significantly. Factors driving this change include the Emergency Medical Treatment and Active Labor Act, improved methods of testing for fetal well-being, increasing litigation risk, and changes in resident duty hour guidelines. The contemporary obstetric triage facility must have processes in place to provide a medical screening examination that complies with regulatory statues while considering both the facility's maternal level of care and available resources. This review examines the history of the development of obstetric triage, current considerations in a contemporary obstetric triage paradigm, and future areas for consideration. An example of a contemporary obstetric triage program at an academic medical center is presented. A successful contemporary obstetric triage paradigm is one that addresses the questions of "sick or not sick" and "labor or no labor," for every obstetric patient that presents for care. Failure to do so risks poor patient outcome, poor patient satisfaction, adverse litigation outcome, regulatory scrutiny, and exclusion from federal payment programs. Understanding the role of contemporary obstetric triage in the current health care environment is important for both providers and health care leadership. This study is for obstetricians and gynecologists as well as family physicians. After completing this activity, the learner should be better able to understand the scope of a medical screening examination within the context of contemporary obstetric triage; understand how a facility's level of maternal care influences clinical decision making in a contemporary obstetric triage setting; and understand the considerations necessary for the systematic evaluation of the 2 basic contemporary obstetric questions, "sick or not sick?" and "labor or no labor?"

  19. Food mechanical properties and dietary ecology.

    PubMed

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.

  20. GPs views and understanding of PSA testing, screening and early detection; survey.

    PubMed

    Sutton, J; Melia, J; Kirby, M; Graffy, J; Moss, S

    2016-05-01

    There is currently no national prostate cancer screening programme in the UK. However, patients 50 years and older are entitled to a prostate specific antigen (PSA) test, if informed on the advantages and disadvantages of testing and their risk of cancer. The Prostate Cancer Risk Management Programme (PCRMP) provides this guidance. The aim of this study was to access GPs' views and understanding of PSA testing, prostate cancer screening and early detection. A total of 708 questionnaires were returned by GPs across two English regions in 2013 and the GP questionnaire responses were quantitatively analysed. In the 699 completed questionnaires, the majority of GPs were well informed about PSA testing, screening and early detection. Only 32% used guidelines for referral, 14% knew all age-specific PSA referral levels, 71% that Black men have a higher prostate cancer risk than White men (22% correctly answered threefold increase) and 82% that family history is a risk factor. A further 78% thought electronic prompts during consultation would encourage PCRMP guideline usage and 75% had never been offered a PSA test and prostate cancer educational course, of which 73% would like to attend a course. Only 23% were aware of the latest PSA screening evidence and 94% would like an update. Participating GPs seem to be well informed but need more information and tools to help follow recommended guidance. In particular, increased awareness of PCRMP guidelines especially by automated methods, further educational courses and evidence updates would be beneficial. © 2016 John Wiley & Sons Ltd.

  1. Crowding and experience-use history: a study of the moderating effect of place attachment among water-based recreationists.

    PubMed

    Budruk, Megha; Wilhem Stanis, Sonja A; Schneider, Ingrid E; Heisey, Jennifer J

    2008-04-01

    Effective recreation resource management relies on understanding visitor perceptions and behaviors. Given current and increasing pressures on water resources, understanding crowding evaluations seems important. Beyond crowding, however, variables that possibly relate to or influence crowding are of interest and in particular, place attachment and experience-use history (EUH). As EUH is related to place attachment and likely affects crowding, this study explored the moderating effect of place attachment dimensions on the relationships between EUH and visitor crowding evaluations. Water based recreationists at a U.S. Army Corps of Engineers site were contacted onsite and asked questions related to experience-use history, crowding evaluations, place attachment, and activity participation. Anglers and campers at the site identified similar crowding perceptions and place attachments. Only one of eight models tested revealed a moderating effect. Specifically, place identity moderated the relationship between the total times visited in the past twelve months and expected crowding among anglers. As such, the quest continues to understand the relationship among these important variables.

  2. Ultimate explanations and suboptimal choice.

    PubMed

    Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S

    2018-07-01

    Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Seeing the future: using Xenopus to understand eye regeneration.

    PubMed

    Tseng, Ai-Sun

    2017-01-01

    Studies of Xenopus eye development have contributed considerably to the understanding of vertebrate neurogenesis, including eye field specification, cell fate determination and identification of genes critical for eye formation. This knowledge has served as a solid foundation for cellular and molecular examinations of the robust regenerative capacity of the Xenopus eye. The retina, lens, and the optic nerve are capable of regeneration after injury in both larval and adult stages. Here, we discuss the current models for studying eye regeneration in Xenopus and their potential applications for providing insights into human eye diseases. As Xenopus has many of the same tools that are available for other regeneration models, we thus highlight the distinct strengths and versatility of this organism that make it especially suited for extrapolating and testing strategies aimed at promoting regeneration and repair in eye tissues. Furthermore, we outline a promising future for the use of new techniques and approaches to address outstanding questions in understanding eye regeneration. © 2017 Wiley Periodicals, Inc.

  4. Sharing of science is most likely among male scientists.

    PubMed

    Massen, Jorg J M; Bauer, Lisa; Spurny, Benjamin; Bugnyar, Thomas; Kret, Mariska E

    2017-10-10

    Humans are considered to be highly prosocial, especially in comparison to other species. However, most tests of prosociality are conducted in highly artificial settings among anonymous participants. To gain a better understanding of how human hyper-cooperation may have evolved, we tested humans' willingness to share in one of the most competitive fields of our current society: academia. Researchers were generally prosocial with 80% sharing a PDF of one of their latest papers, and almost 60% willing to send us their data. Intriguingly, prosociality was most prominent from male to male, and less likely among all other sex-combinations. This pattern suggests the presence of male-exclusive networks in science, and may be based on an evolutionary history promoting strong male bonds.

  5. Overview of Current Hot Water Propulsion Activities at Berlin University of Technology

    NASA Astrophysics Data System (ADS)

    Kolditz, M.; Pilz, N.; Adirim, H.; Rudloff, P.; Gorsch, M.; Kron, M.

    2004-10-01

    The AQUARIUS working group has been founded in 1991 on the initiative of students at the Institute of Aeronautics and Astronautics at Berlin University of Technology. It works mainly on the development, manufacturing and testing of hot water propulsion systems. Upon having launched numerous single stage rockets, a two stage hot water rocket (AQUARIUS X-PRO) was developed and launched for the first time in world history. In order to perform thrust experiments for a deeper understanding of the propulsion efficiency and the influence of varying nozzle parameters on exhaust characteristics, a dedicated hot water test facility has been built. For more than five years,ground-based take-off assistance systems for future reusable launch vehicles have been the subject of intense investigation.

  6. Commentary: Leveraging discovery science to advance child and adolescent psychiatric research--a commentary on Zhao and Castellanos 2016.

    PubMed

    Mennes, Maarten

    2016-03-01

    'Big Data' and 'Population Imaging' are becoming integral parts of inspiring research aimed at delineating the biological underpinnings of psychiatric disorders. The scientific strategies currently associated with big data and population imaging are typically embedded in so-called discovery science, thereby pointing to the hypothesis-generating rather than hypothesis-testing nature of discovery science. In this issue, Yihong Zhao and F. Xavier Castellanos provide a compelling overview of strategies for discovery science aimed at progressing our understanding of neuropsychiatric disorders. In particular, they focus on efforts in genetic and neuroimaging research, which, together with extended behavioural testing, form the main pillars of psychopathology research. © 2016 Association for Child and Adolescent Mental Health.

  7. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    NASA Astrophysics Data System (ADS)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the experimental data for the dual-phase Ti-6Al-4V and were applied to the beta annealed variant in order to estimate stress-life behavior using a small-sample approach. Based on this research, designers should be better able to make reliable estimates of fatigue strength parameters using small-sample testing.

  8. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  9. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    NASA Astrophysics Data System (ADS)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.

  10. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Tobin

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental,more » understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes/interfacial layers and OPV active layer organic molecules/polymers. 3) Exploration and perfection of new processing strategies and cell architectures for the next-generation, large-area flexible OPVs. The goal has been to develop for the solar energy community the fundamental scientific understanding needed to design, fabricate, prototype, and ultimately test high-efficiency cells incorporating these new concepts. We achieved success in all of these directions.« less

  11. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle.

    PubMed

    Hurtado, Pablo I; Garrido, Pedro L

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  12. Mother-to-Child Transmission of Human T-Cell Lymphotropic Viruses-1/2: What We Know, and What Are the Gaps in Understanding and Preventing This Route of Infection

    PubMed Central

    Carneiro-Proietti, A. B. F.; Amaranto-Damasio, M. S.; Leal-Horiguchi, C. F.; Bastos, R. H. C.; Seabra-Freitas, G.; Borowiak, D. R.; Ribeiro, M. A.; Proietti, F. A.; Ferreira, A. S. D.; Martins, M. L.

    2014-01-01

    Although human T-cell lymphotropic viruses (HTLV-1/2) were described over 30 years ago, they are relatively unknown to the public and even to healthcare personnel. Although HTLV-1 is associated with severe illnesses, these occur in only approximately 10% of infected individuals, which may explain the lack of public knowledge about them. However, cohort studies are showing that a myriad of other disease manifestations may trouble infected individuals and cause higher expenditures with healthcare. Testing donated blood for HTLV-1/2 started soon after reliable tests were developed, but unfortunately testing is not available for women during prenatal care. Vertical transmission can occur before or after birth of the child. Before birth, it occurs transplacentally or by transfer of virus during cesarean delivery, but these routes of infection are rare. After childbirth, viral transmission occurs during breastfeeding and increases with longer breastfeeding and high maternal proviral load. Unlike the human immunodeficiency virus types 1 and 2, HTLV is transmitted primarily through breastfeeding and not transplacentally or during delivery. In this study, we review what is currently known about HTLV maternal transmission, its prevention, and the gaps still present in the understanding of this process. PMID:25232474

  13. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    USGS Publications Warehouse

    Matchett, John R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data.

  14. Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test

    PubMed Central

    Matchett, J. R.; Stark, Philip B.; Ostoja, Steven M.; Knapp, Roland A.; McKenny, Heather C.; Brooks, Matthew L.; Langford, William T.; Joppa, Lucas N.; Berlow, Eric L.

    2015-01-01

    Statistical models often use observational data to predict phenomena; however, interpreting model terms to understand their influence can be problematic. This issue poses a challenge in species conservation where setting priorities requires estimating influences of potential stressors using observational data. We present a novel approach for inferring influence of a rare stressor on a rare species by blending predictive models with nonparametric permutation tests. We illustrate the approach with two case studies involving rare amphibians in Yosemite National Park, USA. The endangered frog, Rana sierrae, is known to be negatively impacted by non-native fish, while the threatened toad, Anaxyrus canorus, is potentially affected by packstock. Both stressors and amphibians are rare, occurring in ~10% of potential habitat patches. We first predict amphibian occupancy with a statistical model that includes all predictors but the stressor to stratify potential habitat by predicted suitability. A stratified permutation test then evaluates the association between stressor and amphibian, all else equal. Our approach confirms the known negative relationship between fish and R. sierrae, but finds no evidence of a negative relationship between current packstock use and A. canorus breeding. Our statistical approach has potential broad application for deriving understanding (not just prediction) from observational data. PMID:26031755

  15. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  16. Social Behavior and Impairments in Social Cognition Following Traumatic Brain Injury.

    PubMed

    May, Michelle; Milders, Maarten; Downey, Bruce; Whyte, Maggie; Higgins, Vanessa; Wojcik, Zuzana; Amin, Sophie; O'Rourke, Suzanne

    2017-05-01

    The negative effect of changes in social behavior following traumatic brain injury (TBI) are known, but much less is known about the neuropsychological impairments that may underlie and predict these changes. The current study investigated possible associations between post-injury behavior and neuropsychological competencies of emotion recognition, understanding intentions, and response selection, that have been proposed as important for social functioning. Forty participants with TBI and 32 matched healthy participants completed a battery of tests assessing the three functions of interest. In addition, self- and proxy reports of pre- and post-injury behavior, mood, and community integration were collected. The TBI group performed significantly poorer than the comparison group on all tasks of emotion recognition, understanding intention, and on one task of response selection. Ratings of current behavior suggested significant changes in the TBI group relative to before the injury and showed significantly poorer community integration and interpersonal behavior than the comparison group. Of the three functions considered, emotion recognition was associated with both post-injury behavior and community integration and this association could not be fully explained by injury severity, time since injury, or education. The current study confirmed earlier findings of associations between emotion recognition and post-TBI behavior, providing partial evidence for models proposing emotion recognition as one of the pre-requisites for adequate social functioning. (JINS, 2017, 23, 400-411).

  17. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges

    PubMed Central

    Marazzi, Brigitte; Bronstein, Judith L.; Koptur, Suzanne

    2013-01-01

    Background Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. Scope This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. Conclusions Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future. PMID:23704115

  18. Nursing theory and concept development: a theoretical model of clinical nurses' intentions to stay in their current positions.

    PubMed

    Cowden, Tracy L; Cummings, Greta G

    2012-07-01

    We describe a theoretical model of staff nurses' intentions to stay in their current positions. The global nursing shortage and high nursing turnover rate demand evidence-based retention strategies. Inconsistent study outcomes indicate a need for testable theoretical models of intent to stay that build on previously published models, are reflective of current empirical research and identify causal relationships between model concepts. Two systematic reviews of electronic databases of English language published articles between 1985-2011. This complex, testable model expands on previous models and includes nurses' affective and cognitive responses to work and their effects on nurses' intent to stay. The concepts of desire to stay, job satisfaction, joy at work, and moral distress are included in the model to capture the emotional response of nurses to their work environments. The influence of leadership is integrated within the model. A causal understanding of clinical nurses' intent to stay and the effects of leadership on the development of that intention will facilitate the development of effective retention strategies internationally. Testing theoretical models is necessary to confirm previous research outcomes and to identify plausible sequences of the development of behavioral intentions. Increased understanding of the causal influences on nurses' intent to stay should lead to strategies that may result in higher retention rates and numbers of nurses willing to work in the health sector. © 2012 Blackwell Publishing Ltd.

  19. Human Papillomavirus Laboratory Testing: the Changing Paradigm

    PubMed Central

    2016-01-01

    SUMMARY High-risk human papillomaviruses (HPVs) cause essentially all cervical cancers, most anal and oropharyngeal cancers, and some vaginal, vulvar, and penile cancers. Improved understanding of the pathogenesis of infection and the availability of newer tests are changing the approach to screening and diagnosis. Molecular tests to detect DNA from the most common high-risk HPVs are FDA approved for use in conjunction with cytology in cervical cancer screening programs. More-specific tests that detect RNA from high-risk HPV types are now also available. The use of molecular tests as the primary screening tests is being adopted in some areas. Genotyping to identify HPV16 and -18 has a recommended role in triaging patients for colposcopy who are high-risk HPV positive but have normal cytology. There are currently no recommended screening methods for anal, vulvar, vaginal, penile, or oropharyngeal HPV infections. HPV testing has limited utility in patients at high risk for anal cancer, but p16 immunohistochemistry is recommended to clarify lesions in tissue biopsy specimens that show moderate dysplasia or precancer mimics. HPV testing is recommended for oropharyngeal squamous cell tumors as a prognostic indicator. Ongoing research will help to improve the content of future guidelines for screening and diagnostic testing. PMID:26912568

  20. Summary of CPAS Gen II Parachute Analysis

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Bledsoe, Kristin J.; Fraire, Usbaldo, Jr.; Moore, James W.; Olson, Leah M.; Ray, Eric

    2011-01-01

    The Orion spacecraft is currently under development by NASA and Lockheed Martin. Like Apollo, Orion will use a series of parachutes to slow its descent and splashdown safely. The Orion parachute system, known as the CEV Parachute Assembly System (CPAS), is being designed by NASA, the Engineering and Science Contract Group (ESCG), and Airborne Systems. The first generation (Gen I) of CPAS testing consisted of thirteen tests and was executed in the 2007-2008 timeframe. The Gen I tests provided an initial understanding of the CPAS parachutes. Knowledge gained from Gen I testing was used to plan the second generation of testing (Gen II). Gen II consisted of six tests: three singleparachute tests, designated as Main Development Tests, and three Cluster Development Tests. Gen II required a more thorough investigation into parachute performance than Gen I. Higher fidelity instrumentation, enhanced analysis methods and tools, and advanced test techniques were developed. The results of the Gen II test series are being incorporated into the CPAS design. Further testing and refinement of the design and model of parachute performance will occur during the upcoming third generation of testing (Gen III). This paper will provide an overview of the developments in CPAS analysis following the end of Gen I, including descriptions of new tools and techniques as well as overviews of the Gen II tests.

  1. Clinical education in nursing: rethinking learning in practice settings.

    PubMed

    Ironside, Pamela M; McNelis, Angela M; Ebright, Patricia

    2014-01-01

    Clinical education is a time- and resource-intensive aspect of contemporary nursing programs. Despite widespread agreement in the discipline about the centrality of clinical experiences to learning nursing, little is known about if and how current clinical experiences contribute to students' learning and readiness for practice. Before large-scale studies testing specific educational interventionals can be conducted, it is important to understand what currently occurs during clinical experiences. This study, funded by the National Council of State Boards of Nursing, examined the nature of contemporary clinical education by describing students' and faculty's experiences at three geographically diverse universities in the United States. Findings suggest that teachers' and students' focus on task completion persists and often overshadows the more complex aspects of learning nursing practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging

    NASA Technical Reports Server (NTRS)

    Felt, Frederick S.

    2005-01-01

    During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.

  3. Companion diagnostics for the targeted therapy of gastric cancer.

    PubMed

    Yoo, Changhoon; Park, Young Soo

    2015-10-21

    Gastric cancer is the fourth most common type of cancer and represents a major cause of cancer-related deaths worldwide. With recent biomedical advances in our understanding of the molecular characteristics of gastric cancer, many genetic alterations have been identified as potential targets for its treatment. Multiple novel agents are currently under development as the demand for active agents that improve the survival of gastric cancer patients constantly increases. Based on lessons from previous trials of targeted agents, it is now widely accepted that the establishment of an optimal diagnostic test to select molecularly defined patients is of equal importance to the development of active agents against targetable genetic alterations. Herein, we highlight the current status and future perspectives of companion diagnostics in the treatment of gastric cancer.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Randolph

    Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materialsmore » from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these materials and compare them to natural silk fibers. ? Develop x-ray and neutron diffraction techniques to better determine the structure in amorphous and semicrystalline biopolymers, such as spider silk fibers. ? Combine mechanical testing and structural x-ray and neutron diffraction data to develop a molecular understanding of the structure-function relationship in spider silk materials. ? Elucidate the role water plays in spider silk fiber formation and structure. Emphasis will be placed on combined neutron and NMR studies. ? Use solid-state Nuclear Magnetic Resonance (NMR) to characterize synthetic and natural spider silk materials that show potential as a biomimetic material or bio-inspired polymer architecture. ? Develop EPSCoR student and postdoctoral training and exposure to national laboratory facilities. ? Further develop scientific outreach and chemical education programs and research.« less

  5. Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities

    Cancer.gov

    Cancer Treatment-Related Cardiotoxicity: Understanding the Current State of Knowledge and Developing Future Research Priorities, a 2013 workshop sponsored by the Epidemiology and Genomics Research Program.

  6. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  7. High resolution infrared datasets useful for validating stratospheric models

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.

    1992-01-01

    An important objective of the High Speed Research Program (HSRP) is to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to an interim assessment of the impact of a projected fleet of High Speed Civil Transports (HSCT's) on the stratosphere. As part of this work, critical comparisons between models and existing high quality measurements are planned. These comparisons will be used to test the reliability of current atmospheric chemistry models. Two suitable sets of high resolution infrared measurements are discussed.

  8. Recent Advances in the Diagnosis and Treatment of Clostridium Difficile Infection

    PubMed Central

    Avila, Meera B.; Avila, Nathaniel P.; Dupont, Andrew W.

    2016-01-01

    Clostridium difficile infection (CDI) has become the most frequently reported health care-associated infection in the United States [1]. As the incidence of CDI rises, so too does the burden it produces on health care and society. In an attempt to decrease the burden of CDI and provide the best outcomes for patients affected by CDI, there have been many recent advancements in the understanding, diagnosis, and management of CDI. In this article, we review the current recommendations regarding CDI testing and treatment strategies. PMID:26918176

  9. Fundamental mechanisms of failure in polyethylene gas pipes. Final report, January 1, 1992-December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.; Lu, X.

    1996-07-30

    The reseach objectives were: to provide a fundamental understanding of the primary long term failure process which occurs in gas pipe systems, notably slow crack growth (SCG)s; to develop methods for the accelerated testing of the resistance of polyethylene piping systems to SCG; to obtain experimental results on current materials being used or considered for use by the gas industry; and to measure the effects on SCG of processing variables in the production of pipe and fittings and compositional variables in the production of resin.

  10. Topics of Astronomy in Physics Teaching: the study of the oceanic tides addressed to the significant learning

    NASA Astrophysics Data System (ADS)

    Dos Santos Neta, Maria Luiza

    2017-02-01

    In the Medium Teaching when topics of Astronomy are supplied happen in Physics discipline with the use of methodologies that don't contribute to the development of the learning significant, however to turn them effective it is fundamental, for the apprehension of habitual events. By this context intends to analyze and to understand the current contributions of the use of a proposal of Teaching of Physics promoted the significant learning again, when topics of Astronomy be worked with the students of the Medium Teaching of a public school of the State Net of Teaching located in the city of Sirinhaém, in the south coast of Pernambuco. This research presented characteristic qualitative, as well as quantitative contemplating methodological procedures, such as: the application of a Pre-Test, the didactic intervention/sequences stages of the Cycle of Experience and Post-Test, following by situation-problem. As central theme one worked contents regarding the Astronomy, with prominence for the oceanic tides, being the significant learning stimulated to each stage: exhibition of videos, slides groups, discussions and activities written. The results obtained in the Pre-Test demonstrated that, the conditions of the previous knowledge presented by the students, in relation to the theme to be worked - oceanic tides - if they found inadequate to begin the study on the phenomenon. However, after the application of the didactic intervention/ sequences stages and comparing the result of the Post-Test in function of the Pre-Test was verified that, the previous knowledge are in appropriate conditions for the understanding of the event, as well as, for they be used in situation-problem that demands her understanding They suggests her that, the application of the Cycle of Experience as didactic sequence frequently happens, because it is verified that her use potentiates the construction of the significant learning.

  11. Gas turbine critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.

    1982-01-01

    The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.

  12. Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi; Keller, Jonathan; Errichello, Robert

    2013-12-01

    Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliabilitymore » using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.« less

  13. How Well Does the S-Web Theory Predict In-Situ Observations of the Slow Solar Wind?

    NASA Astrophysics Data System (ADS)

    Young, A. K.; Antiochos, S. K.; Linker, J.; Zurbuchen, T.

    2014-12-01

    The S-Web theory provides a physical explanation for the origin and properties of the slow solar wind, particularly its composition. The theory proposes that magnetic reconnection along topologically complex boundaries between open and closed magnetic fields on the sun releases plasma from closed magnetic field regions into the solar wind at latitudes away from the heliospheric current sheet. Such a wind would have elevated charge states compared to the fast wind and an elemental composition resembling the closed-field corona. This theory is currently being tested using time-dependent, high-resolution, MHD simulations, however comparisons to in-situ observations play an essential role in testing and understanding slow-wind release mechanisms. In order to determine the relationship between S-Web signatures and the observed, slow solar wind, we compare plasma data from the ACE and Ulysses spacecraft to solutions from the steady-state models created at Predictive Science, Inc., which use observed magnetic field distributions on the sun as a lower boundary condition. We discuss the S-Web theory in light of our results and the significance of the S-Web for interpreting current and future solar wind observations. This work was supported, in part, by the NASA TR&T and SR&T programs.

  14. An imaging-based photometric and colorimetric measurement method for characterizing OLED panels for lighting applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yiting; Narendran, Nadarajah; Tan, Jianchuan; Mou, Xi

    2014-09-01

    The organic light-emitting diode (OLED) has demonstrated its novelty in displays and certain lighting applications. Similar to white light-emitting diode (LED) technology, it also holds the promise of saving energy. Even though the luminous efficacy values of OLED products have been steadily growing, their longevity is still not well understood. Furthermore, currently there is no industry standard for photometric and colorimetric testing, short and long term, of OLEDs. Each OLED manufacturer tests its OLED panels under different electrical and thermal conditions using different measurement methods. In this study, an imaging-based photometric and colorimetric measurement method for OLED panels was investigated. Unlike an LED that can be considered as a point source, the OLED is a large form area source. Therefore, for an area source to satisfy lighting application needs, it is important that it maintains uniform light level and color properties across the emitting surface of the panel over a long period. This study intended to develop a measurement procedure that can be used to test long-term photometric and colorimetric properties of OLED panels. The objective was to better understand how test parameters such as drive current or luminance and temperature affect the degradation rate. In addition, this study investigated whether data interpolation could allow for determination of degradation and lifetime, L70, at application conditions based on the degradation rates measured at different operating conditions.

  15. An update on Legionella.

    PubMed

    Carratalà, Jordi; Garcia-Vidal, Carolina

    2010-04-01

    Legionella pneumophila is increasingly recognized as a significant cause of sporadic and epidemic community-acquired and nosocomial-acquired pneumonia. This review focuses on the latest literature concerning the epidemiology, pathogenesis, clinical presentation, diagnosis, and treatment of Legionnaires' disease. A significant increase in the incidence of Legionnaires' disease in the United States has been documented over the last years. L. pneumophila has recently been found to be a leading cause of community-acquired pneumonia in hospitalized and ambulatory patients in Germany. Recent studies provide insight into the understanding of the pathogenesis of Legionnaires' disease and the relevance of the formation of biofilms. Clinical manifestations of Legionnaires' disease are not specific and current diagnostic scores are of limited use. Several recent studies offer useful information concerning Legionnaires' disease in immunosuppressed patients. A systematic review of English literature performed to assess test characteristics of Legionella urinary antigen has found that the pooled sensitivity of the test was 0.74 and specificity was 0.991. Improved clinical response has been observed for patients with Legionnaires' disease treated with highly active antimicrobial agents against Legionella. Legionnaires' disease is a significant health problem in many countries. Clinical manifestations are unreliable in diagnosing Legionnaires' disease. Therefore, diagnostic laboratory tests for Legionella, including the urinary antigen test, should be applied to all patients with pneumonia. Levofloxacin (or other fluoroquinolone) or azithromycin are the current drugs of choice for treatment of Legionnaires' disease. Effective preventive strategies are needed.

  16. Old dog begging for new tricks – Current practices and future directions in the diagnosis of delayed antimicrobial hypersensitivity

    PubMed Central

    Konvinse, KC; Phillips, E; White, KD; Trubiano, JA

    2016-01-01

    Purpose of review Antimicrobials are a leading cause of severe T-cell-mediated adverse drug reactions (ADRs). The purpose of this review is to address the current understanding of antimicrobial cross-reactivity and the ready availability of and evidence for in vitro, in vivo and ex vivo diagnostics for T-cell-mediated ADRs. Recent findings Recent literature has evaluated the efficacy of traditional antibiotic allergy management including patch testing, skin prick testing, intradermal testing and oral challenge. While patch and intradermal testing are specific for the diagnosis of immune-mediated (IM) ADRs, they suffer from drug-specific limitations in sensitivity. The use of ex vivo diagnostics, especially ELISpot has been highlighted as a promising new approach to assigning causality. Knowledge of true rates of antimicrobial cross-reactivity aids empirical antibiotic choice in the setting of previous IM-ADRs. Summary In an era of increasing antimicrobial resistance and use of broad-spectrum antimicrobial therapy, ensuring patients are assigned the correct “allergy label” is essential. Re-exposure to implicated antimicrobials, especially in the setting of severe adverse cutaneous reaction is associated with significant morbidity and mortality. The process through which an antibiotic label gets assigned, acted on and maintained is still imprecise. Predicting T-cell-mediated ADRs via personalised approaches, including HLA-typing may pave future pathways to safer antimicrobial prescribing guidelines. PMID:27753687

  17. Animal use in the chemical and product manufacturing sectors - can the downtrend continue?

    PubMed

    Curren, Rodger

    2009-12-01

    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.

  18. Current and future needs for developmental toxicity testing.

    PubMed

    Makris, Susan L; Kim, James H; Ellis, Amy; Faber, Willem; Harrouk, Wafa; Lewis, Joseph M; Paule, Merle G; Seed, Jennifer; Tassinari, Melissa; Tyl, Rochelle

    2011-10-01

    A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained. © 2011 Wiley Periodicals, Inc.

  19. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    PubMed

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.

  20. Developing Model Benchtop Systems for Microbial Experimental Evolution

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Wang, J.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Blaich, J.

    2017-12-01

    Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA- damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO2 and O2. Additional environmental stressor systems like temperature (extreme heat or cold), metal toxicity, and other forms of radiation will increase the scale and testing range.

Top